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Abstract

We present analysis of neuronal activity recordings from a subset of neurons in the medial prefrontal cortex of rats before and after the
administration of cocaine. Using an underlying moderm Hopfield model as a description for the neuronal network, combined with a
machine learning approach, we compute the underlying functional connectivity of the neuronal network. We find that the functional
connectivity changes after the administration of cocaine with both functional-excitatory and functional-inhibitory neurons being
affected. Using conventional network analysis, we find that the diameter of the graph, or the shortest length between the two most
distant nodes, increases with cocaine, suggesting that the neuronal network is less robust. We also find that the betweenness
centrality scores for several of the functional-excitatory and functional-inhibitory neurons decrease significantly, while other scores
remain essentially unchanged, to also suggest that the neuronal network is less robust. Finally, we study the distribution of neuronal
activity and relate it to energy to find that cocaine drives the neuronal network towards destabilization in the energy landscape of
neuronal activation. While this destabilization is presumably temporary given one administration of cocaine, perhaps this initial
destabilization indicates a transition towards a new stable state with repeated cocaine administration. However, such analyses are
useful more generally to understand how neuronal networks respond to perturbations.

Significance Statemen

Cocaine dependence affects the brain in various ways, including altering prefrontal cortex activity. The researchers construct a
unique computational method by combining in vivo calcium imaging, the modern Hopfield model, and machine learning techniques
to examine the effects of cocaine on the brain’s neuronal network in the medial prefrontal cortex of rats. They use this method to
identify changes in network functionality following drug administration. Their findings indicate that cocaine disrupts network robust-
ness and leads to decreased network stability, as demonstrated by changes in functional neuronal network characteristics and in the
energy landscape for neuronal activity. These alterations contribute to our understanding of the initiation of cocaine dependence.
This study therefore provides crucial insights into the neurobiological underpinnings of substance abuse, potentially informing better
prevention strategies and therapeutic interventions.

Introduction

The intricacies of a brain’s neuronal network drive its functional-
ity. The characterization of such a network spans multiple scales
ranging from the scale of genes to the scale of the whole brain. For
instance, specific genes have been identified as playing a role in
brain size and shape and, more recently, in long-range connectiv-
ity (1-6). At the brain scale, on other hand, there exists the nearly

recently revealed how a neuronal circuit involved in fruit fly navi-
gation empowers a fly to perform vector addition (9). How such
findings at the different scales can be integrated into one, more
complete picture to understand the structure-function relation-
ship in the brain is a current avenue of investigation (10, 11).

At the mesoscale, in brains with smaller numbers of neurons,
such as the Caenorhabditis elegans or the fruit fly, determining

universal finding of a small-world network architecture in which
most nodes can be reached by traversing some number of edges
(7, 8). Others focus on particular neuronal circuits at the meso-
scale to decode a specific functionality. For instance, it was

neuronal circuits is feasible. In brains with larger numbers of neu-
rons, determining such neuronal circuits is not as feasible. And
yet, with the advent of new imaging techniques in freely moving
animals, such as rodents, to record individual neurons deep inside
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the brain (12), one is compelled to assess the functional contribu-
tion of a collection of individual neurons forming a subnetwork.
Here, we will study such a subnetwork and characterize its re-
sponse to a particular perturbation. Our perturbation of choice
is the impact of cocaine on a neuronal subnetwork of the medial
prefrontal cortex.

Cocaine primarily impacts the brain’s limbic system by target-
ing dopaminergic pathways and increasing dopamine release
(13, 14). The limbic system is a network of multiple brain regions
including the prefrontal cortex and the nucleus accumbens,
which are brain regions closely associated with motivated behav-
ior and substance use disorders. The prefrontal cortex acts in a
top-down manner to inhibit the nucleus accumbens and suppress
motivated behavior (15). Therefore, stable function of the pre-
frontal cortex is critical to suppressing the abberant motivated be-
havior associated with substance dependence.

And so while the interconnectedness of the brain’s limbic, or
emotional, system is key to understanding the effects of cocaine
on the brain, here we focus on the medial prefrontal cortex. At
the scale of the prefrontal cortex, there is a reduction in the
prefrontal cortex volume in cocaine-dependent men that may
help explain deficiencies in prefrontal cortex functionality (16).
Moreover, electrophysiology has shown that the administration
of cocaine decreases neuron activity in the medial prefrontal cor-
tex (17). Additionally, from a neuronal network point of view, the
likelihood of developing dependence is associated with significant
hypoconnectivity in orbitofrontal and ventromedial prefrontal
cortical-striatal circuits-pathways critically implicated in goal-
directed decision-making (18). At smaller scales, there exists
some evidence of neuronal remodeling at the single neuron level
in the medial prefrontal cortex (19-21).

The impact of cocaine on the medial prefrontal cortex, in
particular, has relied heavily on functional magnetic resonance
imaging to understand the function of the region as a whole
(16, 22, 23) or in vitro or ex vivo analyses of gene or electrophysio-
logical profiles to understand single neuron alterations (19, 20, 24).
Our approach, on the other hand, utilizes a combination of estab-
lished and novel statistical mechanics methods to identify
cocaine-induced alterations in the prefrontal cortex network at
the mesoscale. Furthermore, we provide a new analytical tool
for in vivo calcium imaging data from freely behaving rodents as
well as show, for the first time to our knowledge, destabilizing ef-
fects within a statistical mechanics setting, of single-cocaine ad-
ministration on the prefrontal cortex.

We will focus in on the mesoscale by recording from a subset of
neurons in the medial prefrontal cortex of a living rodent before
and after cocaine administration. In particular, we will model
the neuronal subnetwork as a linearized version of a Hopfield
model (25, 26) and use a machine learning approach to obtain
its functional connectivity. Determining the functional connectiv-
ity map allows one to make powerful predictions about the dy-
namics of the network in terms of firing patterns in response to
external inputs, for example. In addition, it also allows one to per-
form network analysis (27, 28) with the additional information of
functional-excitatory and functional-inhibitory weights that are
typically not known when analyzing a structural connectome
from a network point of view (29). Many efforts are indeed under-
way to correlate the functional connectome with the structural
connectome (30). On the other hand, even in the absence of such
information, network analysis can identify subgraphs, which may
correspond to a neuronal circuit with a particular function (31).

At the mesoscale, one can also toggle between dynamical
approaches and statistical mechanics approaches, in which

time-averaged information may be useful. Dynamical approaches
with large groups of neurons are less feasible, at least in so far as
obtaining the functional connectivity of the group. As for prior
statistical mechanics approaches, much has been done to give
rich, new insights into brain functionality such as Refs. (32-34).
Moreover, statistical field theory approaches to neuronal net-
works also exist (35-37). We will use a mean field theory approach
in which spatial degrees of freedom are averaged out to obtain
new insights into a Landau-Ginsburg-like energy landscape for
the effects of cocaine on the brain.

The outline of the manuscript is as follows. First, we detail the
experiments. Then, we briefly outline both the theoretical frame-
work of the Hopfield model, applied to a neuronal network, as well
as a statistical mechanics approach. After presenting the results
of the analysis from both approaches, we conclude with a discus-
sion of the impact of our results.

Experiments

Animals

Male Sprague Dawley rats (n=3) (Harlan Inc, Houston, TX, USA)
aged 10 weeks were initially pair housed and maintained on a
diet of standard rat chow (Tekland Mouse/Rat Diet 7912, Harlan
Laboratories, Inc., Indianapolis, IN, USA) ad libitum in their
home cage. The colony was maintained on a standard 12-h light
cycle (6:00-18:00), 71 °F with relative humidity of 30-50%. All ani-
mal use was carried out in accordance with the Guide for the Care
and Use of Laboratory Animals and with the approval of the
University of Texas Medical Branch Institutional Animal Care
and Use Committee.

Virus injection

Following a 1-week habituation period, rats were anesthetized us-
ing 1-5% isoflurane and placed in a stereotaxic surgical apparatus
(Kopf, Tujunga, CA, USA). Each animal received a unilateral injec-
tion of 1.0 uL AAV1.Camk?2a.GCaMP6ém.WPRE.SV40 (Inscopix,
Mountain View, CA, USA) atarate of 0.2 uL per minute in the right
hemisphere medial prefrontal cortex (AP + 3.0 mm, ML + 0.5 mm,
DV —4.2 mm). The syringe remained in place for 5 min following
completion of injection before being removed and the wound
was closed. Rats were then placed in a clean cage on a heating
pad and followed postsurgically to ensure recovery. Animals
were habituated to daily handling following surgery.

Gradient-index lens implantation

Four to five weeks after virus injection, rats were anesthetized us-
ing a 1-5% isoflurane. Three stainless steel surgical screws (one
per skull plate) were inserted to provide stability for the lens.
After screws were placed, rats underwent stereotaxic implant-
ation of the ProView integrated gradient-index (GRIN) lens
(0.6mm x 7.3mm, Inscopix) (AP + 3.0, ML +0.5mm, DV -4.00
mm) in the medial prefrontal cortex. Excess space between the
craniotomy and the base of the lens was filled with adhesive ce-
ment (Metabond Quick! Adhesive Cement System, C&B), and
then the lens was secured to the skull with dental cement
(ACRAWELD Repair Resin, Henry Schein, Melville, NY, USA). A
baseplate cover (Inscopix) was installed to protect each lens until
imaging. Wound clips were applied, and the animals were placed
in a clean cage on a heating pad and monitored postsurgically to
ensure recovery. Following GRIN lens implantation, all animals
were single-housed to protect the implant and were handled
daily. Postmortem histology was done to verify targeting.
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Cocaine administration and calcium data
acquisition

Once animals had recovered from lens implantation surgery (>3
weeks), they were habituated to light restraint and attachment
of the miniscope (Inscopix). The miniscope was mounted and an-
imals were placed in the testing chamber for recording at least
three times prior to testing. The testing chamber was a 40 cm x
40 cm clear, Plexiglass container with cornbob bedding. During
these recording sessions, field of view and imaging settings were
optimized for each animal. All recordings were taken at 10 frames
per second. On testing day, animals were given 5 min following
miniscope attachment to acclimate to the chamber before record-
ing began. Imaging for each animal was optimized, with gains 2.0-
3.5 and LED power 0.5-1.3. Focal depths for each animal were
chosen to capture the maximum number of clearly defined neu-
rons in a single plane of recording. Thirty minutes of baseline cal-
cium activity was recorded, followed by a 5-min pause during
which animals received a single intraperitoneal injection of 15
mg/kg cocaine (National Institute of Drug Abuse, Research
Triangle Park, NC, USA) in sterile 0.9% NaCl before being returned
to the chamber. Thirty minutes of postadministration calcium
data was recorded. Then the session was ended, and the animal
was returned to its home cage.

Calcium activity trace extraction

Initial calcium imaging data processing was done using the
Inscopix Data Processing Software (Inscopix). Video processing
steps were the same for every animal. Videos were spatially down-
sampled by a factor of four. Motion correction utilizing the “mean
image” as a reference frame was done and CNMFe was used to
identify neurons (38). Manual validation of CNMFe identified neu-
rons was performed to ensure that all identified neurons used for
analysis contained a clear baseline for the 30 min and well-
defined, positive peaks of fluorescence. See Fig. 1. The calcium

i
| Post-cocaine
administration

Pre-cocaine
baseline '
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Fig. 1. Schematic and data from the experiments. Top: Implanted
microscope with image of neurons fluorescensing. Bottom:
Representative relative calcium intensity traces time prior and post
cocaine administration for several neurons; partially created from
Biorender.com.

traces are, therefore, AF/F, where F denotes relative fluorescence
intensity with respect to the baseline.

Mathematical framework

In this section, we lay down the mathematical basis for the ana-
lysis we will use to determine the effects of cocaine on the medial
prefrontal cortical network. We start from the modern Hopfield
model of a neuronal network to write the governing differential
equations of neurons’ firing states, and to construct the total en-
ergy of the system (26). We review how the classic Hopfield model
can then be extracted from the modern version (25) as well as ad-
dressits biological interpretation using a circuit analogy (39) for a
simpler version. Next, we construct the statistical field theory of
a neuronal network starting from the Hopfield model energy.
Within the context of both approaches, we discuss how the
firing behavior of the network can be influenced by external
stimuli.

Hopfield model of a neuronal network

The modern Hopfield Network (26) provides a mathematical de-
scription of the activity of neurons in the brain, which account
for functional features, such as memory. In this model, neurons
that are categorized as the feature neurons are referred to by
Latin indices and hidden neurons are referred to by Greek indices.
The feature neurons are the ones observed in an experiment and
the hidden neurons are the rest of neurons that actually exist
in the brain’s region of interest. The two categories of neurons
are linked by a matrix ¢, that represents the synaptic connectiv-
ity. The currents of the two types of neurons are denoted by V;
and h,. The output currents of the feature and hidden neurons
are denoted by g; and f, and are defined as

oL,

fi=2,

"o ()
oy

gi= P

where L, and Ly are the Lagrangians that define the model.
Therefore, f, and g; are the conjugate variable to the currents of
hidden and feature/visible neurons, respectively.

The full theory is described by two differential equations given
by

v,
=Y G- Vi i)
u

dh,
" dt/ = lzéi,ugi - h# + hfFXt‘),

(2)

{
1
come from the rest of neurons in the system, ris a time constant,
and the sums run over all the neurons. The Hamiltonian of the

neuronal network that drives its time evolution is given by

e[y -]

i=1

+ |:Z (hu - h;(zeXt'))fﬂ - Lh:| - Z Sifui

p=1 i

where V" and hff”‘) represent external currents that do not

Assuming that (i) the hidden neurons’ activities are rather fast
and (ii) they do not receive external currents, we can set 7, =
W =0 and solve Eq. 2 to remove the current of the hidden
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neuron current neuron potential

time

Fig. 2. RC model of a single neuron. a) The battery represents the voltage from all other neurons as well as any external signal. The switch S represents
charging and discharging cycles of the neuron. When a neuron consumes ATP to open the ion channels, S is connected to the battery. During the
discharge phase S moves from the battery to the other side to form a closed self-circuit. In this phase regardless of the incoming signals from the other
neurons, the neuron does not fire. b) The current and voltage cycle of a neuron after firing.

neurons in terms of the connectivity matrix and the output cur-
rent of the feature neurons, or

h/t = Zfipgv (4)

This solution to the hidden current can be substituted into f, in the
first line of Eq. 2 such that the differential equation of the current
of the feature neurons is self-contained.

At this point, we need to specify the form of the Lagrangian,
and, therefore, the Hamiltonian, to remove f, in terms of V; and
&, We choose a very simple form, namely,

Ju=2_86uY ()
J

This form leads to a simpler linear version of the classic Hopfield
model (25). As we will observe in the next section, this simpler lin-
ear version, as opposed to piecewise linear, readily approximates
the calcium intensity signal, which has a longer time constant
than action potentials. Given the longer time constant, combined
with experimental limitations, observing thresholding in individ-
ual neurons is difficult and so a simpler integrate-and-fire neuron
model for f, is more relevant here (40).

Ashasbeen done with the classic Hopfield model (25), as well as
other neuronal network models (40), it is helpful to construct a cir-
cuit diagram of the neuronal network. We focus on one neuron in
the network. More precisely, (i) a given neuron is replaced by a
capacitor C with a resistor R in parallel, (ii) the remainder of neu-
rons are replaced by a battery, and (iii) there exists a switch S that
alternatively connects and disconnects the battery to the given
neuron. Should the sum of functional-inhibitory and functional-
excitatory input signals for a given neuron is above a threshold,
the battery is connected to the given neuron to lead to a charging
phase followed by discharging phase in which the neuron does not
fire regardless of the input signal from the rest of neurons. When
the given neuron is disconnected from the battery S, it forms a
self-loop. The model is presented in Fig. 2 on the left. When the
battery is connected, the electric current across the membrane
of the neuron satisfies the following differential equation

Av; b
‘L'd—t1=—vi +V§ ),

b .
v =Y T+ v,
J

where r=RC with R being the resistance and C being the capaci-
tance, the subscript i refers to the neuron that is modeled as an

RC circuit, and ng) is the current of the battery. Index j refers to
all the rest of neurons while Tj represents the functional-
excitatory or functional-inhibitory signal that neuron j sends to
the neuron i. Using Egs. 2 and 5, T;; has the following form

Ty = Z Ciulju- )
m

It is this matrix, the functional connectivity matrix, that we will
extract from the experimental data to forecast the neuronal net-
work’s future, assuming there is no plasticity over some time
scale.

Right after neuron iis fully charged, the discharge state begins
when the switch S disconnects the battery and makes a self-loop
where the neuron satisfies the following differential equation

i

dt
Solving the two differential equations above, we readily find the
current of neuron iin a full cycle whose solution is graphically de-
picted in right figure in Fig. 2 and given by

-Vi. (8)

(b) —t/z
V7 (1-e , O0<t<T
vig={ " e

Vib) e, T<t

©)
where T refers to the time that the switch disconnects the battery.

Statistical properties of the neuronal network

It is also interesting to look beyond the microscopic details of the
system, in terms of a functional connectivity matrix, to quantify
its macroscopic properties as well in a statistical sense. In other
words, the emergent properties of the neuronal networks can
also be understood through studying the macroscopic behavior
of the system using techniques from statistical mechanics as
has been done previously (32-36).

We now consider fluctuations of the neuronal subnetwork, due
to the surrounding neurons and other smaller scale influences. As
this living system is not in equilibrium, we invoke a nonequili-
brium version of equilibrium statistical mechanics where Teg is
some effective temperature (41-43). Moreover, the unnormalized
probability of occurrence of a state with energy E, after integrating
out the hidden neurons in Eq. 3, is equal to e E, with the kg Ter = 1,
as it maximizes the entropy of the system (44-47). Therefore, the
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partition function, i.e. the weighted sum over all the energy states
reads

z=N"T] / dViexp( - E(V})),

where NV’ is the normalization factor.
We will assume that the energy fluctuates around some local
minimum Ey such that

E=Eo+]-V+-V- -G -V+O(V?) +Enov, (10)

N —

where V= (Vy, Vy, ..
external source to the system of neurons is represented by J, the
Greens’ function G is an unknown to be derived from data, and
the rest of the terms that do not depend on V are denoted by
Eno_v. Itis assumed that there exists at least one stable, local min-
imum. Of course, there may be multiple local minima that could
complicate our analysis. The partition function can then be re-
written in the following form

.) encodes the fluctuations of the system, the

Z=N/DVe-E’, (11)

where the new normalization factor A, the path integration [ DV,
and the energy E/

/DV = ]‘[/dvi, (12)

In principle, we should be able to use the partition function in Eq.
11, together with V, and study the collective behavior in this space.
In practice, due to the high dimensionality of V and the typically
small number of collected data points, we choose to define a dif-
ferent parameterization with lower number of features. In other
words, let us use a mean field representation for the average of
all the neurons firing, or neuronal activity, at a given time, i.e.

1V
mzNZv_o’ (13)

where V, is some reference voltage. Therefore, we reorganize the
sum in the partition function in Eq. 11 and define a new energy
E[m] such that

Z:N/Dm /Dvhﬂe*’m

(14)
=N/Dm g EMm,

where [DV|,, refers to a summation on all the possibilities in V

space that are constrained to a fixed m as defined in Eq. 13. Also,

J Dmrefers to the summation over all the values of m. Finally, giv-

en the above expansion about a minimum, we consider a similar

expansion in m, or

E[m] = ap + a1m + a;m? + asm> + azm* + O(m>), (15)

where g; are constants to be determined by data. Since these pa-
rameters determine the collective behavior of the neuronal net-
work in m space, or the mean field neuronal activity space, we
would like to learn see their variations by changing the experi-
mental condition. We will address this possibility in the Results

section. Interestingly, there has been a study quantifying the
mean activity of the system as a function of time using the
Wilson-Cowan equations (48, 49) for neuronal activity as a start-
ing point and then performing a similar expansion in the neuronal
activity (37). Here, we investigate the distribution of the mean ac-
tivity over time to assess its form. Moreover, as we will see, the
data are well characterized by the expansion.

Results

We now use the data collected from the medial prefrontal cortex
before and after cocaine injection as described in Experiments
section to find the free parameters of the mathematical model
in Mathematical framework section. First, we extract the synaptic
connectivity of the neurons for each of the two experimental con-
ditions. Next, we use the statistical field theory approach to pre-
dict the firing behaviors of the networks of each experimental
conditions when they receive planned external stimulus.

Inferring the functional connectivity of the
neuronal network from neuronal activity

Here, we derive the Tj connectivity matrices, and V?e’(t‘) in Eq. 6 by

using a machine learning based model for each of the two datasets
of Experiments section. From now on, we refer to the two experi-
mental conditions as “before the injection” and “after the injec-
tion.” It should be noted that we use a CamKII promoter for
GCaMP expression. While this promoter has been thought to be
specific to excitatory glutamatergic neurons, multiple lines of
study show this specificity is not present, particularly in cortical
circuits (50, 51). As such, we make no assumptions about the bio-
logical identity of individual neurons and use functional-
excitatory and functional-inhibitory to describe the directionality
of the inferred correlations between neurons. Therefore, the same
neuron can participate in both functional-excitatory and
functional-inhibitory relationships within the overall network.
Stated another way, a neuron’s calcium fluorescence may be
positively or negatively correlated with the fluorescent intensity
of other neurons in the network, which we describe as
functional-excitatory or functional-inhibitory, respectively.

To remove background noise from each neuronal trace, each
neuron, measurements of relative calcium intensity with a value
smaller than a threshold are set to zero. We determine this
threshold using the following method. We perform a sensitivity
analysis by varying the relative calcium intensity threshold par-
ameter. The procedure involves systematically changing this
threshold parameter within the range of (0-20) and observing
how these changes affect the coefficients and intercepts of the
time-series linear regression model to be described below. For
each threshold value, we select a random 70% subset of data, fit
the time-series linear regression model to this subset, and store
the model’s coefficients and intercepts. This process is repeated
for each threshold value, generating a series of models. After all
models are generated, we assess the stability of these models by
comparing the coefficients and intercepts across successive
threshold values. This comparison helps in understanding how
sensitive the model parameters are to the changes in the thresh-
old. The aim of this analysis is to identify a threshold that ensures
model robustness, meaning the model parameters do not signifi-
cantly change with small variations in this threshold. Fig. S2
shows the relative calcium ion intensity change of the first neuron
in the set over the timing of the experiment. Fig. S3 shows the re-
corded relative intensities of the entire set of neurons and the ap-
plied selections prior and post cocaine administration.
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Fig. 3. The functional connectivity matrix functional-inhibitory and functional-excitatory neurons prior a) and post b) cocaine administration. The T;
matrix is derived using a time series machine learning analysis of the calcium signaling in the neuronal network with negative weights representing
functional-inhibitory connections and positive weights representing functional-excitatory connections.

To begin to analyze the functional connectivity of the neuronal
network, we first time discretize Eq. 6 assuming that the RC time
constant is of order the time increment 6t such that

Vi(t+ot) = ZTUV (O + V). (16)

In this equation, we set 6t=0.1 s to be consistent with the fre-
quency at which neuron activity is recorded, the time scale at
which we explore the functional connectivity of the neurons.
This equation has the same form as the formulation of the super-
vised auto-regression time-series forecasting machine learning
method, where the value of a feature such as V; can be predicted
using its values in the past. To perform the learning analysis, we
prepare the predictor dataset X in a matrix form such that each
component holds a value of V; in a way that the rows refer to
the time of the feature in an ascending order and rows refer to
each of the neurons. We also prepare the response variables y
for each neuron separately. The latter is again the same V; values
for the corresponding neuron but at one time step later. Having
the X, and y variables, we use the LinearRegression model of
Scikit-Learn package (52) in python to perform the regression
and use the returned coefficients and intercept as the Tj and

V(EXt of that neuron. We repeat the process for all the neurons.
For each of the experimental conditions, we use 75% of the da-
taset for training the model, i.e. estimating T; and Vl(e’“'), and the
remaining 25% for testing the quality of the extracted parameters.
For the training part, we label the predicted value of Eq. 16 as V(t)

and define the error function to be

Err(Ty, V) = %i (V00 - v (t))z, (17)
d=1

where N is the number of neurons, Vi(t) is the observed value, and
d runs over the data points in the training dataset. Our estimation

for T and VESXL) are the solutions to the following equations

oErr
T
OErT

(ext) —
vy

(18)

We separately perform the minimization in Eq. 18 for prior and
post cocaine administration. The predictions of Eq. 16 are com-
pared with their corresponding true values in Fig. S1. The figure

indicates that the test error is small and our predictions are close
to the true values in most of the times. Our estimations for T;; and

VI for before and after cocaine administration are the outputs

of this minimization. In other words, the sum of inputs V),

from the hidden neurons, to the feature neurons is also estimated
through our minimization. We find that these are negligible with
respect to Ty matrices. The external inputs are shown in Fig. S4.

We then use the resulting estimate of T to understand how co-
caine administration may alter network function in the medial
prefrontal cortex. We see a significant change between the con-
nectivity matrices T of before and after cocaine administration.
The two matrices are shown in Fig. 3, where each of the 51 neu-
rons in the experiment are shown on both x and y axes. The
functional-excitatory and functional-inhibitory neurons, i.e. the
positive and negative components of Tj, for both of the experi-
mental conditions are shown in Fig. 3. A few conclusions can be
readily drawn from the figure. First, the number of the
functional-excitatory signals, shown by red colors, is close to
two times the number of the functional-inhibitory signals, shown
by the blue colors, in both of the experimental conditions. This re-
sult is in surprising agreement with biological observations of the
actual synaptic connectivity (53, 54). Second, the connectivity ma-
trices Ty are not symmetric, which is again in agreement with
neuroscience expectations (55-57). Third, the interneuron signal-
ing prior to the cocaine administration, when the neuronal net-
work is in its “normal” state, is less significant than the signaling
activities post cocaine administration. However, interestingly,
we observe that the changes in decreasing the functional weights
and increasing them are somewhat symmetric (see Fig. 4). This
finding suggests that, atleast at this scale of 50 neurons, the activ-
ity of the medial prefrontal cortex is modified beyond an overall
decrease in activity, as reported in electrophysiology measure-
ments on the scale of the brain region (16). Our analysis captures
more subtle changes in functionality of the neuronal network. It
should be mentioned that the functional connectivity matrix is
symmetric with 50 dimensions (neurons). Hence, its unique com-
ponents total 1,275. Additionally, the external voltage contribu-
tion introduces another 50 variables. Consequently, to resolve
all unknowns, a minimum of 1,325 data points is required. This
translates to an approximate need of at least 2.2 min of data, tak-
en at 0.1 s intervals, for a comprehensive analysis, providing a
rough estimate for the lower bound on the amount of data
required.
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that there both increases and decreases in the weight connections. b) The changes in T; prior and post cocaine.

To obtain further insightinto the change in functional connect-
ivity before and after cocaine administration, we performed con-
ventional network analysis using the python package NetworkX.
In NetworkX, the diameter of a graph is defined as the maximum
eccentricity among all pairs of nodes in the graph. The eccentri-
city of a node is the maximum distance from that node to any oth-
er node in the graph. For weighted graphs, the distance between
nodes is defined as the sum of the weights along the shortest
path between them. The diameter function in NetworkX takes
this into account when working with weighted graphs.
Moreover, the betweenness centrality for a node v is defined as
the fraction of all shortest paths, between all possible node pairs,
in the graph that pass through v. For a weighted graph, the short-
est path between a given pair is the sum over the weights of the
edges along that path.

We find that for both the functional-inhibitory neurons and the
functional-excitatory neurons that the diameter of each respective
graphs increases after the cocaine injection. To be specific, the
diameter of the functional-inhibitory graph is 0.31 before cocaine
and 0.62 after. For the functional-excitatory neurons, the increase
is even more significant with 0.46 before and 1.38 afterwards. A
lower graph diameter typically correlates with a more robust graph
in that it is a more tightly connected graph. Therefore, cocaine has
diminished the robustness of both the functional-excitatory and
functional-inhibitory network functionality. While these reported
graph diameter increases are for one animal, the trend is similar
for the remaining two animals. To be specific, the graph diameter
of the functional-inhibitory graph is 0.18 before cocaine adminis-
tration and 0.75 after, while for the functional-excitatory graph,
the graph diameter goes from 0.32 to 0.39 for the second animal.
For the third animal, the graph diameter of the functional-
inhibitory graph is 0.24 before cocaine administration and 0.96
after; for the functional-excitatory graph, we compute a graph
diameter changing from 0.46 to 1.93.

For betweenness centrality, after determining the shortest path
between any two vertices, the betweenness centrality of a vertex is
the number of such shortest paths that include that particular ver-
tex. See Table 1. For the functional-excitatory effects, neurons 28
and 5 take on more of a role in the network with both of their betwe-
enness centrality scores increasing. Both neurons are enhanced in
terms of their capability to activate other neurons. Whereas for the
functional-inhibitory effects, neuron 1 loses its ability to inhibit
other neurons as its betweenness centrality score decreases to es-
sentially zero, while the capability for neuron 17 (in the bottom 5
rows) to inhibit other neurons is enhanced.

Table 1. The betweeness centrality scores for the largest top five
changes in neurons for both functional-excitatory (first five rows)
and functional-inhibitory (second five rows) contributions.

Neuron BetCent Before BetCent After BetCent Diff
28 0.023265 0.155510 0.132245
5 0.000000 0.102041 0.102041
17 0.000000 0.102041 0.102041
15 0.031837 0.075102 0.043265
4 0.000000 0.033878 0.033878
1 0.077551 0.000000 0.077551
17 0.000000 0.063673 0.063673
18 0.013469 0.076735 0.063265
28 0.000000 0.062857 0.062857
7 0.049796 0.000000 0.049796

Stimulating the neuronal network

A natural question after learning the connectivity map of the
neuronal network is how we can control the firing pattern. Can
we send external current to the network to create a certain neur-
onal firing pattern that leads to a specific function in the brain?

In order to see how an input signal to the network at time t af-
fects the firing pattern at time t + ndt, we start from Eq. 16 and re-
cursively apply it to derive the following equation

V(not)=T" - V(0)
n-1 . (19)
+ Y T VEY (- k= 1)at),
k=0

where T is the matrix form of the connectivity matrix T; without

its diagonal components, and V= (Vo, V1, ...).

We send the same time-varying external current to all of the
neurons. The external current increases for a while and falls to
zero at some point. The left panel of Fig. 5 depicts the time de-
pendence of the external current. The response of the neurons
to the external inputis shown in the right panel of Fig. 5. An inter-
esting observation is that while all of the neurons received
the same external current, the peak of their currents is not the
same. Also, the decaying rate of the neurons’ currents, after the
external input is turned off, is not the same. More interestingly,
the decayingrate and the peak of the currents are somewhat inde-
pendent. For example, the neuron with the tallest peak decays
faster than some other neurons. All of these observations can be
explained by referring to the properties of the connectivity matrix
T;j. The current in the neurons is induced by (i) the external input,
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which is the same for all the neurons and (ii) the rest of the neu-
rons. Therefore, the difference in the current of the neurons is a
function of the signals they receive from within the network. For
example, after the external current is shut down, the neurons
continue to send signals to each other. Depending on their con-
nectivity, they can receive signals for longer time, and as a result,
their current decays more slowly than the rest. A similar plot is
shown in Fig. S6 where two neurons are excited for a very short
time and the current of the three most excited other neurons
and three least excited other neurons are plotted.

Stability analysis in the collective neuronal
activity space

While the prior subsection addresses how can use the functional
connectivity to predict the firing pattern as a consequence of add-
itional stimuli, we use our notion of energy in the collective neur-
onal activity space, or m-space, to study the changes in the
parameters of the energy of Eq. 15 that are potentially induced
by cocaine. First, we binarize the currents V; to 0 and 1 depending
on whether they are below the threshold defined above. Next, we
use the binary current to compute m at each given time. The time
variation of m over the entire experiment, both before and after
cocaine administration, is plotted in Fig. S5. The distribution of
the mean-binarized-current m for before and after the injection
is plotted in Fig. 6(left).

Our goal is to use the data in Fig. 6(left) to learn the free param-
eters of the energy, i.e. the parameters of the minus logarithm of
the probability function. The popular method of maximum likeli-
hood may not easily converge in this case. The reason is that the
normalizing parameter ao in Eq. 15 is not analytically known
due to the higher order terms of m in the probability function.

Our approach to estimate the free parameters of the probability
function is to use the kernel method (58) to estimate the distribu-
tion of m from data in a nonparametric way. We scale the data,
separately for each of the two experimental conditions, by sub-
tracting the mean of m from each m and dividing by the standard
deviation of m

= (M), (20)

Next, we use the trained estimator to predict minus the logarithm
of the probability over a grid of m, with one million bins, that spans
from —2.7 to 2.7 in the scaled space. The range is chosen such that
the probability is negligible beyond it. Next, we regress the one
million estimations of minus the logarithm of the probability on
Z?:o ¢m, i.e. the Taylor expansion of the energy in the scaled
space. Finally, after learning ¢; from the regression, we convert
back to the nonscaled m space to find the values of g; in Eq. 15.
The learned parameters are shown in Table 2.

We use the learned parameters g; and Eq. 15 to find minus the
logarithm of the probability states of m in before and after the in-
jection. The results, shown in Fig. 6(right), indicate that the energy
of the neural network is at its minimum prior to cocaine adminis-
tration. After cocaine administration, the system is shifted to a
state whose energy does not have a minimum. Therefore, prior
to cocaine administration, the state of the neuronal network is
stable. Soon after cocaine administration, the neuronal network
is in an unstable state and may presumably evolve to go back to
the stable state over time as effects of the cocaine subside.
Hence, the connectivity matrix of Fig. 3(right), and its representa-
tionin Fig. 7(bottom), are transient in nature. We observe a similar
destabilization of the energy in a second animal in response to co-
caine (see Fig. S7). In a third animal, we observe an enhancement
of destabilization in the energy (see Fig. S8).

Another interesting characteristic of Fig. 6(right) is that the en-
ergy post cocaine administration drops toward positive m, i.e. the
probability of that direction is higher. Therefore, the system will
evolve toward positive m direction. On the other hand, in
Fig. 6(left), the mean of the prior to cocaine administration is to
the right of the mean of before the injection data. Putting the pieces
together, after cocaine administration, its neuronal network will
presumably evolve back towards prior to cocaine adminstration
m space. Finally, the shift to the left in m after cocaine suggests
an overall average decrease in activity as consequence of cocaine.

Discussion

We present analysis of neuronal activity recordings from a subset
of neuronsin the medial prefrontal cortex of rats prior to and post-
administration of cocaine. Using an underlying modern Hopfield
model as a description for the neuronal network, we use a ma-
chine learning approach to determine the underlying functional
connectivity of the neuronal network. The functional connectivity
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Table 2. The learned parameters for before and after cocaine
administration.

. om Co C1 () C3 C4
Before 0.46 0.08 1.04 —-0.04 0.38 0.01 0.002
After 0.39 0.06 0.92 0.10 0.52 —-0.03 —0.0001

specifies which derived neuronal connections are functional-
excitatory and which neuronal connections are functional-
inhibitory as well as the strength of the functional-excitatory or
functional-inhibitory interactions. We find that the functional
connectivity changes after the administration of cocaine with
both functional-excitatory and functional-inhibitory neurons
being affected. With such quantification, we can make predictions
about the neuronal network, at least over some time period, in re-
sponse to external stimulation of individual neurons or even col-
lections of them.

To explore the impact of the changes in functional connectivity
in response to cocaine, there are a number of different analyses
one can perform. We perform conventional network analysis in
terms of unweighted topological measures of the graph. We find
that the diameter of the graph increases with cocaine, suggesting
that the neuronal network is less robust. We also find that the be-
tweenness centrality scores for a few of both the functional-
excitatory and functional-inhibitory neurons decrease signifi-
cantly, while other scores remain essentially unchanged. Since
betweenness centrality (for neurons) is a measure of the network
throughput, the smaller the betweenness centrality on average,
the more robust the network given that the shortest paths are
more evenly distributed throughout the network as opposed to
relying on a few nodes. The increase in betweenness centrality
suggests that, again, the network has become less robust.

And, yet, while these measurements further quantify changes
in the neuronal network in terms of graph theoretic measures, the
analysis does not take into account individual neuronal activity
directly. There exist methods to extract the functionality of the
neuronal network, such as the controllability of neuronal net-
works (61). Since controllability analysis is more detailed with
its various assumptions, we present a statistical analysis directly
rooted in the activity of the network. Specifically, we have studied
the spatially averaged neuronal activity over time and studied its
statistics, just in the manner one would do with a spin system in

Fig. 7. The inferred functional-excitatory and functional-inhibitory
neuronal networks prior and post cocaine administration. a) and b)
Networks represent prior to cocaine administration. c) and d) networks
represent post cocaine administration. a) and c) Networks represent the
functional-excitatory connections, while b) and d) networks represent the
functional-inhibitory connections. The colors define the modularity
classes, or clusters of closely interconnected nodes, using a
community-finding algorithm outlined in Ref. (59) and implemented in
Gephi (60). Moreover, the node sizes show the betweenness centralities.
The interaction strengths are represented by the width of the edges.

which the sum of the neural activity relates to an order parameter
of the spin system. Note that we are focusing on the neuronal
excitation of the system, or the activation, and not the inhibition,
as functional-inhibitory signals received by individual neurons
cannot be measured with GCaMP. Just as in physical systems, a
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nonequilibrium version of a Landau-Ginsburg-like theory. The
shape of energy functional in m-space, as we denote it, tells one
something rather important about the state space of the system.

Our m-space analysis demonstrates that prior to cocaine admin-
istration, the neuronal network is stable in an energetic sense, while
post cocaine administration, the neuronal network is unstable en-
ergetically. This discovery demonstrates that the administration
of cocaine has strongly influenced the network to position it to be
heavily influenced by other factors to be driven to a completely
new stable state. In the language of substance abuse, the system
isbeingreadily driven to a new stable state that may underlie future
dependence. While in these experiments, with one administration
of cocaine, we anticipate the neuronal network to revert back to
its initial state. With additional, consistent cocaine administration
over time, we anticipate the network being driven to a new stable
state becomes permanent. While experimenter-administered co-
caine has been shown to produce different behavioral and neuro-
biological changes in animals compared to self-administration
paradigms, this work is a crucial step in understanding initial neur-
onal network changes in response to cocaine.

Finally, how do our results help bring quantification to the cur-
rent theories of cocaine affecting the brain. As the medial pre-
frontal cortex inhibits risky behavior in a top-down manner, one
may be concerned with how functionality of the medial prefrontal
cortex is altered to be able to “apply the brakes,” so to speak, on
other brain regions affecting behavior. Given our mesoscale ex-
periments and analysis, it is still not clear how the functionality
of the medial prefrontal cortexis altered, as this neuronal network
is embedded in a sea of other neurons. Shutting down, or inhibit-
ing, the functionality of the medial prefrontal cortex seems to be
the intuitive stance and supported by physiological measure-
ments at the brain region scale (15, 16). We do indeed observe a
partial shutting down, if you will, with a decrease in the neural
activity amongst this neuronal subnetwork within the prefrontal
cortex. However, as we observe changes in both functional-
excitatory and functional-inhibitory functionality at the individ-
ual neuron scale to arrive at different neuronal firing patterns in
the presence of stimulation from external, or hidden, neurons.
In other words, how changes at this mesoscale affect neuronal
functionality at the larger brain region scale and then between
brain regions must be understood, not only for cocaine, but for
other disease states as well. To address this need, we incorporated
the modern Hopfield model with high quality in vivo single neuron
calcium imaging in a freely behaving rat. The development of
technical and computational tools for neuroscience, such as the
one we have described here, contributes to our ability to identify
therapeutics that are able to restore dysregulated neuronal net-
work function and advance human health.
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