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E3: Improving Educational Ecosystems

Introduction

In the past decades, data science has drawn considerable 
attention as a solution to uncover hidden information that 
leads to new insights and well-informed decision-making 
from big data (Wani & Jabin, 2018). To this end, data science 
utilizes various analytical methods and algorithms that are 
derived from multiple disciplines, such as statistics, com-
puter science, and knowledge in particular application 
domains (Baumer, 2015). Many companies and organiza-
tions are trying to exploit data science for business opportu-
nities and/or public good. The growing popularity of data 
science has created a high demand for data scientists.

Universities have responded to this demand by establish-
ing schools, degree programs, and courses for data science to 
strengthen students’ competitiveness in the job market 
(Fayyad & Hamutcu, 2021). Yet, while many undergraduate 
students recognize the importance of data science, many of 
them are reluctant to take the pertinent courses because they 
find difficulties in statistics, mathematics, and/or program-
ming (He et  al., 2019; White, 2019). Instructors also have 
their own challenges. As the course enrollment size continu-
ously inflates, instructors’ typical strategy for scaling up 
classes is to fill up the courses with decontextualized prac-
tices (Donoghue et  al., 2021). This prevents students from 
having the necessary contextual knowledge to interpret data, 
leading them to see data merely as meaningless numbers 
(Davies & Sheldon, 2021).

To enhance learning outcome in data science education, a 
number of studies have suggested using mobile devices, such 
as smartphones and tablets, as supplementary learning tools 
(Díaz-Sainz et  al., 2021; Ong et  al., 2021). Nowadays, as 
mobile devices are readily available to students, mobile 
learning is considered a practical approach to improve stu-
dents’ learning experience inside and outside the classroom 
(Aljawarneh, 2020; Norman et al., 2011). On a closer view, 
various visual aids (e.g., interactive graphs and figures) 
available on mobile learning promote students’ interest, curi-
osity, and thereby increase their motivation and engagement 
in learning (Angga et al., 2016; Nuanmeesri, 2021). Recent 
studies also indicate that students can develop social and 
teamwork skills by participating in learning activities 
together with mobile devices (Baecker, 2022; Go et  al., 
2022). Thus, developing mobile apps for data science learn-
ing holds enormous potential in helping undergraduate stu-
dents, who are avid users of mobile technology, to cultivate 
their data science abilities.
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Yet, there are several considerations that need to be 
addressed in the design of the learning app for effective data 
science education. First, the way concepts in data science are 
presented should be easy to understand in order to accom-
modate different levels of students. In particular, students 
with little knowledge and skills are more likely to lose their 
motivation if they find the content difficult. To reduce learn-
ing demands, the app should incorporate data visualization 
techniques to provide a geometric interpretation of data. This 
visual representation illustrates and helps students to under-
stand how data science methods transform data into 
information(Unwin, 2020). Second, the dataset used for 
learning should be familiar and relevant to students so that 
they can build sufficient contextual understanding of the 
data. The high context-awareness of data helps students 
develop customized analytical approaches by enabling data-
driven decision-making (Wolff et al., 2019). Thus, context-
rich data could encourage students to seek different data 
analytical methods, which is exactly what data scientists are 
performing every day.

In this paper, we propose a mobile app to facilitate under-
graduate students to learn concepts and methods in data sci-
ence with their self-motion data. This app is specially 
designed to collect full body motion data via a built-in cam-
era in a mobile device. Thus, the users can easily create data-
sets which are personally relevant and context-rich from 
their own body motion. The app also allows students to inter-
actively explore the geometric interpretations of data with 
various visual aids so that they can learn data science in an 
effective manner.

Method

System Overview

Students will go through four stages when using the pro-
posed app: method selection, brief method introduction, data 
collection through self-body motion, and method learning 
with the collected data (Figure 1). In the first stage, students 
decide which data science method they would like to study. 
Once a method is chosen, the app introduces the basic con-
cepts of the method and pertinent background knowledge. 

Students are then prompted to collect their full body motion 
data with the help of instructional videos. During the data 
collection process, students can see 2D stick images super-
imposed on the images and compare these stick images with 
the human body on the screen (Figure 2). This allows stu-
dents to realize that motion data are being created. Students 
can repeat the data collection process as many times as they 
want until the collected data is in accordance with what is 
demonstrated in instructional videos. After data collection, 
the app will process the data by using the selected data sci-
ence method. Students can then interactively explore the 
geometric interpretation of the collected and processed data 
through a series of graphs to enhance their understanding of 
a data science method.

Figure 1.  Four major stages of using the proposed learning platform.

Figure 2.  Learning app screen for full body motion data 
collection (left). Selected 12 key points of the human body (right). 
1-left shoulder, 2-left elbow, 3-left wrist, 4-right shoulder, 5-right 
elbow, 6-right wrist, 7-left hip, 8-left knee, 9-left ankle, 10-right 
hip, 11-right knee, 12-right ankle.
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Full-body Motion Data Collection

In the past few years, the computer-vision community has 
developed several computation-efficient convolutional neu-
ral network (CNN) architectures for the deployment on 
mobile devices with limited hardware resources. For exam-
ple, MobileNet and its variants (e.g., ShuffleNet; Zhang 
et  al., 2018) use 3 3×  depth-wise separable convolutions 
which consume approximately nine times less computational 
cost than standard 3 3×  convolutions at only a small reduc-
tion in accuracy (Howard et al., 2017). These architectures 
are lightweight yet effective to extract the spatial features of 
the human body from local to global levels, making them 
suitable for position-sensitive computer vision tasks, such as 
pose estimation and face mesh detection.

Recently, researchers at Google presented BlazePose, a 
lightweight CNN architecture tailored for real-time inference 
of human pose on mobile devices (Bazarevsky et al., 2020). 
Inspired by MobileNet, BlazePose splits a standard 3 3×  con-
volution into a 3 3×  depth-wise convolution and a 1 1×  point-
wise convolution to perform convolution operations with 
much fewer parameters. In addition, BlazePose uses joint 
heatmaps to train a joint coordinate regression network and 
then discards the heatmap branch during inference 
(Bazarevsky et al., 2020). This selective use of heatmaps fur-
ther reduces the network complexity, making BlazePose 
more efficient to run on mobile devices than traditional heat-
map-based pose estimation models which retain joint heat-
maps. From the perspective of learning experience, the 
real-time performance of pose estimation is essential to 
increase students’ engagement and immersion in the data 
collection process (Wang et al., 2022). Thus, in this study we 
adopt BlazePose model due to its real-time performance, 
high accuracy, and high accessibility via Google ML Kit, a 
software development kit for deploying neural networks on 
mobile devices.

Once students initialize data collection, the app starts to 
read image frames from the embedded camera in YUV420 
format. This format allows real-time display owing to its less 
transmission bandwidth. The app then converts the image 
frames into RGB bitmaps and feeds them into BlazePose at a 
rate of 10 frames per second. BlazePose consists of two sub-
networks: a body detector performing pre-processing and a 
pose tracker detecting body key points. The detector stan-
dardizes the size of the inputs along with pose alignment to 
facilitate the subsequent key point detection. Specifically, 
the detector calculates four parameters for the first input 
frame: the bounding box for a person’s face, the midpoint 
between the left and right hip joints, the size of the circle 
circumscribing the person, and the torso incline angle. Based 
on these parameters, the detector aligns the pose and crops 
the full body region from the input image. This cropped 
image is then reshaped to a 256 256 3× ×  square array and 
passed to the tracker. In the next phase, the depth-wise 
separable convolution layers extract the spatial features of 
the pre-processed image, and the heatmap-trained joint 

coordinate regression network detects 33 body key points 
using these features. The detected key points at the previous 
frame are repeatedly used to align the pose of the next frame, 
making the subsequent pre-processing faster. Out of the 33 
key points we selected 12 key points (Figure 2-right) that are 
necessary to represent the whole-body movements, such as 
walking and jumping. Each point has x and y  coordinates 
indicating the location of a pixel in an RGB bitmap.

Learning Modules of Data Science Methods

In this section, we use principal component analysis (PCA) as 
an example learning module. PCA is one of the basic dimen-
sionality reduction techniques that are commonly covered in 
undergraduate data science courses. The learning dataset is 
generated from a video in which a person walks forward. 
Note that this walking motion should be captured from a 
45-degree view angle for 10 seconds while the person being 
captured is located at the center of the camera view (Figure 
2-left). The collected dataset is then represented by X∈ ×n p, 
where n = 100 time frames (10 seconds × 10 frames/second) 
and p = 24 features (12 key points in 2D space).

The first step of PCA is to standardize the dataset X. Each 
element x i n j pij : , , ; , ,= … = …{ }1 1  is subtracted by its 
mean x j and divided by its standard deviation s j. We define 
the standardized X as X. Then, all the features of X are mean-
centered and scaled to unit standard deviation. The app then 
explains the benefits of standardization: in our case, we stan-
dardize the features to offset the imbalance among the joint 
motion variances. Because of the structural limitations of the 
human body, several proximal joints (e.g., shoulders, hips) 
have a limited range of motion compared to distal joints 
(e.g., wrists, ankles). As a result, the features regarding prox-
imal joints tend to have relatively small variances, making 
their contributions to the principal components (PCs) less. 
Standardization prevents scale-variant PCA from underesti-
mating those variables.

In PCA, we are interested in reducing the dimensionality 
of data. This inevitably comes at the expense of information 
loss, but the goal is to trade the minimum loss for the maxi-
mum simplicity by retaining most of the data structure (i.e., 
variance) (Shlens, 2014). From a geometric point of view, 
this means projecting data onto smaller dimensional sub-
spaces that spread the data most widely. In the app, students 
will see a related demonstration example of data projection 
from 2D to 1D space, in which they will notice there is a line 
that maximizes the variance of the projected data. 
Algebraically, this can be achieved by the dot product of data 
and the eigenvectors of the covariance matrix £ , which is 
calculated in terms of X as

ΣΣ =
−
1

1n
T
 X X 	 (1)

Students need a clear understanding of the covariance 
matrix because it determines the eigenvectors onto which X 
is projected to maximize the variance and reduce the 
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di m e nsi o n alit y.  N ot e  t h at  t h e  c o n c e pts  of  a  c o v ari a n c e  
m atri x, a n ei g e n v e ct or, a n d a n ei g e n v al u e ar e d es cri b e d i n 
t h e m et h o d i ntr o d u cti o n i n a d v a n c e.

St u d e nts will l e ar n h o w t o d eri v e t h e P Cs fr o m t h eir d at a 
X , w hi c h c a n b e d e c o m p os e d b y si n g ul ar v al u e d e c o m p osi-
ti o n ( B a k er 2 0 0 5) as f oll o ws.

X U S V= T  ( 2)

w h er e U ∈ × n n  i s  a n ort h o n or m al m atri x, S
D

O
=









 ∈ × n p , 

D = …( )di a g σ σ1 , , p  wit h si n g ul ar v al u es σ λ1 1≤ ≤ = −( )k p kn  

i n  t h e  d e cr e asi n g  or d er  o n  t h e  di a g o n al  (i. e.,  

σ σ σ1 2 0≥ ≥ … ≥ ≥p
), V v v v= … 1 2 p , v k

p∈ × 1  i s  a n  

ort h o n or m al ei g e n v e ct or wit h a n ass o ci at e d ei g e n v e ct or λ k
. 

T h e n, E q. ( 1) c a n b e r e writt e n b y E q. ( 2) as

ΣΣ =
−

=
−






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
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
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
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a n d p ost- m ulti pl yi n g b ot h si d es b y V , w e h a v e

ΣΣ V V
D

=
−











2

1n
 ( 3)

Fr o m E q. ( 3) w e c a n s e e t h at ΣΣ v v vk
k

k k k
n

=
−









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=
σ

λ
2

1
, w h er e 

v k  a n d λ k  ar e t h e ei g e n v e ct ors a n d ei g e n v al u es, r es p e cti v el y 
f or t h e li n e ar tr a nsf or m ati o n ΣΣ .

T h e  a p p  e x pl ai ns  t h at  t h e  ei g e n v al u es  λ k  r e pr es e nt  t h e  
v ari a n c es of t h e c orr es p o n di n g P Cs a n d t h eir s u m Λ ≡ ∑

∀ k
kλ  is 

t h e s a m e as t h e ori gi n al v ari a n c e (i. e., s u m of t h e v ari a n c es 
of t h e ori gi n al f e at ur es). Fr o m t his f a ct, s o m e st u d e nts m a y 
n oti c e λ k / Λ  r e pr es e nts h o w m u c h pr o p orti o n t h e k -t h P C 
pr es er v es t h e ori gi n al v ari a n c e. Ot h er wis e, t his will b e c o m e 
cl e ar t hr o u g h a s cr e e pl ot. St u d e nts will s e e t h e s cr e e pl ot 
w h er e λ k / Λ  ar e arr a n g e d i n a d es c e n di n g or d er ( Fi g ur e 3) 
a n d r e ali z e t h e first f e w P Cs, w hi c h ar e r el at e d t o t h e first 
f e w ei g e n v al u es, a c c o u nt f or m ost of t h e ori gi n al v ari a n c e. 
T his  i m pli es  t h at  o n e’s  f ull  b o d y  m oti o n  d uri n g  w al ki n g  
c o ul d b e a p pr o xi m at el y e x pl ai n e d b y t h es e t w o n e w f e at ur es. 
T h e a p p t h e n pr o vi d es a ti m e s eri es of P C 1 a n d P C 2 ( Fi g ur e 
4). F or w al ki n g m oti o n wit h t h e i nstr u ct e d c a pt uri n g c o n di -
ti o ns, b ot h P C 1 a n d P C 2 f or m a si n us oi d al-li k e c ur v e t h at 
os cill at es a b o v e a n d b el o w z er o i n a p eri o di c m a n n er. T h e 
p eri o d of P C 1 is a b o ut as h alf as t h e p eri o d of P C 2. A n e x pl a -
n ati o n is t h at P C 1 r e pr es e nts t h e l eft-ri g ht w o b bli n g m oti o n 
d uri n g  w al ki n g  w hil e  P C 2  c orr es p o n ds  t o  t h e  u p- d o w n  
m oti o n. T h e u p- d o w n m oti o n r e p e ats e v er y st e p a n d t h e l eft-
ri g ht m oti o n r e p e ats e v er y t w o st e ps. T his fi n di n g is ali g n e d 
wit h a pr e vi o us st u d y i n w hi c h P C A w as a d o pt e d t o a n al y z e 
h u m a n w al ki n g d at a ( D aff erts h of er et  al., 2 0 0 4).

Di s c u s si o n

D es pit e t h e gr e at p ot e nti al of m o bil e l e ar ni n g, t h er e is o nl y 
li mit e d  w or k  o n  d e v el o pi n g  m o bil e  l e ar ni n g  pl atf or ms  f or  

d at a s ci e n c e. I n t his w or k, w e s o u g ht t o fill t his g a p b y d e v el -
o pi n g  a  d e di c at e d  m o bil e  l e ar ni n g  a p p  f or  u n d er gr a d u at e  
d at a  s ci e n c e  e d u c ati o n.  T h e  pr o p os e d  l e ar ni n g  a p p  c o ul d  
e n g a g e a n d m oti v at e st u d e nts t o l e ar n d at a s ci e n c e wit h f e a -
t ur es t h at st u d e nts c a n n ot ot h er wis e e x p eri e n c e i n tr a diti o n al 
s etti n gs ( e. g., i nt er a cti v e vis u al ai ds a n d s elf- d at a c oll e cti o n). 
T h er ef or e, i ntr o d u ci n g t his a p p i n d at a s ci e n c e c o urs es c o ul d 
c o m pl e m e nt t h e e xisti n g cl assr o o m c urri c ul u m. We e x p e ct 
t h at o ur a p p will s er v e as a s u p pl e m e nt ar y l e ar ni n g t o ol f or 
u n d er gr a d u at e d at a s ci e n c e c o urs es wit h w hi c h st u d e nts c a n 
g e n er at e p ers o n all y r el e v a nt a n d c o nt e xt-ri c h d at a.

At  t his  ti m e,  w e  o nl y  d e v el o p e d  o n e  l e ar ni n g  m o d ul e,  
w hi c h is f or l e ar ni n g P C A. T o c o v er a wi d e r a n g e of m et h o ds 
i n d at a s ci e n c e, n e w l e ar ni n g m o d ul es will b e i ntr o d u c e d t o 
t h e a p p. T h es e m o d ul es will c o v er m et h o ds c o m m o nl y us e d 
i n d at a s ci e n c e. F oll o wi n g t h e P C A m o d ul e, t h e n e xt m o d ul e 

Fi g u r e 3.  A n e x a m pl e of t h e i nt er a cti v e s cr e e pl ot. St u d e nts 
c a n c h e c k t h e v al u e of λ k  a n d h o w m u c h pr o p orti o n t h e 
c orr es p o n di n g P C a c c o u nts f or t h e ori gi n al v ari a n c e w h e n 
t o u c hi n g o n e a c h b ar.

Fi g u r e 4.  P C 1 a n d P C 2 o v er ti m e f or a w al ki n g m oti o n.
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we could develop is a k-mean clustering module. The k-mean 
clustering module will guide students to pose several body 
postures. Among these postures, some are similar to each 
other (e.g., walking vs. running) while some are not (walking 
vs. drinking). Each posture will be captured multiple times. 
The dimensionality of the posture datasets will be first 
reduced to two (i.e., PC1 and PC2) by PCA for data visual-
ization. Students will then see that the resulting PCs of two 
similar postures also have similar values and thereby form a 
cluster in a scatter plot. In addition, students will also notice 
that some less similar postures could be clustered together if 
the parameter k, the number of clusters, is less than the num-
ber of the performed postures.

Real-world data analysis rarely ends with a single method. 
Rather, it is a common practice to analyze data with a series of 
methods, each of which has its own role and facilitates the 
next step. For example, in the k-mean learning module above-
mentioned, k-mean is applied on PCs. These PCs is derived 
from the PCA learning module. Since the first two PCs only 
contain partial but critical information of the original posture 
data, applying k-means clustering can be computationally effi-
cient and still achieve high performance. We believe such a 
connection between methods is as critical as understanding 
how each method works. Therefore, we plan to develop inter-
connected learning modules so that students can cultivate their 
thinking ability between methods, experience the entire analy-
sis process, and consolidate what they have learned.

In addition, since the full-body motion data are high-
dimensional, dimension reduction techniques provide a great 
remedy for turning the data into visible 2D dataset. Therefore, 
we will keep exploiting dimension reduction techniques as 
pre-processing methods for data visualization and delivering 
other pertinent methods.

There are several limitations in the current app to be 
addressed. First, because the adopted pose estimation model 
is specialized in capturing a single person without occlusion, 
students should avoid the scenarios where there are multiple 
people or objects block the person of interest when they col-
lect human motion datasets. Otherwise, the key point detec-
tion algorithm may detect the motion of another person or 
may be less accurate because of the view block. Second, 
given limited hardware resources of mobile devices, real-
time inference of 3D human pose is yet difficult to imple-
ment. Compared to 3D pose analysis, the current 2D 
localization results could be more deviated from the actual 
locations due to the absence of depth information, which is 
the reason that the proposed app currently guides students to 
follow certain capturing conditions. We leave the improve-
ment of the pose estimation model as future research along 
with new learning modules.
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