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We propose a unified approach to several problems in stochastic portfolio
theory (SPT), which is a framework for equity markets with a large number
d of stocks. Our approach combines open markets, where trading is confined
to the top N capitalized stocks as well as the market portfolio consisting of
all d assets, with a parametric family of models which we call hybrid Jacobi
processes. We provide a detailed analysis of ergodicity, particle collisions,
and boundary attainment, and use these results to study the associated finan-
cial markets. Their properties include (1) stability of the capital distribution
curve and (2) explicit and not artificially leveraged growth optimal strategies.
The sub-class of rank Jacobi models are additionally shown to (3) serve as
the worst-case model for a robust asymptotic growth problem under model
ambiguity and (4) exhibit stability in the large-d limit. Our definition of an
open market is a relaxation of existing definitions which is essential to make
the analysis tractable.

1. Introduction. In this paper we propose a unified approach to several problems in
stochastic portfolio theory (SPT) by combining open markets (explained further below) with
a parametric family of models which we call hybrid Jacobi processes.

SPT was introduced by Fernholz [7, 8] as a descriptive theory of large equity markets.
A key object of study in SPT is the market weight vector (X1, . . . ,Xd) consisting of the rel-
ative capitalizations of the available stocks. It is an empirical fact that the capital distribution
curve, which consists of the ranked market weights X(1) ≥ · · · ≥ X(d), has remained remark-
ably stable over time in US equity markets; see [7], Chapter 5. Mathematically, this stability
can be captured using ranked market weight processes that are ergodic. We note that for sta-
bility to be present it is not required that the market weight process is Markovian. Indeed,
setups such as [16, 18, 23] allow for more general ergodic processes and we also take this
view in Section 5. Nevertheless, for tractability, a number of ergodic Markovian probabilis-
tic models have been proposed, for example, [1, 4, 7, 11, 12, 15, 26] and the hybrid Jacobi
market introduced in this paper also models the market weights with a Markov process.

However, in the classical closed market setup, models of this type suffer from certain
deficiencies. The underlying issue is that the ergodicity of the ranked market weight pro-
cess forces small capitalization stocks to eventually grow. Indeed, this is the case because in
such models the bankruptcy of assets is prohibited and the market is stable. Of course, in real
world equity markets, small companies need not grow and may eventually default. An observ-
able consequence of this effect in closed market models is that they produce growth optimal
strategies with artificially high leverage. A typical example of this phenomenon is discussed
in Example 3.4 below. The stability and lack of bankruptcy encourages extreme long posi-
tions in the small stocks, financed by corresponding short positions in large capitalization
stocks. Consequently, although leveraged strategies may very well be growth-optimal in the
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real world, the closed market setup mechanically creates additional leverage. This makes the
growth-optimal strategy artificially leveraged in many closed market setups.

A related phenomenon is that the growth optimal strategy tends to be strongly dependent
on the number d of assets included in the model. This is an issue because in practice d is a
design parameter. Rather than explicitly modelling all available stocks, one restricts attention
to, say, a sufficiently liquid subset.

We claim that the tension between the stability of the capital distribution curve and the
artificially leveraged behaviour of the growth optimal strategy can be resolved by working
with an open market. An open market is one where the assets available for trading change
over time. Concretely, the investor is allowed to trade in a fixed number of large capitaliza-
tion stocks, but is constrained from holding small capitalization stocks. In such a setting the
smallest investible asset can be overtaken by a smaller asset present in the model. In this case
the investor must trade out of their position in the asset which was overtaken and invest in the
overtaking asset. As such, open markets do not suffer from the deficiency described above.
Namely, one cannot be certain, even when the ranked market weights are ergodic, that the
smallest investible assets will necessarily provide growth.

The study of open markets has recently gained considerable traction. In [9] the author con-
structs an open market under which the growth optimal strategy is the open market portfolio.
In [20], a theory is developed for, among other things, arbitrage, growth optimality, and nu-
meraire properties for open markets. In [3], the authors numerically optimize growth under
open market constraints.

However, tractability remains a concern for open markets. It has proven difficult to produce
concrete nontrivial open market models that admit explicit growth optimal strategies. Explicit
strategies are useful because their properties can be understood by inspection.

We overcome this lack of tractability by relaxing the existing notion of an open market.
Fixing N ≤ d we allow the investor to trade in (i) the N assets with the largest capitalizations
and (ii) the full market portfolio consisting of all d assets. As such, we do allow trading in
small capitalization stocks, but only through the market portfolio. Due to the existence of
various market-tracking securities, such as the Wilshire 5000 or the Vanguard Total Stock
Market ETF, we consider (ii) to be a practical inclusion that is approximately implementable
through proxies. Under a structural condition on the covariation between large and small
capitalization stocks, this setup is tractable: the growth optimization problem in the open
market becomes as easy or difficult as the classical growth optimization problem in the full
market. These results are obtained in Section 3.

To demonstrate that the open market setup indeed resolves the tension discussed above,
we instantiate our framework using a parametric family of market weight models which we
call hybrid Jacobi processes. These processes resemble multivariate Jacobi processes and
Wright–Fisher diffusions, but have the feature that the drift of a particle may depend on its
rank in addition to its name, akin to [15]. Section 2 defines and constructs hybrid Jacobi pro-
cesses, and establishes a number of properties including ergodicity, invariant density, particle
collisions, and boundary attainment.

In Section 4 we use the hybrid Jacobi processes to model the market weights. We show
that they fit into the framework of Section 3 and, consequently, obtain necessary and suffi-
cient conditions for the existence of a growth optimal strategy in the open market as well as
an explicit formula for it (when it exists). Section 4.2 contains several examples. In particu-
lar, we demonstrate that this model can resolve the tension between the stability of the capital
distribution curve and the not artificially leveraged behaviour of the growth optimal strat-
egy. Moreover, we show that many specifications of the parameters lead to growth-optimal
strategies that are stable with respect to d , the total number of stocks in the model.

Like any parametric models, the hybrid Jacobi processes only represent idealizations of
real-world dynamics. It is not clear a priori to what extent the model output is sensitive
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to model misspecification. This is of particular concern for the drift dynamics, which are
notoriously difficult to estimate based on financial data. Following [16, 18, 23], we address
this point of criticism by solving an asymptotic and robust growth optimization problem in the
open market, with only two inputs fixed a priori: the covariation matrix of the ranked market
weights and their invariant density. These inputs are chosen to be consistent with a rank
Jacobi process, whose drift is purely rank-based. We maximize the worst-case asymptotic
growth rate across the class of models consistent with these inputs (and which obey certain
technical restrictions), and show that the optimal solution is the growth optimal strategy from
the rank Jacobi model. This is done in Section 5. In Section 6 we discuss open problems and
directions for future research.

In summary, in this paper we show how to address, in a single framework, the fol-
lowing four qualitative properties that we believe a satisfactory SPT model ought to pos-
sess.

(1) The capital distribution curve is stable.
(2) The growth optimal strategy is not artificially leveraged.
(3) Model insights are robust to misspecification and only depend on estimable quantities.
(4) The model output is stable with respect to d , the total number of stocks.

Some material pertaining to Sections 3–5 are placed in the appendix. Appendix A con-
tains useful integral identities used in the paper, while Appendices B–C contain the proofs of
certain results omitted in the main text.

1.1. Notation. The following notation is used throughout the paper.

• e1, . . . , ed denote the standard basis vectors in Rd , and 1d := ∑d
i=1 ei denotes the d-

dimensional vector of all ones. We write δij for the Kronecker delta.
• Td is the set of permutations on {1, . . . , d}. For x ∈ Rd and τ ∈ Td we write xτ for the

vector (xτ(1), . . . , xτ(d)). We write x() = (x(1), . . . , x(d)) for the ranked vector. This is the
permutation of x that satisfies x(1) ≥ x(2) ≥ · · · ≥ x(d).

• We define the rank identifying function ri : Rd → {1, . . . , d} for i = 1, . . . , d , as well as
the name identifying function nk : Rd → {1, . . . , d} for k = 1, . . . , d , via

(1.1)
ri (x) = k, where k is such that xi = x(k)

nk(x) = i, where i is such that xi = x(k)

with ties broken by lexicographical ordering.
• The standard simplex in Rd and the ordered simplex in Rd play an important role. They

are given by

(1.2) �d−1 = {x ∈ [0,∞)d : x1 + · · · + xd = 1
}
, ∇d−1 = {y ∈ �d−1 : y1 ≥ · · · ≥ yd

}
.

We also define the interiors �d−1+ = {x ∈ �d−1 : x(d) > 0}, ∇d−1+ = {y ∈ ∇d−1 : yd > 0}
and boundaries ∂�d−1 = �d−1 \ �d−1+ , ∂∇d−1 = ∇d−1 \ ∇d−1+ .

• La
X is the local time process of a continuous semimartingale X at level a ∈ R, and we write

LX for L0
X . The local time is defined by dLa

X(t) := d|X(t) − a| − sign(X(t) − a)dX(t)

and La
X(0) = 0.

2. Hybrid Jacobi models. We now introduce a parametric family of models which we
call hybrid Jacobi processes. These models are constructed in a standard way using Dirichlet
forms in Section 2.1, and we perform a detailed analysis of properties such as ergodicity,
particle collisions, and boundary attainment in Sections 2.2, 2.3, and 2.4 respectively. In later
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sections we demonstrate their usefulness in the context of SPT. We refer the reader to [13]
for an in-depth treatment of the theory of Dirichlet forms.

For a vector x ∈ Rd we define the tail sum starting from component k = 1, . . . , d by

(2.1) x̄k =
d∑

l=k

xl.

We also write x̄(k) =∑d
l=k x(l) for the tail sums of x(). This slight abuse of notation is to avoid

cumbersome expressions like x()k .

DEFINITION 2.1. Fix parameters a = (a1, . . . , ad) ∈ Rd , γ = (γ1, . . . , γd) ∈ Rd , σ > 0.
A hybrid Jacobi process is a �d−1-valued weak solution of the SDE

(2.2)

dXi(t) = σ 2

2

(
γi + ari (t) − (ā1 + γ̄1)Xi(t)

)
dt

+ σ

d∑
j=1

(
δij − Xi(t)

)√
Xj(t) dWj (t), i = 1, . . . , d,

where W is a standard d-dimensional Brownian motion and ri (t) = ri (X(t)) is the rank
identifying function as in (1.1). When γ = 0 we call it a rank Jacobi process.

REMARK 2.2. If a = 0, (2.2) reduces to the standard (multivariate) Jacobi process intro-
duced in [14]. This is also a special case of the Wright–Fisher diffusion model in population
genetics; see, for example, [6], Chapter 10.

Hybrid Jacobi processes do not exist for arbitrary parameter values. As we show in Sec-
tion 2.1, the process exists provided the following condition is satisfied.

ASSUMPTION 2.3. The vectors a and γ are such that āk + γ̄(k) > 0 for k = 2, . . . , d .

If X is a hybrid Jacobi process with parameters a, γ, σ , a calculation shows that
d[Xi,Xj ](t) = cij (X(t)) dt where the diffusion matrix is given by

(2.3) cij (x) = σ 2xi(δij − xj ), i, j = 1, . . . , d, x ∈ �d−1.

Here, and in the sequel, we denote by Ck(�d−1) for any k ∈N∪ {∞}, the set of all functions
u = v|�d−1 , where v ∈ Ck(Rd). Using this notation the generator of X takes the form

(2.4) Lu(x) = 1

2

d∑
i,j=1

cij (x)∂iju(x) + σ 2

2

d∑
i=1

(
γi + ari (x) − (ā1 + γ̄1)xi

)
∂iu(x)

for functions u ∈ C2(�d−1) and x ∈ �d−1. Moreover, a useful consequence of (2.3) is that
the quadratic covariation between two linear functions of a hybrid Jacobi process takes on a
particularly simple form. Indeed, for any u, v ∈ Rd we have

(2.5) d
[
u	X,v	X

]
(t) = ((u ◦ v)	X(t) − (u	X(t)

)(
v	X(t)

))
dt,

where u ◦ v = (u1v1, . . . , udvd) is the Hadamard componentwise product.
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2.1. Construction. Throughout the rest of Section 2 we fix parameters a, γ, σ as in Defi-
nition 2.1. The construction of the hybrid Jacobi process involves a certain probability density
p(x) on �d−1, which will turn out to be the invariant density of the process. This density is
understood with respect to the surface area measure on �d−1. More precisely, we use the
pushforward of Lebesgue measure on Rd−1 under the map

(x1, . . . , xd−1) �→ (
x1, . . . , xd−1,1 − x	1d−1

)
.

All integrals over �d−1 and ∇d−1 (the ordered simplex; see (1.2)) should be understood with
respect to this measure, unless otherwise indicated. More details on this convention, along
with several useful integral identities, are given in Appendix A.

We now define

(2.6) p(x) = Z−1
d∏

k=1

x
ak+γnk(x)−1
(k) , x ∈ �d−1+ ,

where the normalizing constant Z is given by

Z =
∫
�d−1

d∏
k=1

x
ak+γnk(x)−1
(k) dx.

For later use we also define

(2.7) q(y) = 1

d!
∑
τ∈Td

p(yτ ), y ∈ ∇d−1+ ,

which will turn out to be the invariant density of the ranked process. The next lemma clarifies
the role of Assumption 2.3. Its proof is contained in Appendix B.

LEMMA 2.4. Z < ∞ if and only if Assumption 2.3 holds.

Assume that Assumption 2.3 holds, so that m(dx) := p(x)dx is a probability measure on
�d−1. We define a symmetric bilinear form on L2(�d−1,m) with domain D = C∞(�d−1)

by

(2.8) E(u, v) := 1

2

∫
�d−1

∇u	c∇vp.

The form (E,D) is Markovian in the sense of [13], Chapter 1, (E .4). It is also closable as
defined in [13], Ch. 1, (E .3). To show this we need the following integration by parts formula,
whose proof is contained in Appendix B.

LEMMA 2.5 (Integration by parts). Let Assumption 2.3 be satisfied. For any functions
v ∈ C1(�d−1) and ξ ∈ C1(�d−1;Rd) we have

(2.9)
1

2

∫
�d−1

∇v	cξp = −1

2

∫
�d−1

v div(cξp).

In particular, taking ξ = ∇u for some u ∈ C2(�d−1), the identity (2.9) reads

E(u, v) = −
∫
�d−1

vLup,

where L is the generator defined in (2.4).
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Thanks to Lemma 2.5 and [25], Proposition I.3.3, (E,D) is closable. We let (E,D(E))

be the closure of (E,D). A standard application of [13], Theorem 3.1.2, then shows that
(E,D(E)) is a regular, strongly local Dirichlet form. Moreover, Lemma 2.5 implies that the
generator associated with E coincides with L on functions in D. With some abuse of notation
we let (L,D(L)) denote the generator of (E,D(E)). Existence of the hybrid Jacobi process
now follows from the well-known correspondence between local regular Dirichlet forms and
Hunt diffusions [13], Theorem 7.2.2. Recall that a Hunt diffusion on �d−1 is a continuous
adapted process X with values in �d−1, defined on a filtered space (	,F, (F(t))t≥0), along
with a family (Px)x∈�d−1 of probability measures such that under each Px , X is a strong
Markov process with X(0) = x. See [13], Appendix A.2, for details.

We may now state the existence theorem for hybrid Jacobi processes. The proof is standard,
but for the benefit of the reader we give a proof in Appendix B.

THEOREM 2.6. Let Assumption 2.3 be satisfied. Then there exists a Hunt diffusion
(	,F, (F(t))t≥0,X, (Px)x∈�d−1) and a Borel set N ⊂ �d−1 with m(N) = 0 such that for
every x ∈ �d−1 \ N the following two properties hold:

(i) Px(X(t) ∈ N for some t > 0) = 0,
(ii) u(X(t)) − u(X(0)) − ∫ t

0 Lu(X(s)) ds is a Px -martingale for every u ∈ D(L).

In particular, X is a hybrid Jacobi process under Px for every x ∈ �d−1 \ N .

REMARK 2.7. If the absolute continuity condition ([13], equation (4.2.9)) for the
Markov transition function holds, then the set N in Theorem 2.6 can be taken to be the
empty set. We do not pursue verification of the absolute continuity condition in this paper as
the existence of an exceptional set N is sufficient for our purposes.

REMARK 2.8. In this paper we do not treat the question of uniqueness in law, or pathwise
uniqueness, of solutions to (2.2). As will be seen in Theorem 2.15 below, the hybrid Jacobi
process hits different regions of the boundary under different choices of the parameters a

and γ . As such, the laws of the processes when varying the parameters a and γ are not
equivalent. Hence, a removal of drift approach to study (2.2) does not apply. Moreover, the
volatility degenerates at the boundary of the simplex, causing additional difficulties in the
study of uniqueness. As such, we leave the important question of both pathwise uniqueness
and uniqueness in law for hybrid Jacobi models to future research.

We define the class of probability measures

P0 = {μ ∈ P
(
�d−1) : μ(N) = 0 and μ

(
∂�d−1)= 0

}
,

with N as in the statement of Theorem 2.6. The elements of P0 can serve as initial laws for
the hybrid Jacobi process X. We restrict attention to laws which do not charge ∂�d−1 to
simplify some of the statements and proofs to come. Note, in particular, that since both N

and ∂�d−1 are m-nullsets we have that m, and every measure absolutely continuous to it,
are members of P0. For μ ∈ P0 we denote by Pμ the law of the process X constructed in
Theorem 2.6 with initial law μ. That is, Pμ(A) = ∫�d−1 Px(A)μ(dx) for A ∈ F .

2.2. Ergodicity. The Dirichlet form construction implies ergodicity of the process X.

THEOREM 2.9 (Ergodic property). Let Assumption 2.3 be satisfied. The hybrid Jacobi
process of Theorem 2.6 is ergodic with invariant density p given by (2.6). In particular, the
following Birkhoff theorem holds: for any f : �d−1 →R such that

∫
�d−1 |f |p < ∞ we have

lim
T →∞

1

T

∫ T

0
f
(
X(t)

)
dt =

∫
�d−1

fp, Pμ-a.s.,

for every μ ∈ P0.
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PROOF. In view of [13], Theorem 4.7.3, it suffices to establish that E is a recurrent and
irreducible Dirichlet form. Recurrence follows from [13], Theorem 1.6.3, since 1 ∈ D. To
establish irreducibility consider the modified (pre-)Dirichlet form on the state space �d−1+
given by

E+(u, v) :=
∫
�d−1+

∇u	c∇vp, u, v ∈ C∞
c

(
�d−1+

)
.

The closure (E+,D(E+)) is a regular Dirichlet form and the conditions of [13], Exam-
ple 4.6.1, are satisfied due to the positive definiteness of c(x) and positivity of p(x) on
�d−1+ . Hence E+ is irreducible. Now suppose that A ⊆ �d−1 is an invariant set for the
semigroup corresponding to E . By [13], Theorem 1.6.1, this is equivalent to the identity
E(u, v) = E(1Au,1Av)+E(1�d−1\Au,1�d−1\Av) for every u, v ∈ D(E). Since 1A = 1

A∩�d−1+
in L2(�d−1,m) we can assume without loss of generality that A ⊆ �d−1+ . By the local prop-
erty of E and E+ we have that E(1Au,1Av) = E+(1Au,1Av) for u, v ∈ C∞

c (�d−1+ ) and an
analogous expression holds for the term involving 1�d−1\A. Thus we obtain

(2.10) E+(u, v) = E+(1Au,1Av) + E+(1
�d−1+ \Au,1

�d−1+ \Av), u, v ∈ C∞
c

(
�d−1+

)
.

Since C∞
c (�d−1+ ) is a core for E+ it follows that (2.10) holds for all u, v ∈ D(E+). Thus,

again by [13], Theorem 1.6.1, we deduce that A is invariant for the semigroup corresponding
to E+. But then by irreducibility of E+ it must be that either m(A) = 0 or m(�d−1+ \ A) = 0.
This establishes irreducibility of E and completes the proof. �

Although the ranked process X() is in general not Markov, the ergodicity of X implies that
a Birkhoff-type theorem holds for X() as well. We state this fact as a corollary.

COROLLARY 2.10 (Rank ergodic property). Let Assumption 2.3 be satisfied and let X be
the hybrid Jacobi process of Theorem 2.6. For any f : ∇d−1 → R such that

∫
∇d−1 |f |q < ∞

we have

(2.11) lim
T →∞

1

T

∫ T

0
f
(
X()(t)

)
dt =

∫
∇d−1

f q, Pμ-a.s.,

for every μ ∈ P0, where q is given by (2.7).

Corollary 2.10 follows from Theorem 2.9, a change of variables and symmetry of �d−1.
Equation (2.11) is an important property for X() to possess when, in Section 4, we use X to
model the market weights in a financial market. The ergodic property of X() then encapsulates
the stability of the capital distribution curve.

2.3. The study of collisions. Next we tackle the question of particle collisions. The fol-
lowing proposition shows that boundary attainment and particle collisions only occur at a
Lebesgue nullset of time points. The proof is contained in Appendix B.

PROPOSITION 2.11. Fix μ ∈ P0 and let X be the hybrid Jacobi process of Theorem 2.6.

(i) For every i = 1, . . . , d we have that the set {t ≥ 0 : Xi(t) = 0} is Pμ-a.s. a Lebesgue
nullset.

(ii) The set {t ≥ 0 : Xi(t) = Xj(t) for some i �= j} is Pμ-a.s. a Lebesgue nullset.
(iii) Consider the event B = {x ∈ �d−1+ : xi = xj = xk for some distinct indices i, j, k}.

Then Pμ(X(t) ∈ B for some t > 0) = 0.
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Proposition 2.11(iii) establishes that triple collisions do no occur in �d−1+ , but, as we will
see in Theorem 2.15, they may occur on the boundary of the simplex.

We now use Proposition 2.11 to study the semimartingale decomposition of the ranked
process X(). This process plays an important role both in our applications and subsequent
results on boundary attainment.

PROPOSITION 2.12 (Ranked process dynamics). Let Assumption 2.3 be satisfied, and
let X be the hybrid Jacobi process of Theorem 2.6. Omitting time arguments for brevity, the
dynamics of X() are given by

(2.12)

dX(k) = σ 2

2

(
γnk(·) + ak − (ā1 + γ̄1)X(k)

)
dt

+ σ

d∑
l=1

(δkl − X(k))
√

X(l) dW̃l − 1

4
dLk−1,k + 1

4
dLk,k+1

for k = 1, . . . , d where W̃ is a d-dimensional standard Brownian motion and we define
Lk,k+1 = LX(k)−X(k+1)

with the convention that L0,1 = Ld,d+1 = 0. In particular, the diffu-
sion matrix of X() is given by

(2.13) κkl(y) = σ 2yk(δkl − yl), k, l = 1, . . . , d, y ∈ ∇d−1.

PROOF. By the results of [2], X() is a semimartingale with semimartingale decompo-
sition given by [2], Theorem 2.3. Since, by Proposition 2.11(ii), collisions only occur at a
Lebesgue nullset of time points, in order to obtain (2.12) it suffices to show that LX(k)−X(l)

= 0
whenever l−k ≥ 2. By Proposition 2.11(iii) triple collisions do not occur in the open simplex,
and hence dLX(k)−X(l)

= 1{X(k)=0} dLX(k)−X(l)
whenever l − k ≥ 2. Using the approximation

for the local time process (see, e.g., [27], Corollary 1.9) we then have for every T ≥ 0 that∫ T

0
1{X(k)(t)=0} dLX(k)−X(l)

(t)

= lim
ε↓0

1

ε

∫ T

0
1{X(k)(t)=0}1{0≤X(k)(t)−X(l)(t)<ε} d[X(k) − X(l),X(k) − X(l)](t)

= lim
ε↓0

1

ε

∫ T

0
1{X(k)(t)=X(l)(t)=0}

(
X(k)(t) + X(l)(t) − (X(k)(t) − X(l)(t)

)2)
ds

= 0,

where in the second equality we used that {X(k)(t) = 0} = {X(k)(t) = X(l)(t) = 0} and
that d[X(k) − X(l),X(k) − X(l)](t) = (X(k)(t) + X(l)(t) − (X(k)(t) − X(l)(t))

2) dt . Hence
LX(k)−X(l)

= 0 whenever l − k ≥ 2 which completes the proof. �

REMARK 2.13. It is clear from (2.12) that X() is not a Markov process in general, as
the drift depends on the name that occupies each rank. However, in the special case γ = 0
the process X() is Markov. This can be verified by studying well-posedness of the reflected
stochastic differential equation (2.12) that X() solves. Note that in this case q becomes

(2.14) q(y) = Q−1
a

d∏
k=1

y
ak−1
k , y ∈ ∇d−1+ ,

where Qa is the normalizing constant; see also Lemma B.1.
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We conclude this section by establishing formulas for the ergodic limit of the collision
local times for the ranked particles.

PROPOSITION 2.14 (Ergodic limit for the collision local times). For k = 2, . . . , d let
Lk−1,k be the collision local times as in Proposition 2.12. Then

lim
T →∞

Lk−1,k(T )

T
= 2σ 2

(
āk +Em

[
d∑

l=k

γnl (X)

]
− (ā1 + γ̄1)Em[X̄(k)]

)
; Pμ-a.s.,

for every μ ∈ P0, where Em[·] denotes expectation under the invariant measure m of Sec-
tion 2.1.

PROOF. Note that from (2.12) we have for k = 2, . . . , d , that

dX̄(k)(t) = σ 2

2

(
āk +

d∑
l=k

γnl (t) − (ā1 + γ̄1)X̄(k)(t)

)
dt + dM(t) − 1

4
dLk−1,k(t),

where M is the martingale term. Writing this in integral form, dividing by T and sending
T → ∞ yields the result courtesy of the ergodic theorem (2.9), which handles the drift term,
together with [7], Lemma 1.3.2,which ensures that MT /T → 0 as T → ∞. �

2.4. Boundary attainment. Next we describe when the name and rank processes Xi and
X(k) hit zero. This will be important in Section 4 where X is used to model the market
weight process for the open market in Section 3. For an index set I ⊆ {1, . . . , d} we define
the function �I :Rd →R via

(2.15) �I(x) =∑
i∈I

xi .

By convention we set �∅ ≡ 0.

THEOREM 2.15 (Boundary attainment). Let Assumption 2.3 be satisfied, and let X be
the hybrid Jacobi process of Theorem 2.6 with initial law μ ∈ P0.

(i) (Boundary attainment of ranks) For each k ∈ {2, . . . , d} the following holds:
(a) We have Pμ(X(k)(t) = 0 for some t > 0) = 0 if and only if

āl + γ̄(l) ≥ 1 for every l = 2, . . . , k.

(b) If āk + γ̄(k) ≥ 1 then Pμ(X(k)(t) = 0 and X(k−1)(t) > 0 for some t > 0) = 0.
(ii) (Boundary attainment of names) Fix a nonempty index set I ⊆ {1, . . . , d} with cardinality

N = |I | ≤ d − 1. Let γ −I
() denote the (d − N)-dimensional vector obtained by ordering

the elements {γj }j /∈I in decreasing order. The following holds:
(a) We have Pμ(�I (X(t)) = 0 for some t > 0) = 0 if and only if

(2.16) āl +∑
i∈I

γi +
d−N∑
k=l

γ −I
(k) ≥ 1 for every l = 2, . . . , d − N + 1.

(b) If ād−N+1 +∑i∈I γi ≥ 1 then

Pμ

(
�I

(
X(t)

)= 0 and �J

(
X(t)

)
> 0 for all J � I and some t > 0

)= 0.

In the important special case of rank Jacobi processes (i.e., when γ = 0) the conditions on
the parameters in Theorem 2.15 simplify. We state this special case as a corollary.
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COROLLARY 2.16. Let Assumption 2.3 be satisfied, let γ = 0, and let X be the rank
Jacobi process of Theorem 2.6 with initial law μ ∈ P0. Fix k ∈ {2, . . . , d}.
(i) The following are equivalent:

(a) Pμ(X(k)(t) = 0 for some t > 0) = 0.
(b) There exists an index set I ⊂ {1, . . . , d} with cardinality |I | = d − k + 1 such that

(2.17) Pμ

(
�I

(
X(t)

)= 0 for some t > 0
)= 0.

(c) Every index set I ⊂ {1, . . . , d} with cardinality |I | = d − k + 1 satisfies (2.17).
(d) āl ≥ 1 for every l = 2, . . . , k.

(ii) Suppose āk ≥ 1. Then
(a) Pμ(X(k)(t) = 0 and X(k−1)(t) > 0 for some t > 0) = 0.
(b) There exists an index set I ⊂ {1, . . . , d} with cardinality |I | = d − k + 1 such that

(2.18) Pμ

(
�I

(
X(t)

)= 0 and �J

(
X(t)

)
> 0 for every J � I and some t > 0

)= 0.

(c) Every index set I ⊂ {1, . . . , d} with cardinality |I | = d − k + 1 satisfies (2.18).

REMARK 2.17.

(i) Note that X(1) can never hit zero. Indeed since the diffusion X takes values in �d−1

we have the lower bound X(1)(t) ≥ 1/d for every t ≥ 0.
(ii) Theorem 2.15 and Corollary 2.16 show that triple collisions may occur at the bound-

ary of the simplex. This is in stark contrast to the behaviour in the interior, as guaranteed by
Proposition 2.11(iii).

(iii) Corollary 2.16(ii) shows that the tail sum āk determines the behaviour of X(k) near
the boundary in the rank based case. Indeed, if āk ≥ 1 then X(k) cannot hit zero on its own
volition; it can only do so if it is “pushed” to zero by a larger market weight.

Theorem 2.15 is proved using Lyapunov function techniques and the proof is contained in
Appendix B. The simple dynamics of �I(X) allow for a very precise analysis of the boundary
behaviour. We summarize the dynamics of �I(X) in the following lemma.

LEMMA 2.18. Let index sets I, J ⊆ {1, . . . , d} be given and let X be a hybrid Jacobi
process. Then d[�I(X),�J (X)](t) = σ 2(�I∩J (X(t)) − �I(X(t))�J (X(t))) dt . Moreover,
the dynamics of �I(X) are given by

(2.19)
d�I

(
X(t)

)= σ 2

2

(∑
i∈I

(γi + ari (t)) − (ā1 + γ̄1)�I

(
X(t)

))
dt

+ σ

√
�I

(
X(t)

)(
1 − �I

(
X(t)

))
dB(t)

for some one-dimensional Brownian motion B .

PROOF. The expression for the quadratic covariation of �I with �J follows from (2.5)
with u = v =∑i∈I ei . The expression for (2.19) then follows from (2.2) and Lévy’s charac-
terization of Brownian motion. �

We conclude this section with a few examples which exhibit a variety of different be-
haviours regarding boundary attainment.

EXAMPLE 2.19. Let Assumption 2.3 be satisfied, and let X be the hybrid Jacobi process
of Theorem 2.6 with initial law μ ∈ P0.
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(i) Assume that γ = γ∗1d for some γ∗ > 0 and that a = 0. Then for k = 2, . . . , d ,

Pμ

(
X(k)(t) = 0 for some t > 0

)= 0 ⇐⇒ γ∗ ≥ 1

d − k + 1
.

In the case that γ∗ < 1/(d −k+1), for any subset I ⊂ {1, . . . , d} with |I | = d −k+1 we have
that �I(X) hits zero with positive probability. This is summarized in the following number
line for γ∗, which is on a geometric scale.

(ii) Let γ = 0 and assume that a = ηed for some η > 0 so that Assumption 2.3 is satisfied.
If η ≥ 1 then no component of X hits zero Pμ-a.s. On the other hand if η < 1 then for any
collection I ⊂ {1, . . . , d} such that 1 ≤ |I | ≤ d −1 we have that �I(X) hits zero with positive
probability. In particular X(2) hits zero with positive probability.

(iii) Assume d ≥ 3, let γ = 0 and set a = −106e1 − e2 + 3
2ed . We have

āk =

⎧⎪⎪⎨
⎪⎪⎩

−106 + 1/2, k = 1,

1/2, k = 2,

3/2, k = 3, . . . , d.

Then Pμ(X(2)(t) = 0 for some t > 0) > 0 since ā2 < 1 and so, consequently, the smaller
ranked components will hit zero with positive probability as well. However, since āk ≥ 1 for
k ≥ 3 the smaller ranks will only hit zero when X(2) does. In particular we have

Pμ

(
X()(t) = e1 for some t > 0

)
> 0,

Pμ

(
X()(t) ∈ ∂�d−1 \ {e1} for some t > 0

)= 0.

Note that the size of a1 does not in any way affect the boundary attainment behaviour.
(iv) Let d = 3 and choose γ = (1

2 , 1
3 , 1

4) and a = (0,−1
3 , 1

2). Then γ1 + a3 = 1 and γi +
a3 < 1 for i = 2,3. Consequently X2 and X3 hit zero with positive probability. Next note that
for i < j we have

γi + γj + a2 + a3 =

⎧⎪⎪⎨
⎪⎪⎩

1, i = 1, j = 2,

11/12, i = 1, j = 3,

3/4, i = 2, j = 3.

Hence

Pμ

(
X1(t) + X2(t) = 0 for some t > 0

)= 0,

Pμ

(
X1(t) + X3(t) = 0 for some t > 0

)
> 0,

Pμ

(
X2(t) + X3(t) = 0 for some t > 0

)
> 0.

In particular we see Pμ-a.s. that X1(t) = 0 =⇒ X3(t) = 0 and that X(2)(t) = 0 =⇒
X3(t) = 0. That is, X1 can hit zero, but not on its own and X(2) can hit zero, but not when
simultaneously X3 is the largest weight.

3. Open markets in stochastic portfolio theory. In this section we switch focus and,
in a general nonparametric setting, introduce stochastic portfolio theory and open markets.
We present a new setup for open markets, relaxing the setup considered in [20], and under
a condition on the covariation between small and large capitalization stocks (2.13) obtain
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results for growth-optimal portfolios in the open market. Later, in Section 4, we will use the
hybrid Jacobi processes introduced in the previous section to model the market weights in the
open market setting developed in this section. Throughout this section we work on a filtered
probability space (	,F, (F(t))t≥0,P) satisfying the usual conditions.

3.1. Stochastic portfolio theory. We consider a financial market with d ≥ 2 assets. The
market capitalization (share price times total number of outstanding shares) of the ith as-
set is modelled by a nonnegative continuous semimartingale Si . We assume that the stocks
do not pay dividends. As is commonly done in SPT, we immediately switch numeraire to
S1 + · · · + Sd , the total capitalization of the entire market. This quantity is assumed to stay
strictly positive at all times, although we do allow individual asset values to reach zero. In
this numeraire, the asset prices are the market weights,

Xi = Si

S1 + · · · + Sd

, i = 1, . . . , d.

The market weight process X = (X1, . . . ,Xd) thus takes values in the standard simplex
�d−1. We assume X is an Itô process with dynamics

(3.1) dX(t) = b(t) dt + σ(t) dW(t)

for some standard d-dimensional Brownian motion W and progressively measurable pro-
cesses b and σ taking values in Rd and Rd×d respectively. We write

c = σσ	

and note that c1d = 0 and 1	
d b = 0 since X takes values in �d−1. In what follows, only the

market weight process X will appear in the analysis. The capitalization process S will not.
We next discuss trading strategies, which can be parameterized in a number of ways. An

X-integrable process H = (H1, . . . ,Hd)	 representing the number of shares held of each
asset yields the wealth process V = H1X1 + · · · + HdXd . Since no other assets are available
for trading (in particular, there is no bank account), the self-financing condition states that
dV (t) = H(t)	 dX(t). Note that wealth, like prices, is expressed in the numeraire S1 +· · ·+
Sd and thus measures performance relative to the market.

We only allow strategies whose wealth stays strictly positive. This permits us to describe
trading strategies in terms of θi = Hi/V , which is the number of shares, per unit of wealth,
that the investor holds in the ith asset. These quantities satisfy

(3.2) θ1X1 + · · · + θdXd = 1.

Conversely, any X-integrable process θ = (θ1, . . . , θd) that satisfies (3.2) yields a strictly
positive wealth process V θ given by

(3.3)
dV θ(t)

V θ (t)
=

d∑
i=1

θi(t) dXi(t), V θ (0) = 1.

This turns out to be the most convenient way to parameterize trading strategies for the pur-
poses of this paper. The initial wealth is not relevant for our analysis, so we always take it to
be one. If a strategy is given by θ(t) = θ(X(t)) for some function θ : �d−1 → Rd , we say
that it is in feedback form.

A particularly important strategy is the market portfolio θM = 1d , which is the strategy that
holds the entire market. It satisfies (3.2) and its wealth process is V θM = X1 + · · · + Xd = 1.
The market portfolio is a risk-free investment with respect to the current numeraire, and as
such it plays a role similar to the bank account in classical models. It is the benchmark against
which the performance of other strategies will be measured.
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REMARK 3.1. Let θ be an X-integrable process that does not satisfy (3.2), and hence is
not a self-financing trading strategy. Shift it by a multiple 1 − X	θ of the market portfolio to
obtain θ ′ = θ + (1 − X	θ)1d . The process θ ′ is X-integrable and satisfies (3.2). Moreover,
replacing θ by θ ′ does not affect the right-hand side of (3.3) since 1	

d dX(t) = 0. In this way,
any X-integrable process θ yields a trading strategy.

REMARK 3.2. In SPT, and elsewhere, it is common to describe trading using πi = θiXi ,
the fraction of wealth invested in asset i = 1, . . . , d . This description is less convenient in our
context since Xi may reach zero, in which case θi cannot be recovered from πi .

3.2. Growth optimality. We now study the problem of maximizing growth of wealth.
Following [19], we define growth optimality in terms of the semimartingale decomposition
logV θ = Aθ + Mθ of the log-wealth process corresponding to a strategy θ . We stress that
wealth is measured relative to the market, and hence growth is too.

DEFINITION 3.3. Let � be a collection of strategies. A strategy θ̂ ∈ � is said to be
growth optimal in � if Aθ̂ − Aθ is a nondecreasing process for every strategy θ ∈ �.

As discussed in the Introduction, many models in SPT that capture the stability of the
ranked market weights yield growth optimal strategies with undesirable properties. The fol-
lowing specific example of this phenomenon serves as a motivating example for the analysis
to come.

EXAMPLE 3.4 (A motivating closed market example). Fix a parameter γ∗ > 0 and con-
sider the Markov process given by

dXi(t) = γ∗d
2

(
1

d
− Xi(t)

)
dt +

d∑
j=1

(
δij − Xi(t)

)√
Xj(t) dWj (t), i = 1, . . . , d.

This is the market weight dynamics in the volatility-stabilized market introduced in [11],
which is a single-parameter model in SPT that is tractable since the market weight process
X is a polynomial diffusion; see [11, 26] for an in-depth discussion. We note that this is
a particular case of the hybrid Jacobi model introduced in Section 2, obtained by setting
a = 0, σ 2 = 1 and γi = γ∗ for every i. In particular, Theorem 2.9 yields that X is ergodic and
its invariant measure is a symmetric Dirichlet distribution with parameter γ∗. As such, this
market model satisfies property (1) outlined in the Introduction.

Next, it can be shown, and indeed follows as a special case of Theorem 4.1 to come, that a
growth optimal strategy θ̂ exists if and only if γ∗ ≥ 1. It is then given by

θ̂i (t) = 1

2

(
γ∗

Xi(t)
+ 2 − dγ∗

)
, i = 1, . . . , d,

which is well defined because the condition γ∗ ≥ 1 is necessary and sufficient for the market
weights to remain strictly positive; see Theorem 2.15. This model falls under the framework
of [23] and, from the results of that paper, θ̂ is not only growth optimal in the volatility-
stabilized market, but possesses a robust growth optimality property over a certain class of
admissible models. Thus property (3) in the Introduction is also satisfied.

However, θ̂ is rather poorly behaved. In terms of the portfolio weights π̂i = θ̂iXi we have

π̂i(t) = 1

2

(
γ∗ + Xi(t)(2 − dγ∗)

)
.
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This strategy prescribes significant short-selling of stocks with large capitalizations. Indeed,
whenever Xi(t) > γ∗/(dγ∗ − 2), the portfolio takes a short position in asset i. Thus, es-
sentially independently of γ∗, one would have to short-sell approximately the 100 largest
stocks in the S&P 500 (under current capitalizations) to implement this strategy. Moreover,
the leverage ratio can be substantial. As a concrete example suppose that Xi(t) = 0.05 and
that d = 500. Then π̂i(t) = 0.05 − 12γ∗. Since γ∗ ≥ 1, this strategy requires the investor to
short at least 12 times their wealth in some of the large capitalization stocks. Indeed, the
stability of the market weights in this model ensures that the largest stocks will eventually
lose value, which leads to this artificially leveraged growth-optimal strategy. Moreover, the
strategy itself has an explicit and strong dependence on the dimension parameter d . Hence,
properties (2) and (4) are not met.

3.3. Open market strategies. A key goal of this paper is to argue that the undesirable
behaviour in Example 3.4 can be avoided by working with open markets as in [9, 20]. More
precisely, we consider strategies that are only allowed to take positions in large capitalization
stocks along with positions in the market portfolio. Allowing investments in the market port-
folio, thereby allowing certain restricted positions in small capitalization stocks, is essential
for tractability and distinguishes our setup from previous work [9, 20].

Recall the rank and name identifying functions ri (x) and nk(x) in (1.1). We write

(3.4)
ri (t) = ri

(
X(t)

)= the rank occupied by name i at time t ,

nk(t) = nk

(
X(t)

)= the name that occupies rank k at time t .

For any trading strategy θ we then write

θn(t) = (θn1(t)(t), . . . , θnd (t)(t)
)	

, t ≥ 0.

This is the permutation of θ(t) which orders the investments in the assets by their rank. Last,
we introduce the truncated vector of ranked weights,

XN
() = (X(1), . . . ,X(N)).

We can now define the class of open market strategies.

DEFINITION 3.5 (Open market strategies). Fix N ≤ d . A trading strategy θ is called an
open market strategy if it admits the representation

(3.5) θn(t) =
(
h(t)

0

)
+ (1 − h(t)	XN

() (t)
)
1d

for some N -dimensional process h such that the d-dimensional process hri (t)(t)1{ri (t)≤N},
i = 1, . . . , d , t ≥ 0, is X-integrable. We denote by ON the set of all such strategies.

Here hk(t) is the number of shares, per unit of wealth, that the investor directly invests
in the kth ranked asset at time t , for k = 1, . . . ,N . To finance this strategy the investor buys
or sells 1 − h(t)	XN

() (t) number of shares, per unit of wealth, of the market portfolio. One
should view strategies of this kind as investments in an open market of size N embedded in a
larger market of size d . This is a market where at any time t there are N + 1 assets available
for investment, namely:

• Xnk(t)(t) for k = 1, . . . ,N (the assets occupying the top N ranks at time t); and
• the market portfolio.
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With N = d one recovers the standard setup (the closed market or full market) where invest-
ments in small capitalization stocks are unrestricted. This is also achieved with N = d − 1,
since the smallest asset can be created synthetically by investing in the top d − 1 assets and
the market portfolio. A proper open market is obtained with N < d − 1.

Finally, for later use we define the open market portfolio θN
M for the open market of size

N . It is defined by choosing h(t) = (
∑N

k=1 X(k)(t))
−11N in the representation (3.5). Thus

(
θN
M
)
nk(t)

(t) = 1{k≤N}∑N
k=1 X(k)(t)

, k = 1, . . . , d.

REMARK 3.6. The integrability condition on h in Definition 3.5 is necessary and suffi-
cient for θ to be a trading strategy. Thus the set of such processes h fully parameterizes the
set of open market strategies.

3.4. Growth optimality in the open market. We now consider an open market of size
N < d , and study the growth optimal strategy in the class of open market strategies under
two structural conditions on the market. This allows us to relate the growth optimal strategy
in the open market to the growth optimal strategy in the closed market—although, as we will
see, the latter will not necessarily satisfy the integrability conditions required to be a bona
fide trading strategy.

Our first condition is classical. Apart from the absence of integrability requirements, this
condition is sometimes known simply as the structure condition. Recall the processes b and
σ appearing in the market weight dynamics (3.1) as well as c = σσ	.

ASSUMPTION 3.7. There exists a d-dimensional progressively measurable process �

such that c� = b up to P⊗ dt-nullsets.

REMARK 3.8. By [19], Proposition 2.4, Assumption 3.7 together with the condition

(3.6)
∫ T

0
�(t)	c(t)�(t) dt < ∞ for every T ≥ 0

is equivalent to the existence of a growth optimal strategy θ̂ d in the closed market, given by

(3.7) θ̂ d (t) = �(t) + (1 − �(t)	X(t)
)
1d .

In this paper we do not impose (3.6) and hence do not require the existence of a growth
optimal strategy in the closed market. However, as examples in Section 4 will show, a growth
optimal strategy in the open market may exist even if (3.6) is violated.

Now, observe that the log-wealth process for any strategy θ is given by

(3.8) logV θ(T ) =
∫ T

0

(
θ(t)	c(t)�(t) − 1

2
θ(t)	c(t)θ(t)

)
dt +

∫ T

0
θ(t)	σ(t) dW(t).

To find the growth optimal strategy in the open market (if it exists) we need to maximize
the integrand appearing in the drift term of (3.8) over all θ ∈ ON , the class of open market
strategies defined in Definition 3.5. To do this we introduce some additional notation. Define

κkl(t) = cnk(t)nl (t)(t), �k(t) = �nk(t)(t), k, l = 1, . . . , d, t ≥ 0.

In particular, κkl is the instantaneous covariation between the assets occupying the kth and
lth ranks. To maximize the drift in (3.8), consider any open market strategy θ ∈ ON in the
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canonical form of (3.5). Using that c(t)1d = 0, or equivalently κ(t)1d = 0, we have that the
drift is equal to

h(t)	
(
κ(t)�(t)

)N − 1

2
h(t)	κN(t)h(t),

where κN(t) is the upper left N × N block of κ(t) and (κ(t)�(t))N is the N -dimensional
truncated vector ((κ(t)�(t))1, . . . , (κ(t)�(t))N). Maximizing this expression over h(t) is an
unconstrained concave quadratic maximization problem. The solution is characterized by the
first order condition, which is

(3.9)
(
κ(t)�(t)

)N = κN(t)h(t).

Our second structural condition is designed to allow for an explicit solution of (3.9) in terms
of �.

ASSUMPTION 3.9. There exist progressively measurable processes f1, . . . , fd and g

such that, up to P⊗ dt-nullsets,
∑d

k=N+1 fk = 1 and

(3.10) κkl = −fkflg for all k = 1, . . . ,N and l = N + 1, . . . , d .

This condition requires that the instantaneous covariation between large capitalization as-
sets and small capitalization assets be of product form. We stress that this does not restrict the
instantaneous covariations within the collection of top N assets, nor within the collection of
bottom d − N assets. The condition only involves cross-interaction between the two groups
of assets. Moreover, the requirement

∑d
k=N+1 fk = 1 is a normalization that can always be

achieved as long as
∑d

k=N+1 fk > 0. We also note that the covariation matrix for the market
weight process of Example 3.4 satisfies this condition and, as we will see in Section 4, when
X is taken to be the hybrid Jacobi process of Section 2, Assumption 3.9 holds as well.

THEOREM 3.10 (Growth optimality in the open market). Fix N < d and let Assump-
tions 3.7 and 3.9 be satisfied.

(i) A solution to (3.9) exists and is given by

(3.11) ĥ(t) = �N(t) − ζ(t)1N,

where �N(t) = (�1(t), . . . , �N(t)) and ζ(t) =∑d
l=N+1 fl(t)�l(t).

(ii) There exists a growth optimal strategy θ̂ in the open market if and only if

(3.12)
∫ T

0
ĥ(t)	κN(t)ĥ(t) dt < ∞, P-a.s., for every T ≥ 0,

where ĥ is given by (3.11). In this case θ̂ is determined by ĥ via (3.5). Moreover, if κN is
invertible up to P ⊗ dt-nullsets then the growth optimal strategy is unique up to P ⊗ dt-
nullsets.

PROOF. This theorem can be proved by applying the results of [20]. However, for the
reader’s benefit we present a short self-contained proof. Throughout, we argue up to P⊗ dt-
nullsets. Fix k ∈ {1, . . . ,N}. Since κ1d = 0 we have from Assumption 3.9 that

(
κN1N

)
k =

N∑
l=1

κkl = −
d∑

l=N+1

κkl =
d∑

l=N+1

fkflg = fkg.
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It follows that

(κ�)k =
N∑

l=1

κkl�l +
d∑

l=N+1

κkl�l = (κN�N )
k − fkgζ = (κN (�N − ζ1N

))
k.

This shows that ĥ given by (3.11) solves (3.9), thus proving (i).
We now prove (ii). Suppose that (3.12) holds. Then it is easily verified that θ̂ is X-

integrable. Indeed, up to a factor of 1/2, both the finite variation and quadratic variation
parts of the log-wealth process are given precisely by (3.12). Hence θ̂ is a trading strategy,
and by the preceding discussion it is growth optimal.

Conversely, suppose that (3.12) fails. Then the stopping times

τM := inf
{
T ≥ 0 :

∫ T

0
ĥ(t)	κN(t)ĥ(t) dt ≥ M

}
, M ∈ N,

satisfy supM τM < ∞ with positive probability. For each M , consider the strategy θ̂M char-
acterized by

θ̂M
n (t) =

((
ĥ(t)

0

)
+ (1 − ĥ(t)	XN

() (t)
)
1d

)
1{t≤τM } + 1d1{t>τM }.

This strategy imitates θ̂ up to time τM and invests in the market portfolio thereafter. It satisfies
the required integrability condition and so is indeed a trading strategy in the open market.
Since the finite variation part of the log-wealth of θ̂M will be at least M after τM , and since
supM τM < ∞ with positive probability, no growth optimal strategy can exist.

Finally, if a growth optimal strategy exists and κN is invertible, then (3.11) is the unique
solution to (3.9) and, consequently, θ̂ is the unique growth optimal strategy. �

Assuming its conditions are satisfied, Theorem 3.10 shows that the growth optimization
problem in the open market is just as easy, or difficult, as the growth optimization problem in
the closed market. This is because the optimizer ĥ is an explicit function of the process � in
Assumption 3.7 and the given processes fk , k = N + 1, . . . , d , in Assumption 3.9.

Furthermore, the growth optimal strategy θ̂ admits an intuitive decomposition. At any time
t ≥ 0 this strategy prescribes the investor to hold, per unit of wealth:

• �k(t) number of shares in the asset occupying the kth rank, for k = 1, . . . ,N ,
• −ζ(t)1	

NXN
() (t) number of shares in the open market portfolio θN

M,

• 1 − �N(t)	XN
() (t) + ζ(t)1	

NXN
() (t) number of shares in the full market portfolio θM.

For an investor with unrestricted access to all d assets, investing �k(t) in the asset occupying
the kth rank is growth optimal for all k = 1, . . . , d , and this strategy is financed by investing
the remaining wealth (perhaps negative) in the market portfolio. Indeed, this is an equivalent
way of describing (3.7). Under the open market constraint, the investor is no longer allowed
to execute this strategy and so must reallocate their wealth. The above decomposition shows
that this amounts to reallocating their investment from the small capitalization stocks into the
open market portfolio and financing the difference using the full market portfolio.

4. Modelling the market weights. In this section we use the hybrid Jacobi process as
a model for the market weights, and study growth optimality in the open market of size
N ≤ d − 1. We fix parameters a, γ, σ as in Definition 2.1 satisfying Assumption 2.3, and we
let X be the hybrid Jacobi process of Theorem 2.6.
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4.1. Growth optimization problem. Theorem 3.10 characterizes growth optimality in the
open market. We now make use of this result for the hybrid Jacobi process. In particular,
Theorem 2.15 allows us to characterize the parameter values for which (3.12) holds. This
leads to a complete description of growth optimality in the open market for hybrid Jacobi
processes. Recall the tail sum notation (2.1).

THEOREM 4.1 (Growth optimal strategy in hybrid Jacobi markets). There exists a growth
optimal strategy in the open market if and only if āk + γ̄(k) ≥ 1 for k = 2, . . . ,N + 1. In this
case the growth optimal strategy θ̂ is characterized by

(4.1) θ̂nk(t)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 1

2
(ā1 + γ̄1) + ak + γnk(t)

2X(k)(t)
, k = 1, . . . ,N,

1 − 1

2
(ā1 + γ̄1) + āN+1 +∑d

l=N+1 γnl (t)

2X̄(N+1)(t)
, k = N + 1, . . . , d,

and it is the unique growth optimal strategy up to Pμ ⊗ dt-nullsets for every μ ∈ P0.

Before proving the theorem we make a few remarks.

REMARK 4.2. Note that the optimal strategy θ̂ does hold a position in the small cap-
italization stocks through the market portfolio. Indeed, equation (4.1) prescribes the same
number of shares to be held when k ∈ {N + 1, . . . , d}. The equation for θ̂ can instead be
written in the canonical form (3.5), which represents the position via its contributions to each
investible asset, by taking

(4.2) ĥk(t) = ak + γnk(t)

2X(k)(t)
− āN+1 +∑d

l=N+1 γnl (t)

2X̄(N+1)(t)
, k = 1, . . . ,N.

REMARK 4.3. It may seem odd that (4.1) does not involve the volatility parameter σ .
This is only due to the parametrization used in Definition 2.1 where σ appears both in the
drift and the volatility. In the financial literature it is more common to view the drift and
volatility parameters as independently defined. We can accomplish this by setting α = σ 2a/2
and β = σ 2γ /2. Then (2.2) becomes

dXi(t) = (αri (t) + βi − (ᾱ1 + β̄1)Xi(t)
)
dt + σ

d∑
j=1

(
δij − Xi(t)

)√
Xj(t) dWj (t)

for i = 1, . . . , d and, correspondingly, the optimal strategy (4.1) becomes

θ̂nk(t)(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − 1

σ 2 (ᾱ1 + β̄1) + αk + βnk(t)

σ 2X(k)(t)
, k = 1, . . . ,N,

1 − 1

σ 2 (ᾱ1 + β̄1) + ᾱN+1 +∑d
l=N+1 βnl (t)

σ 2X̄(N+1)(t)
, k = N + 1, . . . , d.

This strategy depends on (αk + βnk(t))/σ
2 for k = 1, . . . ,N , which admits an interpretation

of risk-adjusted return for the asset that is occupying the kth rank at time t .

REMARK 4.4. The condition āk + γ̄(k) ≥ 1 for k = 2, . . . ,N + 1 appearing in the state-
ment of Theorem 4.1 has a clear financial interpretation. Note that using the dynamics of the
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ranked weights obtained in Proposition 3.12 we have that the dynamics of X̄(k) =∑d
l=k X(l)

are given by

dX̄(k) = σ 2

2

(
āk +

d∑
l=k

γnl (t) − (ā1 + γ̄1)X̄(k)(t)

)
dt + dM(t) − 1

4
dLk−1,k(t),

where M is the martingale term. Consequently, the term āk +∑d
l=k γnl (t) appearing in the

drift can be interpreted as a cumulative growth parameter for the d − k + 1 smallest capital-
ization stocks. The term depends on which names occupy the smallest ranks and the smallest
value this growth parameter can have is āk + γ̄(k) precisely when the stocks with the smallest
individual (named) growth parameters occupy the smallest ranks. The condition āk + γ̄(k) ≥ 1
then requires that even in this “worst case” arrangement of the assets, the cumulative growth
parameter of the d − k + 1 smallest stocks is sufficiently large.

REMARK 4.5. It is worth pointing out that, akin to [4], the hybrid Jacobi market weight
process is consistent with the following specification of the capitalization process:

dSi(t) = σ 2

2
(γi + ari (t))�(t) dt + σ

√
Si(t)�(t) dWi(t)

for i = 1, . . . , d , where � = S1 + · · · + Sd . Then Xi = Si/� has dynamics given by (2.2).

PROOF OF THEOREM 4.1. We first verify the conditions of Theorem 3.10. To check
Assumption 3.7 we define � : �d−1 →Rd by

(4.3) �i(x) = γi + ari (x)

2xi

, i = 1, . . . , d,

for x ∈ �d−1+ and arbitrarily set �(x) = 0 for x ∈ ∂�d−1. We then have the identity

(
c(x)�(x)

)
i = σ 2

2

(
γi + ari (x) − (ā1 + γ̄1)xi

)
for all x ∈ �d−1+ and i = 1, . . . , d , where c(x) is given by (2.3). Proposition 2.11(i) shows
that X almost surely spends a Lebesgue nullset of time at the boundary ∂�d−1. We deduce
that Assumption 3.7 is satisfied with the process �(X).

Next, Assumption 3.9 follows from the form (2.13) of the diffusion matrix κ(X()) of the
ranked market weights. Indeed, condition (3.10) is satisfied with

g(t) = σ 2X̄(N+1)(t)
2, fk(t) = X(k)(t)

X̄(N+1)(t)
, k = 1, . . . , d,

and Proposition 2.11(i) ensures that fk is well defined up to Pμ ⊗ dt-nullsets.
We may now apply Theorem 3.10(i) to see that a solution to (3.9) is given by ĥ defined

in (4.2). By Theorem 3.10(ii) this gives the unique growth optimal strategy (4.1) if and only
if (3.12) holds. It remains to argue that the latter condition is equivalent to āk + γ̄(k) ≥ 1 for
k = 2, . . . ,N + 1.

A calculation using (4.2) shows that the left-hand side of (3.12) is given by

(4.4)

ĥ(t)	κN(t)ĥ(t) = σ 2

4

(
N∑

k=1

(ak + γnk(t))
2

X(k)(t)

+ (āN+1 +∑d
k=N+1 γnk(t))

2

X̄(N+1)(t)
− (ā1 + γ̄1)

2

)
.
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Assume first that āl + γ̄(l) ≥ 1 for l = 2, . . . ,N + 1. Then by Theorem 2.15(i)(a) we have that
Pμ(X(N+1)(t) = 0 for some t > 0) = 0. Consequently, from (4.4), we see that (3.12) holds.

Conversely, assume there exists some l ∈ {2, . . . ,N + 1} such that āl + γ̄(l) < 1. Set I =
{i ∈ {1, . . . , d} : nk(γ ) = i for some k ≥ l} and let �I be as in (2.15). Note that |I | = d − l+1
and by Theorem 2.15(ii)(a) we have that �I(X) hits zero with positive probability. For n ∈N

define the stopping times

τn := inf
{
t ≥ 0 : �I

(
X(t)

)≤ 1/n
}
,

τ := lim
n→∞ τn = inf

{
t ≥ 0 : �I

(
X(t)

)= 0
}
.

Applying Itô’s formula to (2.19) we obtain for every n and T ≥ 0 that

(4.5)

− log
�I(X(T ∧ τn))

�I (0)
= σ 2(ā1 + γ̄1)(T ∧ τn)

2
−∑

i∈I

∫ T ∧τn

0

γi + ari (t)

�I (X(t))
dt

− M(T ∧ τn) + 1

2
[M,M](T ∧ τn),

where M(T ) = σ
∫ T

0

√
1−�I (X(t))
�I (X(t))

dB(t). Suppose for contradiction that
∫ T

0 (�I (X(t)))−1 dt

is finite for every T ≥ 0. This implies that [M,M](T ∧ τ) < ∞. Thus, when sending n → ∞
in (4.5), we obtain on the right-hand side a finite limit for every T ≥ 0. However, on the left-
hand side we obtain − log(�I (X(T ∧ τ))/�I (0)) which is infinite with positive probability
for T large enough, since {τ < ∞} has positive probability. This yields a contradiction and
establishes that

∫ T
0 (�I (X(t)))−1 dt = ∞ with positive probability for sufficiently large T .

But X̄(N+1) ≤ �I(X) so it follows that
∫ T

0 X̄−1
(N+1)(t) dt = ∞ with positive probability. Con-

sequently, we see from (4.4) that (3.12) does not hold in this case. This completes the proof.
�

4.2. Examples. We consider a few examples.

4.2.1. Name-based Jacobi markets. Consider the case a = 0. Then Assumption 2.3 is
satisfied if and only if γi > 0 for i = 1, . . . , d . Theorem 4.1 guarantees that there exists a
growth optimal strategy θ̂ in the open market if and only if γ̄(d−N+1) ≥ 1. Using (4.1) it is
easily checked that θ̂ is long-only if and only if we additionally have

∑d−1
k=1 γ(k) ≤ 2.

Consider the further special case γ = γ∗1d for some γ∗ > 0. In this case the dynamics of X

in (2.2) reduce to the volatility stabilized market in Example 3.4. The growth optimal strategy
in the open market, θ̂ , exists if and only if γ∗ ≥ 1/(d − N). In this case (4.1) becomes

θ̂nk(t)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − dγ∗
2

+ γ∗
2X(k)(t)

, k = 1, . . . ,N,

1 − dγ∗
2

+ (d − N)γ∗
2X̄(N+1)(t)

, k = N + 1, . . . , d.

This is long-only if and only if γ∗ ∈ [ 1
d−N

, 2
d−1 ]. When N ≤ (d + 1)/2 this interval is

nonempty. As such, the open market in the volatility-stabilized setup helps resolve the high-
leverage problem that appears in Example 3.4. However, the issue of stability with respect
to the size of the market is not resolved here, since θ̂ depends strongly on d , the size of the
closed market.



2960 D. ITKIN AND M. LARSSON

4.2.2. Rank-based Jacobi markets. Now consider the purely rank-based case γ = 0.
Then Assumption 2.3 is satisfied if and only if āk > 0 for k = 2, . . . , d . By Theorem 4.1
there exists a growth optimal strategy in the open market of size N if and only if āk ≥ 1 for
k = 2, . . . ,N + 1. In this case (4.1) becomes

θ̂nk(t)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − ā1

2
+ ak

2X(k)(t)
, k = 1, . . . ,N,

1 − ā1

2
+ āN+1

2X̄(N+1)(t)
, k = N + 1, . . . , d.

It is straightforward to find admissible parameter values such that this strategy is long-only.
For example, this will be the case whenever ā1 ≤ 2 and ak ≥ 0 for all k = 1, . . . ,N .

The above strategy has the attractive property that it does not directly depend on the pa-
rameter d . Indeed, there is only an implicit dependence on d through āN+1 =∑d

k=N+1 ak and
X̄(N+1) =∑d

k=N+1 X(k). Both of these quantities admit interpretations in terms of cumulative
statistics of the small capitalization assets: X̄(N+1) is the cumulative size of the small capital-
ization stocks, while āN+1 is the cumulative growth parameter for the small capitalizations
stocks. As such, rank-based Jacobi markets exhibit property (4) discussed in the Introduction.

4.2.3. Jacobi Atlas models. Next we explore a particular rank-based model, which, al-
though simplistic, is illustrative of the effect that the open market has in comparison to the
classically studied closed market. Fix η ≥ 1 and choose a ∈ Rd satisfying Assumption 2.3
such that a1 = a2 = · · · = aN = 0 and āN+1 = η. We call this specification the Jacobi Atlas
model as all the growth comes from the small capitalization assets through the parameter η.
This is analogous to the Atlas model of [1]. In this case the growth optimal strategy is

(4.6) θ̂nk(t)(t) =
⎧⎪⎨
⎪⎩

1 − η

2
, k = 1, . . . ,N,

1 − η

2
+ η

2X̄(N+1)(t)
, k = N + 1, . . . , d.

The investor holds the same number of units of each large capitalization asset and holds a
larger number of shares (through the market portfolio) in the small capitalization assets due
to their growth potential guaranteed by the parameter η ≥ 1.

The parameter η also directly determines how leveraged the strategy is. A larger value of
η leads to a higher degree of short-selling. Since η represents the cumulative growth of the
small capitalization stocks the interpretation is clear. For large values of η the investor benefits
by holding a larger position in the small capitalization stocks (through the market portfolio)
and financing this strategy by short selling the large capitalization stocks. Conversely, when
η is small, the small capitalization stocks do not provide enough growth to justify the risk of
holding a highly leveraged position.

Note that the optimal strategy is insensitive to the exact specification of the parameters
aN+1, . . . , ad as long as āN+1 = η and Assumption 2.3 is satisfied. These choices, however,
do affect the behaviour of the larger market in which the open market is embedded. To illus-
trate, consider the following two situations:

(i) a = ηed ,
(ii) a = (η − ε)eN+1 + εed for some choice of ε ∈ (0,1).

Both satisfy āN+1 = η and Assumption 2.3. However, under (i), Theorem 4.1 implies that
there exists a growth optimal strategy in the open market of any size M ∈ {1, . . . , d − 1}.
In particular there exists a growth optimal strategy in the closed market. By contrast, the
specification (ii) does not admit a growth optimal strategy in the open market of any size
M > N . This is because under (ii), X(N+2) will hit zero with positive probability, while
under (i) none of the assets will hit zero. The open market of size N , however, is impervious
to these differences.
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4.2.4. The hybrid case revisited. We saw in the name-based case, Example 4.2.1, that al-
though there are specifications for which the growth optimal strategy is not artificially lever-
aged, there is no stability with respect to the parameter d due to the name-based dependency.
The rank-based case of Example 4.2.2 solves this issue, but it has other imperfections. Under
the rank-based setup each asset asymptotically spends the same amount of time occupying
each rank. Indeed, the ergodic property (Theorem 2.9) yields limT →∞ 1

T

∫ T
0 1{nk(t)=i}dt =

1/d for every i, k = 1, . . . , d . This is an unrealistic property that does not hold in real world
equity markets.

The general hybrid specification is more flexible as one can allow a particular named asset
to occupy some ranks more frequently than others. As an example, let η ≥ 1 and γ∗ > 0 be
given and set a = ηed and γ = γ∗e1. In this case the first named asset will occupy the highest
ranks more frequently than the lowest ranks. Indeed, using the ergodic property one can show
that

lim
T →∞

1

T

∫ T

0
1{r1(t)=k} dt > lim

T →∞
1

T

∫ T

0
1{r1(t)=l} dt, k < l.

4.3. Functional generation of the growth optimal strategy. In this section we show that
the growth optimal strategy in the rank-based case is functionally generated in the sense of
[7], Chapters 3 and 4. We adopt the setting of Section 3, where X serves as the market weight
process. Following [7, 21] we introduce the notion of functionally generated strategies and
the master formula.

DEFINITION 4.6. Let θ be a strategy and let G : Rd → (0,∞) be a function that is
continuous on �d−1+ and such that G(X) is a semimartingale. If we have the representation

(4.7) logV θ(T ) = logG
(
X(T )

)+ �(T )

for some finite variation process � with �(0) = 0 then we call θ a functionally generated
strategy with generating function G and drift process �. In this case we write θG for θ .

The representation (4.7) shows that the wealth process of a functionally generated strat-
egy can be found without computing a stochastic integral. This will allow us to show that
functionally generated strategies have a built-in robustness property, which is crucial in the
analysis of the robust growth optimization problem we consider in Section 5.

THEOREM 4.7 (Master formula, Proposition 4.7 in [21]). Let G : Rd → (0,∞) be a
function that is continuous on �d−1+ and such that G(X) is a semimartingale. Assume there
exist locally bounded measurable functions gi : Rd → R for i = 1, . . . , d and a finite varia-
tion process Q such that

(4.8) d logG
(
X(t)

)= d∑
i=1

gi

(
X(t)

)
dXi(t) + dQ(t).

Then G functionally generates the strategy θG with components given by

(4.9) θG
i (t) = gi

(
X(t)

)+ 1 −
d∑

j=1

Xj(t)gj

(
X(t)

)
, i = 1, . . . , d.

REMARK 4.8. If the function G from the previous theorem is C2 on an open neighbour-
hood of �d−1+ then the assumptions of the theorem are satisfied with gi(x) = ∂i logG(x) and
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dQ(t) = 1
2
∑d

i,j=1 ∂ij logG(X(t)) d[Xi,Xj ](t). The corresponding strategy becomes

θG
i (t) = ∂i logG

(
X(t)

)+ 1 −
d∑

j=1

Xj(t)∂j logG
(
X(t)

)
, i = 1, . . . , d

and we have the representation

logV θG

(T ) = logG
(
X(T )

)− 1

2

d∑
i,j=1

∫ T

0

∂ijG(X(t))

G(X(t))
d[Xi,Xj ](t).

We now establish that the growth optimal strategy in the open market for rank Jacobi
models is functionally generated and determine its generating function.

PROPOSITION 4.9. Let X be the rank Jacobi model of Section 4 with parameter a ∈ Rd

and σ 2 > 0. Assume that āk ≥ 1 for every k = 2, . . . ,N +1 so that the growth optimal strategy
θ̂ of Theorem 4.1 exists. Define F̂ : ∇d−1+ → (0,∞) and Ĝ : �d−1+ → (0,∞) via

(4.10) F̂ (y) = ȳ
āN+1/2
N+1

N∏
k=1

y
ak/2
k , Ĝ(x) = F̂ (x()).

Then θ̂ given by (4.1) is functionally generated by Ĝ. Moreover, its wealth process has the
representation

(4.11)

logV θ̂ (T ) = log F̂
(
X()(T )

)− ∫ T

0

LκF̂

F̂

(
X()(t)

)
dt − 1

8

N−1∑
k=1

(ak − ak+1)L̃k,k+1(T )

− 1

8

∫ T

0

(
aN − āN+1

X(N)(t)

X̄(N+1)(t)

)
dL̃N,N+1(t),

where Lκ is the operator given by

(4.12) Lκf (y) = 1

2

d∑
k,l=1

κkl(y)∂klf (y), f ∈ C2(∇d−1),
with κ given by (2.13) and L̃k,k+1 = LlogX(k)−logX(k+1)

are the local times of gaps of the
ranked log-weights.

PROOF. This result is a consequence of the semimartingale decomposition for X() given
by (2.12) along with the master formula, Theorem 4.7. �

REMARK 4.10. In the general hybrid case there is a candidate generating function for θ̂

given by

G(x) = x̄
1
2 (āN+1+∑d

k=N+1 γnk(x))

(N+1)

N∏
k=1

x
1
2 (ak+γnk(x))

(k) .

This function is differentiable almost everywhere and we have θ̂ (t) = ∇ logG(X(t)) − (1 +
X(t)	∇ logG(X(t)))1d whenever X(t) is at a point of differentiability of G. However, when
N < d − 1 and γ is not a multiple of 1d , G is discontinuous on a nonempty subset of {x(N) =
x(N+1)}. In particular, we do not expect G(X) to be a semimartingale. We do not know
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whether there is any meaningful way to interpret θ̂ as being generated by G. In the case
N = d − 1 the formula for G simplifies to

(4.13) G(x) =
(

d∏
k=1

x
ak/2
(k)

)(
d∏

i=1

x
γi/2
i

)
,

which is a continuous function. In this special case it can be shown that θ̂ is functionally
generated by G.

5. Robust asymptotic growth. The rank and hybrid Jacobi processes are parametric
models which should only be viewed as idealizations of real-world market weight dynamics.
Moreover, even if one accepts the structural form of the model, parameter estimation is not
straightforward. In particular, drift processes are notoriously difficult to estimate for the low
signal-to-noise ratios typically seen in financial data; see [22, 23].

We now study an asymptotic and robust growth optimization problem in the open mar-
ket, with only two inputs fixed a priori: (i) the covariation matrix κ of the ranked market
weights, and (ii) their invariant density q . Following [18, 23] we restrict to models with
the prescribed covariation structure and invariant density, but allow for drift uncertainty. We
maximize asymptotic growth in this class, and show that the optimal solution is the growth
optimal strategy in the rank Jacobi model.

REMARK 5.1. The results of this section only cover the rank Jacobi model (γ = 0). The
difficulty in passing to the hybrid case arises from the fact that θ̂ in (4.1) is not functionally
generated in that case, as discussed in Remark 4.10.

We now introduce the robust asymptotic growth optimization problem, motivated by the
ergodic robust maximization problems studied in [18, 23]. We work on the canonical path
space 	 = C([0,∞);�d−1) with the topology of locally uniform convergence and Borel
σ -algebra F . The coordinate process is denoted by X and we write (F(t))t≥0 for the right-
continuous filtration generated by X.

Fix N ≤ d − 1, σ ∈ (0,∞), and a ∈ Rd , and assume that

(5.1) āk > 1 for every k = 2, . . . ,N + 1.

Throughout this section we let P̂ denote the law of the rank Jacobi process of Theorem 2.6
with parameters a,σ and arbitrary initial law μ ∈ P0 (the choice of initial law does not matter
in the analysis to come). Under P̂, Theorem 4.1 yields a growth optimal strategy in the open
market. Note that (5.1) is stronger than the condition of Theorem 4.1 in that it contains a strict
inequality. This ensures that θ̂ has finite asymptotic growth rate as defined in (5.2) below.

Recalling the matrix function κ : ∇d−1 → Sd+ in (2.13) and the density q : ∇d−1+ → (0,∞)

in (2.14), we now define the set of admissible models that will be used to define the robust
optimization problem.

DEFINITION 5.2. Let �≥ denote the set of all probability measures P on (	,F) such
that the following hold: X0 ∼ μ for some μ ∈ P0, X is a continuous semimartingale with
canonical decomposition of the form dX(t) = bP(t) dt + dMP(t), and we have:

(i) X(N+1)(t) > 0 for t ≥ 0, P-a.s.
(ii)

∫ T
0 d[X(k),X(l)](t) = ∫ T

0 κkl(X()(t)) dt for k, l = 1, . . . , d and T ≥ 0, P-a.s.
(iii) For every measurable function h : ∇d−1 →R with

∫
∇d−1 |h|q < ∞,

lim
T →∞

1

T

∫ T

0
h
(
X()(t)

)
dt =

∫
∇d−1

hq, P-a.s.
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(iv) We have

lim sup
T →∞

1

T

∫ T

0

∣∣bPi (t)
∣∣r ′

dt < ∞, i = 1, . . . , d,P-a.s.

for some r ′ > s′ where s′ is the conjugate exponent of s = min{ā2, . . . , āN+1}, meaning that
1/s + 1/s′ = 1.

Condition (i) guarantees that X(N+1) does not hit zero so that the candidate robust growth-
optimal strategy θ̂ is actually a trading strategy (i.e., θ̂ is X-integrable). Conditions (ii) and
(iii) encode the covariation structure and ergodic property of X() respectively. Condition (iv)
is a technical condition on the asymptotic growth of the drift process of X. Our proof of the
main result in this section, Theorem 5.4 below, relies on this condition; however, it is unclear
to us if it can be relaxed or not. Also, note that the constant s appearing in (iv) is strictly
greater than one by condition (5.1).

REMARK 5.3. Note that P̂ ∈ �≥. Thus the law of the rank Jacobi process is admissible.
This follows from (2.12), Corollary 2.10, and the fact that drift of X in (2.2) is bounded.

The asymptotic growth rate of a wealth process V θ and an admissible law P ∈ �≥ is
defined by

(5.2) g
(
V θ ;P)= sup

{
η ∈ R : lim inf

T →∞
1

T
logV θ(T ) ≥ η, P-a.s.

}
.

We aim to compute the robust optimal growth rate in the open market of size N ,

(5.3) λ̂ := sup
θ∈ON

inf
P∈�≥

g
(
V θ ;P).

We can now state the main result of this section.

THEOREM 5.4 (Robust growth optimality). The robust optimal growth rate λ̂ is achieved
by θ̂ given by (4.1) and we have

(5.4) λ̂ = σ 2

8

∫
∇d−1

(
N∑

k=1

a2
k

yk

+ ā2
N+1

ȳN+1

)
q(y) dy − σ 2

8
ā2

1 .

Moreover, g(V θ̂ ;P) = λ̂ for every P ∈ �≥.

To prove this result we establish that the expression on the right-hand side of (5.4) is both
a lower and upper bound for λ̂. By definition of λ̂ we have the bounds

(5.5) inf
P∈�≥

g
(
V θ̂ ;P)≤ λ̂ ≤ sup

θ∈ON

g
(
V θ ; P̂).

From the growth optimality of θ̂ under P̂, established in Theorem 4.1, the upper bound is
equal to g(V θ̂ ; P̂). Moreover, Lemma 5.6 below establishes that g(V θ̂ ; P̂) matches the right-
hand side of (5.4). Then, in view of (5.5), to complete the proof it suffices to show that θ̂

achieves the same asymptotic growth rate under every measure P ∈ �≥. Lemma 5.7 below
establishes that strategies functionally generated by permutation invariant smooth functions
bounded away from zero indeed have this growth rate invariance property. By approximating
the generating function of θ̂ by such functions we are able to show that θ̂ also possesses this
property. This last step is technical and is carried out in Appendix C.

We start with a technical lemma, whose proof is also located in Appendix C.
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LEMMA 5.5. Fix P ∈ �≥.

(i) For k = 1, . . . ,N the set {t : X(k)(t) = X(k+1)(t)} is P-a.s. a Lebesgue nullset.
(ii) We have the identity [Xi,Xj ](T ) = ∫ T

0
∑d

k,l=1 1{nk(t)=i,nl (t)=j}κkl(X()(t)) dt for every
i, j = 1, . . . , d and every T ≥ 0.

Next we characterize the asymptotic growth rates of strategies under the law P̂ of the rank
Jacobi process.

LEMMA 5.6. Consider a strategy θ(t) = θ(X(t)) in feedback form satisfying the inte-
grability condition

∫
�d−1 |θ	c�|p < ∞ where c, p, and � are given by (2.3), (2.6), and (4.3)

respectively. Then

(5.6) g
(
V θ ; P̂)= ∫

�d−1

(
θ	c� − 1

2
θ	cθ

)
p.

In particular

(5.7) g
(
V θ̂ ; P̂)= 1

8

∫
∇d−1

(
N∑

k=1

a2
k

yk

+ ā2
N+1

ȳN+1

)
q(y) dy − 1

8
ā2

1,

where θ̂ is given by (4.1).

PROOF. We work under P̂. Using (2.2), the wealth process for any strategy θ is given by

logV θ(T ) =
∫ T

0
θ
(
X(t)

)	
c
(
X(t)

)
�
(
X(t)

)
dt + M(T ) − 1

2
[M,M](T ),(5.8)

where dM(t) = θ(X(t))	σ(X(t)) dW(t) for σij (x) = σ
√

xj (δij − xi). By the integrability
assumption and the ergodic property, Theorem 2.9, we have

(5.9) lim
T →∞

1

T

∫ T

0
θ
(
X(t)

)	
c
(
X(t)

)
�
(
X(t)

)
dt =

∫
�d−1

θ	c�p.

Also by the ergodic property, limT →∞ T −1[M,M](T ) = ∫�d−1 θ	cθp, where the right-hand
side may be infinite. By the Dambis–Dubins–Schwarz theorem there exists a Brownian mo-
tion B (possibly on an extended probability space) such that M(T ) = B([M,M](T )). The
strong law of large numbers for Brownian motion, along with the ergodic property, yield

(5.10)
lim

T →∞
M(T ) − 1

2 [M,M](T )

T
= lim

T →∞
[M,M](T )

T

(
B([M,M](T ))

[M,M](T )
− 1

2

)

= −1

2

∫
�d−1

θ	cθp.

Combining (5.8), (5.9), and (5.10) gives (5.6). Moreover, a direct calculation shows that

θ̂ (x)	c(x)�(x) − 1

2
θ̂ (x)	c(x)θ̂(x) = 1

8

(
N∑

k=1

a2
k

x(k)

+ ā2
N+1

x̄(N+1)

− ā2
1

)
,

which yields (5.7). The integral in (5.7) is finite by virtue of (5.1) and Lemma B.1. �

The next step is to establish the growth rate invariance property for functionally generated
strategies with sufficiently regular generating functions.
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LEMMA 5.7 (Growth rate invariance). Let F ∈ C2(∇d−1; (0,∞)) be such that logF is
bounded. Set G(x) = F(x()) for x ∈ �d−1 and assume that G ∈ C2(�d−1; (0,∞)). Then

(5.11) g
(
V θG;P)= ∫

∇d−1

−LκF

F
q =

∫
∇d−1

(
∇ logF	κ� − 1

2
∇ logF	κ∇ logF

)
q

for every P ∈ �≥, where �(y) = �(y) for y ∈ ∇d−1+ and Lκ is given by (4.12).

PROOF. By Remark 4.8 we have the representation

logV θG

(T ) = logG
(
X(T )

)− 1

2

∫ T

0

d∑
i,j=1

∂ijG

G

(
X(t)

)
d[Xi,Xj ](t).

Moreover, we have ∂iG(x) = ∂kF (x()) for all x ∈ �d−1 and all i, k such that nk(x) = i.
Hence, using Lemma 5.5(ii), we see that

(5.12)

1

2

d∑
i,j=1

∂ijG

G

(
X(t)

)
d[Xi,Xj ](t)

= 1

2

d∑
i,j=1

∂ijG

G

(
X(t)

) d∑
k,l=1

1{nk(t)=i,nl (t)=j}κkl

(
X()(t)

)
dt

= 1

2

d∑
k,l=1

∂klF

F

(
X()(t)

)
κkl

(
X()(t)

)
dt = LκF

F

(
X()(t)

)
dt.

It follows that the wealth process can be written as

logV θG

(T ) = logF
(
X()(T )

)+ ∫ T

0

−LκF

F

(
X()(t)

)
dt.

Since F ∈ C2(∇d−1; (0,∞)) and logF is bounded, −LκF/F is bounded. Hence, dividing
by T , sending T → ∞ and using the ergodic property yields

lim
T →∞

1

T
logV θG

(T ) =
∫
∇d−1

−LκF

F
q, P-a.s.

for every P ∈ �≥. This proves the first equality in (5.11). The second equality in (5.11)
follows by comparing this expression with the expression for g(V θG; P̂) given by Lemma 5.6
and using the permutation invariance of G. Note that

∫
�d−1 ∇ logG	c�p < ∞ since ∇ logG

is bounded, so that Lemma 5.6 is indeed applicable. �

REMARK 5.8. The second equality in (5.11) can also be proved by integration by parts.

In view of Lemma 5.7 and θ̂ being functionally generated by virtue of Proposition 4.9,
we expect that the asymptotic growth rate of θ̂ is the same under each P ∈ �≥. This is
indeed true, but the difficulty in proving this is that Ĝ in (4.10) is not C2. As such, the
drift process � in (4.7) will contain local time terms as in (4.11), whose ergodic averages
are difficult to analyze for arbitrary P ∈ �≥. The solution is to mollify Ĝ to obtain smooth
approximations Ĝn for which Lemma 5.7 applies. We then approximate, uniformly in T ∈
[0,∞), the wealth process of θ̂ by the wealth processes of θĜn induced by the mollified
functions. This uniform approximation crucially uses Definition 5.2(iv). As a result we obtain
the growth rate invariance property for θ̂ and complete the proof of Theorem 5.4. The details
are located in Appendix C.
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6. Conclusion. In this paper we introduced hybrid Jacobi processes in Section 2 and
studied in detail their ergodic, collision, and boundary attainment properties. In Section 3
we shifted focus to study a relaxed version of an open market in a general nonparamet-
ric framework. We proposed a structural condition (3.10) on the covariation between small
and large-cap stocks under which the growth-optimal strategy in the open market becomes
comparable to the growth-optimal strategy in the closed market it is embedded in. Then, in
Section 4, we combined the insights from the two previous sections to study an open market
setup under which the market weight process is a hybrid Jacobi process. We observed that the
hybrid Jacobi markets satisfy the desirable properties (1) and (2) laid out in the Introduction.
Additionally, Section 5 and Section 4.2.2 showed that the subclass of rank Jacobi markets
satisfied properties (3) and (4) respectively.

Although we do not study the empirical calibration of hybrid Jacobi models in this paper
we would like to point out a few features of the model, which make it amenable to calibra-
tion. The explicit expression for the invariant density (2.6) may allow for moment matching.
That is, to compute certain theoretical moments in terms of the parameters a, γ , and σ and
match these to the capital distribution curves obtained from data. Additionally, the ergodic
expressions for the collision local times in Proposition 2.14 allow one to calibrate parameters
to the turnover in the stock ranks. Indeed, the methods of [10] are applicable to the setting of
this paper (note that when the volatility parameters in [10] are all equal to each other then the
invariant density of the market weights in [10] is the same as in this paper with ā1 + γ̄1 = 0).

One important limitation of the hybrid Jacobi models we introduce here is the appearance
of only one single volatility parameter σ 2. Taking into consideration the condition (3.10) a
natural extension for the covariation matrix in the hybrid Jacobi models would be

(6.1) cij (x) = −σ 2
klxixj for i �= j, where k = ri(x), l = rj (x)

and setting cii(x) = −∑j �=i cij for rank-based volatility parameters σkl . However, unless all
of the volatility parameters are the same (which brings us back precisely to the volatility
structure in the hybrid Jacobi model), the covariation matrix (6.1) becomes discontinuous.
This raises many challenges including existence of the corresponding market weight process,
its ergodic properties, etc. We leave this important extension to future research.

APPENDIX A: INTEGRATION OVER �d−1 AND ∇d−1

In this section we discuss in detail the conventions regarding integration over the sim-
plex, the ordered simplex, and its extensions as defined below. We also establish some useful
identities and a technical lemma, which will be used in the next sections.

We first extend the definition of the ordered simplex to a larger collection of sets. Given
α,β ∈ R set ∇d−1(α,β) = {y ∈ Rd : y1 ≥ y2 ≥ · · · ≥ yd ≥ β,

∑d
k=1 yk = α} and note

that ∇d−1(1,0) = ∇d−1. All integrals over ∇d−1(α,β) are understood with respect to the
pushforward of the Lebesgue measure on Rd−1 under the transformation Tα : Rd−1 → Rd

given by Tα(x1, . . . , xd−1) = (x1, . . . , xd−1, α −∑d−1
k=1 xk). That is, for a measurable function

f : ∇d−1(α,β) →R we have that∫
∇d−1(α,β)

f (y) dy =
∫
T −1

α (∇d−1(α,β))
f

(
x1, . . . , xd−1, α −

d−1∑
k=1

xk

)
dx1, . . . , dxd−1.

Integrals over �d−1 are defined analogously using the map T1.
Now we establish some useful identities involving integrals of functions of product form.

To this end let b ∈ Rd be given and for α,β > 0 define

Qb(α,β) :=
∫
∇d−1(α,β)

d∏
k=1

y
bk−1
k dy.
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Note that Qb(α,β) is finite for every b ∈ Rd since β > 0. Additionally, by the definition of
∇d−1(α,β) and the integral change of variables formula, we have the homogeneity property

(A.1) Qb(λα,λβ) = λb̄1−1Qb(α,β)

for every λ > 0. Recall that b̄k =∑d
l=k bl for every k = 1, . . . , d . We now establish a useful

lemma providing a recursive formula for Qb(·, ·) as well as a limiting formula.

LEMMA A.1. Let b ∈ Rd be given.

(i) For any α > 0 and 0 < β ≤ α/d we have the identity

(A.2) Qb(α,β) =
∫ α/d

β
y

bd−1
d Qb′(α − yd, yd) dyd,

where b′ = (b1, . . . , bd−1) ∈ Rd−1.
(ii) limε↓0 εηQb(1 − cε, ε) = 0 for any c ∈ R and η > max{0,−b̄2, . . . ,−b̄d}.

PROOF. By our convention regarding integrals over ∇d−1(α,β) we have that

(A.3) Qb(α,β) =
∫
T −1

α (∇d−1(α,β))

(
α −

d−1∑
k=1

xk

)bd−1 d−1∏
k=1

x
bk−1
k dx1 . . . dxd−1,

where T −1
α (∇d−1(α,β)) = {x ∈Rd−1 : x1 ≥ · · · ≥ xd−1 ≥ α −∑d−1

k=1 xk ≥ β}. Now we make
the change of variables yk = xk for k = 1, . . . , d − 2, and yd = α −∑d−1

k=1 xk . Note that yd−1
is not defined, while yd is; this parametrization is convenient as will become apparent in the
following equations. We then obtain

Qb(α,β) =
∫
E

y
bd−1
d

(
α − yd −

d−2∑
k=1

yk

)bd−1−1 d−2∏
k=1

y
bk−1
k dy1 . . . dyd−2 dyd,

where E = {y1 ≥ · · · ≥ yd−2 ≥ α − yd −∑d−2
k=1 yk ≥ yd ≥ β} ⊂ Rd−1. Using Fubini we inte-

grate over the last component yd to obtain

Qb(α,β)

∫ α/d

β
y

bd−1
d

(∫
Ẽ

(
α − yd −

d−2∑
k=1

yk

)bd−1−1 d−2∏
k=1

y
bk−1
k dy1 . . . dyd−2

)
dyd,

where Ẽ = {y1 ≥ · · · ≥ yd−2 ≥ α − yd −∑d−2
k=1 yk ≥ yd} ⊂ Rd−2. We now recognize from

(A.3) that the inner integral is precisely Qb′(α − yd, yd), which proves (A.2).
Now we prove (ii). Fix η, c as in the statement of the lemma and in what follows we

always take ε small enough so that 1 − cε > 0. We prove the claim by induction on d . First
take d = 2 and note that Qb(1, ε

1−cε
) = ∫ 1/2

ε
1−cε

yb2−1(1 − y)b1−1 dy. If b2 > 0 then we have

that Qb(1,0) < ∞ so we can directly send ε ↓ 0 to obtain the result. If not then a calculation
involving L’Hopital’s rule yields

lim
ε↓0

Qb(1, ε
1−cε

)

ε−η
= lim

ε↓0

εη+b2

η

(1 − (c + 1)ε)b1−1

(1 − cε)b1+b2
= 0,

which proves the base case.
Next we assume the claim has been proven for d −1 and aim to prove it for d . If the vector

b satisfies b̄k > 0 for every k ≥ 2 then we see by Lemma B.1 that Qb(1,0) < ∞ so that
directly sending ε ↓ 0 proves the claim. If b does not satisfy this condition then we need to
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apply L’Hopital’s rule to evaluate the limit. Using (A.2) and the homogeneity property (A.1)
we obtain that

∂

∂β
Qb(1, β) = −βbd−1Qb′(1 − β,β) = −βbd−1(1 − β)b̄

′
1−1Qb′

(
1,

β

1 − β

)
,

where b̄′
1 =∑d−1

k=1 bk . Now by applying L’Hopital’s rule, the chain rule, and simplifying we
obtain

lim
ε↓0

Qb(1, ε
1−cε

)

ε−η
= lim

ε↓0

εη+bd

η
Qb′
(

1,
ε

1 − (c + 1)ε

)
(1 − (c + 1)ε)b̄

′
1−1

(1 − cε)b̄1
= 0,

where the last equality followed from the inductive hypothesis since η + bd > max{0,
−b̄′

2, . . . ,−b̄′
d−1}. �

We close out this section by noting a final integrability property. Let a ∈ Rd be given sat-
isfying Assumption 2.3 (with γ = 0) and fix k ∈ {2, . . . , d} and p > 0. Note that the function
x �→ | log(Cx)|pxδ is bounded on (0,1) for any C,δ > 0. Hence by choosing δ > 0 small
enough so that ã := a − δek also satisfies Assumption 2.3 we see from Lemma B.1 that

(A.4)
∫
∇d−1

| log ȳk|p
d∏

k=1

y
al−1
l dy ≤

∫
∇d−1

∣∣log
(
(d − k + 1)yk

)∣∣pyδ
k

d∏
k=1

y
ãl−1
l dy < ∞.

APPENDIX B: PROOFS OF RESULTS FROM SECTION 2

In this section we prove some of the results from Section 2 that were not included in the
main body of the text. We first set our sights on proving Lemma 2.4. To show this we first
establish a separate lemma, which is also used elsewhere, and then obtain Lemma 2.4 as a
consequence.

LEMMA B.1. For a vector b ∈ Rd we have that

Qb :=
∫
∇d−1

d∏
k=1

y
bk−1
k dy < ∞ ⇐⇒ b̄k > 0 for k = 2, . . . , d.

PROOF. Note that

d∏
k=1

y
bk−1
k = y

b̄1
1

d∏
k=2

(
yk−1

yk

)−b̄k
(

d∏
k=1

y−1
k

)
.

Since 1/d ≤ y1 ≤ 1 we have that the size or sign of b̄1 will not affect whether or not Qb is
finite. Hence, we assume without loss of generality that b̄1 = 0 or, equivalently, that b1 =
−∑d

k=2 bk . Next consider the change of variables zk = log(yk−1)− log(yk) for k = 2, . . . , d .
This transformation maps the ordered simplex onto Rd−1+ and its Jacobian is determined by
dz =∏d

k=1 y−1
k dy. Thus we obtain

Qb =
∫
Rd−1+

exp

(
−

d∑
k=2

b̄kzk

)
dz =

d∏
k=2

∫ ∞
0

e−b̄kz dz.

This expression is finite if and only if b̄k > 0 for every k = 2, . . . , d which completes the
proof. �
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PROOF OF LEMMA 2.4. Note that by a change of variables we equivalently have the
representation

Z = ∑
τ∈Td

∫
∇d−1

d∏
k=1

y
ak+γτ(k)−1
k dy.

By Lemma B.1 it follows that Z is finite if and only if āk + γ̄τ (k) > 0 for k = 2, . . . , d and
every τ ∈ Td . Since we have the inequality āk + γ̄τ (k) ≥ āk + γ̄(k) for every k and every τ ∈ Td

with equality achieved for some τ ∈ Td it follows that Z < ∞ if and only if Assumption 2.3
holds. This completes the proof. �

Next we establish the integration by parts formula Lemma 2.5.

PROOF OF LEMMA 2.5. To carry out the integration by parts we will make the transfor-
mation from �d−1 ⊂ Rd to its associated region E ⊂Rd−1 given by

E = {x ∈ [0,∞)d−1 : x1 + · · · + xd−1 ≤ 1
}
.

We also define the projection map π : �d−1 → E and its inverse π−1 : E → �d−1 via

π(x) = (x1, . . . , xd−1), π−1(z) = (z1, . . . , zd−1,1 − z	1d−1
)

respectively. To avoid confusion we will generically denote elements of �d−1 by x and ele-
ments of E by z.

Now recall c, ξ,p, v as in the statement of the lemma and set η(x) = c(x)ξ(x)p(x) for
x ∈ �d−1. Next for z ∈ E define ψ(z) = v(π−1(z)). Then for any z ∈ E we have

∂iψ(z) = ∂iv
(
π−1(z)

)− ∂dv
(
π−1(z)

); i = 1, . . . , d − 1.

Consequently, since η(x)	1d = 0 for every x ∈ �d−1, we see that

∇v(x)	η(x) =
d−1∑
i=1

ηi(x)∂iv(x) + ηd(x)∂dv(x)

=
d−1∑
i=1

ηi(x)
(
∂iv(x) − ∂dv(x)

)= d−1∑
i=1

ηi(x)∂iψ
(
π(x)

)
.

Setting η̃i(z) = (ηi ◦ π−1)(z) for i = 1, . . . , d − 1 and z ∈ E we have that

(B.1)
∫
U

∇v	cξp(x) dx =
∫
π(U)

∇ψ(z)	η̃(z) dz

for any U ⊆ �d−1.
Now for ε > 0 define Uε = {x ∈ �d−1 : x(d) > ε}. The projected region is

Eε := π(Uε) = {z ∈ E : min
{
z1, . . . , zd−1,1 − z	1d−1

}
> ε
}
.

Note that ∂Eε = {z ∈ E := min{z1, . . . , zd−1,1 − z	1d−1} = ε} and that for Hd−2-a.e z ∈
∂Eε the outward unit normal is given by

(B.2) ν(z) =
⎧⎪⎨
⎪⎩

−ei if zi = min
{
z1, . . . , zd−1,1 − z	1d−1

}
,

1√
d − 1

1d−1 if 1 − z	1d−1 = min
{
z1, . . . , zd−1,1 − z	1d−1

}
,

where Hd−2 is the d −2-dimensional Hausdorff measure. In particular the unit normal vector
does not depend on ε. Since the functions ψ and η̃ are Lipschitz continuous on Ēε we can
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apply the standard integration by parts formula (see [24], Corollary 9.66) for each ε > 0 to
get

(B.3)
∫
Eε

∇ψ(z)	η̃(z) dz = −1

2

∫
Eε

ψ(z)div η̃(z) dz +
∫
∂Eε

ψ(z)ν(z)	η̃(z) dHd−2(z).

Now for z ∈ ∂Eε write x for π−1(z). Then using the form of the outward pointing normal
(B.2) and the explicit expression for c and p given by (2.3) and (2.6) respectively we obtain
for Hd−2-a.e z ∈ ∂Eε ,

∣∣ψ(z)ν(z)	η̃(z)
∣∣= σ 2εp(x)

∣∣v(x)
∣∣∣∣x	ξ(x) − ξnd (x)(x)

∣∣(1{xd �=x(d)} + 1{xd=x(d)}√
d − 1

)

≤ Cεad+γ(d)

d−1∏
k=1

x
ak+γnk(x)−1
(k) ,

where C = σ 2Z−1 supx∈�d−1{|v(x)||x	ξ(x) − ξnd (x)(x)|}. Next let j = nd(γ ) and set γ ′ =
(γ1, . . . , γj−1, γj+1, . . . , γd) ∈ Rd−1. Then by noting that π−1(∂Eε) = {x ∈ �d−1 : x(d) = ε}
and using the notation of Appendix A we see that∣∣∣∣

∫
∂Eε

ψ(z)ν(z)	η̃(z) dHd−2(z)

∣∣∣∣
≤ Cεad+γ(d)

∫
{x∈�d−1:x(d)=ε}

d−1∏
k=1

x
ak+γnk(x)−1
(k) d

(
Hd−2 ◦ π−1)(x)

= Cεad+γ(d)
∑

τ∈Td−1

∫
∇d−2(1−ε,ε)

d−1∏
k=1

y
ak+γ ′

τ(k)−1
k dy

= Cεad+γ(d)
∑

τ∈Td−1

Qa′+γ ′
τ
(1 − ε, ε),

(B.4)

where a′ = (a1, . . . , ad−1). Since āk + γ̄τ (k) ≥ āk + γ̄(k) > 0 for every k = 2, . . . , d and τ ∈ Td

we have that

ad + γ(d) > max
{
0,−ā′

2 − γ̄ ′
τ ′(2), . . . ,−ā′

d−1 − γ̄ ′
τ ′(d−1)

}
for every τ ′ ∈ Td−1, where ā′

k + γ̄ ′
(k) =∑d−1

l=k al +∑d−1
l=k γ(l) for k = 2, . . . , d − 1. Hence

by Lemma A.1(ii) we have that the right-hand side of (B.4) tends to zero as ε ↓ 0. Thus,
when sending ε ↓ 0 in (B.3) we have that the boundary integral vanishes. Moreover a direct
calculation, again using the explicit form of c and p, shows that for every z ∈ E, |div η̃(z)| ≤
3dC̃p(π−1(z)), where C̃ = supx∈�d−1 maxi=1,...,d (|∂iξi(x)| + |ξi(x)|). Hence, by sending
ε → 0 in (B.3) we obtain by dominated convergence that

(B.5)
∫
E

∇ψ(z)	η(z) dz = −
∫
E

ψ(z)div η̃(z) dz.

Finally to obtain (2.9) we manipulate div η̃. To this end note that for every z ∈ E,

div η̃(z) =
d−1∑
i=1

∂i η̃i(z) =
d−1∑
i=1

∂iηi

(
π−1(z)

)− ∂d

d−1∑
i=1

ηi

(
π−1(z)

)

=
d∑

i=1

∂iηi

(
π−1(z)

)= divη
(
π−1z

)
,

(B.6)
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where in the second to last equality we used the fact that η(x)	1d = 0 for every x ∈ �d−1.
Consequently, from (B.1) and (B.6) we see that (B.5) is exactly the same as (2.9) once we
change coordinates. This proves the general integration by parts formula. The final claim in
the statement of the theorem now follows from the fact that for a function u ∈ C2(�d−1) we
have that pLu = 1

2 div(c∇up) almost everywhere. �

We now prove the existence of hybrid Jacobi models.

PROOF OF THEOREM 2.6. The existence of a Hunt diffusion X corresponding to the
Dirichlet form is guaranteed by [13], Theorem 7.2.2. Now in particular, from [13], equa-
tions (7.2.22), we have that the transition kernel pt(·, dy) of the Hunt diffusion X satisfies

ptu :=
∫
�d−1

pt(·, dy)u(y) is a quasi-continuous version of Ttu

for every u ∈ C(�d−1). Here (Tt )t≥0 are the strongly continuous semigroup operators on
L2(�d−1,m) corresponding to the generator of the Dirichlet form (L,D(L)). From the Kol-
mogorov backward equation (see, e.g., [5], Theorem 4.7) we have the identity

(B.7) Ttu − u =
∫ t

0
(TsLu)ds, u ∈ D(L),

where the integral is a Bochner integral and the equality is understood to hold on
L2(�d−1,m). Using the fact that ptu is a version of Ttu we obtain from (B.7) that

(B.8) ptu(x) − u(x) −
∫ t

0
psLu(x) ds = 0, m-a.e.x ∈ �d−1.

But by quasi-continuity of ptu we have for that for every ε > 0 there exists an open set
Gε(u) ⊂ �d−1 (depending on u) with Cap(Gε(u)) < ε and such that ptu is continuous on
�d−1 \ Gε(u). Set Ñ(u) = ⋂ε>0 Gε(u). By continuity of ptu we see that (B.8) holds for
all x ∈ �d−1 \ Ñ(u) and that Cap(Ñ(u)) = 0. By [13], Theorem 4.2.1(ii),it follows that
Ñ(u) is an exceptional set, since it has zero capacity, and so, by [13], Theorem 4.1.1, there
exists a properly exceptional set N(u) ⊂ �d−1 with Ñ(u) ⊆ N(u). By definition of properly
exceptional (i) is satisfied with this choice of set N(u).

Now we establish that Mu(t) := u(X(t)) − u(X(0)) − ∫ t
0 Lu(X(s)) ds is a Px-martingale

for every x ∈ �d−1 \N(u). Let such an x ∈ �d−1 \N(u) be given. Using the Markov property
and definition of transition function we have for every 0 ≤ s ≤ t that

E
[
Mu(t) − Mu(s)|F(s)

]
= Ex

[
u
(
X(t)

)− u
(
X(s)

)− ∫ t

s
Lu
(
X(r)

)
dr|F(s)

]

= pt−su
(
X(s)

)− u
(
X(s)

)− ∫ t−s

0
prLu

(
X(s)

)
) dr.

Px-a.s.(B.9)

But by property (i), Px(X(s) ∈ N(u) for some s > 0) = 0 so, by (B.8), we have that (B.9) is
zero Px-a.s. This establishes the martingale property.

Now to finish the proof we need to obtain a single properly exceptional set such that (i)
and (ii) hold. Consider the countable dense set D0 ⊂ D(L) consisting of all polynomials with
rational coefficients. Since a countable union of properly exceptional sets is again properly
exceptional we obtain a single properly exceptional set N =⋃u∈D0

N(u) such that (ii) holds
and Mu is a Px -martingale for every x ∈ �d−1 \N and every u ∈ D0. Then by approximating
any u ∈ D(L) by uniformly bounded un ∈ D0 such that un → u and Lun → Lu pointwise
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we readily obtain by bounded convergence that (ii) holds for every u ∈ D(L) completing the
proof. �

Next we prove the various properties of hybrid Jacobi processes. Recall that for an index
set I ⊆ {1, . . . , d}, as in (2.15), we denote by �I the function given by �I(x) =∑i∈I xi for
x ∈ Rd . We now prove the first two items of Proposition 2.11.

PROOF OF PROPOSITION 2.11(I) AND (II). First, we will show that L�I (X) ≡ 0 for
every index set I . By the occupation density formula and Lemma 2.18 we have for every
ε > 0 that

1

ε

∫ ε

0
La

�I (X)(T ) da =
∫ T

0

1{�I (X(t))∈(0,ε)}
ε

d
[
�I(X),�I (X)

]
(t)

= σ 2
∫ T

0

1{�I (X(t))∈(0,ε)}
ε

�I

(
X(t)

)(
1 − �I

(
X(t)

))
dt

≤ σ 2
∫ T

0
1{�I (X(t))∈(0,ε)} dt.

Sending ε ↓ 0 and using the right continuity of a �→ La
�I (X) on the left-hand side and the

Lebesgue dominated convergence theorem on the right-hand side yields L�I (X)(T ) = 0, Pμ-
a.s. for every T ≥ 0.

Next note that for any nonnegative semimartingale Y satisfying LY (T ) = 0 we have from
Tanaka’s formula that

Y(T ) = ∣∣Y(T )
∣∣= Y(0) +

∫ T

0
sign
(
Y(t)

)
dY (t) + LY (T )

= Y(0) +
∫ T

0
1{Y (t)>0} dY (t) −

∫ T

0
1{Y (t)=0} dY (t).

Rearranging gives 1{Y (t)=0} dY (t) = 0. Applying this identity with Y = �I(X) and expand-
ing out the stochastic integral using (2.2) we obtain

(B.10)
∫ T

0

(∑
i∈I

ari (t) + γi

)
1{�I (X(t))=0} dt = 0.

Now we claim that

(B.11)
∫ T

0
1{�I (X(t))=0} dt = 0

for every index set I . We prove this claim by backward induction on |I |, the size of I . The
base case |I | = d is trivial since in that case �I(X) =∑d

i=1 Xi ≡ 1. Now let l ∈ {2, . . . , d}
be given and assume that the result holds for index sets of size l. We will show that the result
holds for index sets I of size l − 1. For any such index set I note that as a consequence of the
inductive hypothesis we have for a.e. t ≥ 0 that

(B.12)
{
�I

(
X(t)

)= 0
}⊆ {nk(t) ∈ I for every k = d − l + 2, . . . , d

}
.

Indeed, fixing time t , if indices in I do not occupy the smallest l−1 ranks when �I(X(t)) = 0
then there would be another index j (depending on t) such that Xj(t) = 0. But then we would
have that �J (X(t)) = 0 where J = I ∪ {j}. The inductive hypothesis ensures that this can
only happen at a Lebesgue null-set of time points.

Hence, using (B.10) and (B.12) we obtain that (
∑d

k=d−l+2 ak + ∑
i∈I γi) ×∫ T

0 1{�I (X(t))=0} dt = 0. By Assumption 2.3 we see that
∑d

k=d−l+2 ak +∑i∈I γi ≥ ād−l+2 +
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γ̄(d−l+2) > 0 so we must have that
∫ T

0 1{�I (X(t)=0)} dt = 0 proving (B.11). Since this holds
for every T ≥ 0 we establish that

∫∞
0 1{�I (X(t)=0)} dt = 0. The statement of the lemma is

precisely the special case when |I | = 1 so this completes the proof of the first item.
The proof of the second item is very similar to the proof of [17], Lemma 4.1. Fix indices

i �= j . The occupation density formula for the semimartingale Xi − Xj then yields∫ T

0
f
(
Xi(t) − Xj(t)

)(
Xi(t) + Xj(t) − (Xi(t) − Xj(t)

)2)
dt =

∫
R

f (a)La
Xi−Xj

(T ) da

for every bounded measurable function f , where we used (2.5) with u = v = ei − ej to
compute the quadratic variation of Xi − Xj . Taking the function f (a) = 1{a=0} we obtain

(B.13)
∫ T

0
1{Xi(t)=Xj (t)}

(
Xi(t) + Xj(t) − (Xi(t) − Xj(t)

)2)
dt = 0.

Note that Xi(t) + Xj(t) − (Xi(t) − Xj(t))
2 is nonnegative and is equal to 0 if and only if

Xi(t) = Xj(t) = 0 or Xi(t) = 1 or Xj(t) = 1. However, by part (i) this only happens at a
Lebesgue null-set of time points. Hence, from (B.13) we see that 1{Xi(t)=Xj (t)} = 0, Pμ-a.s.
for almost every t ≥ 0. Since i and j were arbitrary this completes the proof. �

Next we investigate the question of triple collisions and prove Proposition 2.11(iii). To
assist us in this analysis we will compare the process X to a different, but related, pro-
cess for which triple collision properties are known. In [17], rank-based continuous semi-
martingales on the simplex were constructed using Dirichlet forms. However, rather than
taking the closed simplex �d−1 as the state space, the processes constructed in that set-
ting were on the open simplex with absorption at the boundary; that is, the state space was
the one point compactification of the open simplex �d−1+ ∪ {�} where the point � acted
as a cemetery state for the process. Moreover, the (pre-)Dirichlet form E as in (2.8) with
core C∞

c (�d−1+ ) rather than D is under the purview of [17]. It follows from [17], The-
orem 3.1, that the resulting Dirichlet form produces a process X� with generator L as
in (2.4), but with a different domain D�(L). The process X� possesses the strong Feller
property and for every ν ∈ P(�d−1+ ∪ {�}) there exists a probability measure P�

ν such that
P�

ν (X�(0) ∈ �) = ν(�) for every Borel set � ⊂ �d−1+ ∪ {�} and P�
ν solves the martingale

problem for (L,D�(L)); that is, u(X�(T )) − u(X�(0)) − ∫ T
0 Lu(X�(t)) dt is a martingale

under P�
ν for every u ∈ D�(L) where, by convention, we extend any function v from the

open simplex �d−1+ to the one point compactification �d−1+ ∪ {�} via v(�) = 0.
Next we will show that the processes X and X� coincide on the interior of the simplex.

To this end for every n ∈N define the open sets

(B.14) En = {x ∈ �d−1 : x(d) > 1/n
}
.

Following [6], Section 4.6, we say that a process Z solves the stopped martingale problem
corresponding to L on En with initial law ξ ∈ P(�d−1) if Z(0) ∼ ξ and

u
(
Z(T ∧ τn)

)− u
(
Z(0)

)− ∫ T ∧τn

0
Lu
(
Z(t)

)
dt

is a martingale for every u ∈ D(L) where D(L) is defined in Section 2.1. Here

(B.15) τn = inf
{
t ≥ 0 : Z(t) /∈ En

}
.

Note that the sets {
u : En →R|u = v|En for some v ∈ D(L)

}
,{

u : En →R|u = v|En for some v ∈ D�(L)
}

are identical for every n. Hence both X(· ∧ τn) and X�(· ∧ τn) solve the stopped martingale
problem for L on En when their initial laws coincide.
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LEMMA B.2. For any μ ∈ P0 we have that Pμ|F(τn) = P�
μ |F(τn) for every n ∈ N. That is,

the laws of X(· ∧ τn) and X�(· ∧ τn) are the same when the processes share the same initial
distribution.

PROOF. Fix n and recall that we view �d−1 as a subset of Rd−1 via the transformation
(x1, . . . , xd−1) �→ (x1, . . . , xd−1,1 −∑d−1

i=1 xi). Thus, with some abuse of notation, in this
proof we will view the drift and volatility coefficients appearing in (2.4) as defined on Rd−1

and Sd−1+ respectively.
Since both X(· ∧ τn) and X�(· ∧ τn) solve the stopped martingale problem with the

common initial condition the result will follow if we can show that the stopped martin-
gale problem is well-posed. To this end let ψ ∈ C∞

c (Rd−1) be such that ψ = 1 on En and
ψ = 0 on Rd−1 \ En+1. Extend c to all of Rd−1 by zero and define ĉ : Rd−1 → Sd−1+ and
b̂ : Rd−1 →Rd−1 via

b̂i (x) = (γi + ari (x) − (ā1 + γ̄1)xi

)
1En(x), i = 1, . . . , d,

ĉ(x) = c(x)ψ(x) + Id−1
(
1 − ψ(x)

)
,

where Id−1 is the (d − 1) × (d − 1) identity matrix. Define the corresponding generator
L̂ = 1

2
∑d

i,j=1 ĉij ∂ij +∑d
i=1 b̂i∂i . Since ĉ is uniformly elliptic and both b̂ and ĉ are bounded

it follows by [28], Theorem 7.2.1, that the martingale problem corresponding to L̂ is well-
posed. By [6], Theorem 5.6.1, it then follows that the stopped martingale problem corre-
sponding to L̂ on En is well-posed. But (L̂u)|En = L(u|En) for every u ∈ D(L̂) which com-
pletes the proof. �

PROOF OF PROPOSITION 2.11(III). Next let En be as in (B.14) and set Bn = B ∩ En.
Define the sequence of stopping times by setting σ 1

n = 0 and

τm
n = inf

{
t ≥ σm

n : X(t) /∈ En

}
, m ≥ 1,

σm
n = inf

{
t ≥ τm−1

n : X(t) ∈ Ēn−1
}
, m ≥ 2.

Note that τ 1
n = τn where τn was given by (B.15) with Z replaced by X. We have that

(B.16) Pμ

(
X(t) ∈ Bn−1 for some t > 0

)≤ ∞∑
m=1

Pμ

(
X(t) ∈ Bn−1 for some t ∈ (σm

n , τm
n

))
.

Applying iterated conditioning and the strong Markov property we obtain for each m ≥ 1 that

Pμ

(
X(t) ∈ Bn−1 for some t ∈ (σm

n , τm
n

))
= Eμ

[
Pμ

(
X(t) ∈ Bn−1 for some t ∈ (σm

n , τm
n

)|F(σm
n

))]
= Eμ

[
PXσm

n

(
X(t) ∈ Bn−1 for some t ∈ (0, τn)

)
1{σm

n <∞}
]
.

But by Lemma B.2 we have that the laws of X and X� agree on the time interval (0, τn).
Hence for Pμ-a.e ω1 we have that

PXσm
n

(ω)

(
X(t) ∈ Bn−1 for some t ∈ (0, τn)

)
= P�

Xσm
n

(ω)

(
X�(t) ∈ Bn−1 for some t ∈ (0, τn)

)= 0.

1Specifically, we have that Pμ(Xσm
n

/∈ N,σm
n < ∞) = 1, where N is as in the statement of Theorem 2.6.
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The final equality follows from [17], Theorem 4.3, which guarantees for every x ∈
�d−1+ that P�

x (X�(t) ∈ B for some t > 0) = 0. It follows from (B.16) that Pμ(X(t) ∈
Bn−1 for some t > 0) = 0. Since{

X(t) ∈ B for some t > 0
}=⋃

n

{
X(t) ∈ Bn for some t > 0

}
the result follows. �

Finally, to close out this section we prove Theorem 2.15.

PROOF OF THEOREM 2.15. We first prove the forward directions of (ii)(a) and (i)(a), and
then prove the backward directions. To this end fix I ⊂ {1, . . . , d} as in the statement of (ii).
Assume that there exists an l ∈ {2, . . . , d − N + 1} such that āl +∑i∈I γi +∑d−N

k=l γ −I
(k) < 1.

Let J be an index set of size d − l + 1, so that {γj }j∈J = {γi}i∈I ∪ {γ −I
(k) }d−N

k=l ; that is, J

contains I as well as the additional d − l+1−N indices corresponding to smallest remaining
values in the vector γ . Note that

∑
j∈J γj =∑i∈I γi +∑d−N

k=l γ −I
(k) . We will show that the

process �J (X(t)) hits zero with positive probability. Assume by way of contradiction that
Pμ(�J (X(t)) = 0 for some t > 0) = 0. Then − log�J (X) is a semimartingale and using
Itô’s formula we obtain from (2.19) that

−d log�J (X) = σ 2

2

(1 −∑j∈J (γj + arj (·))
�J (X)

+ ā1 + γ̄1 − 1
)

dt + σ

√
1 − �J (X)

�J (X)
dB.

Next, define the sets

(B.17) AJ := {x ∈ �d−1 : nk(x) ∈ J for every k = l, . . . , d
}
, Ac

J = �d−1 \ AJ .

The set AJ corresponds to the region of the simplex for which the smallest components of x

are precisely those with indices in the set J . Fix K > 0 and set AK
J = {x ∈ AJ : logx(l−1) −

logx(l) > K}. Choose a function ψ ∈ C∞
c (�d−1) such that 0 ≤ ψ ≤ 1, ψ = 1 on AK

J and
ψ = 0 on �d−1 \ AJ . Also let ε = 1 − āl −∑i∈I γi −∑d−N

k=l γ −I
(k) and note by assumption

that ε > 0. Then using the product rule we obtain

−d
(
log�J (X)ψ(X)

)

= σ 2

2
ψ(X)

(
ā1 + γ̄1 − 1 + 1 −∑j∈J γj −∑j∈J

∑d
k=1 1{nk(t)=j}ak

�J (X)

)
dt

− σ 2

2
log�J (X)

d∑
i=1

∂iψ(X)

(
γi +

d∑
k=1

1{nk(t)=i}ak − (ā1 + γ̄1)Xi

)
dt

+ ψ(X)dM(t) + dN(t) + ∇ψ(X)	c(X)
1J

�J (X)
dt,

where dM(t) = σ
√

1−�J (X(t))
�J (X(t))

dB(t), dN(t) = log�J ∇ψ	c1/2(X(t)) dW(t), 1J
j = 1{j∈J }

for j = 1, . . . , d and we omitted the time index for notational clarity. Note that (c(x)1J /

�J (x))i = −xi + xi1{i∈J }/�J (x) ∈ [−1,0] for ever i. Hence, using the fact that ψ = 0 on
Ac

J and that �J (x) =∑d
k=l x(k) = x̄(l) for x ∈ AJ we obtain the estimate

− log�J

(
X(T )

)
ψ
(
X(T )

)≥ ε

∫ T

0

σ 2ψ(X)

2X̄(l)

1AJ
(X)dt + C

∫ T

0

(−1 + 1AJ
(X) log X̄(l)

)
dt

+
∫ T

0
ψ(X)dM(t) + N(T ),
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for some universal constant C > 0. Then setting dM̃(t) = ψ(X(t)) dM(t) and using the fact
that 0 ≤ ψ ≤ 1 together with the fact that �J (x) = x̄(l) on AJ we note that

(B.18)
[
M̃(T ), M̃(t)

]= ∫ T

0
σ 2ψ2(X)

1 − �J (X)

�J (X)
dt ≤

∫ T

0

σ 2ψ(X)

2X̄(l)

1AJ
(X)dt.

Hence we obtain

− log�J

(
X(T )

)
ψ
(
X(T )

)≥ ∫ T

0
C
(−1 + 1AJ

(
X(t)

)
log X̄(l)(t)

)
dt

+ ε

2
[M̃, M̃](T ) + M̃(T ) + N(T ).

(B.19)

By the ergodic property we have that

lim
T →∞

1

T

∫ T

0
1AJ

(
X(t)

)
log X̄(l) dt =

∫
�d−1

1AJ
(x) log x̄(l)p(x) dx

= 1

d!
∑
τ

∫
∇d−1

log ȳl

d∏
k=1

y
ak+γτ(k)−1
k dy > −∞,

(B.20)

where the sum is taken over permutations τ such that τ(k) ∈ J for k = l, . . . , d and finiteness
is due to (A.4). Next note that

[N,N ](T ) ≤ C

∫ T

0

(
log�J

(
X(t)

))21AJ

(
X(t)

)
dt = C

∫ T

0

(
log X̄(l)(t)

)21Aj

(
X(t)

)
dt.

Hence, by the ergodic property and (A.4) we again have limT →∞ [N,N](T )
T

< ∞, Pμ-a.s. so
by [7], Lemma 1.3.2, we conclude that

(B.21) lim
T →∞

N(T )

T
= 0, Pμ-a.s.

Next we wish to perform a similar analysis for M̃ . To this end let TJ = {τ ∈ T : τ(k) ∈
J for every k = l, . . . , d}. Note that

∫
�d−1

ψ(x)2 1AJ
(x)

x̄(l)

p(x) dx ≥ Z−1

(d − l + 1)

∑
τ∈TJ

∫
∇d−1∩{log

yl−1
yl

>K}
1

yl

d∏
k=1

y
ak+γτ(k)−1
k dy,

where we used the fact that ψ = 1 on AK
J and that x̄(l) ≤ (d − l + 1)x(l). For τ ∈ TJ set

bτ = a + γτ − el . The integrability of the right hand side is governed by Lemma B.1; note
that the intersection with the set {log yl−1

yl
> K} in the domain of integration will not affect

integrability. Indeed, arguing as in Lemma B.1, we have that

∫
∇d−1∩{log

yl−1
yl

>K}
1

yl

d∏
k=1

y
ak+γτ(k)−1
k dy ∝

∫ ∞
K

e−b̄τ
l z dz

∏
k �=l

∫ ∞
0

e−b̄τ
k z dz = ∞,

since b̄τ
l = āl +∑i∈I γi +∑d−N

k=l γ −I
(k) − 1 < 0. Consequently, from the estimate (B.18) we

see that

(B.22) lim
T →∞

[M̃, M̃](T )

T
= ∞, Pμ-a.s.

By the Dambis–Dubins–Schwarz theorem, (B.22) and the law of large numbers for

Brownian motion we have that limT →∞ M̃(T )

[M̃,M̃](T )
= 0, Pμ-a.s. Dividing by T and send-

ing T → ∞ in (B.19) shows that limT →∞ −T −1ψ(X(T )) log�J (X(T )) = ∞, Pμ-a.s.
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by virtue of (B.20), (B.21), and (B.22). But then, by definition of �J , we must have
limT →∞ �J (X(T )) = 0, Pμ-a.s. This contradicts the ergodicity of X. Hence − log�J (X)

cannot be a semimartingale and consequently we must have that Pμ(�J (X(t)) = 0 for some
t > 0) > 0. Since �J (X(t)) = 0 =⇒ �I(X(t)) = 0 we have proved the forward direction
of (ii)(a).

We now prove the forward direction of (i)(a). To this end fix k ∈ {2, . . . , d} and suppose
that āl + γ̄(l) < 1 or some l ∈ {2, . . . , k}. Set

I = {i ∈ {1, . . . , d} : nm(γ ) = i for some m ≥ l
}

and note that N := |I | = d − l + 1. Then āl +∑i∈I γi +∑l−1
m=l γ

−I
(m) = āl + γ(l) < 1, so that

(2.16) does not hold here (we evaluated (2.16) at the largest index d − N + 1). Hence by
(ii)(a) we have that Pμ(�I (X(t)) = 0 for some t > 0) > 0. But we have the set inclusions{

�I

(
X(t)

)= 0
}= {Xi(t) = 0 for all i ∈ I

}⊆ {X(l)(t) = 0
}⊆ {X(k)(t) = 0

}
.

This proves the forward direction of (i)(a).
Now we prove the backward direction of (ii)(a). Fix I ⊂ {1, . . . , d} as in the statement of

(ii) and suppose that āl +∑i∈I γi +∑d−N
k=l γ −I

(k) ≥ 1 for every l = 2, . . . , d − N + 1. We will
prove that �J (X) does not hit zero Pμ-a.s. for any index set J containing I . We proceed by
finite backward (strong) induction on the size of J with base case |J | = d and terminal case
|J | = N , which is only possible if J = I . The base case is trivial since when |J | = d we have
that �J (X) =∑d

i=1 Xi ≡ 1.
Before proceeding to the inductive step we introduce some notation. For some l ≤ d − 1

and an index set K ⊆ {1, . . . , d} with |K| = l define the stopping times

τK
n = inf

{
t ≥ 0 : �K

(
X(t)

)≤ 1/n
}
, n ∈ N,

τK = inf
{
t ≥ 0 : �K

(
X(t)

)= 0
}
,

τK,+
m = min

{
τJ+
m : K � J+ ⊆ {1, . . . , d}}, m ∈N.

The stopping time τK,+
m denotes the first time that �K(X(t)) is less than or equal to 1/m

for some index set J+ of size at least l + 1 containing K . Now we proceed with the finite
induction by assuming for some l ∈ {N + 1, . . . , d} that �J+(X) does not hit zero Pμ-a.s. for
any set J+ ⊂ {1, . . . , d} with |J+| ≥ l and I ⊆ J+. Fix an arbitrary set J ⊂ {1, . . . , d} with
|J | = l − 1 and I ⊆ J . We have to show that Pμ(�J (X(t)) = 0 for some t > 0) = 0.

We have for t ≤ τJ,+
m that �J+(X(t)) ≥ 1/m for every J+ of size l containing I . More-

over, if X(t) ∈ Ac
J then necessarily {Xj(t)}j∈J do not occupy the smallest l − 1 ranks.

Consequently, there exists an index j∗ /∈ J such that Xj∗(t) ≤ Xj(t) for some j ∈ J . Set
J+ = J ∪ {j∗}. We then have for t ∈ [0, τ J,+

m ] that

(B.23) 2�J

(
X(t)

)≥ �J+
(
X(t)

)
1Ac

J

(
X(t)

)≥ 1

m
1Ac

J

(
X(t)

)
.

Next note that up to time τJ
n , the process − log�J (X) is bounded so we can apply Itô’s

formula to obtain from (2.19) that

− log�J

(
X
(
T ∧ τJ

n ∧ τJ,+
m

))
= − log�J (0) + M

(
T ∧ τJ

n ∧ τJ,+
m

)

+ σ 2

2

∫ T ∧τJ
n ∧τ

J,+
m

0

(
ā1 + γ̄1 − 1 + 1 −∑j∈J (γj + arj (t))

�J (X(t))

)
dt

(B.24)
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for some martingale M(· ∧ τJ
n ∧ τJ,+

m ). We then estimate for any t ≤ T ∧ τJ
n ∧ τJ,+

m that

1 −∑j∈J (γj + arj (t))

�J (X(t))
= 1 −∑j∈J γj − ād−l+1

�J (X(t))
1AJ

(
X(t)

)

+ 1 −∑j∈J (γj + arj (t))

�J (X(t))
1Ac

J

(
X(t)

)≤ 2m
(
1 + |γ |1 + |a|1),

where |γ |1 =∑d
i=1 |γi | and |a|1 is defined analogously. To obtain the inequality we elim-

inated the first term by using the fact that ād−l+1 + ∑j∈J γj ≥ ād−l+1 + ∑i∈I γi +∑d−N
k=d−l+2 γ −I

(k) ≥ 1, where the last inequality follows by our assumption. We estimated the
second term using (B.23). Applying this estimate to (B.24) yields

− log�J

(
X
(
T ∧ τJ

n ∧ τJ,+
m

))≤ − log�J (0) + M
(
T ∧ τJ

n ∧ τJ,+
m

)
+ (m + 1)σ 2T

(
1 + |a|1 + |γ |1).

Taking expectation, sending n → ∞ and using Fatou’s lemma yields

−Eμ

[
log�J (X

(
T ∧ τJ ∧ τJ,+

m

)]≤ −Eμ

[
log�J (0)

]+ (m + 1)σ 2T
(
1 + |a|1 + |γ |1).

Since the right-hand side is finite it follows that Pμ(τJ < T ∧ τJ,+
m ) = 0. But since T and m

were arbitrary by sending them to infinity we obtain

(B.25) Pμ

(
τJ < τJ,+)= 0,

where τJ,+ := limm→∞ τJ,+
m . By the inductive hypothesis τJ,+ = ∞, Pμ-a.s. which com-

pletes the proof of the inductive step. Thus the result follows from finite backward induction,
finishing the proof of (ii)(a).

To prove the backward direction of (i)(a) fix k ∈ {2, . . . , d} and assume that ā(l) + γ̄(l) ≥ 1
for every l = 2, . . . , k. We have the equality

(B.26)
{
X(k)(t) = 0 for some t > 0

}=⋃
I

{
�I

(
X(t)

)= 0 for some t > 0
}
,

where the union is taken over all sets I ⊆ {1, . . . , d} with |I | = d − k + 1. But note that for
any such I and any l = 2, . . . , k we have that āl +∑i∈I γi +∑d−N

j=l γ −I
(j) ≥ āl + γ̄(l) ≥ 1.

Hence, by part (ii)(a), Pμ(�I (X(t)) = 0 for some t > 0) = 0 which, together with (B.26),
proves the backward direction of (i)(a).

Now we turn our attention to proving (ii)(b). Fix I as in the statement of (ii) and assume
that ād−N+1 +∑i∈I γi ≥ 1. Then arguing as in the inductive step of (ii)(a) we obtain (B.25)
for the set J replaced by I ; that is,

Pμ

(
τ I < τI,+)= 0.

But we always have the inequality τ I ≤ τ I,+ since �J (X(t)) = 0 =⇒ �I(X(t)) = 0 for
any index set J containing I . We conclude that we must have τ I = τ I,+, Pμ-a.s. Next we
will show that for every n

(B.27) Pμ

(
�I

(
X(t)

)= 0 and min
J

�J

(
X(t)

)
> 1/n for some t > 0

)
= 0,

where the minimum is taken over all I � J ⊂ {1, . . . , d}. To this end we define the stopping
times σ 1

n = 0 and

τm
n = inf

{
t ≥ σm

n : min
J

�J

(
X(t)

)≤ 1

n + 1

}
, m = 1,2, . . . ,

σm
n = inf

{
t ≥ τm−1

n : min
J

�J

(
X(t)

)≥ 1

n

}
, m = 2,3, . . . .
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Note that we cannot have minJ �J (X(t)) > 1/n on the time interval [τm
n , σm+1

n ] for any
m. Hence we obtain the estimate

Pμ

(
�I

(
X(t)

)= 0 and min
J

�J

(
X(t)

)
> 1/n for some t > 0

)

≤
∞∑

m=1

Pμ

(
�I

(
X(t)

)= 0 and min
J

�J

(
X(t)

)
> 1/n for some t ∈ (σm

n , τm
n

))
.

By the strong Markov property we have for every m that

Pμ

(
�I

(
X(t)

)= 0 and min
J

�J

(
X(t)

)
> 1/n for some t ∈ (σm

n , τm
n

))

= Eμ

[
PXσm

n

(
�I

(
X(t)

)= 0 and min
J

�J

(
X(t)

)
> 1/n for some(B.28)

t ∈ (0, τ 1
n

))
1{σm

n <∞}
]
.

For Pμ-a.e. ω ∈ {σm
n < ∞} we have that PXσm

n
(ω) ∈ P0 so we see that for every such ω

inf
{
t ≥ 0 : �I

(
X(t)

)= 0 and min
J

�J

(
X(t)

)
> 1/n

}
≥ τ I = τ I,+, PXσm

n
(ω)-a.s.,

where we used the previously established fact that τ I = τ I,+ almost surely under any law
in P0. But by definition τ I,+ ≥ τ 1

n . Consequently, we deduce that the expression in (B.28) is
zero establishing (B.27). Sending n → ∞ now proves (ii)(b).

It just remains to show (i)(b). Fix k ∈ {2, . . . , d} and assume that āk + γ̄(k) ≥ 1. Note that{
X(k)(t) = 0 and X(k−1)(t) > 0 for some t > 0

}
= ⋃

I⊆{1,...,d}
|I |=d−k+1

{
�I

(
X(t)

)= 0 and �J

(
X(t)

)
> 0 for every I � J and some t > 0

}
.(B.29)

But for any index set I admissible in the union we have that āk +∑i∈I γi ≥ āk + γ̄(k) ≥ 1.
Hence the result follows by (ii)(b) and (B.29) completing the proof. �

APPENDIX C: PROOF OF RESULTS FROM SECTION 5

The purpose of this section is to prove Theorem 5.4. We first prove a technical lemma.

PROOF OF LEMMA 5.5. The proof of (i) is very similar to the proof of Proposition 2.11.
Fix P ∈ �≥ and k ∈ {1, . . . , d − 1}. Note that

d[X(k) − X(k+1),X(k) − X(k+1)](t) = (X(k)(t) + X(k+1)(t) − (X(k)(t) − X(k+1)(t)
)2)

dt.

Akin to (B.13), we take the function f (a) = 1{a=0} in the occupation density formula for
X(k) − X(k+1) to obtain

(C.1)
∫ T

0
1{X(k)(t)=X(k+1)(t)}

(
X(k)(t) + X(k+1)(t) − (X(k)(t) − X(k+1)(t)

)2)
dt = 0.

Note that X(k)(t) + X(k+1)(t) − (X(k)(t) − X(k+1)(t))
2 is nonnegative and is equal to zero if

and only if X(k)(t) = X(k+1)(t) = 0. But for k = 1, . . . ,N by Definition 5.2(i) this does not
happen P-a.s. Hence from (C.1) we see that P-a.s. we must have that 1{X(k)(t)=X(k+1)(t)} = 0
for almost every t ≥ 0 and every k = 1, . . . ,N completing the proof of (i). Note that for
k = N + 1, . . . , d − 1 it follows from (C.1) that the set {t : X(k) = X(k+1),X(k)(t) > 0} is a
Lebesgue null-set.
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Now to prove (ii) we use [2], Theorem 2.3, to get that

dX(k)(t) = 1

Nk(t)

d∑
i=1

1{nk(t)=i} dXi(t) + 1

2Nk(t)

d∑
l=k+1

dLk,l(t) − 1

2Nk(t)

k−1∑
l=1

dLl,k(t)

for k = 1, . . . , d , where Nk(t) = |{i ∈ {1, . . . , d} : X(k)(t) = i}| and Lk,l = LX(k)−X(l)
. Hence

it follows that

d∑
i,j=1

1{nk(t)=i,nl (t)=j} d[Xi,Xj ](t) = σ 2Nk(t)Nl(t)X(k)(t)
(
δkl − X(l)(t)

)
dt(C.2)

for k, l = 1, . . . , d , where we used Definition 5.2(ii) and the form of κ given by (2.13). From
the proof of Lemma 5.5(i) we have that Nk(t) = Nl(t) = 1 for a.e. t on the set {X(k)(t) >

0} ∩ {X(l)(t) > 0}. But when either X(k)(t) = 0 or X(l)(t) = 0 the right-hand side of (C.2)
vanishes. Hence we have the identity

∑d
i,j=1 1{nk(t)=i,nl (t)=j} d[Xi,Xj ](t) = κkl(X()(t)) dt

for k, l = 1, . . . , d . Multiplying the integrand on the right-hand side by 1{nk(t)=i,nl (t)=j} we
obtain

1{nk(t)=i,nl (t)=j} d[Xi,Xj ](t) = 1{nk(t)=i,nl (t)=j}κkl

(
X()(t)

)
dt, i, j, k, l = 1, . . . , d.

Summing over k and l yields the required identity. �

Now we are ready to prove Theorem 5.4

PROOF OF THEOREM 5.4. In view of the previous discussion carried out following the
statement of Theorem 5.4 we just have to show that g(V θ̂ ;P) is independent of P ∈ �≥.
To this end we will approximate the function Ĝ, given by (4.10), by C2 functions. Let
ψ ∈ C∞

c (R) be such that ψ ≥ 0, supp(ψ) = [0,1] and
∫
R ψ = 1. For n ∈ N define the d-

dimensional mollifiers �n : Rd → (0,∞) via �n(x) = nd∏d
i=1 ψ(nxi). Now for ε > 0 de-

fine the function Ĝε : (−ε,∞)d → (0,∞) via Ĝε(x) = Ĝ(x + ε1d) and extend it to all
of Rd by zero. For n ∈ N we define the smooth approximations Ĝε,n = Ĝε ∗ �n. By con-
struction, Ĝε,n are C2 and since Ĝε is continuous on �d−1 and differentiable almost ev-
erywhere on �d−1 we have by properties of convolution that limn→∞ Ĝε,n = Ĝε pointwise
and limn→∞ ∇ log Ĝε,n = ∇ log Ĝε almost everywhere on �d−1. Additionally, Ĝε is 2ε−1-
Lipschitz continuous on �d−1 and Ĝε,n inherits this property. In particular ∇ log Ĝε,n is
uniformly bounded in n for every ε > 0. Moreover, the functions Ĝε , Ĝε,n are permutation
invariant for every ε and n.

The introduction of Ĝε,n above was done in two steps. First we introduced Ĝε to approxi-
mate Ĝ by explicit functions which are bounded away from zero (so that log Ĝε is bounded
for every ε). The second step is to approximate Ĝε by the smooth functions Ĝε,n. We will be
able to show, by first sending n → ∞ and then ε → 0, that the trading strategy generated by
Ĝ has the same growth rate in every admissible measure.

To simplify the expressions to come we make the following definitions. For y ∈ Rd sat-
isfying y1 ≥ y2 ≥ · · · ≥ yd we define F̂ε(y) = Ĝε(y) and F̂ε,n(y) = Ĝε,n(y). Then partial
derivatives of F̂ε and F̂ε,n will be with respect to the ordered vector coordinate yk , whereas
partial derivatives of Ĝε and Ĝε,n will be with respect to the unordered coordinates xi . Next
we denote by ϕ, ϕε and ϕε,n the functions log Ĝ, log Ĝε and log Ĝε,n respectively. Similarly,
we write ξ , ξε , and ξε,n for log F̂ , log F̂ε , and log F̂ε,n. Last, write θ̂ , θ̂ ε and θ̂ ε,n for the
strategies generated by Ĝ, Ĝε , and Ĝε,n respectively.
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Now note that since ϕε,n is continuously differentiable on Rd it follows in a similar way
to (5.12) that

(C.3)
d∑

i,j=1

∂iϕε,n∂jϕε,n

(
X(t)

)
d[Xi,Xj ](t) = ∇ξ	

ε,nκξε,n

(
X()(t)

)
dt.

Next we have for each ε > 0 that ϕε is differentiable off of the set
⋃

k=1,...,N {x(k) = x(k+1)}
and for every x at which ϕε is differentiable we have that

∂iϕε(x) = ∂kξε(x()), nk(x) = i.

Since by Lemma 5.5(i) we have that the top N + 1 ranks only collide at a null-set of time
points, we obtain using Lemma 5.5(ii) the relationship

(C.4)
∫ T

0

d∑
i,j=1

∂iϕε∂jϕε

(
X(t)

)
d[Xi,Xj ](t) =

∫ T

0
∇ξ	

ε κ∇ξε

(
X()(t)

)
dt,

P-a.s. for every P ∈ �≥. An analogous identity for ϕ and ξ , replacing ϕε and ξε respectively,
holds as well.

With these preliminaries in hand we are now ready to analyze the wealth processes. Since
Ĝε,n is C2 with bounded first and second derivatives (whenever ε > 1/n) and ξε,n is bounded
it follows by Lemma 5.7 that

(C.5) lim
T →∞

1

T
logV θ̂ε,n

(T ) =
∫
∇d−1

(
∇ξ	

ε,nκ� − 1

2
∇ξ	

ε,nκ∇ξε,n

)
q =: ηε,n, P-a.s.

for every ε, n such that ε > 1/n. Next we will show that

(C.6) lim
T →∞

1

T
logV θ̂ε

(T ) =
∫
∇d−1

(
∇ξ	

ε κ� − 1

2
∇ξ	

ε κ∇ξε

)
q =: ηε, P-a.s.

for every P ∈ �≥ and ε > 0. To this end fix P ∈ �≥ and let bP and MP denote the drift
process and local martingale part of X under P, as in Definition 5.2, respectively. Next we
compute that

∣∣∣∣ logV θ̂ε
(T )

T
− logV θ̂ε,n

(T )

T

∣∣∣∣
≤ 1

T

∫ T

0

∣∣(∇ϕε

(
X(t)

)− ∇ϕε,n

(
X(t)

))	
bP(t)

∣∣dt

+ 1

2T

∫ T

0

∣∣∣∣∣
d∑

i,j=1

(
∂iϕε∂jϕε

(
X(t)

)− ∂iϕε,n∂jϕε,n

(
X(t)

))
d[Xi,Xj ](t)

∣∣∣∣∣
+
∣∣∣∣ 1T
∫ T

0

(∇ϕε

(
X(t)

)− ∇ϕε,n

(
X(t)

))	
dMP(t)

∣∣∣∣
≤

d∑
i=1

(
1

T

∫ T

0

∣∣∂iϕε

(
X(t)

)− ∂iϕε,n

(
X(t)

)∣∣r dt

)1/r( 1

T

∫ T

0

∣∣bPi (t)
∣∣r ′

dt

)1/r ′

+ 1

2T

∫ T

0

∣∣∇ξ	
ε κ∇ξε

(
X()(t)

)− ∇ξ	
ε,nκ∇ξε,n

(
X()(t)

)∣∣dt + NP
ε,n(T ),

(C.7)

where NP
ε,n(T ) = ∫ T

0 (∇ϕε(X(t)) − ∇ϕε,n(X(t)))	 dMP(t), r ′ is as in Definition 5.2(iv) and

we have 1/r + 1/r ′ = 1. We used the fact that for a.e. t , θ̂ ε(X(t)) = ∇ϕε(X(t)) + (1 −
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∇ϕε(X(t))	X(t))1d and the analogous expression for θ̂ ε,n. We also used (C.3) and (C.4) in
the final inequality.

By a similar calculation to (C.4) we have that [NP
ε,n,N

P
ε,n](T ) = ∫ T

0 (∇ξε − ∇ξε,n)
	 ×

κ(∇ξε − ∇ξε,n)(X()(t)) dt . Hence, it follows by the ergodic property that

lim
T →∞

[NP
ε,n,N

P
ε,n](T )

T
=
∫
∇d−1

(∇ξε − ∇ξε,n)
	κ
(∇ξε(y) − ∇ξε,n

)
q, P-a.s.

Since ∇ξε and ∇ξε,n are bounded, the right-hand side is finite so by [7], Lemma 1.3.2, we
have that limT →∞ T −1NP

ε,n(T ) = 0, P-a.s. Next note that

d∑
i=1

(
1

T

∫ T

0

∣∣(∂iϕε − ∂iϕε,n)
(
X(t)

)∣∣r dt

)1/r

=
d∑

k=1

(
1

T

∫ T

0

∣∣(∂kξε − ∂kξε,n)
(
X()(t)

)∣∣r dt

)1/r

.

Also define Cr ′ = maxi=1,...,d lim supT →∞ 1
T

∫ T
0 |bPi (t)|r ′

dt , which is finite due to Defini-
tion 5.2(iv). It then follows from the ergodic property and (C.7) that P-a.s.,

lim sup
T →∞

∣∣∣∣ logV θ̂ε
(T )

T
− logV θ̂ε,n

(T )

T

∣∣∣∣≤ C

d∑
k=1

(∫
∇d−1

|∂kξε − ∂kξε,n|rq
)1/r

+ 1

2

∫
∇d−1

(∇ξ	
ε κ∇ξε − ∇ξ	

ε,nκ∇ξε,n

)
q.

(C.8)

Since ∇ξε,n → ∇ξε almost everywhere as n → ∞ and the gradients are uniformly bounded
in n it follows by sending n → ∞ that

(C.9) lim
n→∞ lim sup

T →∞

∣∣∣∣ logV θ̂ε
(T )

T
− logV θ̂ε,n

(T )

T

∣∣∣∣= 0, P-a.s.

Now we estimate that∣∣∣∣ logV θ̂ε
(T )

T
− ηε

∣∣∣∣≤
∣∣∣∣ logV θ̂ε

(T )

T
− logV θ̂ε,n

(T )

T

∣∣∣∣
+
∣∣∣∣ logV θ̂ε,n

(T )

T
− ηε,n

∣∣∣∣+ |ηε,n − ηε |,
(C.10)

where we recall that ηε,n and ηε were defined in (C.5) and (C.6) respectively. Using (C.5),
(C.9), and the fact that limn→∞ ηε,n = ηε we obtain (C.6) by first sending T → ∞ and then
n → ∞ in (C.10).

We employ a similar technique to analyze logV θ̂ . We use the definition of wealth process
(3.3) to obtain the semimartingale decomposition for logV θ̂ and logV θ̂ε

under any admissi-
ble measure P ∈ �≥. Proceeding as in (C.7) we obtain a bound akin to (C.8),

lim sup
T →∞

∣∣∣∣ logV θ̂ (T )

T
− logV θ̂ε

(T )

T

∣∣∣∣≤ C

d∑
k=1

(∫
∇d−1

|∂kξ − ∂kξε |rq
)1/r

+ 1

2

∫
∇d−1

(∇ξ	κ∇ξ − ∇ξ	
ε κ∇ξε

)
q.

(C.11)

Direct calculations show that

d∑
k=1

∣∣∂kξ(y) − ∂kξε(y)
∣∣r + ∣∣∇ξ	κ∇ξ(y) − ∇ξ	

ε κ∇ξε(y)
∣∣≤ C̃

yr
N+1
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for some constant C̃ > 0 and every y ∈ ∇d−1+ . By assumption (5.1) on the parameter
a together with the definition of r from Definition 5.2(iv) we have by Lemma B.1 that∫
∇d−1 y−r

N+1q(y) dy < ∞. Hence, by sending ε ↓ 0 in (C.11) we obtain by the dominated
convergence theorem that

lim
ε↓0

lim sup
T →∞

∣∣∣∣ logV θ̂ (T )

T
− logV θ̂ε

(T )

T

∣∣∣∣= 0, P-a.s.

Next note that, again by dominated convergence, we have

η := lim
ε↓0

ηε = 1

8

∫
∇d−1

(
N∑

k=1

a2
k

yk

+ ā2
N+1

ȳN+1

)
q(y) dy − 1

8
ā2

1 .

Then, by an analogous estimate to (C.10) we obtain that limT →∞ T −1 logV θ̂ (T ) = η, P-a.s.
establishing that g(V θ̂ ;P) = η for every P ∈ �≥. This completes the proof. �
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