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Abstract

The comment by Julian (2020) criticizes aspects of our paper, “Nitrogen enrichment, altered stoichiometry, and coral reef
decline at Looe Key, Florida Keys, USA.” The comment begins by misrepresenting our extensive literature review, while
providing no justification for the claim of a “skewed reading.” Julian’s critique focused on methods of data handling, statis-
tics, and spatial awareness, which we demonstrate in every case to be either irrelevant or incorrect. We provide additional
supporting data that refute these claims. For example, Julian criticized the removal of data points below the method detection
limits (MDLs), but when these points are included, the results do not change. Further, Julian criticized our removal of outli-
ers, but so few points were excluded that it did not change the results of the statistical analyses. Julian also misinterpreted
the methods of our correlation and stepwise regression analyses but did not dispute the Kruskal-Wallis tests of our 30-year
dataset that revealed significant decadal changes. Julian’s closing paragraph is replete with misinformation and demonstrates
a lack of understanding as to how increased freshwater flows associated with Everglades Restoration have led to a worsen-
ing of algal blooms and coral decline in the Florida Keys National Marine Sanctuary (FKNMS). This comment represents a
smokescreen to confuse the scientific community about the physical connectivity of the Everglades basin and the FKNMS.
Past water management policies based on politics, not sound science, have caused irreparable and ongoing environmental
damage to sensitive coral reef communities in the FKNMS.

Introduction

For decades, Florida has attracted national and international
headlines as a result of worsening harmful algal blooms and
loss of critical marine resources, especially the biologically
diverse coral reefs of the Florida Keys. The Florida Keys are
home to the third largest coral barrier reef in the world and
the only coral reef within the continental United States (Jaap
et al. 2008). Nutrient pollution from land-based sources has
been a major issue repeatedly identified by researchers as
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a driving factor in coastal algal blooms, water quality deg-
radation, and coral reef stress in the Florida Keys (Hallock
and Schlager 1986; Dustan and Halas 1987; NOAA 1988;
Lapointe and Clark 1992; NOAA 1996; Hu et al. 2004;
Ward-Paige et al. 2005; Voss and Richardson 2006; Wagner
et al. 2010; Vega-Thurber et al. 2014). This was the focus of
our recent paper, “Nitrogen enrichment, altered stoichiome-
try, and coral reef decline at Looe Key, Florida Keys, USA,”
which provided a unique long-term dataset and a synthesis
of this worsening problem (Lapointe et al. 2019).

The comment by Julian (2020) was critical of some
aspects of our paper, claiming that we used inappropriate
data handling and misapplication of some statistical meth-
ods. Julian has not published any papers on water quality
issues of coral reefs, seagrasses, macroalgae, or coastal
phytoplankton blooms, and thus is not an expert on these
subjects. Regardless, we show that Julian has misrepresented
our study and the broader issues of water management policy
in South Florida. This only serves to further confuse the sci-
entific community and public about the critical water quality
issues facing South Florida. We clarify why our data were
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handled and analyzed as described in the paper and show
that despite Julian’s allegations, the conclusion of our paper
remains the same: A long-term increase in N availability
has increased algal blooms and altered N:P stoichiometry,
which have promoted metabolic stress and decline of stony
corals at Looe Key.

In the introductory paragraph, Julian begins misrepresent-
ing our paper by stating that we provided a “brief literature
review of nitrogen driven eutrophication.” Our Introduction
section included eight paragraphs and a very large summary
of management actions and biotic events related to nutri-
ent enrichment, algal blooms, and hypoxia at Looe Key and
the Florida Bay/Florida Keys region, extending back to the
1970s (Lapointe et al. 2019, Table 1). In fact, the Introduc-
tion of our paper contained over 130 scientific references.
These included papers documenting how increasing Ever-
glades discharges worsened algal blooms and turbidity in
Florida Bay in the 1990s as the incidence of coral diseases
sharply accelerated in the downstream waters of the Florida
Keys National Marine Sanctuary (FKNMS; Porter et al.
2002; Jaap et al. 2008).

Julian also stated that our paper “demonstrated a skewed
reading of the literature and contradicts established under-
standings of ecosystem dynamics.” There was no justifica-
tion or explanation provided for those statements, which
raises concerns about the validity of Julian’s comment.
Below, we address the comments that were limited to subjec-
tive aspects of data handling and statistical analysis, showing
that none of the criticisms significantly change our overall
results nor our interpretation of environmental changes in
the hydrologically linked Everglades—Florida Bay—Florida
Keys system.

Data handling

Julian stated that we should not have excluded dissolved
nutrient data that were below the method detection lim-
its (MDLs) and suggested simple substitution techniques
would have been a better approach. Alternative approaches
suggested included using either the value of the MDL or
a value one-half of the MDL to replace these non-detects.
While these simple substitution methods are “widely
used”, there is no “theoretical basis” for using them and
these methods have been found to perform “poorly in com-
parison to other procedures” (see Fig. 13.1, Helsel and
Hirsch 1992). In these recommendations, Julian (2020)
neglected to address the poor performance of these simple
substitutions and the fact that there is great disagreement
on the best way to handle data below MDLs (Helsel and
Hirsch 1992; Newman et al. 1989; Clark and Whitfield
1994; Clark 1998). Further, all methods for handling val-
ues below MDLs can bias statistical analyses, but this is
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proportional to the degree of censoring (Newman et al.
1989; Clark 1998). Because the MDLs were quite low
in our Looe Key monitoring study, there were very few
non-detectable data points. In fact, all data were above the
MDLs for nitrate + nitrite and orthophosphate (SRP). For
ammonium, only 4% of the samples fell below the MDL
and were not used in statistical analyses. At this very low
level of censoring, effects on statistical analyses would
likely not be expected (Clark 1998).

The important thing to remember is that the true value
is unknown for samples below MDLs, although informa-
tion about its possible maximum value is available. While
it may not be the best statistical approach for the reasons
discussed above, we do agree that sometimes it is appropri-
ate to report a numerical value even though it is below the
MDL. For example, in a NASA-Research Opportunities in
Space and Earth Science funded study of dissolved nutrients
in the Caloosahatchee Estuary in 2010, we sent split samples
for analysis of ammonium, nitrate + nitrite, and SRP to two
different analytical laboratories, the Florida Department of
Environmental Protection (FDEP) laboratory (Tallahassee,
FL) and the Nutrient Analytical Services Laboratory (NAS-
CBL), Chesapeake Biological Lab, University of Maryland
(Solomons, MD). The MDL for the analytes at the two labo-
ratories was quite different. For the FDEP lab, the MDL
values were higher, 0.71 uM, 0.29 puM, and 0.13 uM for
ammonium, nitrate + nitrite, and SRP, respectively. The cor-
responding MDLs for the NAS-CBL were lower, 0.21 puM,
0.01 pM, and 0.02 pM, respectively. The resulting analysis
showed that the % undetectable samples from the FDEP lab
were 68%, 58%, and 39%, respectively; for the NAS-CBL,
the corresponding % undetectable samples were 38%, 0%
and 0%. As such, if one was using the dissolved nutrient data
from the FDEP lab, the use of a substitution method might
be more appropriate because they would have very few true
values to work with.

This inter-laboratory comparison illustrates the most
important decision facing scientists who study status and
trends in ambient nutrient concentrations—the selection
of an appropriate analytical method to avoid undetectable
results (D’Elia et al. 1989). Julian neglected to point this out,
yet it speaks to the importance of using low MDLs to detect
ambient nutrient concentrations in oligotrophic waters,
which has been a serious problem for some coral reef biolo-
gists (see comment by Lapointe 2004). We recognized the
need for low-level nutrient analytical methods in the early
1980s when we began monitoring nutrients at Looe Key.
We specifically chose methods with low MDLs to obtain as
many frue values as possible. For our purposes, the MDL
was considered the lowest concentration at which the per-
formance of a method was acceptable for use. Had we sub-
stituted one-half of the MDL, that would have introduced
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uncertainty and skewed our nutrient data, especially the
DIN:SRP ratios.

To illustrate that the removal of values below MDLs
had no effect on the data analyses in Lapointe et al. (2019),
we have reanalyzed the long-term Looe Key ammonium
data dealing with values below MDLs in three ways: (1)
using all the ammonium data including values below detec-
tion limits, (2) by substituting half of the MDL for val-
ues below detection limits, and (3) as done in the original
paper. These datasets were compared overall and by year
with Kruskal-Wallis tests in SPSS 25 for Windows V. 25.
When the overall ammonium datasets were compared, there
were no significant differences observed (Kruskal-Wal-
lis test, H,=3.57, P=0.168; Fig. 1a). Further, when the
methods for handling data below the MDL were com-
pared by year, there was also no significant difference
between these three datasets for any of the years where
data were removed. This includes 1984 (Kruskal-Wal-
lis test, H,=0.57, P=0.753), 1985 (Kruskal-Wallis test,
H,=2.67, P=0.270), 1987 (Kruskal-Wallis test, H,=3.41,
P=0.182), 1988 (Kruskal-Wallis test, H,=1.76, P=0.415),
1989 (Kruskal-Wallis test, H,=3.17, P=0.205), and 1996
(Kruskal-Wallis test, H,=0.37, P=0.832; Fig. 1b). The lack
of statistical significance between different methods for han-
dling data points below the MDL confirms that the removal
of values below MDLs did not have “significant impacts on
data analyses, statistical evaluation, and interpretation of the
results” as Julian (2020) stated in the comment (Fig. 1). For
our paper published in Marine Biology, we took a conserva-
tive approach using only data for which we had true values.

We acknowledge that if we had removed a larger percent-
age of the data, then it could have had a significant effect on
the statistical analyses. For example, the Florida Interna-
tional University Southeast Environmental Research Center

(FIU-SERC) dataset for Looe Key that Julian (2020) used
for the example analyses includes both surface and bottom
water samples. However, Julian decided to exclude the bot-
tom water samples, which amounts to ~50% of the available
data for some variables [see Julian (2020), Fig. 4 and https
:/Iserc.fiu.edu/wgmnetwork/FKNMS-CD/DataDL.htm]. For
this same dataset, Boyer and Jones (2002) noted that salinity,
nitrate, nitrite, ammonium, total phosphorus, and turbidity
were significantly higher in bottom waters; so, presumably
removing these data could have affected these analyses and
Julian’s results.

Julian then argued extensively that the use of Tukey’s
box plots in our study to identify extreme outliers prior to
regression analyses was not appropriate. We do appreciate
this concern and realize now that we could have provided
more details regarding our outlier identification process. To
clarify, visual examination of the data was employed (box-
plots and others) to initially identify extreme outliers, which
were then investigated further through inspection of indi-
vidual data points. Others, such as Julian, have employed
similar methods for identifying and removing data points
that indicated a “potential data quality problem” (Julian et al.
2019) and only included “useable [sic] data” (Julian 2020,
Fig. 1 caption). Unlike Julian et al. (2019) and Julian (2020),
our data were not part of an agency database where suspect
points are flagged upon entry; thus, this data inspection prior
to analysis was very important to ensure quality. Despite not
providing all the details relating to outlier identification, in
the original paper, we did state the criteria used for exclu-
sion and exactly how many samples were excluded from
regression analyses for each parameter in the first para-
graph of the results. Furthermore, the removal of these few
“extreme outliers” accounted for just 1-2% of the data for
these parameters (Table 1). Thus, it is not likely that removal
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Fig.1 Long-term ammonium data used in Lapointe et al. (2019),
showing the lack of statistical differences resulting from the removal
of concentrations below the method detection limits (MDLs) based
on Kruskal-Wallis tests for a the overall datasets and b by individual
year where any values lower than MDLs were removed. “No <MDL”

1984

1985 1987 1988 1989 1996

represents the dataset with values below the MDL removed and was
the dataset used in Lapointe et al. (2019), “All Data” represents all of
the data available, and “1/2” MDL represents substituting data below
the MDL with ¥2 the MDL as recommended by Julian (2020)
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Table 1 All specific data points by analyte that were removed prior to
regression analyses in Lapointe et al. (2019), showing date and value,
as well as total percent removed for each analyte

Analyte Date Value % Removed
NH,* (uM) 7/1/1992 3.1 0.01
DIN (uM) 6/7/1992 3.03 0.02
7/11/1992 4.53
7/24/1992 3.05
SRP (uM) 1/31/1999 0.561 0.01
DIN:SRP 7/19/2014 104 0.01
Chlorophyll a (ug/l) 7/2/1996 1.71 0.02
7/29/2007 1.65

of these few data points would have increased the Type 1
error rate as suggested by Julian (2020). In fact, the inclusion
of these data, which represent unusually high peaks in dis-
solved nutrient and chlorophyll a concentrations post-1980s
reinforces the conclusions of Lapointe et al. (2019).

The decision was made to conserve as much data as
possible, knowing that nutrient concentrations in the Looe
Key study area are variable as a result of movement of the
Florida Current, tropical storms, rain events, submarine
groundwater discharge, wind mixing of bottom sediments,
tidal-driven currents, and upwelling (Lapointe et al. 2004).
In Lapointe et al. (2019), we provided the annual means
(Fig. 6), as well as decadal nutrient and chlorophyll a values,
which included the minimum, maximum, means, medians,
SE, and Kruskal-Wallis test results (Table 2). The range of
our values is well within the values reported for coral reef
environments, with higher values typical of eutrophic reefs
(Smith et al. 1981; Bell 1992; Lapointe 1997).

Julian brought the criticism of our data handling to an
end by stating that we did not include analytical methods
relating to “other inorganic nitrogen species”. We assume
that the author is referring to nitrite (NO,™) as there were
no further details provided to support this claim. In fact,
under “Long-term monitoring at Looe Key” and in Table 2
of Lapointe et al. (2019), it is qualified that nitrite was
included together with nitrate, as it is a common practice
in water quality research. For example, Julian did this in
the comment. Furthermore, FDEP, which is listed as one of
the Julian’s affiliates, frequently combines nitrate + nitrite
(FDEP 2016), as does the United States Geological Survey
(USGS, see https://waterwatch.usgs.gov/wqwatch/map?state
=ks&pcode=00630; Fishman 1993).
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Statistical analyses

It was Mark Twain who said “lies, damned lies, and statis-
tics” to illustrate how overutilizing statistics can be used to
prove or disprove anything. This exemplifies Julian’s criti-
cism of our use of a correlation matrix and regression analy-
ses to dispute our findings. Below we defend the choices
we made in our statistical analyses by explaining instances
where Julian (2020) incorrectly represented our analyses and
providing support for our methods.

The correlation matrix was presented to allow the read-
ers to see the relationships between variables and was con-
ducted to guide our subsequent analyses. Contrary to what
Julian (2020) states, no claims were made that an increase
in Monroe County populations caused a decrease in surface
water temperature at Looe Key reef. We understand cor-
relation does not imply causation and did not suggest that
it did. In the Results section of Lapointe et al. (2019) we
presented correlations where the relationship might be of
interest to a reader, never as cause and effect. For example,
as Julian (2020) stated, the population of Monroe County
was positively correlated with increased flows from Shark
River Slough, revealing potentially additive threats to water
quality for this sensitive ecosystem.

Julian (2020) then criticized the use of stepwise regres-
sions in the original paper as adding no explanatory value
to the study. We disagree and feel the stepwise regressions
served as a non-biased approach to modeling the biologi-
cal responses against potential drivers of change. However,
these regressions were conducted using annual means, not
maximum values as Julian (2020) stated. As such, under
“Statistical analyses”, Lapointe et al.(2019) specified that
annual averages were used in stepwise regressions. This did
include the annual average of daily maximum water tem-
perature because we sought to include the highest tempera-
ture observed each day due to the relationship between coral
bleaching and elevated temperatures. We also did not distill
our thirty-year dataset into single values for each variable as
suggested by Julian (2020) for these analyses. Because we
were using annual averages, there was a data point for every
year of the study where data were available.

Further, Julian (2020) criticized other aspects of the step-
wise regressions without providing supporting literature. For
example, in Lapointe et al. (2019), stepwise regressions were
performed forward and backward, as Julian recommends.
However, despite the contention that this always must be
done, in many instances, stepwise regression models may
be run forward or backwards, based on what is appropriate
for the study question (Leavey-Roback et al. 2016; Zhou
et al. 2016; Yang et al. 2017; Alemu et al. 2018; Fowler et al.
2018). Similarly, as noted in the methods section of Lapointe
et al. (2019), stepwise model section was performed using
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both AIC and P values as criteria for choosing the most par-
simonious model, as well as the “all possible” and “best sub-
set” options. All of these options were considered to deter-
mine what model had the best fit based on the lowest AIC
and highest R>. The stepwise regression performed using P
values was the most parsimonious and, thus, was selected.
The olsrr package in R (Hebbali 2018) includes all of these
methods for variable selection; so, we disagree with Julian’s
assertion that this is not a valid model section approach, a
claim for which he provides no support. Despite Julian’s
multiple concerns and misinterpretations of our methods,
we are confident that the stepwise regressions allowed us to
identify important relationships in the dataset.

Julian also criticized the fifth-order polynomial regres-
sions as “nothing more than data smoothing functions”,
which is all that is truly needed to see how concentrations
of dissolved nutrients and chlorophyll a have changed over
time. It is important to note that Lapointe et al. (2019) did
not describe the polynomial regressions as “trend analysis”
because the intention was simply to explore the temporal
relationship of the variables over time without constraining
it to be monotonic because many of the variables had high
peaks in the 1990s. Further, while Lapointe et al. (2019)
only discussed “relationships™ of variables over time to alle-
viate the concerns discussed in Julian (2020), we employed
the Mann—Kendall Trend Test on the annual data in R 3.6.1
using the package, trend (Pohlert 2020). As one would
expect by examining Fig. 3 in Lapointe et al. (2019), the
trend analysis of these data confirms the significance of the
trend of increasing DIN at Looe Key (Table 2).

Additionally, the Sen’s Slope of these data is alarm-
ing, particularly given that the slope for DIN suggests an
increase of 1 pM over twenty years (0.05 pM/year). Though
this may sound insignificant, in an oligotrophic coral reef
environment such as the FKNMS, enrichment to 1 uM is
enough to drive shifts in community structure (Smith et al.
1981; Bell 1992; Lapointe et al. 1993; Lapointe 1997). As
such, the United States Environmental Protection Agency
(USEPA) has set the DIN Strategic Target for reef sites
at 0.75 pM (Briceno and Boyer 2018). This effect is well

Table 2 Mann—Kendall Trend Test results on annual means for dis-
solved nutrient data from long-term monitoring at Looe Key col-
lected between 1984 and 2014 showing number of years (V), Kend-
all tau (z), P value, and Sen’s Slope for time series data; data below

known in freshwater oligotrophic ecosystems, such as the
Everglades, where phosphorus enrichment above very low
concentrations (10 ppb; Florida Public Law 62-302.540) can
alter wetlands communities from native sawgrass Cladium
Jjamaicense to cattails Typha domingensis (Davis 1994).

Despite these significant results, we do not believe this
trend analysis that is intended for use with monotonic
trends (McLeod et al. 1991; Helsel and Hirsch 1992; Meals
et al. 2011; Mozejko 2012) accurately described relation-
ships in the long-term data at Looe Key. For example, in
Fig. 3, Table 2, and Fig. 6 of Lapointe et al. (2019), a spike
in DIN:SRP and chlorophyll a is evident in the 1990s.
Therefore, because this relationship is not monotonic, the
Mann-Kendall Trend test is not an appropriate test for
understanding the change over time. Further, seasonality of
data must also be considered when it has the potential to
affect statistical trend analyses (Helsel and Hirsch 1992).
As such, due to the seasonal nature of water quality at Looe
Key (Lapointe and Smith 1987; Lapointe and Matzie 1996;
Lapointe et al. 2004), it is arguable that unlike the tests per-
formed by Julian (2020), only a seasonal Mann—Kendall
Trend Test would be appropriate. We suggest that the best
way to present the long-term Looe Key data remains the
polynomial regressions or with a LOWESS curve.

Julian did not dispute the decadal statistical analyses of
dissolved nutrient and chlorophyll a presented in Lapointe
et al. (2019; Table 2, Kruskal-Wallis test) or the annual
average values we presented in Fig. 6. What is clear from
both Table 2 and Fig. 6 is the obvious “breakpoint” in DIN,
chlorophyll a, and the DIN:SRP ratio that occurred at Looe
Key in 1992 (Lapointe et al. 2019, Fig. 2). The 1992 break-
point occurred when major increases in freshwater dis-
charges from both Taylor Slough and Shark River Slough
began increasing nitrogen loads with high DIN:SRP ratios to
Florida Bay and the southwest Florida shelf (Rudnick et al.
1999). This triggered widespread phytoplankton blooms that
extended to downstream offshore reefs, including Looe Key
(Fig. 2). This DIN breakpoint was obvious in our annual
mean DIN value in 1992 (Lapointe et al. 2019, Fig. 6), after
which the annual mean DIN values were significantly and

the method detection limit (MDL) were replaced with one-half the
MDL as suggested by Julian (2020), years with no data were removed
prior to trend analysis, and statistical significance was considered at
P=0.10

Data Parameter N Kendall © P value Sen’s Slope

Annual Mean Ammonium 20 0.28 0.09 0.02 pM / year
Nitrate + nitrite 21 0.34 0.03 0.02 pM / year
DIN 20 0.43 <0.01 0.05 pM / year
SRP 21 0.17 0.29 <0.01 pM / year
DIN:SRP 21 0.23 0.16 <0.01 / year
Chlorophyll a 19 0.19 0.26 <0.01 pg/l/ year

Values in bold are statistically significant
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consistently higher than the 1980s (Lapointe et al. 2019,
Table 2, Fig. 6).

For the time-series analyses, Julian (2020) used the FIU-
SERC dataset from Looe Key for total nitrogen (TN), total
phosphorus (TP), dissolved inorganic nitrogen (DIN), solu-
ble reactive phosphorus (SRP), DIN:SRP, and chlorophyll
a that begins in 1995. As such, this dataset began several
years following increased Everglades discharges, DIN
enrichment, and regional phytoplankton blooms that began
in 1991 (Boyer et al. 1999) and was reflected in the down-
stream waters at Looe Key in 1992. This breakpoint at Looe
Key in 1992 coincided with peak annual ammonium concen-
trations (~ 14.0 uM) measured in central Florida Bay when
increased Everglades discharges were occurring (Boyer and
Jones 1999; Lapointe et al. 2002).

Importantly, the dataset that Julian used in these analyses
was biased low and not fully representative of Looe Key
water quality because these data represented only surface
samples due to exclusion of the bottom samples (Julian
2020). This is of particular concern as the bulk of human
wastewater generated in the Florida Keys is disposed of in
either shallow or deep groundwaters through the use of cess-
pits, septic systems, shallow injection wells (Class V), and
deep injection wells (Class 1), all of which can enter coastal
waters through submarine groundwater discharge at the
benthic boundary layer (Simmons 1992; Shinn et al. 1994;
Lapointe et al. 1990, 2004). Using only surface water data
would also not capture more dense, hypersaline, nutrient
enriched bottom waters discharging from Florida Bay to the
offshore reefs. Another limitation of Julian’s data analysis
is the low sampling frequency at Looe Key (quarterly) with
no replication (only one data point per season). As Boyer
and Jones (2002) noted, at quarterly intervals the FKNMS
monitoring program may not be able to detect small trends
because of “seasonal variability and background noise.”
Finally, no details of the sampling location at Looe Key were
provided; thus, comparing the two datasets would be com-
paring “apples to bananas” to use the words of Julian (2020).

Furthermore, the analytical method used by FIU-SERC
researchers to measure chlorophyll a [i.e., the data used by
Julian (2020)] is known to be spurious. A USEPA intercali-
bration study of eight labs measuring chlorophyll a in the
Florida Bay and the Florida Keys region in 1996 demon-
strated that the FIU-SERC laboratory was reporting con-
centrations 2-5 times lower than what other participating
laboratories reported (Brand 2002). This is another example
of how flawed methods can result in bias and in this case,
gross underestimation of true values for chlorophyll a.

According to the intercalibration study, our long-term
chlorophyll @ method provided accurate data (Brand 2002).
As such, our chlorophyll a data at Looe Key showed a sig-
nificant correlation with Shark River flows (Lapointe et al.
2019), in agreement with Brand (2002). The chlorophyll a
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concentrations at Looe Key spiked to a wet season maxi-
mum of 0.72 ug/l in 1996 (Lapointe et al. 2004) following
peak nitrogen loads and water discharges to Shark Slough
in 1995 (~ 3000 metric tons of nitrogen and 2900 million
m? of water; Rudnick et al. 1999). These high chlorophyll
a concentrations in 1996, together with associated turbid-
ity advected from upstream waters in western Florida Bay
(Boyer and Jones 1999), reduced light availability to corals
at Looe Key and other reefs in the FKNMS. Reduced light
is known to decrease the photosynthesis:respiration (P/R)
ratio and compensation irradiance in corals (Yentsch et al.
2002), as well as induce physiological stress and bleaching
(Bessell-Browne et al. 2017). This was the time period when
a catastrophic coral disease outbreak occurred at Looe Key
and other reefs in the Florida Keys (Jaap et al. 2008), result-
ing in an overall 38% loss of living coral cover throughout
FKNMS (Porter et al. 2002; Jaap et al. 2008).

Julian did not dispute any of the long-term macroalgae
tissue C:N:P data from Looe Key (Lapointe et al. 2019,
Table 3, Fig. 8), which mirror the temporal changes and
breakpoint we observed in the water column DIN, SRP,
and DIN:SRP data between the 1980s and 1990s. Macroal-
gal blooms are a common ecological response to nutrient
enrichment in shallow coral reef environments and can be
used very effectively as bioindicators of nutrient availability
as they integrate nutrients in the water column over time
(Smith et al. 1981; Lapointe 1997; Nixon 2009). The fact
that the decadal changes in both the water column nutrient
data, chlorophyll a, and macroalgae tissue data all show the
same temporal pattern of increase from the 1980s to the
1990s provides multiple lines of evidence that DIN enrich-
ment and higher DIN:SRP ratios triggered the increased N:P
and C:P ratios in the macroalgae. This provides compelling
evidence of increased P limitation on the shallow reef at
Looe Key since the 1990s.

Nitrogen enrichment associated with increasing Ever-
glades discharges between 1991 and 1996 triggered wide-
spread macroalgal blooms in Florida Bay and the FKNMS
that were described in our previous research (Lapointe et al.
2004). These macroalgal blooms were widely observed by
local fishers, divers, and tourists, and reported by the Miami
Herald in June 1992 (Keating 1992). In particular, the
blooms were especially harmful at the Rock Pile reef on the
north side of the lower Florida Keys, which was impacted
directly by the Shark River discharges (Lapointe et al. 2007).
This reef was comprised of numerous hemispherical brain
coral colonies (Pseudodiploria strigosa) up to 2-m height.
Researchers with the FKNMS Coral Reef Monitoring Project
observed very high P. strigosa mortality between 1995 and
1996 at the Rock Pile. Benthic surveys in 1997 confirmed
extensive coral mortality and overgrowth of the dead coral
skeletons by the boring sponge, Cliona lampa, an indicator
of land-based nutrient enrichment (Ward-Paige et al. 2005).
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A variety of macroalgal (Caulerpa spp., Cladophora vaga-
bunda) and cyanobacterial (Lyngbya spp.) blooms have also
overgrown the skeletal remains of these once magnificent
corals (Lapointe et al. 2007); video of the time sequence of
this rapid coral mortality and overgrowth by sponges and
macroalgae can be accessed on YouTube (https://www.youtu
be.com/watch?v=I5IO0RpYsgc&t=1s).

Julian provided no support for the criticism relating to
our conclusions that the altered stoichiometry and increased
DIN:SRP could increase metabolic stress on corals at Looe
Key. The mean decadal DIN:SRP values we reported in
Table 2 increased significantly from 10:1 in the 1980s to
27:1 in the 1990s with increasing freshwater inputs and
nitrogen loading to the Florida Bay—Florida Keys region
(Lapointe et al. 2019). The low DIN:SRP ratios in the
1980s are supported by our Florida Keys-wide monitoring in
1989-1990, which showed DIN:SRP ratios were~7:1 on the
offshore bank reefs between Key Largo and Key West during
both winter and summer (n="72); this reflected a healthy
DIN:SRP ratio during a period with very low freshwater
discharges from the Everglades during these drought years
(Lapointe and Clark 1992). Subsequent research along an
offshore transect to Looe Key during 1992 documented how
increasing stormwater runoff was contributing to increased
DIN, DIN:SRP ratios, and P limitation of algal blooms in the
wet season, and we specifically noted the upstream contribu-
tions associated with the increasing Everglades discharges
at this time (Lapointe and Matzie 1996).

Lapointe et al. (2019) discussed in detail the experimental
lab and field research by a variety of scientists who have
collectively elucidated how DIN enrichment can result in
P limitation and metabolic stress in corals. While we con-
sidered the average DIN:SRP values of 27:1 in the 1990s at
Looe Key as being high and potentially stressful to corals,
the range and median values reported by Boyer and Jones
(2002) and Julian (2020) are even much higher than the
median (20:1) and maximum values (205:1) we reported
for the 1990s, further supporting our conclusions. For exam-
ple, DIN:SRP ratios reported by Boyer and Jones (2002) for
the FKNMS between 1995 and 1998 ranged up to a maxi-
mum of 935:1 (Table 22.1), while “hot spot” median values
in Florida Bay ranged between 80:1 and 160:1 and those
on offshore bank reefs of the lower Florida Keys ranged
from~48:1 to 80:1 (Fig. 22.10).

The recent massive flooding and freshwater runoff from
Hurricane Irma in September 2017 was followed in 2018
by the most widespread and diverse array of harmful algal
blooms (red tides, brown tides, blue—green algae, pelagic
Sargassum) ever seen in Florida. In addition, the Hurricane
Irma runoff was followed by an extremely high DIN:SRP
ratio of ~200:1 at Looe Key in 2018 (see Fig. 4, Julian
2020), which matches the maximum value we observed in
the 1990s and is one of the highest values observed for the

entire 34-year record (Lapointe et al. 2019; Julian 2020).
These DIN:SRP ratios are an order-of-magnitude higher
than the Redfield Ratio of 16:1 (Redfield 1958) for marine
waters and provide a useful tracer demonstrating that the
spatial impacts of land-based nitrogen-rich runoff extend
offshore to Looe Key. It is reasonable to assume that this
runoff from Hurricane Irma caused P starvation and meta-
bolic stress at Looe Key and throughout the FKNMS. Our
interpretation helps to explain the recent acceleration and
progression of Stony Coral Tissue Loss Disease to the lower
Florida Keys in Spring 2018 (https://floridakeys.noaa.gov/
coral-disease/disease.html).

Spatial reasoning

Another issue raised by Julian was a lack of “spatial aware-
ness.” Why can Looe Key be influenced by “rainfall across
an approximate 400 km distance” and by “a selected set
of discharge locations 150 km away”? This is all due to
physical connectivity. First, field measurements through
drifters, numerical models, and satellite imagery all indi-
cate direct connectivity between the discharge locations
(e.g., Shark River Slough, Taylor Slough) and the lower
Florida Keys. Further, the discharge is modulated by rain-
fall across the Everglades drainage basin, regardless of the
physical distance. Such a connectivity has already been
shown in Lapointe et al. (2019) through several cases
where discolored water was continuous from the Shark
River Slough to the lower Florida Keys (Lapointe et al.
2019, Fig. 10). Here, Figs. 2 and 3 show the three different
pathways of connectivity:

1) The connectivity from the lower Everglades to the lower
Florida Keys has been demonstrated in Cannizzaro et al.
(2019), where an example from their Fig. 10c is pre-
sented in Fig. 2a below. Similar cases have also been
found in other years, as shown in other panels of Fig. 2.

2) The connectivity between Charlotte Harbor and the
lower Florida Keys has been discussed in Hu et al.
(2004), as demonstrated in Fig. 3a below. Excessive
rainfall and river discharge caused water discoloration,
which clearly showed the connectivity.

3) The connectivity between the Shark River Slough and
the lower Florida Keys has been shown in Hu et al.
(2003) and later by Zhao et al. (2013), as demonstrated
in two examples in Fig. 3b, c. In these examples, dis-
colored waters are continuous from the Shark River
Slough and the lower Florida Keys, which carried
medium to high concentrations of Karenia brevis.
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Fig.2 MODIS imagery of chlorophyll concentration show cyano-
bacteria (Synechococcus) blooms in Florida Bay. The image in (a)
is adapted from Fig. 10c of Cannizzaro et al. (2019), where the algo-

. -l

Oct. 20, 2003
MODIS
Enhanted RGB

Fig.3 MODIS enhanced Red—Green-Blue (RGB) imagery showing
connectivity a between coastal waters off Charlotte Harbor and lower
Florida Keys (Hu et al. 2004) and b, ¢ between Shark River Slough
(SRS) and lower Florida Keys (Zhao et al. 2013). The red letters in
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rithm to quantify cyanobacteria blooms is detailed. Other images
(b—f) were derived from MODIS measurements using the same algo-
rithm

Mar26.2012.18:20 GMT-

b mark the concentrations of Karenia brevis (H high, M medium, L
low, P present). Note the presence of K. brevis near Looe Key due to
the water transport from the SRS to the lower Florida Keys
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Further, Julian (2020) did not recognize the importance
of groundwater, another physical connection between the
Florida mainland, Florida Bay, and the lower Florida Keys
(Top et al. 2001). For example, the Florida Keys Aque-
duct Authority (FKAA) pumps approximately 17 mgd
of potable freshwater from wellfields near Florida City
to Key West, a distance of ~200 km. In recent years, we
have analyzed the FKAA tap water on Big Pine Key for
DIN and SRP. In 2018, the DIN averaged 266 uM, which
consisted mostly of nitrate + nitrite (239 uM). The corre-
sponding SRP concentration averaged 1.85 uM, resulting
in a DIN:SRP ratio of 144:1. This high DIN:SRP ratio
from groundwater in the Biscayne Aquifer on the Florida
mainland is within the range of values reported for Flor-
ida Bay (80:1-160:1; Boyer and Jones 2002), suggesting
that these high nitrate groundwaters could be contribut-
ing directly to the eutrophication of Florida Bay and the
Florida Keys. The trend analysis in Julian (2020) suggests
a decrease over time of nitrate in surface water of Shark
River Slough, however DIN is a relatively small fraction
(~6%; Rudnick et al. 1999) of the total nitrogen in Shark
River Slough, which is dominated by dissolved organic
nitrogen. Because the algal blooms in central and western
Florida Bay are strongly nitrogen limited and can utilize
dissolved organic forms of both nitrogen and phosphorus
(Brand 2002; Glibert et al. 2004), these blooms expand
when flows into the bay increase, such as between 1991
and 1994 (Boyer and Jones 1999; Brand 2002; Lapointe
et al. 2002).

This speaks to another important point that Julian (2020)
ignored, which is that nitrogen loading to downstream waters
of Florida Bay and the Florida Keys is primarily a result
of changes in flow (Rudnick et al. 1999). Freshwater flow
has been increasing on average since 1943, but especially
since 1983 as the Florida Bay algae blooms have spatially
expanded and worsened. The increased flows from Shark
River Slough primarily affect western Florida Bay and the
downstream Florida Keys (Lapointe et al. 2019, Fig. 10).

Water management policy must be based
on sound science

In conclusion, Julian accused Lapointe et al. (2019) of using
“selective literature citations and a skewed and improper
evaluation of limited data”. As noted, Lapointe et al.
(2019) cited over 130 scientific references in the Introduc-
tion alone, and Julian provided no evidence to support the
claim of selectivity in these references. Further, we have
demonstrated that our data handling and statistical meth-
ods were not “skewed or improper”, but rather conducted
to be as conservative as possible. Julian also claimed that
Lapointe et al. (2019) ignored “published interpretations of

the data that they selectively used to create their narrative
that Everglades restoration has the potential to impact coral
reef ecosystems.” For this strong statement, Julian provided
no context that would enable us to respond.

Julian also claimed that our conclusion “flies in the face
of countless studies that call for Everglades restoration for
the benefit of the ecosystem in totality...” but provided no
citations of these “countless studies” and disregarded the
extensive body of literature and multiple lines of support-
ing evidence that we provided in Lapointe et al. (2019).
Our previous citations (e.g., Voss et al. 2006; Wiedenmann
et al. 2013; Vega-Thurber et al. 2014; Rossett et al. 2017)
documented the harmful impacts of DIN enrichment and
altered stoichiometry to the downstream waters of Florida
Bay and the FKNMS, which included the designation of
the FKNMS as a “dead zone” as a result of increased land-
based nutrient enrichment and hypoxia in the 1990s (Pew
Oceans Commission 2003). Julian also ignored the con-
clusions of the National Research Council report that we
quoted at the end of our Discussion regarding the how the
popular assumption that increased flows to the Everglades
would help to restore Florida Bay were not correct and
could, in fact, cause harm to the downstream coral reefs
(NRC 2002).

We believe that responsible environmental restoration
efforts in South Florida must ensure that no harm is done to
sensitive downstream coral reef ecosystems from nitrogen
enrichment and simultaneous low P stress (Wiedenamann
et al. 2013; Shantz and Burkepile 2014). This is especially
important considering the physical linkages of the Ever-
glades—Florida Bay—Florida Keys region, which are evident
in satellite imagery (Hu et al. 2003, 2004; Zhao et al. 2013;
Cannizzaro et al. 2019) and in published studies of water
circulation and nutrient transport (Klein and Orlando 1994;
Smith 1994; Brand 2002; Smith and Pitts 2002). Restora-
tion efforts in the hydrologically linked Everglades—Florida
Bay-Florida Keys system must be conducted holistically
considering the past irreparable damage resulting from
political decisions to restore Florida Bay and the FKNMS
by sending more freshwater south to Florida Bay (Lapointe
et al. 2019). This raises the issue of philosophical bias,
which best describes Julian’s arguments but unfortunately
cannot be avoided (Andersen et al. 2019). Until sound sci-
ence rather than politics is used to inform water management
policy in Florida, the future of coral reefs in the Florida
Keys, and ecosystem health in other critical water bodies
like Lake Okeechobee, the Indian River Lagoon, and the
Florida Springs, will be compromised.
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