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ABSTRACT: Declining coral populations worldwide place a special premium on identifying risks
and drivers that precipitate these declines. Understanding the relationship between disease out-
breaks and their drivers can help to anticipate when the risk of a disease pandemic is high. Popu-
lations of the iconic branching Caribbean elkhorn coral Acropora palmata have collapsed in
recent decades, in part due to white pox disease (WPX). To assess the role that biotic and abiotic
factors play in modulating coral disease, we present a predictive model for WPX in A. palmata
using 20 yr of disease surveys from the Florida Keys plus environmental information collected
simultaneously in situ and via satellite. We found that colony size was the most influential predic-
tor for WPX occurrence, with larger colonies being at higher risk. Water quality parameters of dis-
solved oxygen saturation, total organic carbon, dissolved inorganic nitrogen, and salinity were
implicated in WPX likelihood. Both low and high wind speeds were identified as important envi-
ronmental drivers of WPX. While high temperature has been identified as an important cause of
coral mortality in both bleaching and disease scenarios, our model indicates that the relative influ-
ence of HotSpot (positive summertime temperature anomaly) was low and actually inversely
related to WPX risk. The predictive model developed here can contribute to enabling targeted
strategic management actions and disease surveillance, enabling managers to treat the disease or
mitigate disease drivers, thereby suppressing the disease and supporting the persistence of corals
in an era of myriad threats.

KEY WORDS: Coral disease - Acropora palmata - White pox - Environmental drivers - Predictive
model

1. INTRODUCTION ceeding 60 and 50 %, respectively, since the 1970s

interspersed with periods of recovery for some corals

Coral reefs are declining globally with losses in the (Gardner et al. 2003, De'ath et al. 2012, AIMS 2022).
Caribbean and on the Great Barrier Reef (GBR) ex- As of 2012, percent coral cover Caribbean-wide
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and GBR-wide were 16.3 and 13.8%, respectively
(De'ath et al. 2012, Jackson 2014), and in the Florida
Keys percent coral cover was just 4.9 % in 2015 (Toth
et al. 2019). These published coral cover values pre-
cede the 2014 emergence of stony coral tissue loss
disease, a disease affecting multiple Caribbean coral
species, with the notable exception of Acropora spp.,
that has accelerated coral cover loss in the Florida
Keys and the Caribbean (Muller et al. 2020, Toth et
al. 2022). As long-term coral cover declines and local
species diversity decreases, the probability of extinc-
tion has increased for nearly every scleractinian coral
species (Carpenter et al. 2008).

The elkhorn coral A. palmata (Fig. 1a), and its con-
gener A. cervicornis, were once the most abundant

Fig. 1. (a) Apparently healthy Acropora palmata populations on Molasses
Reef, Florida Keys. (b) Midnight parrotfish Scarus coelestinus passes calcare-
ous debris in its feces after scraping coral substrates (Carysfort Reef, Florida
Keys). (c¢) During doldrums, fish feces accumulate on A. palmata blades and
branches (Rock Key, Florida Keys). (d) White pox disease-affected A. palmata
(Looe Key, Florida Keys). (e) Fixed-station photography of coral reef in
the Florida Keys (Eastern Dry Rocks, Florida Keys) (Photographs by James

W. Porter)

shallow-water reef building corals in the Caribbean
and the Florida Keys (Goreau 1959). Geological evi-
dence suggests that these foundation species played
a longstanding role in generating the habitat com-
plexity of Caribbean reefs (Aronson & Precht 2001).
Since the 1980s, however, Acropora populations
have declined throughout the Caribbean region
(Aronson & Precht 2001) including in the Florida
Keys, where losses of A. palmata exceeded 70%
(Baums et al. 2003, Sutherland et al. 2016). This high
mortality has been followed by the bioerosion and
collapse of calcium carbonate coral skeletons and the
flattening of the 3-dimensional structure of Carib-
bean reefs (Toth et al. 2022). The consequence is
altered ecosystem function that reduces biodiversity
and biomass of organisms that rely
on the coral reef for habitat, shelter,
or food (Gratwicke & Speight 2005,
Idjadi & Edmunds 2006). Due to the
urgency characterized by the precipi-
tous decline, in 2006 A. palmata and
A. cervicornis became the first corals
to be listed for protection under the
United States Endangered Species
Act (NOAA 2006).

Detectable stressors that have re-
duced population sizes and threaten
recovery of A. palmata throughout the
Caribbean region include disease,
bleaching, predation, and hurricanes
(Baums et al. 2003, Williams et al.
2008, Williams & Miller 2012, Bright et
al. 2016). Disease of A. palmata most
often manifests as white pox disease
(WPX) or white-band disease (WBD)
(Sutherland et al. 2004). WPX has
affected populations of A. palmata,
its exclusive host, for at least a quarter
of a century (Sutherland et al. 2016)
and has become the more prevalent
of the 2 diseases on contemporary
reefs (Mayor et al. 2006, Muller et al.
2008, 2014, Rogers & Muller 2012,
Sutherland et al. 2016). WPX mani-
fests as tissue loss that exposes irreg-
ularly shaped bright white patches
of calcium carbonate coral skeleton
(Fig. 1d). These lesions are focal to
multifocal and cause partial or whole
colony mortality (Patterson et al. 2002).
While the earliest surveys of WPX
affecting A. palmata populations in
the Florida Keys indicated a severe
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disease manifesting with large and numerous lesions
that coalesce and cause whole colony mortality,
recent assessments show that contemporary WPX
manifests as smaller and fewer isolated lesions that
result in partial, not whole, colony mortality (Suther-
land et al. 2016). One pathogen, the bacterium Serra-
tia marcescens, is known to cause WPX signs, espe-
cially in early epizootics; however, it is hypothesized
that the same signs can also be caused by other, as
yet unidentified, pathogens or abiotic stressors
(Sutherland et al. 2016).

Globally, the number of coral disease outbreaks
(Tracy et al. 2019) and the frequency of environmen-
tal stressors that drive these outbreaks are increasing
(Hughes et al. 2018, Heron et al. 2016, Frolicher et al.
2018). Many drivers of coral disease are associated
with human activities including elevated sea sur-
face temperature (SST) (Bruno et al. 2007, Miller &
Richardson 2015) and runoff of freshwater that often
contains sediment, nutrients, and sewage into near-
shore waters (Bruno et al. 2003, Voss & Richardson
2006b, Sutherland et al. 2011). Regions of the marine
environment that are heavily influenced by anthro-
pogenic stressors, including coral reefs of the Florida
Keys, are at high risk for disease outbreaks (Maynard
et al. 2015).

The increased availability of long-term environ-
mental data (e.g. via satellites) has facilitated mod-
eling investigations of the role of environmental
factors in the occurrence and severity of coral dis-
ease. These studies have frequently demonstrated
a relationship between the occurrence of disease
events and specific temperature regimes (Heron et
al. 2010, Maynard et al. 2015). Models created
with A. palmata surveillance data have demon-
strated a relationship between elevated seawater
temperatures and outbreaks of both WPX (Muller
& van Woesik 2014) and WBD (Randall & van
Woesik 2015, van Woesik & Randall 2017), and
these model results are supported by evidence
from field investigations at many locations (Patter-
son et al. 2002, Muller et al. 2008, Rogers & Muller
2012, Bright et al. 2016). To date, little attention
has been given to incorporating water quality
parameters into predictive models for coral disease
(Williams et al. 2010, Maynard et al. 2015, Sudek
et al. 2015), which may be linked to issues of data
consistency of satellite ocean color in near-shore
environs (but see Geiger et al. 2021); however,
field studies have shown that local nutrient condi-
tions, for example, can enhance the severity and
progression of disease lesions (Haapkyla et al.
2011, Kaczmarsky & Richardson 2011).

In this study, we use 20 yr (1995-2014) of WPX sur-
vey information (Sutherland et al. 2016) and site-
level environmental information, including water
quality data measured in situ and climate data meas-
ured remotely via satellite, to examine the drivers of
WPX affecting A. palmata populations at 7 reefs
throughout the Florida Keys National Marine Sanc-
tuary (FKNMS; Fig. 2). We develop and test a predic-
tive model that evaluates which biotic and abiotic
parameters best explain WPX events. The model is
first developed using subsets of data and then vali-
dated using data held back during development.
Evaluating model performance on unseen data in
this way lends further confidence in assessing the
model’s ability to predict future WPX outbreaks.

2. MATERIALS AND METHODS
2.1. Acropora palmata data

A. palmata data were collected in the FKNMS
using 2 kinds of long-term photographic surveys.
The A. palmata population at Eastern Dry Rocks
(EDR) reef in the lower Florida Keys (Fig. 2) was
monitored from 1995 to 2004 using a 13.5 m? grid
consisting of 36 contiguous 0.75 x 0.5 m frames
(Fig. 1le). Corners of the grid were demarcated by
georeferenced stainless-steel survey stakes cemented
into the reef (Patterson et al. 2002). This station was
photographed with a Nikonos camera annually in
1995-1996, biannually in 1997 and 1998, and annu-
ally in 1999-2004 (Sutherland et al. 2016). Slides
were digitally scanned at a resolution of 600 dots per
inch. The health status of each colony was deter-
mined by concurrently evaluating field notes and
scanned images, noting signs of WPX.

The A. palmata populations at 6 other reefs in the
FKNMS were monitored in 40 m? belt transects from
2009 to 2014, 1 to 5 times per year (Sutherland et al.
2016). These 6 reefs were Carysfort and Molasses in
the upper Florida Keys, Sombrero and Looe Key in
the middle Keys, and Western Sambo and Rock Key
in the lower Keys (Fig. 2). Each of the 6 surveyed
areas had between 14 and 92 colonies, a number
which remained constant throughout the 5 yr obser-
vational period. During each survey, colonies were
photographed digitally with a scale in view. Individ-
ual colonies were relocated using the photograph
from the previous survey and by measuring distance
and bearing between the coral colony and a single
survey stake implanted on each reef. Signs of WPX
were recorded in situ.



18 Dis Aquat Org 154: 15-31, 2023

82°30'W 82‘:15’ 8]2" 81?45’ 81]"30’ 81°15’ 81° 80°45’ 80°30’ 80°15’
'm Biscayne
~ . 24 National
25°30 e [ o /
N
25°15™
Carysfort
o s verglades
25°00 Nitiogal Park .
Molasses
24°45™ Florida Keys National Marine
Sanctuary Boundry
24° 30 5
. SST  SeaWinds
" : : ° ""\ ’ /.\ Sombrero N
.\ Looe Key
24° 15"
/"— [—
- Rock Kéy
Eastern Dry Rocks Western Sambo 0 50 100 km
24°00’

Fig. 2. The 7 Acropora palmata reef survey sites in the Florida Keys National Marine Sanctuary. Spatial scales of the
CoralTemp sea surface temperature (SST) and Blended Sea Winds data included for reference

Digital images from the EDR (1995-2004) and
FKNMS-wide (2009-2014) surveys were analyzed
using ImageJ software (Schneider et al. 2012). The
entire coral colony was traced, and the projected sur-
face area of tissue (cm?) was analyzed for disease sta-
tus. For the EDR and the FKNMS-wide survey,
respectively, the dimensions of each photostation
frame (0.75 x 0.5 m) and the diameter of the within-
image scale (3 cm) were used to calibrate the scale
for each individual image analysis. For each reef site
and survey, A. palmata data used in the model
include colony size and occurrence of WPX, noted as
signs present or absent (Sutherland et al. 2016, Grif-
fin 2018).

2.2. Remotely sensed environmental data
Satellite SST data were sourced from CoralTemp

v3.1, compiled by NOAA Coral Reef Watch program
(Skirving et al. 2019, 2020). SST data at a spatial res-

olution of 0.05° (~5 km) were extracted for each of the
A. palmata survey locations (Fig. 2) for the period
1985-2016. Temperature-based indices previously
related to coral bleaching and disease included
measures of summertime heat stress and conditions
from the prior winter (Heron et al. 2010, Liu et al.
2014) (Table 1). HotSpot is the daily temperature
anomaly above the maximum monthly mean (MMM)
SST specific to each A. palmata survey location (Fig. 2)
and degree heating weeks (DHW) accumulates
HotSpot values that are 1°C or greater over a rolling
12 wk period (Liu et al. 2014). HotSpot and DHW
reflect current and accumulated heat stress, respec-
tively, associated with coral bleaching occurrences.
The winter conditions metric, the accumulated SST
anomaly about the winter average SST during winter
months, was calculated to investigate its influence
on WPX. This metric had been relevant to analysis
of outbreaks of white syndromes coral diseases on
the GBR (Heron et al. 2010). For comparison with
A. palmata survey data, the maximum value from the
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12 mo period prior to the survey was
determined for summertime tempera-
ture metrics (HotSpot, DHW; Liu et al.
2014). For the winter conditions met-
ric, the end-of-winter accumulation
that preceded the most-recent sum-
mer was used (see Heron et al. 2010).

Measurements of wind speed and
direction were extracted for each sur-
vey location from the NOAA Blended
Sea Winds dataset (Zhang et al. 2006).
Wind data at a spatial resolution of
0.25° (~25 km) (Fig. 2) were extracted
for the disease survey locations for the
period 1987-2016. Field observations
by the authors (K.P.S., KM.K., JW.P.)
have indicated that white pox re-
sponses have occurred during and im-
mediately following periods of low
wind (Kemp 2017). To test this hypo-
thesis against survey data, we ex-
tracted the minimum wind speed from
several periods (4, 7, 15, 30, 60 and
90 d windows up to each survey).

In situ temperature data were also
acquired, together with the water
quality parameters and are described
in the following section.

2.3. Water quality data

Water quality data were compiled
from the Southeast Environmental Re-
search Center Water Quality Moni-
toring Project at Florida International
University (SERC-FIU) (http://serc.fiu.
edu/wgmnetwork/). SERC-FIU con-
ducts quarterly surveys at 112 sites
throughout the FKNMS and generates
water quality data from both direct in
situ measurements and from analyses
of water samples taken at the sites
(Caccia & Boyer 2005). Water quality
data used in our model were collected
quarterly between 1995 and 2014 and
include 22 water quality parameters,
most of which, due to differentials in
current speed and direction, were
sampled from both the surface and the
bottom of each site (Table 1). For this
study, water quality data were ex-
tracted from the acquired 20 yr data

Table 1. Remotely sensed environmental variables and water quality variables
used to predict white pox disease (WPX) affecting Acropora palmata in the
Florida Keys National Marine Sanctuary (FKNMS) and the relative influence
(%) of each predictor variable on WPX risk. A. palmata data (disease presence
and coral colony size) were collected with surveys at 7 reef sites in the
FKNMS. Remotely sensed environmental data were extracted from the Na-
tional Oceanic and Atmospheric Administration (NOAA) CoralTemp and
Blended Seawinds datasets. Water quality data were compiled from the
Southeast Environmental Research Center Water Quality Monitoring Project
(SERC). Many water quality parameters were sampled from both the surface
(S) and the bottom (B) of each site. DIN: dissolved inorganic nitrogen; TP: total
phosphorous; DO: dissolved oxygen; Si: silica; TN: total nitrogen; TOC: total
organic carbon; TON: total organic nitrogen;

Variable Description Source Relative
influence
Disease presence Survey
coral.area Colony size Survey 44.13
wind_val_4 Wind speed 4 d window NOAA 0.89
wind_val_7 Wind speed 7 d window NOAA 2.42
wind_val 15 Wind speed 15 d window NOAA 2.52
wind_val_30 Wind speed 30 d window NOAA 0.90
wind_val_60 Wind speed 60 d window NOAA 0.39
wind_val 90 Wind speed 90 d window NOAA 0.17
dhw_12mt Degree heating weeks 12 mo NOAA 0.05
hs_12mt HotSpot 12 mo NOAA 1.15
cs_wint Winter cold snap NOAA 0.61
nh4.b Ammonium - B SERC 0.26
nh4.s Ammonium - S SERC 0.92
chla.s Chlorphylla - S SERC 0.90
din.tp DIN to TP SERC 0.69
din.b DIN -B SERC 0.59
din.s DIN - S SERC 4.73
do.b DO -B SERC 0.48
do.s DO -S SERC 0.91
x.sat.b DO saturation — B SERC 0.47
x.sat.s DO saturation — S SERC 11.74
Kd Light attenuation SERC 1.35
x.lo Light availability SERC 0.33
no3.b Nitrate — B SERC 0.74
no3.s Nitrate — S SERC 0.95
nox.b Nitric oxide — B SERC 0.80
Nnox.s Nitric oxide — S SERC 0.18
no2.b Nitrite — B SERC 0.41
no2.s Nitrite — S SERC 0.26
sal.b Salinity — B SERC 0.57
sal.s Salinity — S SERC 3.31
Si.din Si to DIN SERC 1.36
siO02.b Si-B SERC 0.51
siO2.s Si-S SERC 1.31
srp.b Soluble reactive P — B SERC 1.04
SIp.S Soluble reactive P - S SERC 1.29
temp.b Temperature — B SERC 0.25
temp.s Temperature — S SERC 0.32
tn.tp TN to TP SERC 0.22
tn.b TN -B SERC 0.47
tn.s TN - S SERC 0.21
toc.b TOC - B SERC 3.66
toc.s TOC -S SERC 0.37
ton.b TON -B SERC 0.23
ton.s TON - S SERC 0.02
tp.s TP - S SERC 1.59

Table 1 continued on next page
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Table 1 (continued)

gression tree or BRT). BRT models are
well-suited to data with multiple pre-

Variable Description Source Relative dictors, do not require data transforma-
influence tions, can handle missing data, and can
fit complex non-linear relationships
tp.b TP -B SERC 1.36 includi int t ffects bet
turb.b Turbidity - B SERC 061 inc u. ing in ?rac ion effects between
turb.s Turbidity — S SERC 0.19 predictors (Elith et al. 2008). The BRT
rCR Reef Carysfort Reef <0.01 model quantifies and ranks predictor
1ED Reef Eastern Dry Rocks Reef <0.01 variables that are important in explain-
rLK Reef Looe Key Reef <0.01 ing th b fWPX b
rMR Reef Molasses Reef <0.01 1ng the pr.esence ora SenC.e 0 Y
RK Reef Rock Key Reef <0.01 constructing trees to classify observa-
rSR Reef Sombrero Reef 0.01 tions as present or absent with splits in
WS Reef Western Sambo Reet 0.02 tree branches representing splits in co-
ml Month 1 Jan 0 . . .
m2 Month 2 Feb <0.01 variate values. Relative importance of
ma Month 4 Apr 0 each covariate is then quantified by
mb Month 5 May 0.05 how often a covariate is selected for
mé Month 6 Jun 0.19 splitting, weighted by improvement in
m7 Month 7 Jul 0.06 fit to the data. F the BRT ddi
m8 Month 8 Aug 0.13 1t to the data. trom the Br 1, we add-
m9 Month 9 Sep 0.47 tionally present partial dependency
m10 Month 10 Oct 0.08 plots to illustrate the relationship be-
m}; l\hﬁon:ﬁ E EOV 8 tween a single target predictor and the
m on ec o1s .
1995 Year 1995 <0.01 .response (WPX prlobablhty) while holq-
v1996 Year 1996 <0.01 ing all other predictor variables at their
y1997 Year 1997 <0.01 average value.
Y}ggg zear 1338 8 To account for reef effects, we in-
y ear .
2000 Year 2000 0 f:luded dummy Var.lables. for each reef
y2001 Year 2001 0 in the BRT analysis. This means that
y2002 Year 2002 0 each observation included a binary
Ygggj zear %882 8 predictor (0/1) to reflect membership
y ear . .
2009 Year 2009 0.02 9f a glven re§f. This allow% the BRT to
y2010 Year 2010 <0.01 identify particular reefs, if any, that
y2011 Year 2011 <0.01 contribute to the observed spatio—tem-
y2012 Year 2012 <0.01 poral pattern of WPX, rather than
y2013 Year 2013 <0.01 . v identifvi . i
v2014 Year 2014 0.08 §1mp y identifying ‘reef' per sg as an
important effect. Because the distance

set (1995-2014) for each of the reef sites surveyed for
WPX (Fig. 2). In one case, SERC-FIU did not have a
monitoring station at our survey site (Rock Key).
Because the statistical modeling approach we used
can handle missing predictor data, we retained not
available (NA) values for water quality for colonies in
this reef site. The quarterly collection sampling fre-
quency permits inclusion of chronic stressors, but not
acute stressors, in the model.

2.4. Disease model

To train a model that can predict disease events from
several variables, many of which are likely to be non-
independent, we used a generalized boosted classifi-
cation tree model (often referred to as a boosted re-

between colonies within a reef is on
the order of meters, whereas the distance between
reefs is on the order of kilometers, reef membership
also helps to detect spatial autocorrelation. Similarly,
months and years were also included as dummy vari-
ables in case particular seasons or years were associ-
ated with WPX risk. The goal of the approach was
therefore to identify abiotic and biotic predictors of
WPX risk, over and above specific reef membership
or time of study. This is necessary if predictive mod-
els are to be used in the future and on reefs not
included in model training. We also calculated the
relative strength of all pairwise combinations of the
top 6 predictor variables (Hijmans et al. 2017) to eval-
uate potential greater-than-additive effects of pre-
dictors on WPX risk.
We trained a BRT model to classify observations for
WPX as present or absent at the colony level using
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biotic and abiotic information. Our full data set con-
sisted of 1775 data points, of which 435 (24.5%) were
positive for WPX. We used the ‘gbm’ function from
the R gbm package (Greenwell et al. 2019) to build
and analyze our model, with the following specific
BRT parameters: interaction depth = 5, shrinkage =
0.001, bag fraction = 0.7, train fraction = 0.8, cross-
validation folds = 5, maximum number of trees =
50000. To detect interactions between predictors, we
calculated Friedman's H-statistic. H is on the scale of
0-1 with higher values indicating larger interaction
effects.

Model predictions were evaluated by calculating
the area under the curve (AUC), a metric used to
assess how well the model correctly classifies true
positives while minimizing false positives. AUC is a
percentile measure for the area under a receiver
operating characteristic (ROC) curve. ROC curves
are drawn by varying the threshold for classification,
the probability for classifying a data point into a
binomial class and observing changes in the true
positive rate (sensitivity) and false positive rate (1 —
specificity). An AUC of 0.5 indicates that the predic-
tive accuracy is no better than a coin toss, whereas a
value of 1 or 0, respectively, indicates that the model
makes the correct or incorrect prediction every time.

In our analysis, AUC is reported in 3 different
ways. First, AUC was determined on the training
data that is used to calibrate the model. This training-
AUC is used for calibration and provides a measure
on how well the model fits the provided data. Sec-
ond, cross validation AUC (cv-AUC), the mean AUC
value from k-fold cross validation during model
training, was calculated to provide an estimate for
how the model is expected to perform on data with-
held during training. Finally, test-AUC was deter-
mined using testing data (a randomly selected 20 %
of initial data) that was withheld from the model prior
to model training. The test-AUC verifies the estimate
of cv-AUC. Both cv-AUC and test-AUC also help
measure model overfitting during calibration. Model
overfitting occurs when the model estimates too
much of the provided training data and fails to gen-
eralize to previously unseen data.

3. RESULTS

Overall, our results indicate that a set of colony and
environmental predictors provide sufficient informa-
tion for predicting WPX occurrence in Acropora
palmata colonies (training-AUC = 0.928). The AUC
values generated by trained models on data withheld

Soluble reactive phosphorous -

Soluble reactive phosphorous -

for testing purposes were similar to those obtained
from k-fold cross validation (cv-AUV = 0.878 and
test-AUC = 0.839). Low variation between cv-AUC
and test-AUC values suggests that model over fitting
was minimal.

Individual colony size was the single most impor-
tant predictor of WPX events (relative importance =
44.1%, where the percentage score refers to im-
provement in model when the predictor is included,
weighted by how often the covariate is included in
the set of trees) (Fig. 3). The 5 next most important
predictors were dissolved oxygen saturation (11.7 %),
dissolved inorganic nitrogen (DIN, 4.7%), total
organic carbon (TOC, 3.6 %), salinity (3.3%), and
15 d minimum wind speed (2.5 %), with several other
environmental predictors in the top 15 of over 80
predictor variables, including 7 d minimum wind
speed (2.4 %) and HotSpot (1.1%) (Fig. 3, Table 1).
No particular reef or time of study predicted WPX

Colony size

Dissolved oxygen saturation -
surface

Dissolved inorganic nitrogen -
surface

Total organic carbon -
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Fig. 3. Relative importance of biotic and abiotic predictors of
white pox disease affecting Acropora palmata in the Florida
Keys. Predictors shaded in black have an importance score
>2.4%. Predictors with a score less than 1% are not shown
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risk (Table 1). Because inter-reef distances are large
(10s to 100s of km) relative to inter-colony distances
within a reef (m), the fact that reef membership was
unimportant in the model suggests that spatial auto-
correlation is negligible. Pairwise combinations of
top 6 predictor variables did not identify any strong
interactive effects of predictors on WPX risk
(Table 2). Model accuracy was relatively high (AUC
=0.91).

Colony size is positively associated with WPX
risk (Figs. 4a & S1 in the Supplement; www.int-res.
com/articles/suppl/d154p015_supp.pdf), with small
colonies (<500 cm?) experiencing a low probability of
WPX (0-0.1) and larger colonies a high probability
(up to 0.45). Of the top abiotic predictors dissolved
oxygen saturation, DIN (the combination of nitrate,
nitrite, and ammonium) (Caccia & Boyer 2005), and
salinity are negatively associated with WPX risk,
whereas TOC is positively associated with the dis-
ease (Fig. 4b-e). Minimum wind speed over 15 d is
positively associated with WPX risk (Fig. 4f), but the
minimum wind speed over shorter (7 d) and longer
(30 d) windows is non-monotonically associated with
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Table 2. Pairwise comparisons of top 6 predictors (see
Table 1) of white pox disease (WPX) risk did not identify any
greater-than-additive drivers of WPX risk. Friedman's H-
statistic is on the scale of 0—1 with higher values indicating
larger interaction effects. Water quality parameters were
sampled from the surface (S) or the bottom (B) of each site.
DIN: dissolved inorganic nitrogen; DO: dissolved oxygen;
TOC: total organic carbon

Predictor 1 Predictor 2 Friedman's H-statistic
coral.area do.s 0.20
coral.area din.s 0.09
coral.area toc.b 0.15
coral.area sal.s 0.13
coral.area wind_val_15 0.06
do.s din.s 0.09
do.s toc.b 0.04
do.s sal.s 0.11
do.s wind_val_15 0.07
din.s toc.b 0.04
din.s sal.s 0.02
din.s wind_val_15 0.02
toc.b sal.s 0.01
toc.b wind_val_15 0.02
sal.s wind_val_15 0.10
Q025 S
& 020 750 @
S 5
o 015 500 5
2 >
= 0.10 250 %
©
9 005 0 >
a 20 40 60 80 100 o
Dissolved oxygen saturation (%) -
A
@ 8
© RS
é 0.18 d 200 g
o 01 150 &
> 0.14 100 g
= 012 50 o
e} c
© 0.10 [0}
Q 0 =]
2 1 2 3 g
Total organic carbon (mg I =
: 5
© 250 .9
0]
g 0.16 f 200 3
s 0.14 150 2
>, 100 2
£ 012 3
2 50 c
© (0]
a 0.10 0 g_
o 0 1 2 3 4 5 0
o I

Wind speed - 15 day window (m s77)

Fig. 4. Partial dependence plots of the 6 most important predictors of white pox disease affecting Acropora palmata in the Florida
Keys. In each subplot, line shows the probability of disease (left y-axis) as a function of the predictor value (with other predictors
held constant at their average value); histogram (right y-axis) shows the frequency of the predictor value in the dataset
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WPX risk; specifically, with risk being highest at low
and high wind speeds, and reduced WPX risk at
moderate wind speeds (Fig. S2).

Colonies were not typically affected many times,
and the frequency of repeated disease signs on a
colony diminished with the number of disease
events. Of the 123 colonies that were ever diseased
during the study period, 48 were affected only once,
26 only twice, and 10 only 3 times, whilst the remain-
ing colonies each had a higher instance of disease.
Collectively, colonies affected rarely (1-3 times) rep-
resent over 68 % of all colonies, and approximately
72% of consecutive observations of a colony were
heterotypic regarding disease status. Average num-
ber of disease observations per colony, conditional on
being affected at least once, was low (mode = 1,
median = 2, mean = 3.5). Given that colonies were
surveyed 7.3 times on average, these data indicate
that temporal autocorrelation of disease at the colony
level was low.

4. DISCUSSION
4.1. Acropora palmata data

Our model shows that A. palmata colony size was
the most informative predictor for WPX in the
FKNMS (Fig. 3). A positive relationship for colony
size and WPX has also been reported for the A.
palmata population in St. John, US Virgin Islands
(Muller et al. 2014, Muller & van Woesik 2014). Host
colonies in our study ranged in area from 5 cm? to
20015 cm? WPX risk increased with colony size
and was greatest (0.3-0.35) for colonies exceeding
4500 cm? (Fig. 4a). A. palmata colonies of this size are
in the largest size class (class 4, >4000 cm?) for con-
temporary populations of this species in the FKNMS
and are the size class most likely to reproduce sexu-
ally (Vardi et al. 2012).

Colony size is an important factor for other white
diseases of corals including white plague disease
(WP) in the Caribbean and white syndromes (WS) in
the Indo-Pacific. Host size and disease risk are posi-
tively correlated for WP affecting Orbicella faveolata
and Colpophyllia natans (Nugues 2002) and for WS
affecting multiple genera (Caldwell et al. 2020,
Greene et al. 2020). Caribbean cases of black-band
disease (BBD) affecting multiple host species and
aspergillosis affecting Gorgonia spp. sea fans (Kim &
Harvell 2002, Voss & Richardson 2006a) are also pos-
itively correlated with host size, as are growth anom-
alies affecting A. cytherea (Irikawa et al. 2011) and

multiple species of Porites and Montipora (Caldwell
et al. 2020) in the Indo-Pacific.

The link between host size and signs of host stress
conforms to the understanding of coral life histories.
Partial mortality is inherent to the growth of corals
(Mercado-Molina et al. 2018), and many drivers of
mortality are size-selective (Madin et al. 2014). Thus,
large coral colonies are more prone to partial mortal-
ity than small coral colonies, and small colonies are
more likely to die than are large colonies (Hughes &
Jackson 1985, Babcock 1991, Vardi et al. 2012). This
disproportionate partial and whole colony mortality
occurs in both the absence of and in the presence of
detectable stressors, including disease.

Our results for the FKNMS and those of Muller and
colleagues for the US Virgin Islands (Muller et al.
2014, Muller & van Woesik 2014) indicate that large
A. palmata colonies are more likely to show partial
tissue loss caused by WPX than are small colonies
(Fig. 4a). Partial tissue loss reduces coral colony size
and often leads to colony fission, increasing the num-
ber of smaller individuals in a population. Small indi-
viduals may have lower growth (Mercado-Molina et
al. 2018) and lower or no reproduction (Hughes &
Jackson 1985, Bright et al. 2013) than large colonies
but may be as old as or older.

Colony age and senescence are hypothesized to
influence the size-dependent nature of signs of
reduced coral health, including WPX (Kim & Harvell
2002, Irikawa et al. 2011, Muller et al. 2014, Muller &
van Woesik 2014). In A. palmata the base of a colony
is older than the branches and the age of the individ-
ual polyps decreases toward the distal branch tips
(Meesters & Bak 1995). Thus A. palmata shows the
age-size correlation documented for other coral spe-
cies (Hughes & Jackson 1985), namely that larger
branching colonies are of a greater age than some of
the smallest colonies. Other small colonies, however,
are older individuals that have been reduced in size
by fragmentation or partial mortality (Babcock 1991,
Miller et al. 2007, Vardi et al. 2012).

The smallest A. palmata colonies in the FKNMS
(<100 cm?, size class 1) are unlikely to be young,
as sexual recruits are rare (Williams et al. 2008, van
Woesik et al. 2014). Small A. palmata colonies in the
FKNMS are often remnants or fragments of large
colonies (Williams et al. 2014, Vardi et al. 2012). Distin-
guishing older remnants and fragments from young
recruit colonies is difficult (Bright et al. 2013) without
genotyping or long-term monitoring of individuals
(Miller et al. 2007). A. palmata populations in the
FKNMS have very low genotypic and genetic diversity
(Baums et al. 2006, Williams et al. 2014), indicating
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that asexual fission is the dominant mode of reproduc-
tion for populations in this region. Sexual recruitment
in A. palmatais reduced under elevated seawater tem-
perature (Randall & Szmant 2009), increasing the like-
lihood that as climate warms, the small size classes in
A. palmata populations will be dominated even further
by remnants, not recruits. These populations of older,
clonal individuals may be considered as having ele-
vated risk for WPX. If age is the factor that controls the
correlation between WPX risk and colony size, then
we would expect to see all size classes similarly af-
fected by WPX; instead, our model shows an increased
risk of disease for large colonies (Fig. 4a).

It is important to consider that the simultaneous dis-
tal and proximal onset of WPX signs may signal that
this disease is not correlated with colony age. WPX is
one of 2 white diseases that have contributed to the
Caribbean-wide collapse of A. palmata populations;
WBD is the other (Sutherland et al. 2004). WBD be-
gins as a proximal band of tissue loss that progresses
upward toward the branch tips (Gladfelter 1982). This
proximal initiation of tissue loss associated with WBD
indicates that polyp age and senescence may play a
role in this disease (Meesters & Bak 1995). WPX
differs from WBD in that the disease manifests as focal
to multifocal lesions that occur all over the coral
colony from colony base to branch tips, affecting both
older and younger regions of the colony simultane-
ously. This pattern of tissue loss combined with de-
creased risk for the disease for colonies in the smaller
size classes (size classes 1-3) (Vardi et al. 2012) hints
that the greater WPX risk for large colonies may be
surface area, not age, dependent.

Large colonies provide more surface area over
which partial mortality can occur and specifically for
coral diseases, may provide a larger area of living tis-
sue for a waterborne pathogen (Kim & Harvell 2002,
Muller et al. 2014, Muller & van Woesik 2014) or a
vector to encounter. Large colonies concentrated in
high density on the reef would be especially vulera-
ble to infection from waterborne pathogenic micro-
organisms. The bacterial pathogen Serratia mar-
cescens causes acroporid serratiosis, the one form of
WPX for which a pathogen has been identified, and it
is hypothesized that this pathogen may be water-
borne or vector-borne (Patterson et al. 2002, Suther-
land et al. 2011). The coral-eating snail Coralliophila
abbreviata may be a vector of the bacterium causing
acroporid serratiosis (Sutherland et al. 2010) and
other white diseases affecting Caribbean acroporids
(Williams & Miller 2005). Alternatively, sediment
may be a mechanical vector for WPX. Reef sediments
that originate from the feces of parrotfishes (Adam et

al. 2018) may act as a reservoir (Carlos et al. 2013,
Ezzat et al. 2019) of coral disease pathogens (Fig. 1b).
Sediments derived from feces accumulate on the
upper surfaces of A. palmata colonies and can cause
tissue loss where it collects (Williams & Miller 2012)
(Fig. 1c). A. palmata is inefficient at removing sedi-
ment from tissue surfaces and requires water motion
to accomplish the task (Bak & Elgershuizen 1976).
The correlation between WPX and reduced wind
speed shown by our model (Fig. S2) may be driven by
accumulation of biologically spread sediment on A.
palmata under conditions of low wind and reduced
water flow. At other times, correlation between WPX
and high wind speed (Figs. 4f & S2) may suggest
storm-driven sediment mobilization is also an impor-
tant transmission route.

4.2. Environmental predictors
4.2.1. Dissolved oxygen saturation

Dissolved oxygen saturation in surface waters had
the strongest influence of all the environmental fac-
tors in the model (Fig. 3), with a negative relationship
between oxygen saturation and WPX probability
(Fig. 4b). To our knowledge, there are no other stud-
ies linking elevated coral disease to reduced envi-
ronmental oxygen saturation levels. Dissolved oxy-
gen may not have a direct biological influence on
disease occurrence but rather may serve as a bio-
indicator for localized environmental stress (Altieri et
al. 2017). Low wind speed and elevated tempera-
tures, for example, would contribute to low dissolved
oxygen saturation in surface waters.

4.2.2. Wind speed

The minimum wind speed value during the 15 d
preceding A. palmata surveys was a top predictor of
WPX risk, closely followed by the same variable for
only the preceding 7 d (Fig. 3). In both cases, the
probability of disease was greatest at the highest
wind speeds (Figs. 4f & S2). For the 7 d window, WPX
was predicted under conditions of low (1-3 m s7})
and high (>7 m s7!), but less so at moderate wind
speeds (Fig. S2). NOAA defines doldrum-like wind
conditions at a threshold of <3 m s™! (Liu et al. 2012).
In doldrum conditions, a lack of sufficient down-
welling can lead to increased stratification in the
water column and reduced heat and gas exchange
(Fordyce et al. 2019). Additionally, flat seas minimize
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light scattering through surface turbulence leading
to increased light intensity experienced by corals and
their symbionts. Calm seas also favor pathogen set-
tlement on susceptible hosts, with or without a
mechanical vector (sediment or fish feces). High
wind speeds increase wave action, possibly facilitat-
ing waterborne pathogen dispersal between colonies
(Barott & Rohwer 2012), or agitate the water column
and suspended sediment particles, promoting scour-
ing of coral colonies by sediment (Fabricius 2005),
and thereby promoting disease.

While our study is the first to explicitly examine
wind speed and disease occurrence, other studies
have noted an association between disease signs and
low wind. Low wind conditions have coincided with
WPX (Rodriguez-Martinez et al. 2001) and with WBD
affecting A. cervicornis (Kline & Vollmer 2011), and
with several other coral diseases in the Indian Ocean
(Onton et al. 2011). Further, high local temperatures
and coral bleaching are widely reported to be associ-
ated with doldrum conditions (Hendee et al. 2001,
Maina et al. 2008, Barnes et al. 2015, Raymundo et al.
2017).

Low wind speed reduces water turbulence, thereby
promoting greater water clarity and therefore also
increasing solar and UV penetration. Low turbulence
can also allow the persistence of elevated SST in
shallow water and decrease oxygen exchange from
corals to the surrounding seawater (Hendee et al.
2001, Maina et al. 2008). Doldrums thus cause a com-
bination of stressors that have been documented to
increase the incidence and severity of bleaching
(Nakamura & van Woesik 2001, Finelli et al. 2006,
Raymundo et al. 2017) and are also likely to facilitate
or exacerbate disease. Solar irradiation, for example,
increases the rate of progression of WP affecting C.
natans in the British Virgin Islands (Muller & van
Woesik 2009) and of BBD affecting Montipora hisp-
ida in Australia (Sato et al. 2011). Our model found
that light attenuation and light availability had a low
relative influence on WPX risk (Fig. 3, Table 1). Sim-
ilarly, Muller & van Woesik (2014) found no correla-
tion between light intensity and WPX in the US Vir-
gin Islands. The correlation between wind speed and
WPX revealed by our model may instead be driven
by water flow, elevated temperature, or a combi-
nation of the two. Periods of elevated SST are often
associated with periods of lower wind speeds within
the FKNMS (Hendee et al. 2001, Barnes et al. 2015).

Evidence from multiple studies and many loca-
tions, including the FKNMS, has firmly established
the association between elevated temperatures and
prevalence of WPX (Patterson et al. 2002, Muller et

al. 2008, Muller & van Woesik 2014, Bright et al.
2016), and temperature has emerged as an important
factor in the seasonal occurrence of this disease
(Rogers & Muller 2012, Sutherland et al. 2016). In our
study, however, maximum temperature anomaly
(HotSpot) and the measure of accumulated heat
stress (DHW) ranked low in importance as direct risk
factors for WPX (Fig. 3, Table 1). Furthermore, WPX
was actually negatively associated with HotSpot,
indicating that the absence of anomalously high tem-
perature is associated with this disease in the Florida
Keys rather than elevated temperature. This poten-
tially counterintuitive outcome is, however, consis-
tent with recent analyses of longitudinal coral dis-
ease observations from other global reef locations
(Caldwell et al. 2020, Greene et al. 2020) and war-
rants further research to consider alternative under-
lying mechanistic explanations.

4.2.3. Total organic carbon

TOC in bottom waters aided in discriminating ap-
parently healthy and diseased coral status (Fig. 4d).
WPX probability shows a positive association with
TOC that supports a correlation between elevated
carbon and WPX. TOC levels in the FKNMS are typ-
ically low (Fig. 4d) with median values of 1.41 mg 17
(Briceno et al. 2013). Our model shows that WPX risk
increases when TOC in bottom waters exceeds this
average condition and that disease probability is
greatest (0.185) when TOC exceeds 2.0 mg 17!
(Fig. 4d). Two experimental studies investigated the
effects of enrichment with organic carbon on the
health of fragments of 3 species of corals collected
from Caribbean Panama (Kuntz et al. 2005, Kline
et al. 2006). Orbicella annularis (Kline et al. 2006),
Agaricia tenuifolia, and Porites furcata (Kuntz et al.
2005) demonstrated WP-like patterns of tissue loss
and whole coral fragment mortality following carbon
addition. Our results for WPX agree with these con-
trolled studies (Looney et al. 2010) and show that
WPX signs are present in the FKNMS at TOC levels
(<4 mg 1"!; Fig. 4d) lower than those shown to trigger
WP-like signs in the laboratory (5 and 25 mg 17}
(Kuntz et al. 2005, Kline et al. 2006).

4.2.4. Dissolved inorganic nitrogen
DIN in surface waters was implicated as a correlate

of WPX (Fig. 3) and showed a negative association
with disease risk (Fig. 4c). Like TOC, DIN is typically
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low in the FKNMS (Fig. 4c), with median values less
than 0.007 mg 17! (Bricefo et al. 2013). Our model
shows that WPX probability is highest (>0.3) at these
ambient values (<0.003 mg 17!) for DIN (Fig. 4c). This
finding suggests a correlation between WPX risk and
low DIN. The DIN values used in our model only
rarely exceeded the 0.75 pM (0.01 mg 1!) US EPA
target for healthy coral reefs in the FKNMS and even
less frequently exceeded the 1.0 uM (0.014 mg 17}
threshold for reef eutrophication (Lapointe et al.
2019) (Fig. 4c). Our study, thus, does not address the
role of elevated DIN in WPX risk. Under laboratory
conditions, elevated concentrations of ammonium
increase the survival in seawater of S. marcescens
PDL100, a confirmed causal agent of WPX (Patterson
et al. 2002), but at levels greater than those encoun-
tered environmentally in our study (Looney et al.
2010). In fact, no experimental studies to date have
investigated the impact of nutrient enrichment on
WPX prevalence or severity.

Field assessments that address the contribution of
nitrogen to coral disease risk are limited (Kim &
Harvell 2002, Kuta & Richardson 2002, Voss &
Richardson 2006b) but include a recent long-term
study (1984-2014) conducted at Looe Key, one of the
7 reefs included in our study (Lapointe et al. 2019).
This study overlaps with our study both temporally
and spatially and identifies a positive correlation
between DIN and living coral cover at Looe Key.
Lapointe et al. (2019) hypothesize that DIN enrich-
ment contributes to risk of coral diseases at this reef.
While the average values for DIN measured by
Lapointe et al. (2019) for each decade of their study
(0.51 £ 0.02 pM in the 1980s to 1.21 + 0.08 pM in the
2010s) fall within the range of DIN values found in
our study (0.08-2.06 nM), their maximum measured
values for DIN (2.68 pM in the 1980s to 7.28 nM in
the 2010s) were much higher than any DIN value
included in our model (Fig. 4c). These acute DIN
stressors are proof of nutrient enrichment at Looe
Key and may account for the link between DIN
enrichment and the 30 yr decline in coral cover
reported for this reef (Lapointe et al. 2019).

Other field investigations indicate variable re-
sponses between higher DIN and several disease
parameters. For instance, Kim & Harvell (2002)
investigated the effect of water quality in the preva-
lence and severity of aspergillosis affecting Gorgonia
ventalina at 5 reefs in the FKNMS using field surveys
and a subset of the same water quality data (June
1997) used in our model (Boyer & Jones 2001). For
aspergillosis, higher DIN values (0.70-1.0 pM), ex-
ceeding the 0.75 nM target for healthy reefs in the

FKNMS, did increase the severity but not the risk
(prevalence) of the disease (Kim & Harvell 2002).

4.2.5. Salinity

Below average salinity (<36 ppt) in surface waters
was a top predictor of WPX (Fig. 3). Reduced salinity
has been reported as a driver for just one other coral
disease, atramentous necrosis (AtN) affecting Mon-
tipora spp. in the GBR (Haapkyla et al. 2011). AtN
risk increases during the rainy season and is corre-
lated with both reduced salinity and elevated organic
carbon associated with terrestrial runoff (Haapkyla
et al. 2011). WPX risk, too, is correlated negatively
with salinity and positively with TOC (Fig. 4d-e).
Our model did not, however, identify a strong inter-
active effect between salinity and either of 2 top
nutrient predictors (TOC and DIN) (Table 2).

In both Florida Bay and the Florida Keys, salinity is
controlled by terrestrial runoff. This freshwater input
is a combination of surficial and subterranean aquifer
flows of water moving southward from below Lake
Okeechobee (Lee et al. 2002). Within both Florida
Bay (Brand 2002) and the Florida Keys (Lapointe et
al. 2002) nitrogen content is tightly correlated with
patterns of rainfall and terrestrial runoff. Even after
the terrestrial salinity signal disappears in the full
oceanic salinity of offshore coral-reef waters, the ter-
restrial nitrogen signal can remain (Brand 2002,
Lapointe et al. 2019). On Looe Key, altered stoichio-
metry involving DIN:SRP ratios correlated strongly
with disease and bleaching events, including within
A. palmata populations, even in the absence of ab-
normally elevated temperatures (Lapointe et al.
2019). This is consistent with our findings for physio/
chemical drivers of elkhorn disease in the FKNMS. It
seems likely that it is not lowered salinity per se that
is a driver of WPX, but rather either the pollutants or
the terrestrial microbes that this terrestrial-influ-
enced water brings with it.

4.3. Biotic and abiotic parameters affect the
microbial community of A. palmata

The key to understanding WPX risk may lie largely
in the composition of the microbial community re-
sident in A. palmata host surface mucus layer (SML)
or tissues. Our model implicates 2 environmental
drivers that have been directly (elevated organic car-
bon) or indirectly (low or high wind speed) linked to
alterations of the host microbiome. Several studies
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hypothesize that coral-associated microbes are nutri-
ent limited (Bruno et al. 2003, Voss & Richardson
2006b, Kaczmarsky & Richardson 2011). Investiga-
tions with a confirmed WPX pathogen, S. marcescens
PDL100 (Krediet et al. 2009, Looney et al. 2010) and
other coral pathogens (Kline et al. 2006, Smith et al.
2006, Haapkyla et al. 2011) indicate that pathogen
fitness is benefited by enrichment with organic car-
bon, lending experimental support to our model
results linking elevated organic carbon to WPX risk.
These microbial blooms in the host SML can lead to
hypoxia at the surface of coral tissue, triggering tis-
sue loss that leads to partial or whole colony mortal-
ity (Smith et al. 2006). The S. marcescens pathogen
and organic carbon may originate from a common
source, sewage contamination from land (Kline et al.
2006, Sutherland et al. 2011). Alternatively, organic
carbon may be released from macroalgae resident on
the reef (Smith et al. 2006, Dinsdale et al. 2008). Like
sewage, macroalgae may serve as a source of dis-
solved organic carbon and also as a reservoir of coral
pathogens (Nugues et al. 2004, Barott & Rohwer
2012).

Elevated organic carbon and variations in wind
speed (Ritchie 2006, Looney et al. 2010, Lee et al.
2017) are both correlated with increased abundance
of candidate WPX pathogens within the genus Vibrio
(Kemp et al. 2018). A commensal-to- Vibrio microbial
community change has been documented from SML
collected from WPX lesions (Kemp et al. 2018). No
single Vibrio species dominates the communities iso-
lated from lesions, and thus it is likely that the Vibrio
spp. bloom is opportunistic and secondary to infec-
tion by a primary pathogen(s) (Kemp et al. 2018).
Low wind speed may play an indirect role in this
switch from a beneficial microbial community to one
dominated by potentially pathogenic Vibrio spp.
because the change occurs under conditions of ele-
vated seawater temperature (31°C) in combination
with low water flow (Lee et al. 2017). In contrast,
when seawater temperature is high and water flow is
also high, microbial communities are stable, suggest-
ing that high water flow prevents proliferation of
pathogenic microbes (Lee et al. 2017). Water flow is
in part determined by wind, with low wind reducing
water flow on the reef, and our model shows an
increased risk of WPX with persistent low wind
(Fig. S2). The increased risk of WPX associated with
high wind speed (Figs. 4f & S2) may be driven by
high water flow that facilitates A. palmata host expo-
sure to a pathogen directly from the water flowing
over the coral or indirectly via scour by a sediment
vector (Caldwell et al. 2020).

The primary predictor of WPX risk, colony size,
may also be explained by the microbial community
resident in the SML or tissues of a host colony. Exam-
ination of the diversity of microbial communities
based on colony age, irrespective of colony size, is
limited to one study with one coral species, Porites
lutea, and shows no evidence for age-associated
changes in the microbial community (Wainwright et
al. 2020). This study further supports our reasoning
that the positive correlation between colony size and
WPX identified by our model is not a consequence of
colony age, but rather of colony surface area. Disease
signs caused by a commensal-to-pathogenic bacteria
shift would require a higher colony surface area, not
a greater colony age. The potential for a surface
area-dependent disease state is supported by evi-
dence, from multiple Indo-Pacific coral species, of
microbial community shifts associated with in-
creased coral colony size (Williams et al. 2015, Pol-
lock et al. 2018).

5. CONCLUSIONS

Our model shows that colony surface area is the
most important predictor for WPX in the FKNMS and
that large colony size and environmental factors of
dissolved oxygen, DIN, TOC, salinity, and wind
speed drive this disease. Our model can be used to
forecast WPX outbreaks and to make predictions to
assist with management of Acropora palmata popu-
lations in the FKNMS and may be useful regionally.
For our model to be most effective, population demo-
graphics are needed. Annual monitoring is sufficient
for determining size class of individuals in a popula-
tion, but more frequent surveys are necessary to
ground-truth the model predictions and to track the
age and health status of individual colonies (and con-
firm that WPX is dependent on the surface area, not
the age, of the host colony). If instead, colony age
drives the size dependence in WPX, then large
colonies and remnant small colonies will show WPX
signs more frequently than small sexual recruits. A
long-term monitoring program that follows popula-
tions to capture recruitment and fission, and thus
colony age, is necessary to determine if WPX suscep-
tibility increases with colony age. Such a program
should include investigations of select SML from
WPX-affected and unaffected tissues and colonies to
elucidate environmental drivers of WPX at the micro-
bial level.

Management strategies for A. palmata should be
informed by data on environmental drivers that are
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both predictable and diagnostic of threats to this spe-
cies. Wind speed, for example, is somewhat pre-
dictable as it can be forecast over short time scales of
days or weeks (e.g. Windfinder.com) and can also be
tracked in real-time. Monitoring efforts immediately
preceding, during, and after periods of low or high
wind (especially during high temperature) will help
to clarify the role of wind, and the correlated dis-
solved saturated oxygen levels at the surface, in dis-
ease events. Additionally, elevated TOC may indi-
cate the presence of macroalgae-rich reefs and
signal a wide-spread coral die-off in the vicinity.
(Kline et al. 2006, Smith et al. 2006, Dinsdale et al.
2008). Though most abiotic factors identified by our
model as drivers of WPX are beyond the immediate
control of managers, poor water quality, including
introduction of organic carbon from land, is a local
stress factor that can, and should, be managed and
controlled (Kruczynski & McManus 2002).

The continuing global decline of coral reefs has led
to the call for new perspectives to help define realis-
tic expectations for managing and mitigating coral
loss under climate change (Anthony 2016). One
novel approach calls for identifying reefs that have
‘escaped’ the negative consequences of climate
change (Cinner et al. 2016). These outlier reefs may
be defined, for example, as those with exceptionally
high biomass following a common stressor event,
such as bleaching (Cinner et al. 2016). These resilient
reefs can then be further studied to identify biotic
and abiotic features that differentiate coral survivor-
ship on them from survivorship patterns on reefs that
suffered higher losses during stressor events (Guest
et al. 2018). We recommend adding disease pre-
valence to the definition of resilient reefs. By gather-
ing information on disease prevalence, severity, and
lethality, our predictive framework will generate
baseline expectations for disease occurrence at par-
ticular locations and times as a function of population
structure and environmental conditions. Addition-
ally, this approach can help to identify at-risk reefs
that can then be targeted for strategic, pre-emptive
field studies that permit the acquisition of pre-out-
break microbiome samples (Kemp et al. 2015), cap-
tured at the onset, not just in the aftermath, of an epi-
zootic (Burge et al. 2016), and identify reefs for
application of beneficial microorganisms or probi-
otics (Peixoto et al. 2021).
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