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Abstract

This study presents a mobile app that facilitates undergraduate students to learn data science through their own full body
motions. Leveraging the built-in camera of a mobile device, the proposed app captures the user and feeds their images into
an open-source computer-vision algorithm that localizes the key joint points of human body. As students can participate in
the entire data collection process, the obtained motion data is context-rich and personally relevant to them. The app utilizes
the collected motion data to explain various concepts and methods in data science under the context of human movements.
The app also visualizes the geometric interpretation of data through various visual aids, such as interactive graphs and figures.
In this study, we use principal component analysis, a commonly used dimensionality reduction method, as an example to
demonstrate the proposed learning framework. Strategies to encompass other learning modules are also discussed for

further improvement.
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Introduction

In the past decades, data science has drawn considerable
attention as a solution to uncover hidden information that
leads to new insights and well-informed decision-making
from big data (Wani & Jabin, 2018). To this end, data science
utilizes various analytical methods and algorithms that are
derived from multiple disciplines, such as statistics, com-
puter science, and knowledge in particular application
domains (Baumer, 2015). Many companies and organiza-
tions are trying to exploit data science for business opportu-
nities and/or public good. The growing popularity of data
science has created a high demand for data scientists.

Universities have responded to this demand by establish-
ing schools, degree programs, and courses for data science to
strengthen students’ competitiveness in the job market
(Fayyad & Hamutcu, 2021). Yet, while many undergraduate
students recognize the importance of data science, many of
them are reluctant to take the pertinent courses because they
find difficulties in statistics, mathematics, and/or program-
ming (He et al., 2019; White, 2019). Instructors also have
their own challenges. As the course enrollment size continu-
ously inflates, instructors’ typical strategy for scaling up
classes is to fill up the courses with decontextualized prac-
tices (Donoghue et al., 2021). This prevents students from
having the necessary contextual knowledge to interpret data,
leading them to see data merely as meaningless numbers
(Davies & Sheldon, 2021).

To enhance learning outcome in data science education, a
number of studies have suggested using mobile devices, such
as smartphones and tablets, as supplementary learning tools
(Diaz-Sainz et al., 2021; Ong et al., 2021). Nowadays, as
mobile devices are readily available to students, mobile
learning is considered a practical approach to improve stu-
dents’ learning experience inside and outside the classroom
(Aljawarneh, 2020; Norman et al., 2011). On a closer view,
various visual aids (e.g., interactive graphs and figures)
available on mobile learning promote students’ interest, curi-
osity, and thereby increase their motivation and engagement
in learning (Angga et al., 2016; Nuanmeesri, 2021). Recent
studies also indicate that students can develop social and
teamwork skills by participating in learning activities
together with mobile devices (Baecker, 2022; Go et al.,
2022). Thus, developing mobile apps for data science learn-
ing holds enormous potential in helping undergraduate stu-
dents, who are avid users of mobile technology, to cultivate
their data science abilities.
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Figure |. Four major stages of using the proposed learning platform.

Yet, there are several considerations that need to be
addressed in the design of the learning app for effective data
science education. First, the way concepts in data science are
presented should be easy to understand in order to accom-
modate different levels of students. In particular, students
with little knowledge and skills are more likely to lose their
motivation if they find the content difficult. To reduce learn-
ing demands, the app should incorporate data visualization
techniques to provide a geometric interpretation of data. This
visual representation illustrates and helps students to under-
stand how data science methods transform data into
information(Unwin, 2020). Second, the dataset used for
learning should be familiar and relevant to students so that
they can build sufficient contextual understanding of the
data. The high context-awareness of data helps students
develop customized analytical approaches by enabling data-
driven decision-making (Wolff et al., 2019). Thus, context-
rich data could encourage students to seek different data
analytical methods, which is exactly what data scientists are
performing every day.

In this paper, we propose a mobile app to facilitate under-
graduate students to learn concepts and methods in data sci-
ence with their self-motion data. This app is specially
designed to collect full body motion data via a built-in cam-
era in a mobile device. Thus, the users can easily create data-
sets which are personally relevant and context-rich from
their own body motion. The app also allows students to inter-
actively explore the geometric interpretations of data with
various visual aids so that they can learn data science in an
effective manner.

Method

System Overview

Students will go through four stages when using the pro-
posed app: method selection, brief method introduction, data
collection through self-body motion, and method learning
with the collected data (Figure 1). In the first stage, students
decide which data science method they would like to study.
Once a method is chosen, the app introduces the basic con-
cepts of the method and pertinent background knowledge.

Figure 2. Learning app screen for full body motion data
collection (left). Selected 12 key points of the human body (right).
|-left shoulder, 2-left elbow, 3-left wrist, 4-right shoulder, 5-right
elbow, 6-right wrist, 7-left hip, 8-left knee, 9-left ankle, 10-right
hip, | 1-right knee, 12-right ankle.

Students are then prompted to collect their full body motion
data with the help of instructional videos. During the data
collection process, students can see 2D stick images super-
imposed on the images and compare these stick images with
the human body on the screen (Figure 2). This allows stu-
dents to realize that motion data are being created. Students
can repeat the data collection process as many times as they
want until the collected data is in accordance with what is
demonstrated in instructional videos. After data collection,
the app will process the data by using the selected data sci-
ence method. Students can then interactively explore the
geometric interpretation of the collected and processed data
through a series of graphs to enhance their understanding of
a data science method.
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Full-body Motion Data Collection

In the past few years, the computer-vision community has
developed several computation-efficient convolutional neu-
ral network (CNN) architectures for the deployment on
mobile devices with limited hardware resources. For exam-
ple, MobileNet and its variants (e.g., ShuffleNet; Zhang
et al.,, 2018) use 3x3 depth-wise separable convolutions
which consume approximately nine times less computational
cost than standard 3x3 convolutions at only a small reduc-
tion in accuracy (Howard et al., 2017). These architectures
are lightweight yet effective to extract the spatial features of
the human body from local to global levels, making them
suitable for position-sensitive computer vision tasks, such as
pose estimation and face mesh detection.

Recently, researchers at Google presented BlazePose, a
lightweight CNN architecture tailored for real-time inference
of human pose on mobile devices (Bazarevsky et al., 2020).
Inspired by MobileNet, BlazePose splits a standard 3x 3 con-
volution into a 3x 3 depth-wise convolution and a 1x1 point-
wise convolution to perform convolution operations with
much fewer parameters. In addition, BlazePose uses joint
heatmaps to train a joint coordinate regression network and
then discards the heatmap branch during inference
(Bazarevsky et al., 2020). This selective use of heatmaps fur-
ther reduces the network complexity, making BlazePose
more efficient to run on mobile devices than traditional heat-
map-based pose estimation models which retain joint heat-
maps. From the perspective of learning experience, the
real-time performance of pose estimation is essential to
increase students’ engagement and immersion in the data
collection process (Wang et al., 2022). Thus, in this study we
adopt BlazePose model due to its real-time performance,
high accuracy, and high accessibility via Google ML Kit, a
software development kit for deploying neural networks on
mobile devices.

Once students initialize data collection, the app starts to
read image frames from the embedded camera in YUV420
format. This format allows real-time display owing to its less
transmission bandwidth. The app then converts the image
frames into RGB bitmaps and feeds them into BlazePose at a
rate of 10 frames per second. BlazePose consists of two sub-
networks: a body detector performing pre-processing and a
pose tracker detecting body key points. The detector stan-
dardizes the size of the inputs along with pose alignment to
facilitate the subsequent key point detection. Specifically,
the detector calculates four parameters for the first input
frame: the bounding box for a person’s face, the midpoint
between the left and right hip joints, the size of the circle
circumscribing the person, and the torso incline angle. Based
on these parameters, the detector aligns the pose and crops
the full body region from the input image. This cropped
image is then reshaped to a 256 x256x 3 square array and
passed to the tracker. In the next phase, the depth-wise
separable convolution layers extract the spatial features of
the pre-processed image, and the heatmap-trained joint

coordinate regression network detects 33 body key points
using these features. The detected key points at the previous
frame are repeatedly used to align the pose of the next frame,
making the subsequent pre-processing faster. Out of the 33
key points we selected 12 key points (Figure 2-right) that are
necessary to represent the whole-body movements, such as
walking and jumping. Each point has x and y coordinates
indicating the location of a pixel in an RGB bitmap.

Learning Modules of Data Science Methods

In this section, we use principal component analysis (PCA) as
an example learning module. PCA is one of the basic dimen-
sionality reduction techniques that are commonly covered in
undergraduate data science courses. The learning dataset is
generated from a video in which a person walks forward.
Note that this walking motion should be captured from a
45-degree view angle for 10 seconds while the person being
captured is located at the center of the camera view (Figure
2-left). The collected dataset is then represented by X < R,
where n = 100 time frames (10 seconds x 10 frames/second)
and p = 24 features (12 key points in 2D space).

The first step of PCA is to standardize the dataset X. Each
element {x,-j =l.,nj= 1,---,17} is subtracted by its
mean x; and divided by its standard deviation s;. We define
the standardized X as X. Then, all the features of X are mean-
centered and scaled to unit standard deviation. The app then
explains the benefits of standardization: in our case, we stan-
dardize the features to offset the imbalance among the joint
motion variances. Because of the structural limitations of the
human body, several proximal joints (e.g., shoulders, hips)
have a limited range of motion compared to distal joints
(e.g., wrists, ankles). As a result, the features regarding prox-
imal joints tend to have relatively small variances, making
their contributions to the principal components (PCs) less.
Standardization prevents scale-variant PCA from underesti-
mating those variables.

In PCA, we are interested in reducing the dimensionality
of data. This inevitably comes at the expense of information
loss, but the goal is to trade the minimum loss for the maxi-
mum simplicity by retaining most of the data structure (i.e.,
variance) (Shlens, 2014). From a geometric point of view,
this means projecting data onto smaller dimensional sub-
spaces that spread the data most widely. In the app, students
will see a related demonstration example of data projection
from 2D to 1D space, in which they will notice there is a line
that maximizes the variance of the projected data.
Algebraically, this can be achieved by the dot product of data
and the eigenvectors of the covariance matrix £, which is
calculated in terms of X as

Y= Liri (1)

n—1
Students need a clear understanding of the covariance
matrix because it determines the eigenvectors onto which X
is projected to maximize the variance and reduce the
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dimensionality. Note that the concepts of a covariance
matrix, an eigenvector, and an eigemvalue are described in
the method introduction in advance.
Students will learn how to derive the PCs from their data
X, which can be decomposed by singular value decomposi-
tion (Baker 20035) as follows.
X=Usv’ (2)
where U e ™" is an orthonormal matrix, § = [g}; R"F,

D= diag (G, - ]with singularvaluesc,.,. = \[(n—1)4,
in the decreasing order on the diagonal (ie.,
6126,2...26,20) Y=[v1v1._.vp}ﬁ v, eR™ is mn

orthonormal eigenvector with an associated eigenvector 3, .
Then, Eq. (1) can be rewritten by Eq. (2) as

e D
2=fox=Lv[n’" n]l_r’"U vrov| 2 V7,
n—1 n—1 0 n—1

and post-multiplying both sides by v, we have
DZ
V=V (3)
n—1

2
T
]\rt =lk‘rk’ where

n—

From Eq. (3) we can see that Ty _ =[

v, and A, are the eigenvectors and eigenvalues, respectively
for the linear transformation X.
The app explains that the eigenvalues A, represent the
variances of the corresponding PCs and their sum A = ¥4 is
vk

the same as the original variance (i.e., sum of the variances
of the original features). From this fact, some students may
notice &, /A represents how much proportion the k-th PC
preserves the original variance. Otherwise, this will become
clear through a scree plot. Students will see the scree plot
where A, /A are arranged in a descending order (Figure 3)
and realize the first few PCs, which are related to the first
few eigenvalues, account for most of the original variance.
This implies that one's full body motion during walking
could be approximately explained by these two new features.
The app then provides a time series of PC1 and PC2 (Figure
4). For walking motion with the instructed capturing condi-
tions, both PC1 and PC2 form a sinusoidal-like curve that
oscillates above and below zero in a periodic manner. The
period of PC1 is about as half as the period of PC2. An expla-
nation is that PC1 represents the left-right wobbling motion
during walking while PC2 comresponds to the up-down
motion. The up-down motion repeats every step and the left-
right motion repeats every two steps. This finding is aligned
with a previous study in which PCA was adopted to analyze
human walking data (Daffertshofer et al., 2004).

Discussion

Despite the preat potential of mobile learning, there is only
limited work on developing mobile learning platforms for

@ Eigenvalues {h_k: k=12, 24}

Figure 3. An example of the interactive scree plot. Students
can check the value of A and how much proportion the
corresponding PC accounts for the original variance when
touching on each bar.

- PC]= PCJ

Figure 4. PCI and PC2 over time for a walking motion.

data science. In this work, we sought to fill this gap by devel-
oping a dedicated mobile learning app for undergraduate
data science education. The proposed learning app could
engage and motivate students to learn data science with fea-
tures that students cannot otherwise experience in traditional
settings (e.g., interactive visual aids and self-data collection).
Therefore, introducing this app in data science courses could
complement the existing classroom curriculum. We expect
that our app will serve as a supplementary leaming tool for
undergraduate data science courses with which students can
penerate personally relevant and context-rich data.

At this time, we only developed one leaming module,
which is for learning PCA.. To cover a wide range of methods
in data science, new leamning modules will be introduced to
the app. These modules will cover methods commonly used
in data science. Following the PCA module, the next module
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we could develop is a k-mean clustering module. The k-mean
clustering module will guide students to pose several body
postures. Among these postures, some are similar to each
other (e.g., walking vs. running) while some are not (walking
vs. drinking). Each posture will be captured multiple times.
The dimensionality of the posture datasets will be first
reduced to two (i.e., PC1 and PC2) by PCA for data visual-
ization. Students will then see that the resulting PCs of two
similar postures also have similar values and thereby form a
cluster in a scatter plot. In addition, students will also notice
that some less similar postures could be clustered together if
the parameter k, the number of clusters, is less than the num-
ber of the performed postures.

Real-world data analysis rarely ends with a single method.
Rather, it is a common practice to analyze data with a series of
methods, each of which has its own role and facilitates the
next step. For example, in the k-mean learning module above-
mentioned, k-mean is applied on PCs. These PCs is derived
from the PCA learning module. Since the first two PCs only
contain partial but critical information of the original posture
data, applying k-means clustering can be computationally effi-
cient and still achieve high performance. We believe such a
connection between methods is as critical as understanding
how each method works. Therefore, we plan to develop inter-
connected learning modules so that students can cultivate their
thinking ability between methods, experience the entire analy-
sis process, and consolidate what they have learned.

In addition, since the full-body motion data are high-
dimensional, dimension reduction techniques provide a great
remedy for turning the data into visible 2D dataset. Therefore,
we will keep exploiting dimension reduction techniques as
pre-processing methods for data visualization and delivering
other pertinent methods.

There are several limitations in the current app to be
addressed. First, because the adopted pose estimation model
is specialized in capturing a single person without occlusion,
students should avoid the scenarios where there are multiple
people or objects block the person of interest when they col-
lect human motion datasets. Otherwise, the key point detec-
tion algorithm may detect the motion of another person or
may be less accurate because of the view block. Second,
given limited hardware resources of mobile devices, real-
time inference of 3D human pose is yet difficult to imple-
ment. Compared to 3D pose analysis, the current 2D
localization results could be more deviated from the actual
locations due to the absence of depth information, which is
the reason that the proposed app currently guides students to
follow certain capturing conditions. We leave the improve-
ment of the pose estimation model as future research along
with new learning modules.
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