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Abstract

Marine microbes like diatoms make up the base of marine food webs and drive global nutrient cycles. Despite their
key roles in ecology, biogeochemistry, and biotechnology, we have limited empirical data on how forces other than
adaptation may drive diatom diversification, especially in the absence of environmental change. One key feature of
diatom populations is frequent extreme reductions in population size, which can occur both in situ and ex situ as part
of bloom-and-bust growth dynamics. This can drive divergence between closely related lineages, even in the absence
of environmental differences. Here, we combine experimental evolution and transcriptome landscapes (t-scapes) to
reveal repeated evolutionary divergence within several species of diatoms in a constant environment. We show that
most of the transcriptional divergence can be captured on a reduced set of axes, and that repeatable evolution can
occur along a single major axis of variation defined by core ortholog expression comprising common metabolic path-
ways. Previous work has associated specific transcriptional changes in gene networks with environmental factors.
Here, we find that these same gene networks diverge in the absence of environmental change, suggesting these path-
ways may be central in generating phenotypic diversity as a result of both selective and random evolutionary forces. If
this is the case, these genes and the functions they encode may represent universal axes of variation. Such axes that
capture suites of interacting transcriptional changes during diversification improve our understanding of both global
patterns in local adaptation and microdiversity, as well as evolutionary forces shaping algal cultivation.
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Waal and Litchman 2020; Wang et al. 2020). In particular,
we lack an exploration of patterns of potential trait diversi-
fication in diatoms in the absence of environmental change,
which is needed to establish expectations for the functional
diversity in interrelated traits that can be accounted for by
migration and mutation alone (Ward et al. 2021). This can
be addressed experimentally by using chance events to drive

Introduction

Diatoms are among the most diverse and ubiquitous eukary-
otic microbes in aquatic environments (Field et al. 1998;
Armbrust et al. 2004; Bowler et al. 2008). They play crucial
roles in aquatic food webs and global nutrient cycling, yet
our understanding of how genetic, environmental, and
demographic factors can influence trait diversity in diatoms,

or indeed the stability of diatom traits within lineages, re-
mains in its infancy. The ecological and biogeochemical roles
of phytoplankton are often studied through their functional
traits (e.g. cell size) or metabolic capabilities (e.g. nitrogen fix-
ation). Patterns of variation in diatom traits and metabolism
underlie many differences in function, but our understand-
ing of rapid trait diversification is limited and often depend-
ent on linking differences in traits with environmental
differences (Allen et al. 2008; Hennon et al. 2015; van de
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rapid diversification in an unchanging laboratory environ-
ment. Diversification under these conditions gives us infor-
mation about potential trait variation available for natural
selection or environmental sorting to act on when environ-
ments vary and could also inform studies of how dispersal
affects diversity in phytoplankton.

Trait diversification and local adaptation depend on the
interplay of deterministic selective forces and random events
(Ward et al. 2021). One common type of chance event is an
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extreme reduction in population size (a population bottle-
neck), where variation can be fixed by chance rather than
by natural selection. As a result, when independent bottle-
necked populations are compared, they will often differ
from each other in terms of the random mutations that
have been fixed by chance. In addition, because most muta-
tions are deleterious, bottlenecked populations will, on aver-
age, have lower fitness than their own ancestors. Thus,
parallel bottlenecks can produce populations with different
genetic starting points for future evolution, and adaptation
(as fitness recovery) can occur even in the absence of any en-
vironmental change. Following bottlenecks, populations can
later be acted on by natural selection if population size re-
covers. During adaptation, different genetic starting points
can drive adaptive differences between populations. This
can be the case for populations that exist in different environ-
ments or be the basis for divergence when populations are
separate but experience similar environments. Chance events
are thus important in determining the heritable variation
that natural selection has to act upon and can be used to ex-
plore different possible adaptive solutions to set growing con-
ditions (Salverda et al. 2017; Windels et al. 2021).

In addition, metabolic pathways that can accumulate
more variants by chance may respond more rapidly to nat-
ural selection, simply because they will have more genetic
variation on which natural selection can act. For example,
nitrate metabolism is both modular and somewhat redun-
dant in marine diatoms (Smith et al. 2019), suggesting that
variation in nitrate metabolism could build up by chance
with little or no effect on fitness, and that a relatively
high number of viable nitrate metabolism mutants could
exist in bottlenecked populations. In this case, one would
expect a range of solutions to functional nitrate usage
across subpopulations, rather than “a” single solution,
since a range of genetic starting points could exist for fit-
ness recovery after bottlenecks or for adaptation to
changes in environmental nitrate concentrations. This
would also mean that rapid genetic adaptation to changes
in nitrate is possible. This expectation affects how we inter-
pret differences between populations in -omic and trait-
based surveys, as well as our expectations about the gener-
ality of outcomes from laboratory evolution experiments.

Chance events, and the patterns of variation generated
by them, are rarely used to generate variation during la-
boratory studies in marine phytoplankton, but these
events are likely a common feature of evolving populations
of marine microbes. In particular, open ocean and bloom-
ing phytoplankton can experience extreme fluctuations in
population size, during which there is a transient increase
in the role of chance events (such as population bottle-
necks) relative to natural selection (adaptation to new en-
vironments) in evolving populations. For example, diatom
population sizes can fluctuate by orders of magnitude over
the course of a bloom, and migration between ocean cur-
rents continually introduces small subpopulations into
new environments (Ruggiero et al. 2017; Behrenfeld et al.
2021). The potential for repeated founder events suggests
that chance can play an important and relatively common

2

role in the extent and nature of trait variation in natural
populations.

We can experimentally investigate the contribution of
chance events to molecular and trait variation in many mi-
crobes, including diatoms, with standard bottleneck experi-
ments. Here, we generated trait variation in globally
distributed marine diatom strains as a function of chance
events in a constant environment using population bottle-
necks (see Materials and Methods; samples from the same ex-
periment were also taken by Hinners et al. (2022) to measure
whole-cell physiological traits only). Physiological assays for
trait values reported in Hinners et al. (2022) were previously
developed and published in Argyle et al. (2021a, 2021b). In
this manuscript, we describe global shifts in transcript values
and identify the expression of specific genes and pathways
that drive most of the observed variation.

We selected strains of the order Thalassiosirales (Argyle
et al. 2021b) as our model due to its well-studied global
distribution with respect to environmental and ecological
selection, particularly in pelagic environments where bot-
tlenecking events can regularly occur (Whittaker and
Rynearson 2017) (see Alverson et al. 2011 for a detailed
phylogeny of Thalassiosirales relative to other diatom
taxa). Additionally, Thalassiosirales has one of the most
well-characterized diatom genomes (Armbrust et al.
2004) and is one of the most abundant and diverse diatom
lineages worldwide relative to other model diatoms with
well-characterized genomes like Phaeodactylum sp.
(Malviya et al. 2016). Prior studies have focused on the in-
fluence of environmental and ecological selection, as well
as biogeography on diatom evolution and biogeochem-
istry. This sets the stage for our work on the generation
of diversity in the absence of environmental selection.
Our work fills a critical knowledge gap in diatom research
where population dynamics can generate diversity for nat-
ural selection to act upon. Using Thalassiosirales as our
model both enables the results of this study to be contex-
tualized with extensive prior research examining environ-
mental selection while also exploring how population
dynamics affect trait diversification in a way that is rele-
vant to other globally significant diatoms and microalgae.

We subjected replicate populations of 6 diatom strains
to a series of population bottlenecks during batch culture
propagation (transfer size of <8 cells) (Fig. 1). Our ration-
ale for using bottlenecks to diversify populations is as fol-
lows. Experimental studies in microbial and viral
populations have shown that regular population size fluc-
tuations can profoundly affect patterns of adaptation
(LeClair and Wahl 2017). Population bottlenecks transient-
ly reduce the supply of beneficial mutations, which can re-
duce total fitness gain during adaptation (Schoustra et al.
2009). However, bottlenecked populations can also better
explore a higher number of alternate adaptive solutions in
cases where several high-fitness phenotypes exist (Windels
et al. 2021), which results in more genetic and phenotypic
diversification over repeated rounds of adaptation. In our
experiment, the growth rates of bottlenecked populations
initially dropped as expected, most likely due to the
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Fig. 1. Strain information and experimental design. a) Geographic coordinates of study strains. Strain TW2929 did not have coordinates pro-
vided. b) Experimental design where 6 ancestral strains with 6 replicates each were bottlenecked and then full selected prior to RNA-Seq; b) was
adapted from Fig. 1 from Hinners et al. (2022) to indicate that this RNA-Seq data were generated from the same evolution experiment as the trait
data in Hinners et al. (2022). c) Phylogenetic tree of diatoms in study and in MMETSP (Keeling et al. 2014) based on concatenated alignment of
BUSCO Protista_83.hmm marker set. Blue: C. striata CS1059. Yellow: T. pseudonana TP3367. Turquoise: T. weissflogii TW1010. Pink: T. weissflogii
TW1587. Green: T. weissflogii TW2929. Orange: T. weissflogii TW1050 (see Fig. S3 for uncollapsed tree). d) Hierarchical clustering of Jaccard dis-

tance based on shared orthogroups for study strains.

accumulation of deleterious mutations (Heilbron et al.
2014; Kraemer et al. 2017), but then recovered once we re-
moved the bottleneck and grew large populations (min-
imum transfer size of 10%) in standard batch cultures
(Fig. S1). We then measured changes to biogeochemically
important whole-cell trait values such as cell size, before,
during, and after recovery of bottlenecks (Hinners et al.
2022) (see overview for a synopsis of traits and findings
in Hinners et al. 2022). This approach enabled the examin-
ation of trait divergence without relying on (or allowing)
divergent selection because of environmental differences.
During fitness recovery, these different genetic starting
points increased the chance of seeing diverse trait changes
associated with fitness recovery.

Patterns of trait diversity depend on the variation of
organism-level traits that are the expression of a poorly an-
notated and interacting group of transcribed genes. This
means that considerable transcriptomic variation may
underlie a consistent trait value—e.g. there are many

ways to have any given cell size. Because of this, measuring
whole-cell trait values (as in Hinners et al. 2022), such as cell
size or elemental composition, may underestimate the gen-
etic, epigenetic, or transcriptional variation present follow-
ing bottlenecks and recovery. It is also necessarily biased in
that only a small number of possible functional traits can be
assessed. However, by examining transcriptomic patterns
directly, we can better understand the potential for vari-
ation in metabolic pathways, including those underlying
functional traits, at least in cases where the link between
transcripts and function is known and annotated.

In this study, we conducted RNA-Seq on sample popula-
tions in the absence of bottlenecks (control populations)
and in populations subjected to bottlenecks and allowed
to subsequently recover. This methodology allowed us to
investigate general patterns of transcriptional diversifica-
tion in these marine diatom strains. We used a unique
analytical approach to examine shifts across the pan-
transcriptome in evolved populations relative to controls
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that were maintained as large populations over the same
time frame. We examined patterns of transcriptional diver-
gence within lineages in the absence of environmental
selection, including whether global gene expression pat-
terns remained or returned to their ancestral (control) con-
figuration. Here, we seek to understand global shifts in
transcription and identify the expression of specific genes
and pathways that drive most of the observed variation.
We find that many transcripts previously only associated
with environmental change can be attributed to general
demographic change due to population shifts alone, sug-
gesting them to play more universal roles in diatom
evolution.

Results and Discussion

Overview
A detailed description of the experimental design (Fig. 1b)
can be found in Hinners et al. (2022). The transcriptomics
study here only analyzed populations full selected in the
ancestral temperature of 20 °C following the bottleneck.
In contrast, Hinners et al. (2022) subjected full-selected po-
pulations to 2 different temperatures (20 and 24 °C) and
measured phenotypes when growth rates stabilized after
fitness recovery. Six replicates of each of the 6 ancestral po-
pulations (n = 36 cultures) were subjected to this bottle-
neck phase at 20 °C followed by the full-selected phase
also at 20 °C. Trait measurements (population growth
rate, cell size, cell complexity, relative chlorophyll a con-
tent, particulate organic carbon and nitrogen, polar lipid
content, silicic acid uptake, and relative reactive oxygen
content) including growth rates were performed at the be-
ginning of the experiment (Fig. S1, filled gray circle),
throughout the bottleneck if possible, and at the end of
the full-selected phase. The experiment was divided into
2 main phases where phase | consisted of an initial 3-mo-
long reduced selection (RS) (i.e. bottleneck) phase (corre-
sponding to 70 to 200 generations, transfer size of up to 8
cells) followed by an 8-mo full selection (FS) (i.e. full-
selected) phase (200 to 500 generations, transfer size of
1,000 to 2,000 cells); this full-selection phase was extended
to 18 mo for the study described here. This extension was
due to work restrictions during the covid pandemic, so
RNA was extracted for this experiment approximately 10
mo later than the trait measurements in Hinners et al.
(2022) were made. Thus, while many of these transcrip-
tional changes in this study may be associated with ob-
served trait changes in the Hinners et al. (2022) study,
we cannot directly link transcript values to trait values.
Hence, we comment on commonalities in general patterns
observed in both studies, and note where annotated tran-
scripts of known function cooccur with shifts to traits in-
volved in that function across the 2 studies, but do not tie
transcription directly to function.

Whole-cell multitrait phenotypes were represented
using reduced axes similarly to the transcripts here (see
Hinners et al. 2022 and Argyle et al. 2021a, 2021b for

4

detailed descriptions of trait assays). The main conclusions
of the whole trait study are that both traits and trait cor-
relations evolve in the absence of environmental change,
and that there is considerable variation among replicate
populations in how this happens. We then show that des-
pite this variation, change in multiple related traits can be
reliably captured using reduced axes to identify patterns
and constraints in trait change in diatom populations, in-
cluding the evolution of novel multitrait phenotypes.

The experiment here captures patterns of viable tran-
scriptomic variation that are fixed by chance due to one
type of random event and analyzes how variation in global
transcription patterns can emerge after fitness recovery in
the absence of environmental change.

Growth Rates

During the bottleneck phase, or RS, population growth
rates decreased as expected due to the accumulation of
deleterious mutations (Kraemer et al. 2017). This decline
in growth rates is consistent with that seen in other micro-
bial experiments that use bottleneck transfers. Summaries
of how population bottlenecks, mutation accumulation,
and fitness are linked in microbial evolution experiments
can be found in Estes and Lynch (2003) and Halligan and
Keightley (2009). At the end of the RS phase, population
growth rates of viable populations were reduced by an
average of 45% compared to ancestral population growth
rates (Fig. S1). Following the RS phase, populations were
then propagated in batch culture with large transfer sizes
in the same environment, until postbottleneck population
growth rates had stabilized (Fig. S2); these are referred to as
“full-selected” populations. In the FS phase of the experi-
ments, populations adapt and partially or completely re-
cover fitness. Because replicate populations accumulate
different mutations during the RS phase, they adapt from
different genetic starting points during the FS phase. This
increases the chance of divergence between populations
of the same initial genotype relative to cases where no
population bottlenecks occurred. Because adaptation (in-
crease in fitness) occurs mainly in response to the loss in fit-
ness during the RS phase rather than due toadrop in fitness
as a result of an environmental change, we can attribute di-
vergence between populations of the same initial genotype
to chance events alone rather than to selection imposed by
environmental change. Control populations were main-
tained as large populations through the entire experiment.
Transcriptomes were then generated across control popu-
lations and in populations after FS at 20 °C (see Materials
and Methods for full experimental design and Hinners
et al. 2022 for whole-cell level trait measurements).

Strain Phylogeny and Orthology

To assess the relatedness of the strains used in this study,
we conducted phylogenomic analysis using a set of highly
conserved diatom proteins (e.g. Keeling et al. 2014). Our
phylogeny (Fig. 1¢; Fig. S3) generally agrees with the ITS2
phylogeny in Argyle et al. (2021b) demonstrating
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concordance between ITS2 and multiprotein sequence
conservation. It is worth noting that strain CCMP1059 ob-
tained from the Provasoli-Guillard National Centre of
Marine Phytoplankton is classified as Thalassiosira sp.
(NCMA, https://ncma.bigelow.org/CCMP1059). However,
upon sequence analysis of the ITS2 region by Argyle et al.
(2021b), it mapped most closely to Cyclotella striata
(94.17% identity; Table S1). Since C. striata is still closely re-
lated to the other strains and within the order
Thalassiosirales, this updated classification does not change
the interpretations or general conclusions of this manu-
script. We next identified global orthologs across publicly
available diatom genomes and our transcriptomes, which
showed that unique ortholog abundance scaled linearly
with unique transcript abundance (R”=095; Fig. S4).
Hierarchical clustering based on the presence/absence of
global orthologs, resulted in 2 main clusters with one clus-
ter composed of the Thalassiosira weissflogii strains and the
other of Thalassiosira pseudonana and C. striata (Fig. 1d).
Hence, TP3367 and CS1059 share more similar numbers
of global orthologs and are more phylogenetically related
to each other than the TW strains, although they were iso-
lated from different locations (Fig. 1a). These phylogenetic
and ortholog differences may have ancient origins, which
could have been followed by subsequent ortholog and pro-
tein sequence divergence driven by environmental diver-
gence among these diatom taxa. For example, this
similarity could be driven by adaptation to warm tempera-
ture by TP3367 and CS1059 following the evolutionary di-
vergence of TP3367 from TW strains. However, further
research is needed to understand potential reasons for dif-
ferences across strains. In summary, these data from our
globally distributed diatom isolates reveal the diatoms in
this study to be diverse both in phylogeny and genome
characteristics. The different strains represent different
high-fitness phenotypes in that they were sufficiently abun-
dant in situ at time of sampling to have been sampled, have
growth rates comparable to other temperate diatoms un-
der similar culturing conditions, and have reasonably stable
growth rates and phenotypes in the laboratory when pro-
pagated as large populations (see Hinners et al. 2022). It is
thus unlikely that these phenotypes represent fundamen-
tally maladaptive trait combinations or are less informative
than other phenotypes evolved in laboratory experiments,
even though it is entirely possible that they do not re-
present the most fit phenotype possible under laboratory
or field conditions.

Transcriptome Landscapes

To understand the genetic variation produced in our ex-
periment, we consider the integrated phenotype com-
posed of many interdependent genetic relationships
(Malcom et al. 2014). Here, we use transcriptome data to
assess how global transcriptional relationships shift in re-
sponse to fitness recovery in a constant environment. We
define a transcriptome landscape (from here t-scape)
which is similar to a trait-scape used in previous studies

(Walworth et al. 2021; Argyle et al. 2021b, 2021a). The
t-scape uses principal coordinate analysis (PCoA) of center
log-ratio (CLR) transformed expression values to collapse
global transcript levels onto several axes of variation to re-
veal those transcripts that drive most of the global tran-
scriptional variation. Using this approach, t-scapes can
reveal expression patterns across metabolic pathways
that are associated with population diversification.
Furthermore, location in the t-scape (i.e. PCoA plot) can
be affected by both transcript levels and correlations be-
tween transcripts. Accordingly, Fig. 2a and b show 3 differ-
ent high-fitness regions in the t-scape based on core
ortholog expression from diverse diatom strains. To ro-
bustly assess the prevalence of orthogroups across the dif-
ferent strains at a range of stringency levels, we chose 2
cutoffs using orthogroups detected in at least 3 samples.
The rationale for this was to both minimize the influence
of singletons and/or sequencing artifacts and to examine
how strain relationships changed across orthogroup
thresholds in PCoA space. We first only considered
orthogroups in at least 3 samples with minimum N =10
counts as our relaxed threshold. Then, we increased strin-
gency by considering orthogroups in at least 3 samples with
minimum N = 300 counts as our strict threshold. A lower
bound of 10 counts and upper bound of 300 counts
were chosen because this is when strains began to segre-
gate and converge in PCoA space, respectively. The key
finding here was that the overall ordination (strain cluster-
ing and their relative positions [i.e. relationships] in PCoA
space) remained conserved across orthogroup thresholds
demonstrating widespread orthogroup expression, and
thus core metabolic pathways, to be underlying strain-
specific divergence.

In general, the clustering of strains based on core ortho-
log expression was consistent with both the phylogenetic
and global ortholog abundance clusters (Fig. 1c and d). For
example, strains TW1050, TW2929, TW1587, and TW1010
core ortholog expression converge into a single region
(Fig. 2a and b). One full-selected population, CS1059-4
(Fig. 2a and b—blue triangle in lower left quadrant),
evolved a strategy where the evolved population occupied
an area of t-scape near the TW strains, rather than near its
own ancestor. Interestingly, Hinners et al. (2022) found
that most phenotypic outlier populations originated
from CS1059, suggesting that this strain may have more
flexibility in trait values or correlations than other strains,
at least for whole organism traits. The transcriptional di-
vergence of C51059-4 (Fig. 2) may indicate early molecular
divergence from CS1059 replicate populations prior to
more pronounced trait divergence. Next, we analyzed
each strain-specific cluster to explore transcripts driving
intraspecific variation at each peak.

Strain-Specific Transcriptional Landscapes

We then assessed whether populations returned to the an-
cestral location in the t-scape (Fig. 3, circles) or if they moved
to another location during the backselection phase of the
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Fig. 2. Global analysis of ortholog expression among diatom strains Aitchison PCoA of conserved orthogroups that had a prevalence of a) 10
counts per sample (N = 2,933 orthogroups) and b) 300 counts per sample (N =229 orthogroups). c) Hierarchical clustering using Aitchison
distance of conserved orthogroup expression with at least 300 counts per sample. Circles represent ancestral controls, and triangles represent
bottlenecked strains followed by FS recovery (i.e. full selected). In c), strain labels are followed by either “C” (e.g. TP-3367-C) to designate a con-
trol population or a number (e.g. TP-3367-4) to designate the replicate population number for that strain. The colored circles within each strain
grouping represent 3 SD from the centroid.

experiment. In each strain, at least one backselected popula- were already well adapted to the laboratory environment,
tion moved to a new location in the t-scape. This is useful for and that transcriptomes for these strains were stable
assessing whether most mutations change transcriptional re- when the cultures were maintained as large populations.
lationships, once fitness is allowed to recover. This affects This is consistent with expecting that culture collection
whether we expect the transcriptional relationships of strains strains of a given genotype have broadly similar phenotypes
to diversify rapidly over relatively short timescales (months) over time and across laboratories under standard condi-
even in the absence of environmental drivers, or whether an- tions and is the basis for the use of reference strains.
cestral transcript relationships are essentially stable on short However, TP3367 control populations exhibited more
timescales in constant environments. More importantly, this movement in the t-scape than other strains suggesting
approach investigates which transcripts and transcript rela- that this strain may have been adapting to some aspect
tionships diversify following periods when the action of nat- of the laboratory environment. While this TP3367 trend
ural selection may be reduced. is interesting, it is out of scope for this study, which focused
The strain-specific PCoA plots capture between 49% and on evaluating the generation of variation in strains where
99% of total transcriptional variance. Figure 3 shows strain- the assumption that that particular strain is already well
specific t-scapes constructed from the global transcription adapted to the laboratory environment is met. While the
of each replicate population within each strain. Control po- data from TP3367 are included for completeness, we do
pulations (circles) formed clusters reflecting minimal not expect it to show the same pattern of changes as the
movement on the t-scape when populations were not sub- other strains where control populations clustered.
jected to bottlenecks or to environmental change; this sup- Across all strains, at least one full-selected population
ports the assumption that most of the control populations (triangles) found another transcriptional peak in a region
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followed by FS recovery (i.e. full selected). Numbers next to triangles denote full-selected replicate number for each strain (see Table S2 for inputs

to these analyses).

of the t-scape not occupied by the control populations of
that strain, indicated by movement along PCO1 (Fig. 3).
The fact that at least one full-selected population per lin-
eage (>17% of populations) moved to a new location in
the t-scape demonstrates that changes to global transcrip-
tional circuitry are common in the order, Thalassiosirales,
even in constant environments. Most of the new peaks
were differentiated along PCO1—the axis which captured
the majority of the variance in the ancestral populations.
While most of the movement and explained variance oc-
curred along PCO1, transcripts driving differentiation
along PCO2 could have biological significance in generat-
ing phenotypic differences, but they explain less variance
and are not explored further in this study.

Some strains produced more variation in transcriptional
patterns between replicate populations than did others.
Specifically, most full-selected populations from strains
CS1059, TW1587, and TW1010 returned to the ancestral
region of the t-scape. Conversely, all full-selected popula-
tions from strain TW1050 migrated to an alternative re-
gion in the t-scape. This suggests that transcriptional
diversification in the face of population size fluctuations
varies between genotypes. An alternate explanation is

that the culture collection isolate of TW1050 is less well
adapted to laboratory conditions than the other strains.
However, there was no significant mean increase in growth
rate of TW1050 populations that were bottlenecked and
recovered relative to the ancestor in this experiment
(Hinners et al. 2022). This suggests that the control popu-
lations did not have significantly lower fitness under our
laboratory conditions than the full-selected populations
for the genotype. For all strains, more high-fitness regions
of the t-scape may be identified if more replicate popula-
tions were generated and sequenced. As noted previously,
TP3367 control populations exhibited intraspecific tran-
scriptional variation without bottlenecking (Fig. 3f, circles),
which could indicate that TP3367 was still adapting to
general lab conditions. Additionally, less variation overall
was associated with the PCO axes of this strain. Hence,
we cannot be sure that diversification of full-selected po-
pulations was only due to bottlenecks. So, while TP3367
full-selected populations did seem to find 2 new defined
peaks with TP3367-4 residing in one and TP3367-2,
TP3367-3, and TP3367-5 residing in the other along
PCO2 (22% explained variance), we are cautious in our in-
terpretation due to the variability in control populations.
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We next investigated if movement in the t-scape was
driven primarily by expression of genes shared among
strains (i.e. global orthologs). To do this, we reconstructed
the t-scapes using only the global orthologs (Fig. S5), which
showed similar relationships between controls (circles)
and full-selected populations (triangles) as was found be-
tween controls and full-selected populations in t-scapes
constructed from all transcripts (Fig. 3). In line with
this, Fig. S5 demonstrates that diatoms in the order,
Thalassiosirales, can rearrange transcriptional relationships
among core diatom genes (i.e. orthologs) following bottle-
neck events. We next investigated what transcripts and
pathways strains explained movement on the trait-scape.

Identifying Transcripts Associated with New
Expression Patterns

We first used pathway enrichment analysis (Materials and
Methods) on transcripts loaded onto respective strain-
level PC axes to identify significantly overrepresented
pathways (File S1). These analyses revealed enrichment
in numerous central metabolic pathways such as carbon
fixation, pyruvate metabolism, glycolysis/gluconeogenesis,
amino acid metabolism, porphyrin and chlorophyll metab-
olism, and pentose phosphate metabolism. The over-
representation of these pathways is consistent with the
observation that orthologs drove the majority of transcrip-
tional variation in t-scapes (Fig. S6). Next, we identified
specific transcripts in these pathways.

To examine which transcripts were most associated
with the movement of full-selected strains within the
t-scape through the discovery of new peaks (Fig. 3), we
analyzed transcripts harboring the largest PCoA loading
values (both positive and negative) on PCO1 and PCO2
axes, respectively. Each transcript loading value reflects
how much a particular transcript contributes to that prin-
cipal coordinate axis such that transcripts with large load-
ing values are important for explaining the observed
variance in the data set. To do this, we identified highly
up- and downregulated transcripts driving the clustering
patterns in the t-scapes.

Specifically, for PCO1, we first tested different numbers
of transcripts harboring the most positive loading values
(e.g. n =500, n = 1,000, and n = 1,500) for each strain. We
then conducted hierarchical clustering of the Euclidean dis-
tance among their transcript values. We did the same for
genes with the most negative loading values. We then se-
lected the number of transcripts where at least one of these
smaller hierarchical dendrograms maintained the same
clustering pattern as the global t-scape containing all tran-
scripts in Fig. 3. Of these transcripts with the most extreme
loading values, the majority represented global orthologs
(Fig. S6). Other than universally expressed core orthologs
across all diatoms (e.g. Fig. 2), many of these orthologous
sequences are not shared by all diatom strains. This demon-
strates that most changes associated with transcriptome
diversification within an environment are components of
the diatom pangenome. Taken together, these data show
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that exploration of the t-scape in a stable environment is
not primarily driven by strain-specific transcripts but by
changes in widely shared pathways.

Below, we outline the details of how we defined the
transcripts included in this analysis. In Fig. 4a, TW1010-6
is replicate population number 6 of the full-selected
TW1010 strain. TW1010-6 moved to a new location in
the TW1010 t-scape (Fig. 4a, top panel) and formed its
own expression cluster relative to the other replicate po-
pulations (Fig. 4a, bottom panel). Upon clustering different
amounts of transcripts harboring the most negative
(Fig. 4b, upper left plot) and most positive (Fig. 4b, upper
right plot) loading values on PCO1, we observed that at
2,000 transcripts (n = 4,000 total transcripts analyzed for
PCO1), at least one of the dendrograms (Fig. 4b, upper pa-
nels) had a clustering pattern consistent with the pattern
seen in the case with all transcripts (Fig. 4a, bottom panel).
Observing consistent clustering patterns between the
smaller dendrograms and the global dendrograms in
Fig. 4a (bottom panel) indicates that the subset of tran-
scripts in the former dendrogram is those primarily driving
the clustering pattern in the global one. In this case, the
2,000 most positive loading values (Fig. 4b, upper right
plot) reflected the most similar pattern to the global
t-scape pattern (Fig. 4a, bottom plot) followed by the
2,000 most negative loading values (Fig. 4b, upper left
plot). Clustering beyond 2,000 transcripts introduced less
consistent clustering patterns relative to the global tran-
scriptional plots indicating a greater inclusion of tran-
scripts that did not strongly contribute to the clustering
of TW1010-6 in its strain-specific t-scape. The strong con-
trast in expression values observed in the transcriptional
dendrograms (Fig. 4b, purple = higher relative expression
and blue = lower relative expression) is consistent with
their corresponding, extreme loading values. Here, the
most negative loading values correspond to reduced tran-
script levels in TW1010-6 relative to other TW1010 popu-
lations while the most positive loading values correspond
to greater relative transcription.

To identify metabolic pathways potentially involved in
movement on the t-scape, we tested the 2,000 most posi-
tive and negative loading values for all other strains for
PCO1, using the same method as above (e.g. Fig. 4c
and d). We conducted the same analyses for PCO?2 for all
strains and found that the 1,000 most positive and negative
loading values (n = 2,000 total) yielded clustering consist-
ent with the strain-specific, global t-scape along PCO2
(e.g. Fig. 4b and d, bottom 2 plots). This reduced number
of transcripts is consistent with less variance being ex-
plained on PCO2 than on PCO1, such that departures
from control expression values or patterns may not re-
present transcriptional patterns that differ very much
from the ancestral one. All CLR-transformed transcripts
harboring the most extreme loading values per PCO per
strain can be found in File S2.

Figure 4 shows 2 different representative cases. In one in-
stance, the TW1010-6 full-selected population moved to a
new location in the t-scape whereas all other full-selected
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Fig. 4. Representative analysis of transcripts driving the discovery of new peaks in TW1010 and TW1050. a) The upper and lower panels are the
TW1010 PCoA plot and hierarchical dendrograms of CLR-transformed transcript counts, respectively. b) The upper row contains hierarchical
clusters of TW1010 CLR-transformed transcript counts of the 2,000 most negative (left plot) and 2,000 most positive (right plot) PCoA transcript
loading values for PCO1. The lower row contains the same clusters except for PCO2. c) The upper and lower panels are the TW1050 PCoA plot
and hierarchical dendrograms of CLR-transformed transcript counts, respectively. d) The upper row contains hierarchical clusters of TW1050
CLR-transformed transcript counts of the 2,000 most negative (left plot) and 2,000 most positive (right plot) PCoA transcript loading values for
PCO1. The lower row contains the same clusters except for PC2 using the 1,000 most positive and 1,000 most negative loading values.
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populations returned or remained in the region occupied
by the TW1010 controls. While TW1010-1, TW1010-3,
TW1010-4, and TW1010-5 formed a cluster along PCO2
(Fig. 4a, PCoA plot; Fig. 4b, bottom right plot), it is unclear
if this is a clearly defined cluster distinct from the controls
due to the low variance explained on PCO?2. In the other
case, all full-selected replicates of strain TW1050 migrated
to a single new location along PCO1, which explains >93%
of the variance (Fig. 4c and d). Hence, the TW1050 control
populations may have more options for diversification, at
least in this standard laboratory environment. Due to the
low amount of explained variance on the TW1050 PCO2
axis, no new locations were obviously occupied along
PCO2 following backselection.

Metabolic Transcripts Associated with New Peak
Discovery

To examine the most influential metabolic transcripts driving
movement on the t-scape in this experiment, we focused on
transcripts harboring the most positive loading values across
PCO1 for all strains (e.g. Fig. 4b and d, upper right plots).
These positive loading values reflect transcripts with higher
expression values in the full-selected replicates that moved
to new locations following bottlenecking and FS (eg
TW1010-6, TW1050-1, TW1050-2, and TW1050-3). Taken to-
gether, these transcripts represent those that uniquely in-
creased in the replicates that found a peak that differed
from the control populations of the same genotype.

Across all strains, numerous transcripts related to dele-
terious physiological changes, reactive oxygen species
(ROS), carbon metabolism, and nitrogen metabolism ex-
hibited consistently increased relative expression levels.
This suggests that variation in these gene expression pat-
terns may have a fundamental role in generating diatom
transcriptome diversity. These transcriptional changes are
consistent with trait observations from Hinners et al.
(2022) where the largest overall differences between full-
selected populations relative to their ancestors and con-
trols were in levels of ROS, particulate organic carbon
(POCQ), particulate organic nitrogen (PON), and lipid con-
tent. For example, in the study here, increased expression
of numerous heat shock proteins (HSPs), aldehyde dehy-
drogenases (ALDHs), superoxide dismutases (SOD), aconi-
tases, and glutathione-related transcripts was observed
across strains (File S2). These changes are consistent with
prior studies in diatoms that detected upregulation of
these transcripts during deleterious physiological changes
(Allen et al. 2008; Lauritano et al. 2015, Wang et al.
2020). Increased transcripts of trehalose 6-phosphate syn-
thase were detected in TW1010, TW1050, CS1059, and
TW1587. Trehalose is an intermediate, disaccharide sugar
that can aid in osmotic adjustment through protein stabil-
ization. Trehalose accumulation has been observed under
iron limitation in diatoms (Allen et al. 2008) and osmotic
stress in red algae (Cao et al. 2020) and can signal changes
in glycolytic activity. Here, we observed these shifts not as a
result of environmental change but by selecting variation
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initially fixed by chance events in a constant environment.
It is also plausible that general deleterious physiological
changes are associated with this decline in organismal func-
tion commonly associated with passage through repeated
bottlenecks, where deleterious mutations tend to be fixed.

All strains also exhibited increased expression of numer-
ous nitrogen transporters involved in nitrogen acquisition
but not the reductases and hydrolases involved in nitrogen
assimilation. Increased expression of only various nitrate
transporters was detected in strains TW1010, TW1050,
and TW1587, while only elevated transcription of
ammonium transporters was observed in CS1059 and
TW2929.TP3367 highly expressed both nitrate and ammo-
nium transporters. Furthermore, numerous glutamine
fructose-6-phosphate transaminases had increased expres-
sion across all strains. This enzyme is responsible for the
metabolic transfer of nitrogenous groups and is involved
in glutamate and amino sugar metabolism. Collectively, in-
creased transcription of core nitrogen metabolism genes,
transporters of different nitrogen species, and significant
differences in particulate organic nitrogen (Hinners et al.
2022) between full-selected and control populations sug-
gests nitrogen metabolism to be a core pathway involved
in diatom diversification, even in the absence of changes to
nitrogen availability. The modularity of core nitrogen me-
tabolism pathways (Smith et al. 2019) and redundancy
(e.g. urea, aminos, nitrate, and ammonia) can aid in the
sustained viability of a handful of cells exploring phenotyp-
ic space following chance events or during subsequent
adaptation from slower-growing starting points. For ex-
ample, the key enzymes involved in ammonium metabol-
ism, glutamine synthetase and glutamate synthase
(GS-GOGAT), are located in both mitochondria and
chloroplast in diatoms (Smith et al. 2019). One testable hy-
pothesis that follows from this work is whether high near-
neutral diversity exists in nitrogen-related traits in natural
diatom populations. In our experiments, shifts in nitrogen
metabolism are not indicative of adaptation to any change
in the availability of nitrogen from the environment but
could instead be a fundamental adaptive strategy asso-
ciated with fitness recovery. Additionally, this modularity
and redundancy may enable nitrogen metabolism in dia-
toms to change and still produce viable cells, such that
changes to transcripts associated with nitrogen metabol-
ism are associated with movement in the t-scape. As
such, fitness recovery may often involve reevolving nitro-
gen metabolism that allows faster growth from slower-
growing but viable intermediates that emerge from chance
events. One interesting possibility is thus that nitrogen
metabolism is especially prone to diversification in the
face of bottlenecks, which is consistent with the unique,
flexible nitrogen metabolism observed in diatoms relative
to other green lineages (Smith et al. 2019).

In terms of carbon, energy, and core metabolic path-
ways, numerous carbonic anhydrase (CA) and thioredoxin
transcripts also exhibited elevated expression in TW1010,
TW1050, TW1587, and TP3367 indicating potential shifts
in equilibrium between intracellular CO, and HCO3. CAs
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can catalyze the reversible interconversion of CO, and
water into HCOj3 and protons and play a central role in car-
bon acquisition (Clement et al. 2016), though the exact role
is localization dependent (Hopkinson et al. 2016). As with
nitrogen acquisition described above, the modularity and
redundancy of carbon acquisition through numerous types
of CAs may also enable certain carbon acquisition path-
ways to be compromised during population bottlenecks
while still producing viable cells. Concurrent transcription-
al changes to different CAs following bottlenecks suggest
flexibility of CA-associated carbon acquisition is associated
with the generation of transcriptional diversity, and that
there is scope for divergence during fitness recovery alone.
Increased transcription of cytosolic malate dehydrogenase
was observed in TW1010, TW1050, CS1059, TW1587, and
TP2929 and is central to both the tricarboxylic acid cycle
and gluconeogenesis. Numerous transcripts of clathrin sub-
units also increased expression. Clathrin is a structural pro-
tein that helps deform membranes to facilitate
invagination of molecules into vesicles (i.e. clathrin-
mediated endocytosis). Although not highly expressed in
other eukaryotes, it was found to be the sixth most abun-
dant protein in the T. pseudonana proteome and plays cen-
tral roles in nutrient acquisition, vesicle transport, and
segregation of organelles (Nunn et al. 2009). Finally, ele-
vated transcripts of fucoxanthin chlorophyll proteins
(FCPs) and other light-harvesting photosystem genes
were observed (File S2). FCPs make up the key molecular
complex performing light harvesting in diatoms (Gelzinis
et al. 2015) and may be fundamental to light-derived en-
ergy generation in response to significant demographic
change. Changes in expression and trait values of these crit-
ical pathways have been primarily observed as a result of
environmental change (e.g. Allen et al. 2008; Bertrand
et al. 2012; Mock et al. 2017; Bender et al. 2018; Smith
et al. 2019). Here, we observe collective shifts in expression
across strains that were allowed to diversify in a constant
environment, indicating that variation in these transcripts
is readily generated during chance events and suggests that
these pathways can rapidly diversify during subsequent fit-
ness recovery. The fact that we observe these common
shifts across globally distributed, disparate diatom strains
in the order, Thalassiosirales, suggests these pathways
may be key, conserved players in diatom transcriptomic di-
versification more broadly. Hence, these transcripts may
underlie fundamental axes of variation along which natural
selection can act.

Conclusion

Here, we investigate patterns of transcriptional variation in
a constant environment in a model diatom genus by using
an integrated approach that pairs generating divergent po-
pulations with examining underlying global transcription.
Our data reveal that variation generated using population
bottlenecks in a constant environment can allow popula-
tions to find new metabolic configurations following fit-
ness recovery. This informs our understanding of the

variation that natural selection may have to act upon follow-
ing chance events that are relatively common in open ocean
diatoms, such as extreme reduction in population size during
migration, or between diatom blooms. It is worth noting
that chance bottleneck events can be common for other mi-
crobial populations in environments such as the human
body. For example, Badrane et al. (2023) observed the emer-
gence of mixed populations from clonal but genetically di-
verse strains of the opportunistic yeast pathogen, Candida
glabrata bloodstream infection, following bottleneck events.
Particularly, they observed emergent, diverse phenotypes in-
cluding antifungal resistance, which could help explain
broader patterns of genetic variation and inform the usage
of antimicrobials (Badrane et al. 2023).

Despite the time elapsed between the whole cell mea-
surements (Hinners et al. 2022) and RNA extraction, there
were several consistent changes in both whole-cell traits
and transcripts across carbon, nitrogen, energy, and oxida-
tive stress pathways indicating that these pathways can
shift to produce viable variation during population bottle-
necks, although these changes are sometimes also asso-
ciated with lower population growth. In particular, the
Hinners et al. (2022) study identified that in the popula-
tions later used for the transcriptomics study here, trait
correlations departed most strongly from ancestral values
for populations with high particulate carbon (POC) and ni-
trogen (PON) content. Overall, the strongest departure
from ancestral trait correlations was related to large shifts
in correlation due to changes in a single trait, often reactive
oxygen. While the timing of sampling means that we can-
not directly connect transcriptional changes and whole-
cell trait values, the concordance between changes in traits
and changes in annotated transcripts is striking.

During fitness recovery, some populations evolve tran-
scriptional patterns that differ from control populations
consistently propagated without population bottlenecks
in the same environment, suggesting that multiple solu-
tions for adaptive trait values and trait combinations exist.
Even though many of these changes are also associated with
environmental adaptation in other studies, chance events
alone are sufficient here to provide starting points from
which diverse rapid growth populations evolve. Since a
common set of transcripts was involved in diversification
across the genus, we suggest that these transcripts, and
the relationships between them, are especially likely to be
involved in diversification. Given that these transcriptional
changes were captured using demographic fluctuations
that are likely common in evolving diatom populations,
there is also the intriguing possibility that this variation
could also be acted on by natural selection in the event
of environmental change following a population bottle-
neck. Plausible scenarios where this might occur are popu-
lation subdivision and migration into a new environment or
environmental change between diatom blooms. We sug-
gest that these patterns of transcriptional change may iden-
tify metabolic pathways commonly used during trait
diversification. Future studies using more distantly related
ancestral diatom strains harboring different transcriptional
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circuitry would shed further light on the generality of the
reduced axes, and the variation in transcript levels and re-
lationships, identified here. It is worth noting that our ex-
periment used nutrient-replete, benign conditions, which
revealed the fundamental flexibility of certain metabolic
pathways. Future studies could explore the conservation
of these trends using more stressful or variable conditions,
where viability selection may be more stringent and, at a
certain point, may inhibit diversification.

We identified a particular set of pathways associated
with rapid diatom diversification in a constant environ-
ment. Investigation of reduced axes in other phytoplankton
taxa could tease out changes to general transcriptional pat-
terns associated with the generation of diversity versus
adaptation, as well as those changes that occur broadly
across taxa versus those that are functional group, geno-
type, or environment specific. Overall, identifying general
patterns and transcriptional relationships associated with
diversification adds critical knowledge to genotypic and
phenotypic limits of phytoplankton diversity and highlights
the potential role of common chance events for evolving
phytoplankton populations.

Materials and Methods

Diatom Cultures

Six strains of Thalassiosira sp. from the Provasoli-Guillard
National Center of Marine Phytoplankton (NCMA, former-
ly known as the CCMP, https://ncma.bigelow.org/) culture
collection were used: CCMP 1010, 1050, 1059, 1587, 2929,
and 3367 (Table S1). Extensive trait and phenotypic charac-
terization of these strains are described in Argyle et al.
(20213, 2021b) and Hinners et al. (2022). Cultures were
grown in sterile f/2 media (Guillard 1975) made from natural
seawater (collected in St Abbs, United Kingdom), at 20 °C
and approximately 60 pmol photons/m?/s (measured with
a 4-pi sensor) at a 12-h:12-h light:dark cycle. Our rationale
for using this light level is that mutation accumulation dur-
ing bottlenecks can lead to changes in traits including light
optima; at this light level, ancestral population growth is
within the normally reported range for these species or
strains, but high extinction rates in the RS phase of the ex-
periment can be avoided. For the evolution experiment, cul-
tures were maintained in transparent 48-well plates covered
with Breathe-Easy breathable plate seals (Sigma-Aldrich).
Larger additional cultures (1.5 L) were grown for RNA extrac-
tion so that sufficient biomass could be obtained at low cell
densities to ensure that harvested cells were not light or nu-
trient limited.

Evolution Experiment

RS Phase

During the RS phase, bottlenecks were induced every 7 d by
transferring ~8 cells per replicate to new medium to fix var-
iants mainly by chance between growth cycles. As growth
rates decreased through time, we extended the bottleneck
period to every 14 d toward the end of this phase resulting
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in an average of 18 generations. All populations were bottle-
necked at the same time as long as replicates had reached a
minimum cell concentration of 2,000 cell/mL. If cell concen-
trations were lower, cultures were instead diluted to 500 cell/
mL to allow for population recovery before a new bottleneck.
Bottlenecks were repeated 5 to 9 times depending on the
genotype corresponding to a total RS phase length of 3 mo
(70 to 200 generations), depending on population growth
rates. Toward the end of this phase, some population growth
rates decreased to a degree where growth was no longer ob-
served. In these cases, previously saved transfers were used to
induce a new bottleneck. Growth rates were monitored via in
vivo fluorescence, and at the end of this phase, fluorescence-
based population growth rates were reduced by an average of
45% compared to ancestral growth rates (Fig. S1).

FS Phase

During the FS phase, full-selected populations were propa-
gated in batch culture with transfer sizes of 1,000 cells every
7 d in the ancestral environment. Populations were trans-
ferred ~25 times corresponding to 200 to 500 generations.
At this point, whole-cell traits were measured (Hinners
et al. 2022). Populations were grown under the same FS con-
ditions for a subsequent 10 mo, after which biomass was har-
vested for RNA extraction. Maximum growth rates were
measured every 5 to 10 transfers to monitor fitness recovery,
and before termination of this phase, growth rates were mea-
sured over 4 transfers (4 wk) to ensure population growth
rates had stabilized, indicating populations were on or near
a high-fitness peak (Fig. S2).

Growth Rate

Growth rates were measured through daily in vivo fluores-
cence with a Tecan Spark plate reader (excitation: 455 nm,
emission: 620 nm) (Hinners et al. 2022). Exponential
growth rates were calculated for each time step as follows:

_ In(x2)=In(x7) ]
——y (1)
Measurements were carried out at the same time each day;
some of the assays take more than 1 h. Methodology was
tested and peer reviewed for Argyle et al. (2021a, 2021b).
Maximum growth rates were determined over 4 consecutive
time steps. During the bottleneck phase, growth rates were
determined on single replicates per population. Final growth
rates were determined from 3 replicates per population.
Other traits, as well as bacterial counts, were measured via
flow cytometry as described in Hinners et al. (2022).
Bacterial counts showed no substantial changes over time.
Cells for the transcriptomic analysis were harvested at ap-
proximately half the maximum cell density attainable and
so were not light or nutrient limited during harvest.

Phylogenomics and Geographic Visualization
Phylogenomic trees were inferred with IQTREE2 (Minh
et al. 2020) using concatenated protein alignments
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constructed via hmmsearch for marker detection, MUSCLE
(Edgar 2004) for marker protein alignment, and ClipKIT
(Steenwyk et al. 2020) for alignment trimming. The
concatenated alignments were based on the BUSCO
Protista_83.hmm (Simio et al. 2015) marker set avail-
able through Anvi'o (Eren et al. 2015) using the suggested
E-value noise cutoff of 1e—25. Phylogenomic trees were
analyzed and visualized using ETE 3 (Huerta-Cepas et al.
2016) in Python. This was performed using the phylogen-
y.py module of VEBA (Espinoza and Dupont 2022).

Geographic coordinates in relation to strain origin
were processed using GeoPandas (https://github.com/
geopandas/geopandas), GeoPy (https://github.com/geopy/
geopy), and Matplotlib (https://github.com/matplotlib/
matplotlib).

Transcriptome Assembly, Gene Modeling, and
Orthology

Sequence reads were quality controlled using KneadData
(Beghini et al. 2021) with the GRCh38.p13 human genome
as a reference for potential decontamination. This method-
ology yielded transcriptomes with depths between
3,433,160 and 26,023,146 reads mapping between 14,761
and 55,849 unique transcripts (refer to File S1 for richness
and depth statistics per strain). De novo transcriptomes
were grouped by strain (e.g. TW1010 ancestors and bottle-
necks) and coassembled using rnaSPAdes (Bushmanova
etal. 2019).

Following the protocol detailed in Santoro et al. (2021), we
used TransDecoder (https://github.com/TransDecoder/
TransDecoder) for gene modeling in a multistep process to
minimize false positives. In particular, we used the following
procedure: (i) TransDecoder.LongOrfs, with transcript-to-
gene mappings assigned by rnaSPAdes, to generate putative
open reading frames (ORFs); (ii) hmmsearch (Eddy 2011) to
identify protein domains using the PFAM v33.1 and
TIGRFAM v15.0 databases; (iii) Diamond blastp (Buchfink
et al. 2021) against all Bacillariophyceae (diatoms) genomes
available in NCBI (GCA_000149405.2, GCA_000150955.2,
GCA_000296195.2, GCA_001750085.1, GCA_002217885.1,
and GCA_900660405.1); and (iv) TransDecoder.Predict with
the putative ORFs from (i), the protein domains from (i),
and the alignments from (jii) using the --single_best_only ar-
gument; this was implemented using the transdecoder_wrap-
per.py script of VEBA. Genes were annotated by best-hit
Diamond blastp alignment to NCBI’'s nonredundant protein
database (accessed on v2021.08.03) using the annotate.py
module of VEBA.

Orthogroups were identified using OrthoFinder (Emms
and Kelly 2019) with the high-quality proteins generated
from our TransDecoder procedure and all of the
Bacillariophyceae proteins listed previously. Consensus
annotations for orthogroups were assigned by using
the most common organism-agnostic annotation within
the grouping using UniFunc, a natural language process-
ing software developed for bioinformatics (Queiros et al.
2021).

Pathway Enrichment Analysis

We performed KEGG pathway enrichment analysis on
each strain using the GSEA’s Prerank rank module
(Subramanian et al. 2005) via the GSEApy Python package
(Fang et al. 2022). To prepare the data for pathway enrich-
ment, we aggregated the counts for transcripts by their
BRENDA enzyme representative (e.g. EC:1.1.1.1) and iden-
tified conserved enzymes that had at least 300 counts in
each sample which were later used for pathway enrich-
ment. The enzyme count matrix (i.e. sample vs. enzymes)
was CLR transformed followed by Euclidean distance (i.e.
Aitchison distance), and PCoA was performed. The
PCoA loadings of the conserved enzymes were used as fea-
ture ranks (e.g. weights) in the Prerank module using
min_size =5 and permutation_num = 1,000 parameters.
Enriched pathways were considered significant if false dis-
covery rate < 0.25 which is recommended by the GSEA
documentation.

Transcript Analysis

Taking a compositional approach, we used the CLR trans-
formation on raw transcript counts by taking the log of
each count and dividing by the geometric mean using
the compositional Python package (Espinoza et al. 2020).
Hierarchical clustering and PCoA ordinations were per-
formed using SciPy (Virtanen et al. 2020) and Soothsayer
(Espinoza et al. 2021) Python packages. PCoA analyses
were conducted in the same manner for all PCoA plots
where all axes represent collapsed variance of
CLR-transformed transcripts. Heatmaps were generated
using the heatmap function in the R stats package
(https://www.R-project.org/).

Supplementary material

Supplementary material is available at Molecular Biology
and Evolution online.
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