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Abstract

We present analysis of neuronal activity recordings from a subset of neurons in the medial prefrontal cortex of rats before and after the 
administration of cocaine. Using an underlying modern Hopfield model as a description for the neuronal network, combined with a 
machine learning approach, we compute the underlying functional connectivity of the neuronal network. We find that the functional 
connectivity changes after the administration of cocaine with both functional-excitatory and functional-inhibitory neurons being 
affected. Using conventional network analysis, we find that the diameter of the graph, or the shortest length between the two most 
distant nodes, increases with cocaine, suggesting that the neuronal network is less robust. We also find that the betweenness 
centrality scores for several of the functional-excitatory and functional-inhibitory neurons decrease significantly, while other scores 
remain essentially unchanged, to also suggest that the neuronal network is less robust. Finally, we study the distribution of neuronal 
activity and relate it to energy to find that cocaine drives the neuronal network towards destabilization in the energy landscape of 
neuronal activation. While this destabilization is presumably temporary given one administration of cocaine, perhaps this initial 
destabilization indicates a transition towards a new stable state with repeated cocaine administration. However, such analyses are 
useful more generally to understand how neuronal networks respond to perturbations.

Significance Statemen

Cocaine dependence affects the brain in various ways, including altering prefrontal cortex activity. The researchers construct a 
unique computational method by combining in vivo calcium imaging, the modern Hopfield model, and machine learning techniques 
to examine the effects of cocaine on the brain’s neuronal network in the medial prefrontal cortex of rats. They use this method to 
identify changes in network functionality following drug administration. Their findings indicate that cocaine disrupts network robust-
ness and leads to decreased network stability, as demonstrated by changes in functional neuronal network characteristics and in the 
energy landscape for neuronal activity. These alterations contribute to our understanding of the initiation of cocaine dependence. 
This study therefore provides crucial insights into the neurobiological underpinnings of substance abuse, potentially informing better 
prevention strategies and therapeutic interventions.
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Introduction

The intricacies of a brain’s neuronal network drive its functional-

ity. The characterization of such a network spans multiple scales 

ranging from the scale of genes to the scale of the whole brain. For 

instance, specific genes have been identified as playing a role in 

brain size and shape and, more recently, in long-range connectiv-

ity (1–6). At the brain scale, on other hand, there exists the nearly 

universal finding of a small-world network architecture in which 

most nodes can be reached by traversing some number of edges 

(7, 8). Others focus on particular neuronal circuits at the meso-

scale to decode a specific functionality. For instance, it was 

recently revealed how a neuronal circuit involved in fruit fly navi-

gation empowers a fly to perform vector addition (9). How such 

findings at the different scales can be integrated into one, more 

complete picture to understand the structure–function relation-

ship in the brain is a current avenue of investigation (10, 11).

At the mesoscale, in brains with smaller numbers of neurons, 

such as the Caenorhabditis elegans or the fruit fly, determining 

neuronal circuits is feasible. In brains with larger numbers of neu-

rons, determining such neuronal circuits is not as feasible. And 

yet, with the advent of new imaging techniques in freely moving 

animals, such as rodents, to record individual neurons deep inside 
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the brain (12), one is compelled to assess the functional contribu-

tion of a collection of individual neurons forming a subnetwork. 

Here, we will study such a subnetwork and characterize its re-

sponse to a particular perturbation. Our perturbation of choice 

is the impact of cocaine on a neuronal subnetwork of the medial 

prefrontal cortex.

Cocaine primarily impacts the brain’s limbic system by target-

ing dopaminergic pathways and increasing dopamine release 

(13, 14). The limbic system is a network of multiple brain regions 

including the prefrontal cortex and the nucleus accumbens, 

which are brain regions closely associated with motivated behav-

ior and substance use disorders. The prefrontal cortex acts in a 

top-down manner to inhibit the nucleus accumbens and suppress 

motivated behavior (15). Therefore, stable function of the pre-

frontal cortex is critical to suppressing the abberant motivated be-

havior associated with substance dependence.

And so while the interconnectedness of the brain’s limbic, or 

emotional, system is key to understanding the effects of cocaine 

on the brain, here we focus on the medial prefrontal cortex. At 

the scale of the prefrontal cortex, there is a reduction in the 

prefrontal cortex volume in cocaine-dependent men that may 

help explain deficiencies in prefrontal cortex functionality (16). 

Moreover, electrophysiology has shown that the administration 

of cocaine decreases neuron activity in the medial prefrontal cor-

tex (17). Additionally, from a neuronal network point of view, the 

likelihood of developing dependence is associated with significant 

hypoconnectivity in orbitofrontal and ventromedial prefrontal 

cortical–striatal circuits–pathways critically implicated in goal- 

directed decision-making (18). At smaller scales, there exists 

some evidence of neuronal remodeling at the single neuron level 

in the medial prefrontal cortex (19–21).

The impact of cocaine on the medial prefrontal cortex, in 

particular, has relied heavily on functional magnetic resonance 

imaging to understand the function of the region as a whole 

(16, 22, 23) or in vitro or ex vivo analyses of gene or electrophysio-

logical profiles to understand single neuron alterations (19, 20, 24). 

Our approach, on the other hand, utilizes a combination of estab-

lished and novel statistical mechanics methods to identify 

cocaine-induced alterations in the prefrontal cortex network at 

the mesoscale. Furthermore, we provide a new analytical tool 

for in vivo calcium imaging data from freely behaving rodents as 

well as show, for the first time to our knowledge, destabilizing ef-

fects within a statistical mechanics setting, of single-cocaine ad-

ministration on the prefrontal cortex.

We will focus in on the mesoscale by recording from a subset of 

neurons in the medial prefrontal cortex of a living rodent before 

and after cocaine administration. In particular, we will model 

the neuronal subnetwork as a linearized version of a Hopfield 

model (25, 26) and use a machine learning approach to obtain 

its functional connectivity. Determining the functional connectiv-

ity map allows one to make powerful predictions about the dy-

namics of the network in terms of firing patterns in response to 

external inputs, for example. In addition, it also allows one to per-

form network analysis (27, 28) with the additional information of 

functional-excitatory and functional-inhibitory weights that are 

typically not known when analyzing a structural connectome 

from a network point of view (29). Many efforts are indeed under-

way to correlate the functional connectome with the structural 

connectome (30). On the other hand, even in the absence of such 

information, network analysis can identify subgraphs, which may 

correspond to a neuronal circuit with a particular function (31).

At the mesoscale, one can also toggle between dynamical 

approaches and statistical mechanics approaches, in which 

time-averaged information may be useful. Dynamical approaches 

with large groups of neurons are less feasible, at least in so far as 

obtaining the functional connectivity of the group. As for prior 

statistical mechanics approaches, much has been done to give 

rich, new insights into brain functionality such as Refs. (32–34). 

Moreover, statistical field theory approaches to neuronal net-

works also exist (35–37). We will use a mean field theory approach 

in which spatial degrees of freedom are averaged out to obtain 

new insights into a Landau–Ginsburg-like energy landscape for 

the effects of cocaine on the brain.

The outline of the manuscript is as follows. First, we detail the 

experiments. Then, we briefly outline both the theoretical frame-

work of the Hopfield model, applied to a neuronal network, as well 

as a statistical mechanics approach. After presenting the results 

of the analysis from both approaches, we conclude with a discus-

sion of the impact of our results.

Experiments

Animals
Male Sprague Dawley rats (n = 3) (Harlan Inc, Houston, TX, USA) 

aged 10 weeks were initially pair housed and maintained on a 

diet of standard rat chow (Tekland Mouse/Rat Diet 7912, Harlan 

Laboratories, Inc., Indianapolis, IN, USA) ad libitum in their 

home cage. The colony was maintained on a standard 12-h light 

cycle (6:00–18:00), 71 ◦F with relative humidity of 30–50%. All ani-

mal use was carried out in accordance with the Guide for the Care 

and Use of Laboratory Animals and with the approval of the 

University of Texas Medical Branch Institutional Animal Care 

and Use Committee.

Virus injection
Following a 1-week habituation period, rats were anesthetized us-

ing 1–5% isoflurane and placed in a stereotaxic surgical apparatus 

(Kopf, Tujunga, CA, USA). Each animal received a unilateral injec-

tion of 1.0  μL AAV1.Camk2a.GCaMP6m.WPRE.SV40 (Inscopix, 

Mountain View, CA, USA) at a rate of 0.2  μL per minute in the right 

hemisphere medial prefrontal cortex (AP + 3.0 mm, ML + 0.5 mm, 

DV −4.2 mm). The syringe remained in place for 5 min following 

completion of injection before being removed and the wound 

was closed. Rats were then placed in a clean cage on a heating 

pad and followed postsurgically to ensure recovery. Animals 

were habituated to daily handling following surgery.

Gradient-index lens implantation
Four to five weeks after virus injection, rats were anesthetized us-

ing a 1–5% isoflurane. Three stainless steel surgical screws (one 

per skull plate) were inserted to provide stability for the lens. 

After screws were placed, rats underwent stereotaxic implant-

ation of the ProView integrated gradient-index (GRIN) lens 

(0.6 mm × 7.3 mm, Inscopix) (AP + 3.0, ML +0.5 mm, DV −4.00  

mm) in the medial prefrontal cortex. Excess space between the 

craniotomy and the base of the lens was filled with adhesive ce-

ment (Metabond Quick! Adhesive Cement System, C&B), and 

then the lens was secured to the skull with dental cement 

(ACRAWELD Repair Resin, Henry Schein, Melville, NY, USA). A 

baseplate cover (Inscopix) was installed to protect each lens until 

imaging. Wound clips were applied, and the animals were placed 

in a clean cage on a heating pad and monitored postsurgically to 

ensure recovery. Following GRIN lens implantation, all animals 

were single-housed to protect the implant and were handled 

daily. Postmortem histology was done to verify targeting.
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Cocaine administration and calcium data 
acquisition
Once animals had recovered from lens implantation surgery (>3 

weeks), they were habituated to light restraint and attachment 

of the miniscope (Inscopix). The miniscope was mounted and an-

imals were placed in the testing chamber for recording at least 

three times prior to testing. The testing chamber was a 40 cm × 

40 cm clear, Plexiglass container with cornbob bedding. During 

these recording sessions, field of view and imaging settings were 

optimized for each animal. All recordings were taken at 10 frames 

per second. On testing day, animals were given 5 min following 

miniscope attachment to acclimate to the chamber before record-

ing began. Imaging for each animal was optimized, with gains 2.0– 

3.5 and LED power 0.5–1.3. Focal depths for each animal were 

chosen to capture the maximum number of clearly defined neu-

rons in a single plane of recording. Thirty minutes of baseline cal-

cium activity was recorded, followed by a 5-min pause during 

which animals received a single intraperitoneal injection of 15 

mg/kg cocaine (National Institute of Drug Abuse, Research 

Triangle Park, NC, USA) in sterile 0.9% NaCl before being returned 

to the chamber. Thirty minutes of postadministration calcium 

data was recorded. Then the session was ended, and the animal 

was returned to its home cage.

Calcium activity trace extraction
Initial calcium imaging data processing was done using the 

Inscopix Data Processing Software (Inscopix). Video processing 

steps were the same for every animal. Videos were spatially down-

sampled by a factor of four. Motion correction utilizing the “mean 

image” as a reference frame was done and CNMFe was used to 

identify neurons (38). Manual validation of CNMFe identified neu-

rons was performed to ensure that all identified neurons used for 

analysis contained a clear baseline for the 30 min and well- 

defined, positive peaks of fluorescence. See Fig. 1. The calcium 

traces are, therefore, ΔF/F, where F denotes relative fluorescence 

intensity with respect to the baseline.

Mathematical framework

In this section, we lay down the mathematical basis for the ana-

lysis we will use to determine the effects of cocaine on the medial 

prefrontal cortical network. We start from the modern Hopfield 

model of a neuronal network to write the governing differential 

equations of neurons’ firing states, and to construct the total en-

ergy of the system (26). We review how the classic Hopfield model 

can then be extracted from the modern version (25) as well as ad-

dress its biological interpretation using a circuit analogy (39) for a 

simpler version. Next, we construct the statistical field theory of 

a neuronal network starting from the Hopfield model energy. 

Within the context of both approaches, we discuss how the 

firing behavior of the network can be influenced by external 

stimuli.

Hopfield model of a neuronal network
The modern Hopfield Network (26) provides a mathematical de-

scription of the activity of neurons in the brain, which account 

for functional features, such as memory. In this model, neurons 

that are categorized as the feature neurons are referred to by 

Latin indices and hidden neurons are referred to by Greek indices. 

The feature neurons are the ones observed in an experiment and 

the hidden neurons are the rest of neurons that actually exist 

in the brain’s region of interest. The two categories of neurons 

are linked by a matrix ξiμ that represents the synaptic connectiv-

ity. The currents of the two types of neurons are denoted by Vi 

and hμ. The output currents of the feature and hidden neurons 

are denoted by gi and fμ and are defined as

fμ =
∂Lh

∂hμ
,

gi =
∂LV

∂Vi
,

(1) 

where Lh and LV are the Lagrangians that define the model. 

Therefore, fμ and gi are the conjugate variable to the currents of 

hidden and feature/visible neurons, respectively.

The full theory is described by two differential equations given 

by

τ
dVi

dt
=

􏽘

μ
ξiμfμ − Vi + V

(ext.)
i ,

τh
dhμ

dt
=

􏽘

i

ξiμgi − hμ + h(ext.)
μ ,

(2) 

where V
(ext.)
i and h

(ext.)
μ represent external currents that do not 

come from the rest of neurons in the system, τ is a time constant, 

and the sums run over all the neurons. The Hamiltonian of the 

neuronal network that drives its time evolution is given by

E =

􏽘

i=1

Vi − V
(ext.)
i

􏼐 􏼑

gi − LV

􏼢 􏼣

+

􏽘

μ=1

hμ − h(ext.)
μ

􏼐 􏼑

fμ − Lh

􏼢 􏼣

−

􏽘

μ,i

ξiμfμgi.

(3) 

Assuming that (i) the hidden neurons’ activities are rather fast 

and (ii) they do not receive external currents, we can set τh = 

h
(ext.)
μ = 0 and solve Eq. 2 to remove the current of the hidden 

Fig. 1. Schematic and data from the experiments. Top: Implanted 
microscope with image of neurons fluorescensing. Bottom: 
Representative relative calcium intensity traces time prior and post 
cocaine administration for several neurons; partially created from 
Biorender.com.
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neurons in terms of the connectivity matrix and the output cur-

rent of the feature neurons, or

hμ =

􏽘

i

ξiμgi. (4) 

This solution to the hidden current can be substituted into fμ in the 

first line of Eq. 2 such that the differential equation of the current 

of the feature neurons is self-contained.

At this point, we need to specify the form of the Lagrangian, 

and, therefore, the Hamiltonian, to remove fμ in terms of Vi and 

ξiμ. We choose a very simple form, namely,

fμ =

􏽘

j

ξ jμVj. (5) 

This form leads to a simpler linear version of the classic Hopfield 

model (25). As we will observe in the next section, this simpler lin-

ear version, as opposed to piecewise linear, readily approximates 

the calcium intensity signal, which has a longer time constant 

than action potentials. Given the longer time constant, combined 

with experimental limitations, observing thresholding in individ-

ual neurons is difficult and so a simpler integrate-and-fire neuron 

model for fμ is more relevant here (40).

As has been done with the classic Hopfield model (25), as well as 

other neuronal network models (40), it is helpful to construct a cir-

cuit diagram of the neuronal network. We focus on one neuron in 

the network. More precisely, (i) a given neuron is replaced by a 

capacitor C with a resistor R in parallel, (ii) the remainder of neu-

rons are replaced by a battery, and (iii) there exists a switch S that 

alternatively connects and disconnects the battery to the given 

neuron. Should the sum of functional-inhibitory and functional- 

excitatory input signals for a given neuron is above a threshold, 

the battery is connected to the given neuron to lead to a charging 

phase followed by discharging phase in which the neuron does not 

fire regardless of the input signal from the rest of neurons. When 

the given neuron is disconnected from the battery S, it forms a 

self-loop. The model is presented in Fig. 2 on the left. When the 

battery is connected, the electric current across the membrane 

of the neuron satisfies the following differential equation

τ
dVi

dt
= −Vi + V

(b)
i ,

V
(b)
i ≡

􏽘

j

TijVj + V
(ext.)
i ,

(6) 

where τ = RC with R being the resistance and C being the capaci-

tance, the subscript i refers to the neuron that is modeled as an 

RC circuit, and V
(b)
i is the current of the battery. Index j refers to 

all the rest of neurons while Tij represents the functional- 

excitatory or functional-inhibitory signal that neuron j sends to 

the neuron i. Using Eqs. 2 and 5, Tij has the following form

Tij =

􏽘

μ
ξiμξ jμ. (7) 

It is this matrix, the functional connectivity matrix, that we will 

extract from the experimental data to forecast the neuronal net-

work’s future, assuming there is no plasticity over some time 

scale.

Right after neuron i is fully charged, the discharge state begins 

when the switch S disconnects the battery and makes a self-loop 

where the neuron satisfies the following differential equation

τ
dVi

dt
= −Vi. (8) 

Solving the two differential equations above, we readily find the 

current of neuron i in a full cycle whose solution is graphically de-

picted in right figure in Fig. 2 and given by

Vi(t) =
V

(b)
i 1 − e−t/τ( 􏼁

, 0 < t < T

V
(b)
i e−t/τ , T < t

􏼨

(9) 

where T refers to the time that the switch disconnects the battery.

Statistical properties of the neuronal network
It is also interesting to look beyond the microscopic details of the 

system, in terms of a functional connectivity matrix, to quantify 

its macroscopic properties as well in a statistical sense. In other 

words, the emergent properties of the neuronal networks can 

also be understood through studying the macroscopic behavior 

of the system using techniques from statistical mechanics as 

has been done previously (32–36).

We now consider fluctuations of the neuronal subnetwork, due 

to the surrounding neurons and other smaller scale influences. As 

this living system is not in equilibrium, we invoke a nonequili-

brium version of equilibrium statistical mechanics where Teff is 

some effective temperature (41–43). Moreover, the unnormalized 

probability of occurrence of a state with energy E, after integrating 

out the hidden neurons in Eq. 3, is equal to e−E, with the kBTeff = 1, 

as it maximizes the entropy of the system (44–47). Therefore, the 

Fig. 2. RC model of a single neuron. a) The battery represents the voltage from all other neurons as well as any external signal. The switch S represents 
charging and discharging cycles of the neuron. When a neuron consumes ATP to open the ion channels, S is connected to the battery. During the 
discharge phase S moves from the battery to the other side to form a closed self-circuit. In this phase regardless of the incoming signals from the other 
neurons, the neuron does not fire. b) The current and voltage cycle of a neuron after firing.

4 | PNAS Nexus, 2024, Vol. 3, No. 3

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
n
a
s
n
e
x
u
s
/a

rtic
le

/3
/3

/p
g
a
e
0
9
2
/7

6
2
3
0
4
8
 b

y
 g

u
e
s
t o

n
 2

2
 J

u
ly

 2
0
2
4



partition function, i.e. the weighted sum over all the energy states 

reads

Z = N
′
􏽙

i

�

dViexp( − E(Vi)), 

where N ′ is the normalization factor.

We will assume that the energy fluctuates around some local 

minimum E0 such that

E = E0 +􏿻J · 􏿻V +
1

2
􏿻V · G−1 · 􏿻V + O V3

( 􏼁

+ Eno−V, (10) 

where 􏿻V = (V1, V2, . . . ) encodes the fluctuations of the system, the 

external source to the system of neurons is represented by 􏿻J, the 

Greens’ function G is an unknown to be derived from data, and 

the rest of the terms that do not depend on V are denoted by 

Eno−V. It is assumed that there exists at least one stable, local min-

imum. Of course, there may be multiple local minima that could 

complicate our analysis. The partition function can then be re-

written in the following form

Z = N

�

DV e−E′

, (11) 

where the new normalization factor N , the path integration 
􏽒

DV, 

and the energy E′

N ≡ N
′
􏽘

Eno−V

e−Eno−V ,

�

DV ≡

􏽙

i

�

dVi,

E′
≡

1

2
􏿻V · G−1 · 􏿻V − 􏿻V ·􏿻J + O(V3).

(12) 

In principle, we should be able to use the partition function in Eq. 

11, together with 􏿻V, and study the collective behavior in this space. 

In practice, due to the high dimensionality of 􏿻V and the typically 

small number of collected data points, we choose to define a dif-

ferent parameterization with lower number of features. In other 

words, let us use a mean field representation for the average of 

all the neurons firing, or neuronal activity, at a given time, i.e.

m ≡
1

N

􏽘

N

i=1

Vi

V0
, (13) 

where V0 is some reference voltage. Therefore, we reorganize the 

sum in the partition function in Eq. 11 and define a new energy 

E[m] such that

Z = N

�

Dm

�

DV|me−E′[􏿻V]

= N

�

Dm e−E[m],

(14) 

where 
􏽒

DV|m refers to a summation on all the possibilities in 􏿻V 

space that are constrained to a fixed m as defined in Eq. 13. Also, 
􏽒

Dm refers to the summation over all the values of m. Finally, giv-

en the above expansion about a minimum, we consider a similar 

expansion in m, or

E[m] = a0 + a1m + a2m2
+ a3m3

+ a4m4
+ O(m5), (15) 

where ai are constants to be determined by data. Since these pa-

rameters determine the collective behavior of the neuronal net-

work in m space, or the mean field neuronal activity space, we 

would like to learn see their variations by changing the experi-

mental condition. We will address this possibility in the Results 

section. Interestingly, there has been a study quantifying the 

mean activity of the system as a function of time using the 

Wilson–Cowan equations (48, 49) for neuronal activity as a start-

ing point and then performing a similar expansion in the neuronal 

activity (37). Here, we investigate the distribution of the mean ac-

tivity over time to assess its form. Moreover, as we will see, the 

data are well characterized by the expansion.

Results

We now use the data collected from the medial prefrontal cortex 

before and after cocaine injection as described in Experiments 

section to find the free parameters of the mathematical model 

in Mathematical framework section. First, we extract the synaptic 

connectivity of the neurons for each of the two experimental con-

ditions. Next, we use the statistical field theory approach to pre-

dict the firing behaviors of the networks of each experimental 

conditions when they receive planned external stimulus.

Inferring the functional connectivity of the 
neuronal network from neuronal activity
Here, we derive the Tij connectivity matrices, and V

(ext.)
i in Eq. 6 by 

using a machine learning based model for each of the two datasets 

of Experiments section. From now on, we refer to the two experi-

mental conditions as “before the injection” and “after the injec-

tion.” It should be noted that we use a CamKII promoter for 

GCaMP expression. While this promoter has been thought to be 

specific to excitatory glutamatergic neurons, multiple lines of 

study show this specificity is not present, particularly in cortical 

circuits (50, 51). As such, we make no assumptions about the bio-

logical identity of individual neurons and use functional- 

excitatory and functional-inhibitory to describe the directionality 

of the inferred correlations between neurons. Therefore, the same 

neuron can participate in both functional-excitatory and 

functional-inhibitory relationships within the overall network. 

Stated another way, a neuron’s calcium fluorescence may be 

positively or negatively correlated with the fluorescent intensity 

of other neurons in the network, which we describe as 

functional-excitatory or functional-inhibitory, respectively.

To remove background noise from each neuronal trace, each 

neuron, measurements of relative calcium intensity with a value 

smaller than a threshold are set to zero. We determine this 

threshold using the following method. We perform a sensitivity 

analysis by varying the relative calcium intensity threshold par-

ameter. The procedure involves systematically changing this 

threshold parameter within the range of (0–20) and observing 

how these changes affect the coefficients and intercepts of the 

time-series linear regression model to be described below. For 

each threshold value, we select a random 70% subset of data, fit 

the time-series linear regression model to this subset, and store 

the model’s coefficients and intercepts. This process is repeated 

for each threshold value, generating a series of models. After all 

models are generated, we assess the stability of these models by 

comparing the coefficients and intercepts across successive 

threshold values. This comparison helps in understanding how 

sensitive the model parameters are to the changes in the thresh-

old. The aim of this analysis is to identify a threshold that ensures 

model robustness, meaning the model parameters do not signifi-

cantly change with small variations in this threshold. Fig. S2

shows the relative calcium ion intensity change of the first neuron 

in the set over the timing of the experiment. Fig. S3 shows the re-

corded relative intensities of the entire set of neurons and the ap-

plied selections prior and post cocaine administration.
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To begin to analyze the functional connectivity of the neuronal 

network, we first time discretize Eq. 6 assuming that the RC time 

constant is of order the time increment δt such that

Vi(t + δt) =

􏽘

j

TijVj(t) + V
(ext.)
i (t). (16) 

In this equation, we set δt = 0.1 s to be consistent with the fre-

quency at which neuron activity is recorded, the time scale at 

which we explore the functional connectivity of the neurons. 

This equation has the same form as the formulation of the super-

vised auto-regression time-series forecasting machine learning 

method, where the value of a feature such as Vi can be predicted 

using its values in the past. To perform the learning analysis, we 

prepare the predictor dataset X in a matrix form such that each 

component holds a value of Vi in a way that the rows refer to 

the time of the feature in an ascending order and rows refer to 

each of the neurons. We also prepare the response variables y 

for each neuron separately. The latter is again the same Vi values 

for the corresponding neuron but at one time step later. Having 

the X, and y variables, we use the LinearRegression model of 

Scikit-Learn package (52) in python to perform the regression 

and use the returned coefficients and intercept as the Tij and 

V
(ext.)
i of that neuron. We repeat the process for all the neurons.

For each of the experimental conditions, we use 75% of the da-

taset for training the model, i.e. estimating Tij and V
(ext.)
i , and the 

remaining 25% for testing the quality of the extracted parameters. 

For the training part, we label the predicted value of Eq. 16 as V̂i(t) 

and define the error function to be

Err Tij, V
(ext.)
i

􏼐 􏼑

≡
1

N

􏽘

N

d=1

V̂
(d)
i (t) − V

(d)
i (t)

􏼐 􏼑2
, (17) 

where N is the number of neurons, Vi(t) is the observed value, and 

d runs over the data points in the training dataset. Our estimation 

for Tij and V
(ext.)
i are the solutions to the following equations

∂Err

∂Tmn
= 0,

∂Err

∂V
(ext.)
k

= 0.
(18) 

We separately perform the minimization in Eq. 18 for prior and 

post cocaine administration. The predictions of Eq. 16 are com-

pared with their corresponding true values in Fig. S1. The figure 

indicates that the test error is small and our predictions are close 

to the true values in most of the times. Our estimations for Tij and 

V
(ext.)
i for before and after cocaine administration are the outputs 

of this minimization. In other words, the sum of inputs V
(ext.)
i , 

from the hidden neurons, to the feature neurons is also estimated 

through our minimization. We find that these are negligible with 

respect to Tij matrices. The external inputs are shown in Fig. S4.

We then use the resulting estimate of Tij to understand how co-

caine administration may alter network function in the medial 

prefrontal cortex. We see a significant change between the con-

nectivity matrices Tij of before and after cocaine administration. 

The two matrices are shown in Fig. 3, where each of the 51 neu-

rons in the experiment are shown on both x and y axes. The 

functional-excitatory and functional-inhibitory neurons, i.e. the 

positive and negative components of Tij, for both of the experi-

mental conditions are shown in Fig. 3. A few conclusions can be 

readily drawn from the figure. First, the number of the 

functional-excitatory signals, shown by red colors, is close to 

two times the number of the functional-inhibitory signals, shown 

by the blue colors, in both of the experimental conditions. This re-

sult is in surprising agreement with biological observations of the 

actual synaptic connectivity (53, 54). Second, the connectivity ma-

trices Tij are not symmetric, which is again in agreement with 

neuroscience expectations (55–57). Third, the interneuron signal-

ing prior to the cocaine administration, when the neuronal net-

work is in its “normal” state, is less significant than the signaling 

activities post cocaine administration. However, interestingly, 

we observe that the changes in decreasing the functional weights 

and increasing them are somewhat symmetric (see Fig. 4). This 

finding suggests that, at least at this scale of 50 neurons, the activ-

ity of the medial prefrontal cortex is modified beyond an overall 

decrease in activity, as reported in electrophysiology measure-

ments on the scale of the brain region (16). Our analysis captures 

more subtle changes in functionality of the neuronal network. It 

should be mentioned that the functional connectivity matrix is 

symmetric with 50 dimensions (neurons). Hence, its unique com-

ponents total 1,275. Additionally, the external voltage contribu-

tion introduces another 50 variables. Consequently, to resolve 

all unknowns, a minimum of 1,325 data points is required. This 

translates to an approximate need of at least 2.2 min of data, tak-

en at 0.1 s intervals, for a comprehensive analysis, providing a 

rough estimate for the lower bound on the amount of data 

required.

Fig. 3. The functional connectivity matrix functional-inhibitory and functional-excitatory neurons prior a) and post b) cocaine administration. The Tij 

matrix is derived using a time series machine learning analysis of the calcium signaling in the neuronal network with negative weights representing 
functional-inhibitory connections and positive weights representing functional-excitatory connections.
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To obtain further insight into the change in functional connect-

ivity before and after cocaine administration, we performed con-

ventional network analysis using the python package NetworkX. 

In NetworkX, the diameter of a graph is defined as the maximum 

eccentricity among all pairs of nodes in the graph. The eccentri-

city of a node is the maximum distance from that node to any oth-

er node in the graph. For weighted graphs, the distance between 

nodes is defined as the sum of the weights along the shortest 

path between them. The diameter function in NetworkX takes 

this into account when working with weighted graphs. 

Moreover, the betweenness centrality for a node v is defined as 

the fraction of all shortest paths, between all possible node pairs, 

in the graph that pass through v. For a weighted graph, the short-

est path between a given pair is the sum over the weights of the 

edges along that path.

We find that for both the functional-inhibitory neurons and the 

functional-excitatory neurons that the diameter of each respective 

graphs increases after the cocaine injection. To be specific, the 

diameter of the functional-inhibitory graph is 0.31 before cocaine 

and 0.62 after. For the functional-excitatory neurons, the increase 

is even more significant with 0.46 before and 1.38 afterwards. A 

lower graph diameter typically correlates with a more robust graph 

in that it is a more tightly connected graph. Therefore, cocaine has 

diminished the robustness of both the functional-excitatory and 

functional-inhibitory network functionality. While these reported 

graph diameter increases are for one animal, the trend is similar 

for the remaining two animals. To be specific, the graph diameter 

of the functional-inhibitory graph is 0.18 before cocaine adminis-

tration and 0.75 after, while for the functional-excitatory graph, 

the graph diameter goes from 0.32 to 0.39 for the second animal. 

For the third animal, the graph diameter of the functional- 

inhibitory graph is 0.24 before cocaine administration and 0.96 

after; for the functional-excitatory graph, we compute a graph 

diameter changing from 0.46 to 1.93.

For betweenness centrality, after determining the shortest path 

between any two vertices, the betweenness centrality of a vertex is 

the number of such shortest paths that include that particular ver-

tex. See Table 1. For the functional-excitatory effects, neurons 28 

and 5 take on more of a role in the network with both of their betwe-

enness centrality scores increasing. Both neurons are enhanced in 

terms of their capability to activate other neurons. Whereas for the 

functional-inhibitory effects, neuron 1 loses its ability to inhibit 

other neurons as its betweenness centrality score decreases to es-

sentially zero, while the capability for neuron 17 (in the bottom 5 

rows) to inhibit other neurons is enhanced.

Stimulating the neuronal network
A natural question after learning the connectivity map of the 

neuronal network is how we can control the firing pattern. Can 

we send external current to the network to create a certain neur-

onal firing pattern that leads to a specific function in the brain?

In order to see how an input signal to the network at time t af-

fects the firing pattern at time t + n δt, we start from Eq. 16 and re-

cursively apply it to derive the following equation

􏿻V(n δt) = Tn · 􏿻V(0)

+

􏽘

n−1

k=0

Tk · 􏿻V(ext.) (n − k − 1)δt
( 􏼁

,
(19) 

where T is the matrix form of the connectivity matrix Tij without 

its diagonal components, and 􏿻V = (V0, V1, . . . ).

We send the same time-varying external current to all of the 

neurons. The external current increases for a while and falls to 

zero at some point. The left panel of Fig. 5 depicts the time de-

pendence of the external current. The response of the neurons 

to the external input is shown in the right panel of Fig. 5. An inter-

esting observation is that while all of the neurons received 

the same external current, the peak of their currents is not the 

same. Also, the decaying rate of the neurons’ currents, after the 

external input is turned off, is not the same. More interestingly, 

the decaying rate and the peak of the currents are somewhat inde-

pendent. For example, the neuron with the tallest peak decays 

faster than some other neurons. All of these observations can be 

explained by referring to the properties of the connectivity matrix 

Tij. The current in the neurons is induced by (i) the external input, 

Fig. 4. Changes in Tij to highlight the differences in the functional connectivity prior and post cocaine administration. a) The histogram demonstrates 
that there both increases and decreases in the weight connections. b) The changes in Tij prior and post cocaine.

Table 1. The betweeness centrality scores for the largest top five 
changes in neurons for both functional-excitatory (first five rows) 
and functional-inhibitory (second five rows) contributions.

Neuron BetCent Before BetCent After BetCent Diff

28 0.023265 0.155510 0.132245
5 0.000000 0.102041 0.102041
17 0.000000 0.102041 0.102041
15 0.031837 0.075102 0.043265
4 0.000000 0.033878 0.033878
1 0.077551 0.000000 0.077551
17 0.000000 0.063673 0.063673
18 0.013469 0.076735 0.063265
28 0.000000 0.062857 0.062857
7 0.049796 0.000000 0.049796
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which is the same for all the neurons and (ii) the rest of the neu-

rons. Therefore, the difference in the current of the neurons is a 

function of the signals they receive from within the network. For 

example, after the external current is shut down, the neurons 

continue to send signals to each other. Depending on their con-

nectivity, they can receive signals for longer time, and as a result, 

their current decays more slowly than the rest. A similar plot is 

shown in Fig. S6 where two neurons are excited for a very short 

time and the current of the three most excited other neurons 

and three least excited other neurons are plotted.

Stability analysis in the collective neuronal 
activity space
While the prior subsection addresses how can use the functional 

connectivity to predict the firing pattern as a consequence of add-

itional stimuli, we use our notion of energy in the collective neur-

onal activity space, or m-space, to study the changes in the 

parameters of the energy of Eq. 15 that are potentially induced 

by cocaine. First, we binarize the currents Vi to 0 and 1 depending 

on whether they are below the threshold defined above. Next, we 

use the binary current to compute m at each given time. The time 

variation of m over the entire experiment, both before and after 

cocaine administration, is plotted in Fig. S5. The distribution of 

the mean-binarized-current m for before and after the injection 

is plotted in Fig. 6(left).

Our goal is to use the data in Fig. 6(left) to learn the free param-

eters of the energy, i.e. the parameters of the minus logarithm of 

the probability function. The popular method of maximum likeli-

hood may not easily converge in this case. The reason is that the 

normalizing parameter a0 in Eq. 15 is not analytically known 

due to the higher order terms of m in the probability function.

Our approach to estimate the free parameters of the probability 

function is to use the kernel method (58) to estimate the distribu-

tion of m from data in a nonparametric way. We scale the data, 

separately for each of the two experimental conditions, by sub-

tracting the mean of m from each m and dividing by the standard 

deviation of m

m′
≡

m − μm

σm
,

μm = 〈m〉,

σm =

��������������

〈(m − μm)2〉

􏽱

.

(20) 

Next, we use the trained estimator to predict minus the logarithm 

of the probability over a grid of m, with one million bins, that spans 

from −2.7 to 2.7 in the scaled space. The range is chosen such that 

the probability is negligible beyond it. Next, we regress the one 

million estimations of minus the logarithm of the probability on 
􏽐4

j=0 cjm , i.e. the Taylor expansion of the energy in the scaled 

space. Finally, after learning cj from the regression, we convert 

back to the nonscaled m space to find the values of aj in Eq. 15. 

The learned parameters are shown in Table 2.

We use the learned parameters aj and Eq. 15 to find minus the 

logarithm of the probability states of m in before and after the in-

jection. The results, shown in Fig. 6(right), indicate that the energy 

of the neural network is at its minimum prior to cocaine adminis-

tration. After cocaine administration, the system is shifted to a 

state whose energy does not have a minimum. Therefore, prior 

to cocaine administration, the state of the neuronal network is 

stable. Soon after cocaine administration, the neuronal network 

is in an unstable state and may presumably evolve to go back to 

the stable state over time as effects of the cocaine subside. 

Hence, the connectivity matrix of Fig. 3(right), and its representa-

tion in Fig. 7(bottom), are transient in nature. We observe a similar 

destabilization of the energy in a second animal in response to co-

caine (see Fig. S7). In a third animal, we observe an enhancement 

of destabilization in the energy (see Fig. S8).

Another interesting characteristic of Fig. 6(right) is that the en-

ergy post cocaine administration drops toward positive m, i.e. the 

probability of that direction is higher. Therefore, the system will 

evolve toward positive m direction. On the other hand, in 

Fig. 6(left), the mean of the prior to cocaine administration is to 

the right of the mean of before the injection data. Putting the pieces 

together, after cocaine administration, its neuronal network will 

presumably evolve back towards prior to cocaine adminstration 

m space. Finally, the shift to the left in m after cocaine suggests 

an overall average decrease in activity as consequence of cocaine.

Discussion

We present analysis of neuronal activity recordings from a subset 

of neurons in the medial prefrontal cortex of rats prior to and post-

administration of cocaine. Using an underlying modern Hopfield 

model as a description for the neuronal network, we use a ma-

chine learning approach to determine the underlying functional 

connectivity of the neuronal network. The functional connectivity 

Fig. 5. Perturbing the neuronal network. a) A time-varying external current is applied to all neurons in the neuronal network prior to cocaine 
administration. b) The time-varying current of all the neurons of the network induced by the same external signal. Tsame external signal induce different 
currents in the neurons given the functional connectivity weights. Moreover, when the external current is disconnected, all induced current begin to 
decay, each with their own decay rate.
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specifies which derived neuronal connections are functional- 

excitatory and which neuronal connections are functional- 

inhibitory as well as the strength of the functional-excitatory or 

functional-inhibitory interactions. We find that the functional 

connectivity changes after the administration of cocaine with 

both functional-excitatory and functional-inhibitory neurons 

being affected. With such quantification, we can make predictions 

about the neuronal network, at least over some time period, in re-

sponse to external stimulation of individual neurons or even col-

lections of them.

To explore the impact of the changes in functional connectivity 

in response to cocaine, there are a number of different analyses 

one can perform. We perform conventional network analysis in 

terms of unweighted topological measures of the graph. We find 

that the diameter of the graph increases with cocaine, suggesting 

that the neuronal network is less robust. We also find that the be-

tweenness centrality scores for a few of both the functional- 

excitatory and functional-inhibitory neurons decrease signifi-

cantly, while other scores remain essentially unchanged. Since 

betweenness centrality (for neurons) is a measure of the network 

throughput, the smaller the betweenness centrality on average, 

the more robust the network given that the shortest paths are 

more evenly distributed throughout the network as opposed to 

relying on a few nodes. The increase in betweenness centrality 

suggests that, again, the network has become less robust.

And, yet, while these measurements further quantify changes 

in the neuronal network in terms of graph theoretic measures, the 

analysis does not take into account individual neuronal activity 

directly. There exist methods to extract the functionality of the 

neuronal network, such as the controllability of neuronal net-

works (61). Since controllability analysis is more detailed with 

its various assumptions, we present a statistical analysis directly 

rooted in the activity of the network. Specifically, we have studied 

the spatially averaged neuronal activity over time and studied its 

statistics, just in the manner one would do with a spin system in 

which the sum of the neural activity relates to an order parameter 

of the spin system. Note that we are focusing on the neuronal 

excitation of the system, or the activation, and not the inhibition, 

as functional-inhibitory signals received by individual neurons 

cannot be measured with GCaMP. Just as in physical systems, a 

Fig. 6. Energy functional of neuronal activity. a) Distributions of the neuronal activity m in before and after cocaine administration. The plot indicates the 
differentiation in the collective behavior of the two systems due to the variation in the experiments. In this plot, the data prior to cocaine administration is 
weighed such that the two histograms have the same under-the-curve area. b) Minus the logarithm of the probability function, as defined in Eq. 15, 
learned from data in the left panel. This plot indicates that the energy of the neuronal network prior to cocaine administration is stable where the energy 
has a well-defined minimum. However, following cocaine administration, the energy of the neural network is pushed to an unstable state where the 
probability function does not have a minimum.

Table 2. The learned parameters for before and after cocaine 
administration.

μm σm c0 c1 c2 c3 c4

Before 0.46 0.08 1.04 −0.04 0.38 0.01 0.002
After 0.39 0.06 0.92 0.10 0.52 −0.03 −0.0001

Fig. 7. The inferred functional-excitatory and functional-inhibitory 
neuronal networks prior and post cocaine administration. a) and b) 
Networks represent prior to cocaine administration. c) and d) networks 
represent post cocaine administration. a) and c) Networks represent the 
functional-excitatory connections, while b) and d) networks represent the 
functional-inhibitory connections. The colors define the modularity 
classes, or clusters of closely interconnected nodes, using a 
community-finding algorithm outlined in Ref. (59) and implemented in 
Gephi (60). Moreover, the node sizes show the betweenness centralities. 
The interaction strengths are represented by the width of the edges.
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nonequilibrium version of a Landau–Ginsburg-like theory. The 

shape of energy functional in m-space, as we denote it, tells one 

something rather important about the state space of the system.

Our m-space analysis demonstrates that prior to cocaine admin-

istration, the neuronal network is stable in an energetic sense, while 

post cocaine administration, the neuronal network is unstable en-

ergetically. This discovery demonstrates that the administration 

of cocaine has strongly influenced the network to position it to be 

heavily influenced by other factors to be driven to a completely 

new stable state. In the language of substance abuse, the system 

is being readily driven to a new stable state that may underlie future 

dependence. While in these experiments, with one administration 

of cocaine, we anticipate the neuronal network to revert back to 

its initial state. With additional, consistent cocaine administration 

over time, we anticipate the network being driven to a new stable 

state becomes permanent. While experimenter-administered co-

caine has been shown to produce different behavioral and neuro-

biological changes in animals compared to self-administration 

paradigms, this work is a crucial step in understanding initial neur-

onal network changes in response to cocaine.

Finally, how do our results help bring quantification to the cur-

rent theories of cocaine affecting the brain. As the medial pre-

frontal cortex inhibits risky behavior in a top-down manner, one 

may be concerned with how functionality of the medial prefrontal 

cortex is altered to be able to “apply the brakes,” so to speak, on 

other brain regions affecting behavior. Given our mesoscale ex-

periments and analysis, it is still not clear how the functionality 

of the medial prefrontal cortex is altered, as this neuronal network 

is embedded in a sea of other neurons. Shutting down, or inhibit-

ing, the functionality of the medial prefrontal cortex seems to be 

the intuitive stance and supported by physiological measure-

ments at the brain region scale (15, 16). We do indeed observe a 

partial shutting down, if you will, with a decrease in the neural 

activity amongst this neuronal subnetwork within the prefrontal 

cortex. However, as we observe changes in both functional- 

excitatory and functional-inhibitory functionality at the individ-

ual neuron scale to arrive at different neuronal firing patterns in 

the presence of stimulation from external, or hidden, neurons. 

In other words, how changes at this mesoscale affect neuronal 

functionality at the larger brain region scale and then between 

brain regions must be understood, not only for cocaine, but for 

other disease states as well. To address this need, we incorporated 

the modern Hopfield model with high quality in vivo single neuron 

calcium imaging in a freely behaving rat. The development of 

technical and computational tools for neuroscience, such as the 

one we have described here, contributes to our ability to identify 

therapeutics that are able to restore dysregulated neuronal net-

work function and advance human health.
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