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implementation of EquiPPIS, licensed under the GNU General Public License v3, is freely
available at https://github.com/Bhattacharya-Lab/EquiPPIS.

Introduction

Protein-protein interactions (PPI) underpin numerous biological processes [1, 2]. Despite
their importance, experimental characterization of PPI remains challenging due to the costly
and time-consuming nature of the experimental assays [3]. Computational methods offer a
cheaper and high-throughput alternative by predicting the bound complex structures of inter-
acting proteins from the sequences and/or the unbound structures of individual protein
chains. A closely related problem—and the one addressed in this study—is the prediction of
the PPI sites, which are the interfacial residues of the interacting protein chains.

Accurately predicting the interface of interacting proteins and the identification of the PPI
sites remain challenging even after decades of research [4–6]. Various methods have been pro-
posed, but with limited success. Partner-independent PPI site prediction [7–12], which
involves the prediction of putative interaction sites based only upon the surface of an isolated
protein, without any knowledge of the partner or complex, is even more challenging compared
to partner-aware PPI site prediction [13–17] due to the absence of any information about the
partner protein and auxiliary information on the complex interfaces. In this work, we focus on
partner-independent PPI site prediction.

Predicting how proteins interact, and in particular, predicting the PPI sites, has a long his-
tory [12, 15, 18–25]. While initial models focused on feature engineering with machine learn-
ing [7, 19, 26, 27], subsequent work sought to capture more complex patterns using deep
learning [8, 10, 13, 14, 17]. The vast majority of the existing methods rely on readily available
protein sequence information, but their predictive accuracies are often quite limited [28].
Structure-based methods that integrate known structural information from the Protein Data
Bank (PDB [29]) are usually more accurate. However, these approaches are limited by the pau-
city of experimentally solved protein structures in the PDB. In the 14th edition of the Critical
Assessment of Structure Prediction (CASP14) experiment, AlphaFold2 [30] attained an
unprecedented performance level, enabling highly accurate prediction of single-chain protein
structural models at proteome-wide scale [31, 32]. Given the recent progress, a natural ques-
tion arises: can we leverage the predicted structural information by AlphaFold2 for accurate
partner-independent PPI site prediction at scale?

In the recent past, representation learning with graph structured data has been prevailing in
different applications. In particular, graph neural networks (GNNs) have surged as the major
choice for deep graph learning [33–35]. GNNs are permutation equivariant networks that
operate on graph structured data, with numerous applications ranging from dynamical sys-
tems to conformational energy estimation [36, 37]. However, off-the-shelf GNNs do not take
into account symmetries naturally occurring in 3-dimensional space. That is, they ignore the
effects of invariance and equivariance with respect to the E(3) symmetry group, i.e., the group
of rotations, reflections, and translations in 3D space. The recent E(n) equivariant graph neural
networks [38] address this problem by being translation, rotation, and reflection equivariant
in 3D space that can be scaled to higher dimensional spaces (E(n)), while preserving permuta-
tion equivariance. SE(3) equivariant neural networks [39] are another recent graph-based
models that can deal with the absolute coordinate systems in 3D space, but SE(3) equivariant
models do not commute with reflections of the input. E(3) equivariant neural networks, on the
other hand, transform equivariantly with translation, rotation and reflections, which make
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demonstrate that EquiPPIS attains state-of-the-art accuracy, which is better than what the top
performing competing method can achieve even with experimental structures. The superior
performance of EquiPPIS even when using predicted structural models as input dramatically
enhances the scalability of partner-independent PPI site prediction without compromising on
accuracy. Finally, we examine the relative importance of each feature we adopted by conduct-
ing feature ablation experiments using an independent validation set consisting of 42 targets
(hereafter called Validation_42) collected from the Test_315 dataset of the published work of
GraphPPIS after filtering out proteins with>25% pairwise sequence identity with our test sets.
We also use this validation set for hyperparameter selection.

Test set performance

We compare EquiPPIS with five sequence-based (PSIVER, ProNA2020, SCRIBER, DLPred
and DELPHI) and four structure-based (DeepPPISP, SPPIDER, MaSIF-site, and GraphPPIS)
predictors on the Test_60 set. As shown in Table 1, in addition to outperforming the
sequence-based methods (PR-AUC ranging from 0.190 to 0.319) by a large margin, EquiPPIS
significantly improves upon state-of-the-art accuracy by outperforming the structure-based
methods. Remarkably, EquiPPIS is the only method attaining ROC-AUC of more than 0.8,
which is noticeably better than the closest competing method GraphPPIS. Interestingly, the
published work of GraphPPIS sets the goal of achieving ROC-AUC of 0.8 as a motivation for
future work, while acknowledging it as one of the current impediments. In summary, EquiP-
PIS is a leap forward for partner independent PPI site prediction.

Fig 2 presents two representative examples from the Test_60 dataset comparing the PPI site
predictions using EquiPPIS and GraphPPIS. For the first example of a sugar binding protein
of Trichosanthes kirilowii (PDB ID: 1GGP, chain A) having length 234 (Fig 2A), EquiPPIS
correctly predicts majority of the observed PPI sites, attaining Precision, Recall, F1, and MCC
of 0.8, 0.545, 0.649, and 0.601, respectively; whereas GraphPPIS fails to predict any correct PPI
sites with Precision, Recall, F1 and MCC of 0, 0, 0, -0.185, respectively. The second example is
a Hydrolase inhibitor of Triticum aestivum in complex with Bacillus subtilis (PDB ID: 2B42,
chain A) having length 364 (Fig 2B), where GraphPPIS predicts many false positive PPI sites,
resulting in low Precision, Recall, F1 and MCC of 0.105, 0.231, 0.144, and -0.004, respectively.
EquiPPIS on the other hand attains reasonably accurate predictive performance having Preci-
sion, Recall, F1, and MCC of 0.595, 0.564, 0.579, and 0.53, respectively. In both cases, EquiPPIS
predictions are strikingly similar to the experimentally observed PPI sites.

Table 1. PPI site prediction performance on the Test_60 dataset for various methods.

Method Accuracy Precision Recall F1 MCC ROC-AUC PR-AUC

PSIVER 0.561 0.188 0.534 0.278 0.074 0.573 0.190

ProNA2020 0.738 0.275 0.402 0.326 0.176 N/A N/A

SCRIBER 0.667 0.253 0.568 0.350 0.193 0.665 0.278

DLPred 0.682 0.264 0.565 0.360 0.208 0.677 0.294

DELPHI 0.697 0.276 0.568 0.372 0.225 0.699 0.319

DeepPPISP 0.657 0.243 0.539 0.335 0.167 0.653 0.276

SPPIDER 0.752 0.331 0.557 0.415 0.285 0.755 0.373

MaSIF-site 0.780 0.370 0.561 0.446 0.326 0.775 0.439

GraphPPIS 0.776 0.368 0.584 0.451 0.333 0.786 0.429

EquiPPIS 0.787 0.389 0.615 0.477 0.366 0.805 0.467

Note: Except EquiPPS, results for the other methods are obtained directly from the published work of GraphPPIS; values in bold represent the best performance.

https://doi.org/10.1371/journal.pcbi.1011435.t001
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Analyzing the importance of equivariance

In the above experiments, EquiPPIS exhibits significantly improved performance. In order to
gain insight into the reasons behind such high performance and verify that it is connected to
the equivariant nature of the model, we perform a series of experiments by gradually isolating
the effect of the equivariant graph convolutions used in EquiPPIS. In particular, we train sev-
eral baseline models and compare them head-to-head with the full-fledged version of EquiP-
PIS. First, we train a baseline network by turning off the coordinate updates of the equivariant
graph convolution layers, thus making it an invariant network (hereafter called ‘EquiPPIS
invariant’). Since the full-fledged version of EquiPPIS employs attention operations for aggre-
gated embedding as part of the equivariant message passing, we train another baseline network
where attention operation is turned off during equivariant message passing, resulting in an
equivariant network but without attention (hereafter called ‘EquiPPIS w/o attention’). Addi-
tionally, we train two off-the-shelf GNNs for PPI site prediction: graph convolution network
(GCN) [35] and graph attention network (GAT) [45]. All baseline networks are trained on the
same Train_335 dataset using the same set of input features and hyperparameters as the full-
fledged version of EquiPPIS (see the Methods section). Fig 3A to 3D show the performance of
EquiPPIS compared to the baseline networks on the Test_60 set. The results demonstrate that
the full-fledged version of EquiPPIS outperforms all baseline models. For example, we observe
that the full-fledged version of EquiPPIS attains an ROC-AUC of more than 0.8, which is the
best accuracy compared to all baseline models. The ‘EquiPPIS invariant’ baseline, however,
falls short of achieving an ROC-AUC of 0.8, suggesting that it is the equivariant nature of
EquiPPIS that is responsible for the accuracy gain. Turning off the attention operation as done

Fig 2. GraphPPIS and EquiPPIS predictions compared to the experimental observation. (a) Sugar binding protein of Trichosanthes kirilowii. (b) Hydrolase
inhibitor of Triticum aestivum in complex with Bacillus subtilis. The regions highlighted in green represent PPI sites.

https://doi.org/10.1371/journal.pcbi.1011435.g002
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in the ‘EquiPPIS w/o attention’ baseline leads to an accuracy decline (an ROC-AUC of 0.8)
compared to the full-fledged version of EquiPPIS, but still better than the invariant network.
That is, attention operation during equivariant message passing contributes to an improve-
ment in accuracy. It is worth noting that despite the accuracy drop from the full-fledged ver-
sion of EquiPPIS, both ‘EquiPPIS invariant’ and ‘EquiPPIS w/o attention’ baselines
outperform GraphPPIS. On the other hand, off-the-shelf GCN- and GAT-based baselines
exhibit much lower accuracies compared to GraphPPIS, let alone EquiPPIS. Overall, the results
underscore the importance of equivariance in particular and symmetry-aware nature of the
new EquiPPIS model in general for improved predictive accuracy.

In addition to prediction accuracy, robustness of model is another key aspect to consider.
While experimentally-solved bound complex structures are used during EquiPPIS training,
protein–protein binding often leads to conformational changes by “induced fit” mechanism
(binding first) or “conformational selection” (conformational change first) [46]. To evaluate
the robustness of EquiPPIS and the effect of conformational changes, we examine the impact
on the accuracy when unbound structures are used during prediction instead of their bound
states for EquiPPIS as well as the other structure-based PPI site predictors (DeepPPISP, SPPI-
DER, MaSIF-site, and GraphPPIS) using the unbound test set (UBtest_31) of 31 proteins. As
shown in Fig 3E and 3F, EquiPPIS outperforms all other methods by a large margin, while
having the least impact on accuracy when unbound structures are used during prediction. For
example, the closest competing methods MaSIF-site and GraphPPIS suffer from significant
accuracy drop both in terms of MCC (35%, and 14.6% drop, respectively) and PR-AUC
(24.7%, and 18.2% drop, respectively), whereas EquiPPIS experiences only 4.6%, and 5.5%
drop in MCC and PR-AUC, respectively. What is most striking is that the accuracy gap
between EquiPPIS and the competing methods is so large that EquiPPIS using unbound struc-
tures attains much better accuracy even when the competing methods are using the bound
structures. That is, EquiPPIS exhibits remarkable robustness and performance resilience com-
pared to existing approaches.

Fig 3. Performance analysis on Test_60 set (a-d) and on UBtest_31 set (e-f). (a) MCC, (b) ROC-AUC, (c) F1, and (d) PR-AUC of EquiPPIS on Test_60 set
compared to the baseline models ‘EquiPPIS invariant’, ‘EquiPPIS w/o attention’, graph convolution network (GCN), and graph attention network (GAT). (e)
MCC and (f) PR-AUC of EquiPPIS on UBtest_31 set compared to other structure- based methods GraphPPIS, MaSIF-site, SPPIDER, and DeepPPISP.

https://doi.org/10.1371/journal.pcbi.1011435.g003
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PSSM and protein language model-based ESM2 feature contribute more than just the residue
type features. We notice a significant performance drop when all three sequence-based fea-
tures are isolated (No seq). Similarly, we notice consistent accuracy decline when we discard
the structure-based features individually including secondary structure (No ss), relative solvent
accessibility (No rsa), local geometry (No local geom), residue orientation (No orient), contact
count (No contact count) as well as relative residue positioning and residue virtual surface
area (No res pos + area). Because we use multi-level discretization of secondary structure (e.g.,
3-state and 8-state) and relative solvent accessibility (e.g., 2-state and 8-state) as well as back-
bone torsion angles, which are closely related to the secondary structure, we conduct feature
ablation experiments by discarding the 8-state secondary structure, 8- state relative solvent
accessibility, and backbone torsion angles. The resulting model (No multi-level) shows accu-
racy decline compared to the full-fledged version of EquiPPIS, indicating the effectiveness of
combining multi-granular information. Finally, we also notice an accuracy drop when we iso-
late the edge feature (No edge) that takes into account the contributions of sequence separation
and spatial interaction.

We also use the Validation_42 set to select the hyperparameters. Based on the results of the
grid search as shown in Fig 5B to 5G, we select a 10-layer EGCL framework with 256 hidden
units and the cutoff distance used to obtain the interacting residue pairs is set to 14Å. We use
the hyperparameters selected in the independent validation set during training and testing.

Discussion

This work introduces EquiPPIS, a symmetry-aware deep graph learning model for protein–
protein interaction site prediction based on E(3) equivariant graph neural networks. We dem-
onstrate that EquiPPIS outperforms existing methods and despite being trained on experimen-
tal structures, it generalizes extremely well to predicted structural models from AlphaFold2 to
the extent that EquiPPIS attains better accuracy with predicted structural models than what
existing approaches can achieve even with experimental structures. Through controlled experi-
ments, we verify the importance of equivariance as one of the major driving forces behind the
improved performance. In addition to questions around the effect of equivariance on accuracy,
our ablation study on an independent validation set confirms the contribution of various fea-
tures adopted in EquiPPIS. Our study leads to a series of interesting questions to consider: of
particular interest is the possibility of broadening the applicability of our method beyond
experimental input for large-scale PPI site predictions with high accuracy by utilizing rapid
computational prediction. In this regard, considering the diversity of the predictive modeling
ensemble and accounting for the conformational states of the interacting proteins having
multi-state conformational dynamics may help broaden the horizon of computational PPI site
prediction. Further, a promising direction for future work is to investigate the potential bene-
fits of explicitly including multiple sequence alignment (MSA) information and measure the
extent to which it may influence the accuracy. While an MSA-free method such as EquiPPIS
offers some unique advantages by being broadly applicable even for proteins that do not have
homologous sequences in the current sequence databases and bypasses the computational
overhead of MSA searching, MSA may still provide a rich source of additional information for
further improving the accuracy of PPI site prediction that might be worth exploring. Finally,
while we find that EquiPPIS exhibits excellent predictive accuracy and remarkable robustness,
an open challenge that remains is the interpretability of our deep learning model. The evolu-
tionary and functional significance of the residues predicted to be in PPI site by means of the
latent representation underlying the neural architecture of EquiPPIS still need to be systemati-
cally explored. We expect our proposed method can be easily extended to other biomolecular
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targets obtained from known heterodimers. While Dset_186, Dset_72, and Dset_164 are non-
redundant data sets independently, the combined dataset is further reduced to 395 targets by
filtering out redundant chains among the datasets. Following the same train-test split as
GraphPPIS [10], we use a train set (Train_335) having 10,374 and 55,992 interacting and non-
interacting residues, respectively; and a test set (Test_60) having 2,075 and 11,069 interacting
and noninteracting residues, respectively. In the Train_335 set, the average length of protein is
~198 residues ranging from 44 to 869 residues. In the Test_60 set, the average length of protein
is ~219 residues ranging from 52 to 766 residues, with no homodimeric protein-protein inter-
action present within this set. To assess the robustness of EquiPPIS and examine the effect of
conformational changes on its performance, we analyze a subset of 31 proteins from the
Test_60 set with known unbound monomeric conformations. This additional unbound test
set (UBtest_31) having 841 and 5813 interacting and non-interacting residues, respectively, is
adopted from the published work on GraphPPIS. Additionally, we adopt a dataset named
Test_315 from the published work on GraphPPIS consisting of newly solved protein com-
plexes that are non-redundant to the train set. We filter out 42 targets from the Test_315 set by
discarding protein chains having more than 25% pairwise sequence identity with our test set
and create an independent validation set (Validation_42) to perform feature ablation and
hyperparameter selection.

During prediction, we use both experimentally-solved structures as well as on AlphaFold2--
predicted structural models as input. We run AlphaFold2 with default parameter settings by
locally installing the officially released version [30] to generate five predicted structural models
and then select the model with the highest pLDDT confidence score. For target 4cdgA that
failed during the MSA generation stage of the AlphaFold2 pipeline, we run Colabfold [62] that
uses MMSeqs2 [63] for MSA generation and subsequently employs AlphaFold2 protocol for
structure prediction.

EquiPPIS is compared against both sequence-based (PSIVER [7], ProNA2020 [41],
SCRIBER [42], DLPred [43], and DELPHI [9]) and structure-aware (DeepPPIS [8], SPPIDER
[11], MaSIF-site [44], and GraphPPIS [10]) PPI site prediction methods. PSIVER employs a
Naïve Bayes classifier along with kernel density estimation by utilizing sequence-based fea-
tures. ProNA2020 combines homology modeling with a neural network for residue-level PPI
site prediction. SCRIBER employs two layers of logistic regression, where the first layer utilizes
sequence-based features while the second layer combines the output from the first layer for the
final prediction. DLPred employs a simplified long-short-term memory model for PPI site pre-
diction. DELPHI uses an ensemble of convolutional and recurrent neural networks architec-
tures with a large feature set. DeepPPISP combines local contextual features with global
features and employs convolutional neural networks to predict PPI sites. SPPIDER leverages
support vector machine, neural network, and linear discriminant analysis with an extensive
feature search and extraction process. MaSIF-site predicts PPI sites by learning protein struc-
tural fingerprints through geometric deep learning. GraphPPIS employs structure-aware deep
residual neural networks for PPI site prediction.

For benchmarking and performance assessment, we use standard performance evaluation
metrics including accuracy, precision, recall, F1-score (F1), and Matthews correlation coeffi-
cient (MCC), defined as:

Accuracy à TP á TN
TP á TN á FP á FN

Precision à TP
TP á FP
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Recall à TP
TP á FN

F1 à 2
Precision⇥ Recall
Precisioná Recall

MCC à TP ⇥ TN � FN ⇥ FPÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ÖTP á FPÜ ⇥ ÖTP á FNÜ ⇥ ÖTN á FPÜ ⇥ ÖTN á FNÜ

p

where, TP denotes the number of true PPI site residues that are correctly predicted, FP denotes
the number of non-PPI site residues that are incorrectly predicted to be in PPI sites, TN
denotes the number of non-PPI site residues that are correctly predicted, and FN denotes the
number of PPI site residues that are incorrectly predicted as non-PPI site. We additionally use
area under the receiver operating characteristic curve (ROC-AUC) and area under the preci-
sion-recall curve (PR-AUC) for performance evaluation.

Supporting information

S1 Fig. Impact of secondary structure content on prediction accuracy. ROC-AUC scores
achieved by EquiPPIS grouped by secondary structure content (’Primarily helix’, ’Primarily
beta’, and ’Mix’) as well as the overall ROC-AUC (’All’) in the Test_60 set.
(TIF)

S2 Fig. Input node feature generation. The sequence-based amino acid (L×20 feature set),
PSSM (L×20 feature set), and ESM2 (L×33 feature set) features are concatenated with the
structure-based node features (L×45 feature set), leading to a total of L×118 features, which
serves as an input to the E(3) equivariant graph neural networks.
(TIF)
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