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We introduce frequency propagation, a learning algorithm for nonlinear
physical networks. In a resistive electrical circuit with variable resistors,
an activation current is applied at a set of input nodes at one frequency
and an error current is applied at a set of output nodes at another fre-
quency. The voltage response of the circuit to these boundary currents
is the superposition of an activation signal and an error signal whose
coefficients can be read in different frequencies of the frequency domain.
Each conductance is updated proportionally to the product of the two
coefficients. The learning rule is local and proved to perform gradient
descent on a loss function. We argue that frequency propagation is an in-
stance of a multimechanism learning strategy for physical networks, be it
resistive, elastic, or flow networks. Multimechanism learning strategies
incorporate at least two physical quantities, potentially governed by in-
dependent physical mechanisms, to act as activation and error signals in
the training process. Locally available information about these two sig-
nals is then used to update the trainable parameters to perform gradi-
ent descent. We demonstrate how earlier work implementing learning
via chemical signaling in flow networks (Anisetti, Scellier, et al., 2023)
also falls under the rubric of multimechanism learning,.
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Frequency Propagation 597

1 Introduction

Advancements in artificial neural networks (ANN; Goodfellow et al., 2016)
have inspired a search for adaptive physical networks that can be optimized
to achieve desired functionality (Anisetti, Scellier et al., 2023; Kendall et al.,
2020; Stern et al., 2020, 2021; Lopez-Pastor & Marquardt, 2021; Dillavou
et al., 2021; Scellier et al., 2022; Stern & Murugan, 2022). Similar to ANNSs,
adaptive physical networks modify their learning degrees of freedom to
approximate a desired input-to-output function, but unlike ANNSs, they
achieve this using physical laws. In a physical network, the input is typ-
ically an externally applied boundary condition, and the output is the net-
work’s response to this input or a statistic of this response. For instance,
in a resistive network, an input signal can be fed in the form of applied
currents or voltages, and the output may be the vector of voltages across
a subset of nodes of the network. The learning degrees of freedom of the
network are, for example, the conductances of the resistors (assuming vari-
able resistors). Ideally, these learning parameters must be updated using
only locally available information. Otherwise, the network would require
additional channels to transmit the gradient information.

Moreover, these parameter updates should preferably follow the direc-
tion of gradient descent in the loss function landscape, as is the case for
ANNS.

Existing learning algorithms for adaptive physical networks include
equilibrium propagation (Scellier & Bengio, 2017; Kendall et al., 2020) and
coupled learning (Stern et al., 2021). These algorithms are based on the idea
of contrastive learning (Baldi & Pineda, 1991) and proceed as follows. In a
first phase, an input is presented to the network in the form of boundary
currents or voltages, and the network is allowed to settle to equilibrium
(the free state), where a supervisor checks the output of the system. Then
the supervisor nudges the output toward the desired output. This pertur-
bation causes the system to settle to a new (perturbed) equilibrium state,
which is a slightly more accurate approximation of the function that one
wants to learn. The supervisor then compares the perturbed state with the
free state to make changes in the learning degrees of freedom in such a way
that the network spontaneously produces an output that is slightly closer to
the desired output. In the limit of infinitesimal nudging, this procedure per-
forms gradient descent on the squared prediction error (Scellier & Bengio,
2017).

The described procedure presents practical challenges when applied to
physical systems. Specifically, it requires either the retention of the net-
work’s free state for comparison with the perturbed state or the utiliza-
tion of an additional, duplicate network for transmitting supplementary
signals. For example, in their experimental work, Dillavou et al. (2021) use
two copies of the same network to compute the free and perturbed states.
Alternatively, Yi et al. (2023) use a single network, but they make use of
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598 V. Anisetti, A. Kandala, B. Scellier, and J. Schwarz

additional external memory to store the two states before performing the
weight updates. Another idea, proposed by Kendall et al. (2020), is to use
a capacitor (sample-and-hold amplifier) at each node to store the free state
values, but this idea has not been verified experimentally. In this work, we
propose an alternative multimechanism learning approach to overcome this
hurdle. Our approach incorporates two physical quantities, each driven by
its own respective mechanisms: one quantity acting as an activation signal
and the other acting as an error signal. This concept is motivated by biolog-
ical systems implementing functionality via multiple biophysical routes or
mechanisms. Such functionality can be chemical, electrical, or even mechan-
ical in nature with potential interactions between such mechanisms. For
instance, in the brain, activity can propagate from one cell to another
via electrical and chemical synapses, as opposed to just one mecha-
nism (Pereda, 2014). Given this modular functionality in biology, it would
be remiss not to explore such richness in how adaptive physical networks
learn. Alternatively, as we shall soon see, this modularity is not necessarily
in terms of mechanical versus chemical versus electrical signals but distin-
guishable signals.

We introduce frequency propagation (Freq-prop), a physical learning al-
gorithm falling under the umbrella concept of multimechanism learning.
In Freg-prop, the activation and error signals are both sent through a sin-
gle channel but are encoded in different frequencies of the frequency do-
main; we can thus obtain the respective responses of the system through
frequency (Fourier) decomposition. This algorithm, which we show to per-
form gradient descent, can be used to train adaptive nonlinear networks
such as resistor networks, elastic networks, and flow networks. Freq-prop
thus has the potential to be an all-encompassing approach. (See Figure 1
for a graphical summary of Freq-prop). In the next section, we present this
idea of frequency propagation in the context of resistor networks, and in
section 3, we show that frequency propagation is an example of multi-
mechanism learning and can be generalized to train various physical sys-
tems like flow and mechanical networks. In section 4, we demonstrate this
idea by training linear resistor networks to classify the Iris dataset (Fisher,
1988).

2 Nonlinear Resistive Networks

A resistive network is an electrical circuit of nodes interconnected by re-
sistive devices, which includes linear resistors and diodes. Let N be the
number of nodes in the network, and denote v; the electric potential of
node j. A subset of the nodes are input nodes, where we can set input
currents: we denote x; the input current at input node j. For each pair of
nodes j and k, we denote 0 the conductance of the resistor between these
nodes (provided that the corresponding branch contains a linear resistor).
We further denote # = {#;: linear branch (j, k)} the vector of conductances
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Figure 1. Illustration of the multistep weight update process in a physical
network: (A) DC inputs (x) are applied to the network, resulting in a baseline
voltage response (v°). (B) Calculation of an AC feedback signal based on the
derivative of the cost function with respect to the output voltages at equilibrium.
(C) Application of the AC feedback signal to the network, with voltage re-
sponses at each node recorded over time. Fourier decomposition extracts the
DC and AC components (a;) and (by). (D) Adjustment of network weights (6)
using the DC and AC components, adhering to the learning rule to perform
gradient descent on the cost function.

and x = (x1, xo, ..., xn) the vector of input currents, where by convention,
xj=0 if node j is not an input node. Finally, we denote v = (vy, v2, ..., vN)
the configuration of the nodes’ electric potentials and v(0, x) the equilib-
rium value of v as a function of the branch conductances () and the input
currents (x).

The following result, known since the work of Millar (1951), provides a
characterization of the equilibrium state—see also Kendall et al. (2020) for
a proof of this result with notations closer to ours.
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600 V. Anisetti, A. Kandala, B. Scellier, and J. Schwarz

Theorem 1. There exists a real-valued function E(6, x, v) such that

v(6, x) = argmin E(0, x, v). (2.1)
Furthermore, E(0, x, v) is of the form

1 2
E(@, X, v) = Einput(xv U) + Enonlinear(v) + Z Eejk (U] - vk) > (22)
linear branch (j,k)

where Einput (X, v) is a function of x and v and Eponlinear (v) s a function of v only.

E(0, x, v) is the energy function of the system, also called the co-content
(Millar, 1951), and the equilibrium state v(6, x) is a minimizer of the en-
ergy function. The energy function contains an energy term Einput(x, v) as-
sociated with boundary input currents x. It also contains energy terms of
the form 6i(v; — vx)* representing the power dissipated in branch (j, k).
The term Eponiinear (V) contains all nonlinearities of the system. In a linear
resistance network (i.e., when E,gnlinear(v) = 0), it is well known that the
equilibrium configuration of node electric potentials minimizes the power
dissipation. Theorem 1 generalizes this result to nonlinear networks. Below
we explain how the different terms of E(6, x, v) are constructed.

2.1 Constructing the Energy Function. Each branch is characterized
by its current-voltage characteristic, ijx = ijx(v; — vk), where ij(-) is a real-
valued function that returns i, the current flowing from j to k in response
to the voltage v; — vk. The energy term corresponding to branch (j, k), called
the co-content of the branch (Millar, 1951), is, by definition,

Vji— V%

Eji(vj — v) = /0 e(v)dv'. 2.3)

In general, the characteristic function ?}k(-) is arbitrary, (i.e., nonlinear).
However, some branches are linear, meaning that their current-voltage
characteristic is of the form i = 0 (v i vk), where 60 is the branch con-
ductance.! For such linear branches, the energy term is

1
E]-k(vj — vk) = Eejk (U]' — Uk)2 . (24)

which is the power dissipated in branch (j, k).

"To avoid any confusion, we stress that 6 is a scalar, whereas i jk(+) is a real-valued
function. Thus, 6 (v i— vk) denotes the product of 0 and v; — v, whereas i k(v — vk)
denotes the function jk applied to the voltage v; — vg.
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Frequency Propagation 601

We gather all the energy terms of nonlinear branches under a unique
term,

Enonlinear (V) = > Eji(vj — vi), (2.5)

nonlinear branch (j,k)

where we recall that v = (v1, va, ..., vN).

As for the energy term Ejnpui(x, v), we present two ways to impose
boundary conditions to the network to feed it with input signals x in the
form of boundary currents or boundary electric potentials. Recall that we
write x = (x1, X2, ..., Xy), the vector of input signals, where x; = 0 if node
j is not an input node. In the case of boundary currents, the corresponding
energy term is

Eprerte,v) = Y xjuj, (2.6)

je{input nodes}
whereas in the case of boundary electric potentials, the energy term is

EVOltage( ) = 0 if v;=x;, Yj e {inputnodes},

input

. (2.7)
+o00 otherwise,

that is, the electric potential v; is clamped to x; for every input node j (so
that the energy remains finite).
Putting all the energy terms together and denoting Einpuc(x, v), the en-

ergy term of input signals (either Efue(x, v) or Eivn(;}:ige (x, v) depending on

the case), we get the energy function of equation 2.2.

3 Multimechanism Learning via Frequency Propagation

Learning in a resistive network consists in adjusting the branch conduc-
tances (9) so that the network exhibits a desired behavior: an input-output
function x — v(6, x). In machine learning, this problem is formalized by in-
troducing a cost function C. Given an input-output pair (x, y), the quantity
C(v(0, x), y) measures the discrepancy between the model prediction v (6, x)
and the desired output y. The learning objective is to find the parameters 6
that minimize the expected cost E(, ) [C(v(6, x), y)] over input-output pairs
(x, y) coming from the data distribution for the task that the system must
solve.

In deep learning, the main tool for this optimization problem is stochastic
gradient descent (SGD; Bottou, 2010). At each step, we pick at random an
example (x, y) from the training set and update the parameters as
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602 V. Anisetti, A. Kandala, B. Scellier, and J. Schwarz

oL
AO = —nﬁ(e, x,Y), (3.1)

where 7 is a step size and
L0, x,y) =C(v(®,x),y) (3.2)

is the loss function.

We now present frequency propagation (Freq-prop), a learning algo-
rithm for physical networks whose update rule performs SGD. Freq-prop
proceeds by modifying the energy of the network to push or pull away the
network’s output values from the desired outputs. In the case of a resistive
network (see section 2), we inject sinusoidal currents at the output nodes of
the network, i(t) = y sin(wt) % (v, y), where t denotes time, w is a frequency,
and y is a small positive constant.? This augments the energy function of
the system by a time-dependent sinusoidal energy term y sin(wt)C(v, y).
Due to this perturbation, the system’s response v(t) minimizing the energy
at time f is

v(t) = argmin [E(9, x, v) + y sin(wt)C(v, y)]. (3.3)

The response v(t) is periodic of period T = 2x /w, and for small perturba-
tions (i.e., y <« 1), itis approximately sinusoidal. It is important to note that
we have assumed that the system equilibrates at timescales much smaller
than the time period of the error signal. Without this rapid equilibration,
the system’s response will exhibit a noticeable delay compared to the in-
stantaneous response predicted by equation 3.3. Next, we assume that we
can recover the first two vectors of Fourier coefficients of v(t), that is, the
vectors a and b, such that

1 (7 2 (T )
a= T/o v(t)dt, b= T/o v(t) sin(wt)dt. (3.4)

Finally, denoting a = (a1, 42, ...,an) and b= (b1, ba, ..., by), we update
each parameter 0; according to the learning rule

Aejk = —Ot(b]' — bk) . (11]' — ak), (35)

where « is a positive constant.

’In practical situations such as the squared error prediction, the cost function C de-
pends only on the state of output nodes; therefore, nudging requires injecting currents at
output nodes only.
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Frequency Propagation 603

Theorem 2. For every parameter 0, we have

L
AOj = — aaelk O, x,y)+ Oy ) (3.6)

when y — 0.

Namely, the learning rule 3.5 approximates one step of gradient descent
with respect to the loss, with learning rate « y. Note that this learning rule
is local: it requires solely locally available information for each parameter
Ok

j

Proof. Let 6, x, and y be fixed. For every 8 € R, we denote

v/ = argmin [E(0, x,v) + BC(v,y)]. (3.7)

With this notation, note that the response v(t) of equation 3.3 rewrites v(t) =
v " et us write the second-order Taylor expansion of v? around g = 0:

3vﬁ ’32 82vl3
f=v) . . o(p’® 3.8
d=wtp s+ (5) (338)
p=0 p=0
where v? = v(0, x) by equation 2.1, and % 50 and %f;’z o denote the

derivative and second derivative of v’ at 8 = 0. Taking g =y sm(a)t) in the
above formula, we get

sin(wt) 0 . 3”5
v(t) =v! =, + y sin(wt) (3.9)
ap
£=0
2 9207
+ 7 sin(wt)? aﬂ; . + 0% (3.10)

uniformly in t. Therefore, the first two vectors of Fourier coefficients 2 and
b of the periodic function v(t), with time period T = 27 /w are

2 va 3
1 / (it =0+ 2 2 7, +007) (3.11)
T B
b= 3/ v(t) sin(wt)dt = y 90s +0(%). (3.12)
T J; 08|,
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604 V. Anisetti, A. Kandala, B. Scellier, and J. Schwarz

Next, we know from the equilibrium propagation formula (see theorem 2.1
in Scellier, 2021) that the gradient of the loss £ is equal to

AL d dE

—O,x,y)= —| —(@6, x5 3.13

7 (0. x.Y) dﬂL_o o 0. x.00) (3.13)
Therefore,

AL 92E vl

=0 = 9 0y, == ) 14

a6 0¥ = 55,0 % v o - (3.14)

Multiplying both sides by y and using equation 3.12, we get

2

E
aeav(e’x’ W0) b+ O>?). (3.15)

oL
V@(va’y)=

Finally, given the form of the energy function (equation 2.2) and using b =
O(y) and v¥ = a + O(y?) from equation 3.11, we get for every parameter
Ok,

y%w’ x.y) = (a; —ar) - (bj — b)) + O(r°). (3.16)
jk

Therefore, the learning rule

Aejk = —Ol(bj — bk) . (11]' — ak) (3.17)
satisfies
oL 3
ik
Hence the result. O

Remark 1. For simplicity, we have omitted the time of relaxation to equi-
librium in our analysis. However, a practical circuit has an effective capaci-
tance Cefs and therefore will equilibrate in time Tyejax ~ RegiCest, Where R is
the effective resistance of the circuit. Our learning algorithm will work as
long as the circuit equilibrates much faster than the timescale of oscillation
(Trelax <K 1/w). Our analysis thus requires that Ce¢ be small enough for the
assumption Ty < 1/w to hold.

If this is not the case, there will be a trade-off between how fast one can
train the network with Freq-Prop versus how accurate the approximation
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Frequency Propagation 605

is for gradient descent. We leave the study of the regime where C is non-
negligible for future work.

We note however that the effective capacitance of the circuit is expected
to grow linearly with the size of the network (the total amount of wire),
so that inference time grows linearly with the size of the network too. We
also note that the same is true for deep neural networks: in a feedforward
network, both inference (the forward pass) and training (backpropagation)
grow linearly with the size of the network.

Remark 2. While our nudging method, equation 3.3, is inspired by the one
of equilibrium propagation (Scellier & Bengio, 2017; Kendall et al., 2020),
it is also possible to apply the nudging variant of coupled learning (Stern
et al.,, 2021) which might be easier to implement in practice (Dillavou et al.,
2021). To do this, we denote v} the “free” equilibrium value of the output
nodes of the network (where the prediction is read), without nudging. Then,
at time t, we clamp the output nodes to vg(t) = vg + y sin(wt)(y — vg). This
nudging method can be achieved via AC voltage sources at output nodes.
We note, however, that theorem 2 does not hold with this alternative nudg-
ing method.

Remark 3. Measuring b; for every node j as per equation 3.4 requires that
we use the same reference time t = 0 for all nodes, that is, it requires global
synchronization of the measurements for all nodes.

However, in practice, there may be a time delay ¢; between nudging
and measurement, leading to a measured response v;(t) = a; + b; sin(w(t +
t)) + O(y?) atnode j. Without any information about ¢ j, we can only obtain
the absolute value of the coefficient b;, not its sign.

We propose a solution to this issue in section 5.

4 Demonstration of Freq-Prop in Linear Networks

We trained a network, comprising 40 nodes and 239 edges, to learn the
Iris data set (see Figure 2). Each edge in the network is assigned a con-
ductance value, drawn from a uniform distribution [107°, 1]. Throughout
the training process, the weights are constrained to the range [107°, 20].
We set the nudge amplitude, n, to 1 and the learning rate, «, to 0.01.
Our training methodology predominantly aligns with the procedures out-
lined in our previous work (Anisetti, Scellier et al., 2023), albeit with a few
modifications:

1. Input to the network is applied as a DC voltage at input nodes. The
response to this input is calculated at the output nodes, and error is
determined.

2. For each discrete time step, t, with a time interval At = 0.05 between
two consecutive steps, the discrepancy between the error is mod-
ulated by multiplying it with sin(wt) (here, @ = 2x, period = 1).
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Figure 2. Training on the Iris data set: (a) The initial network, consisting of
40 nodes and 390 edges, is depicted before training; the color bar represents
the conductance values. (b) The alterations in the network after 1000 epochs of
training. (c) The error versus the epoch plot. The Iris data set consists of 150 ex-
amples, with 75 used for training and the remainder reserved for testing. Each
epoch trains the network on 75 examples, where, at every step, an example is
presented to the network, and the error between the network’s output and the
desired output is computed, represented by a blue dot. The red line denotes the
average error. Here, error is defined as the square root of the mean squared er-
ror. (d) The Accuracy versus the epoch plot, where accuracy is quantified as the
fraction of correct predictions from the total testing examples.

This AC voltage is applied over a duration of five units of time,
encompassing five complete oscillation periods. This error signal is
applied along with the DC signal.

3. The response of each node is recorded over time, resulting in a time
series of voltage values for each node in the network. This time
series contains both the steady-state (DC) component and the os-
cillating (AC) component of the response. Then we decompose the
responses at each node into AC and DC components using Fourier
series method (see equation 3.4).
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Frequency Propagation 607

4. The DC component represents the average or steady-state response
of the node. It is calculated by taking the mean of the time series of
the response at each node.

5. The AC component is extracted by multiplying the time series of the
response by sin(wt) and then averaging the result.

6. Using these AC and DC components, the weights are updated (see
equation 3.5).

We have detailed the entire training procedure in appendix A.

5 Choice of the Nudging Signal

We have seen in section 3 that when a sinusoidal nudging signal
y sin(wt) C(v, y) is used, the measured response at node j will be of the
form v;(t) = a; + b;sin(w(t +t;)) + O(y®), where t; is the time delay be-
tween nudging and measurement. Unfortunately, it is not possible to
recover the sign of b; without any knowledge of ;. This problem can be
overcome by using a different nudging signal.

In general, if we nudge the system by an energy term y f(t) C(v, y), where
f(t) is an arbitrary function such that sup, | f(t)| < oo, then the system’s re-
sponse at node j will be of the form vj(t) = a; + b; f(t +1t;) + O(y?).

Our goal is to choose an f so that we can obtain for every node j the
values of a; and b; by measuring only v;(t), without knowing ¢;.

Clearly this is not possible for all functions f. For example, if f(-) is a
constant, then v;(-) is also a constant, and we cannot recover the values of
aj and b; from v;(-) alone. Another example for which this is not possible
is f(t) = sin(wt). This is because a time delay t; = 7 /w will change the sign
of the signal, sin(w(t +t;)) = — sin(wt); therefore, the sign of b; cannot be
recovered without any knowledge of ¢;.

An example of a nudging signal for which we can infer the values of 4;
and b; (up to O(y?))is f(t) = | sin(w(t))|. To do this, we observe the response
atnode j,

vi(t) = aj + bjl sin(w(t + )| + O(?), (5.1)

for a duration 7,ps greater than the time period of the signal T = 2x /w. The
coefficients a; and b; can be obtained by identifying the times where the
signal’s derivative is zero or is discontinuous. Specifically, denoting 9, v;(t)
and 9_v;(t) the left and right derivatives of the signal at time ¢, we have

a; = Uj(tl) + O()/z) where 3+U(t1) # B,v(tl), (52)
b; = vi(t2) — vj(t1) + O(y?) where dv(t,) = 0. (5.3)

More generally, we show in appendix B that in principle, it is possible
to recover the coefficients a; and b; if and only if the function f has the
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608 V. Anisetti, A. Kandala, B. Scellier, and J. Schwarz

property that there is no t such that f(t) = sup f +inf f — f(t + 7) for ev-
ery t. In other words, no amount of time delay converts the signal’s upright
form to its inverted form or vice versa.

6 General Applicability of Frequency Propagation

Freq-prop applies to arbitrary physical networks: not only resistive net-
works, but also flow networks, capacitive networks, and inductive net-
works, among others. In these networks, the notion of current-voltage
characteristics will be replaced by current-pressure characteristics, current-
flux characteristics, and charge-voltage characteristics, respectively. The
mathematical framework for nonlinear elements (see section 2) also applies
to these networks, where the energy functions minimized at equilibrium are
the co-content, the inductive energy, and the capacitive co-energy, respec-
tively (Millar, 1951; Cherry, 1951).

To emphasize the generality of Freq-prop, we present it here in the con-
text of central force spring networks (or elastic networks; Stern et al., 2021),
as well as Hopfield networks (the Ising model).

6.1 Central Force Spring Networks. We consider an elastic network of
N nodes interconnected by springs. The elastic energy stored in the spring
connecting node i tonode jis E;;(ri;) = %k,-j(r,-]- - E,-]-)z, where k;; is the spring
constant, £; is the spring’s length at rest, and r;; is the distance between
nodes i and j. Nonlinear springs are also allowed, and their energy terms
are gathered in a unique term, Ejonlinear(7). Thus, the total elastic energy
stored in the network, which is minimized, is given by

9 r) = Zkl] Tij — +Enonhnear(r) (61)

where 6 = {k;;, ;;} is the set of adjustable parameters and r = {r;;} plays the
role of state variable.

In this setting, as in the case of resistive networks, we apply a nudg-
ing signal y sin(wt)C(r, y) at the output part of the network, we observe
the response r(t), and we assume that we can recover the first two vec-
tors of Fourier coefficients of r(t), that is, the vectors 4 and b such that
a=x fo r(t)dt and b= % fo r(t) sin(wt)dt. Then the learning rules for the
spring constant k;; and the spring’s length at rest ¢;; read, in this context,

Ak,‘]' = —u bi]‘ (11,‘]' — Z,‘]'), Aﬁ,‘j = —u k,‘]' b,‘j. (62)

Theorem 2 generalizes to this setting; the above learning rules perform
stochastic gradient descent on the loss: A0 = —ay 3 oL 5(0,x,y) + O(y?).
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Frequency Propagation 609

6.2 Continuous Hopfield Networks. Freg-prop also applies to Hop-
field networks (the Ising model; Hopfield, 1984; Baldi & Pineda, 1991). In
a Hopfield network of multiple units interconnected by synapses, the en-
ergy term between unit i and unit jis E;; = w;jhihj, where w;; is the synaptic
weight and #; is the state of unit 7.

The total energy is

E@O.h) ==Y wihih;, (6.3)
i.j

where 6 = {w;;} is the set of adjustable parameters and /1 = {i;} plays the
role of state variable. After applying a nudging signal y sin(wt)C(h, y) ata
set of output units, we observe the response u(t) (the state of the units at

equilibrium), and we compute the vectors a and b such thata = % fOT u(t)dt
and b = % fOT u(t) sin(wt)dt. The learning rules for the weight w;; read

Awij = —Ol(ﬂl'bj + lljb,'), (6.4)
which performs stochastic gradient descent on the loss, up to O(y?).

7 Related Work

Frequency propagation builds on learning via chemical signaling (Anisetti,
Scellier et al., 2023), another example of multimechanism learning (MmL) in
physical networks. Whereas MmL via frequency propagation uses two dif-
ferent frequencies to play the role of the activation and error signals during
training, MmL via chemical signaling uses two different chemical concen-
trations for these signals. Anisetti, Scellier et al. (2023) present learning via
chemical signaling in the setting of linear flow networks, which we extend
here to the nonlinear setting (see appendix C).

Freq-prop is also related to equilibrium propagation (EP; Scellier & Ben-
gio, 2017; Kendall et al., 2020) and coupled learning (Stern et al., 2021). To
see the relationship with these algorithms, we consider the case of resis-
tive networks (see section 2). Denote v = v; — v the voltage across branch
(j, k). Further denote v# = argmin, fE(Q, x,v) + BC(v, y)] for any g € R.
Kendall et al. (2020) proved based on a result from Scellier & Bengio (2017)
that the learning rule

BPp. = 2 (02 — (vf )2
AP = = ()2 = (h)) 7.1)
performs gradient descent with step size af, up to O(8?). We note that

the right-hand side of equation 7.1 is also equal to o v (v} — v7k) +
O(B?), showing that the gradient information is contained in the physical
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610 V. Anisetti, A. Kandala, B. Scellier, and J. Schwarz

quantities v’ and %‘; s—o- hese quantities correspond to the activation and

error signals of Freq-prop, respectively. To avoid the use of finite differ-
%| s—or Freg-prop makes use of a time-varying nudg-
ing signal B(t) = y sin(wt). With this method, the activation and error
signals are encoded in the frequencies 0 and w of the response signal v(t) =

Wty sin(a)t)% P O(y?®). The required information can thus be recov-
ered via frequency analysis.

The idea of using an oscillating nudging signal was also proposed by
Baldi and Pineda (1991) and more recently (concurrent with our work) in
holomorphic EP (Laborieux & Zenke, 2022). Our work differs from these
two other works in several ways. First, our learning rule can be decom-
posed as activation signal times error signal (a x b), whereas the learning
rule of Baldi and Pineda (1991) takes the form A6y = § [ sin(wt)v jk(t)zdt,
and similarly for holomorphic EP. Second, our learning rule is proved to
approximate the gradient of the cost function, up to O(8%), unlike in Baldi
and Pineda (1991). Laborieux and Zenke (2022) exploit the Cauchy formula
of complex calculus to prove that their algorithm computes the exact gra-
dient of the cost function, independent of the strength of the nudging sig-
nal. To achieve this, the authors allow the nudging factor to take complex
values, g = ye® e C, and the domain of definition of the energy function
vi> E(0, x,v) is extended to complex configurations v € CN. However, it
is not yet straightforward to see how this mathematical formalism can be
directly mapped to physical systems such as resistive networks or spring
networks, the motivation of our work.

Another recent work (McCaughan et al., 2023) presents a technique for
gradient computation in analog DNNs. The authors modulate the param-
eters, 6;, using periodic functions with distinct frequencies, w;. This results
in the cost function oscillating as a superposition of these frequencies. They
demonstrated that the oscillation amplitude of the cost function carries gra-
dient information. The gradient with respect to individual weights, 6;, can
be discerned by isolating the Fourier component of the cost function os-
cillating at frequency w;. While this approach shares the concept of signal
decomposition with our frequency propagation method, there are key dif-
ferences. In our approach, we modulate the output error using a periodic
function, leading to an AC feedback signal and a DC feedforward signal.
We then extract individual signals through Fourier decomposition.

Another recent work proposes an alternative approach to train physi-
cal systems by gradient descent, agnostic equilibrium propagation (Scellier
et al., 2022). However, this method imposes constraints on the nature of
the parameters (9), which must minimize the system’s energy (E), just like
the state variables (v) do. This assumption does not allow us to view the
conductances of resistors (resp. the spring constants) as trainable param-
eters in a resistive network (resp. in a spring network). The method also
requires control knobs with the ability to perform homeostatic control over

ences to measure
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Frequency Propagation 611

the parameters. Our work can also be seen as a physical implementation of
implicit differentiation in physical networks. We refer to Zucchet and Sacra-
mento (2022) for a description of implicit differentiation where the authors
use a mathematical formalism close to ours.

Finally, other physical learning algorithms that make explicit use of time
are being developed. For instance, recent work proposes a way to train
physical systems with time-reversible Hamiltonians (Lopez-Pastor & Mar-
quardt, 2021). In this method, called Hamiltonian echo backpropagation (HEB),
the error signal is a time-reversed version (an echo) of the activation signal,
with the cost function acting as a perturbation on this signal.

However, HEB requires a feasible way to time-reverse the activation
signal.

8 Discussion

We have introduced frequency propagation (Freq-prop), a physical learning
algorithm that falls in the category of multimechanism learning (MmL). In
MmL, separate and distinguishable activation and error signals contribute
to a local learning rule, such that trainable parameters (e.g., conductances
of variable resistors) perform gradient descent on a loss function.

In Freq-prop, the activation and error signals are implemented using dif-
ferent frequencies of a single physical quantity (e.g., voltages or currents)
and are thus distinguishable. We note however that the distinguishability
of the signals does not mean that they are mathematically independent. In
Freg-prop, the error signal depends on the activation signal via the Hessian
of the network.

Other potential MmL algorithms may involve independent physical
mechanisms, such as an electrical activation signal and a chemical error
signal or vice versa. Multimechanism learning algorithms, such as Freq-
prop, may have implications toward designing fast and low-power, or high-
efficiency, hardware for Al, as they are rooted in physical principles. For
the time being, inroads are being made by using backpropagation to train
controllable physical systems in a hybrid in silico-in situ approach (Wright
et al., 2022). As we work toward a fully in situ approach, Freq-prop is a
natural candidate. And while the in situ realization of a nonlinear resistor
network is an obvious starting point, there are potential limitations, par-
ticularly in terms of timescales. Consider the time of relaxation to equilib-
rium (7elax), the timescale of the sinusoidal nudging signal (T = 27 /w), and
the timescale of learning (ticarning)- Our learning methodology requires that
Trelax K T < Tiearning- More specifically:

1. Once input is applied, the network reaches equilibrium in time 7ygjax-
2. Based on the network’s output, a sinusoidal nudging signal of fre-
quency wis applied at the output nodes. The timescale of evolution of
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612 V. Anisetti, A. Kandala, B. Scellier, and J. Schwarz

this sinusoidal nudging waveis T = 27 /w. Assuming that Trelax < T,
the network is at equilibrium at every instant ¢.

3. We observe the network’s response v(t) for a time to,s > T to extract
the coefficients 7 and b of equation 3.4. Updating the conductances of
the resistors takes a time Ticarning ~ Tobs Using the values of a and b to
determine the magnitude and sign of these updates.

In our discussion of physical learning mechanisms, it's important to
clarify the nature of the physical processes we envision for self-updating
weights. In seeking an ideal physical mechanism for neuromorphic sys-
tems, we prioritize simplicity and intrinsic capability in each network com-
ponent. The goal is to avoid complex, artificially induced modifications
for self-updating capabilities. For instance, consider the contrast between
a modified sliding rheostat, where weight adjustment is motorcontrolled,
and a memristor. The latter represents a more straightforward approach
to achieving self-updating resistance. A memristor exemplifies the kind
of simplicity we are advocating for. This simplicity is not just a matter
of ease of implementation, but also crucial for scalability and robustness
in neuromorphic computing. Simplified components are more conducive
to building larger and more efficient neural networks. They also tend to
be less prone to errors compared to more complex devices like motor-
controlled rheostats. Our research, as highlighted in Anisetti, Kandala et al.
(2023), is an ongoing effort to explore and develop such inherent physical
mechanisms.

There are many examples of biological systems implementing function-
ality via multiple biophysical routes, since brains developed rather recently
if one looks at the evolutionary tree dating back to the origins of life. For
instance, cancer cells learn to move through mazes more efficiently using
self-generated chemotaxis (Tweedy et al., 2020). Slime mold, a single-cell
organism, stores memory and can learn through a combination of chemical
and mechanical signals (Boussard et al., 2021). Even at the subcellular scale,
chromatin can be viewed as a mechanical computer, similar to the analytical
machine.

Finally, could something like Freg-prop occur in the brain? Earlier work
analyzing local field potentials recorded simultaneously from different re-
gions in the cortex suggested that feedforward signaling is carried by
gamma-band (30-80 Hz) activity, whereas feedback signaling is mediated
by alpha-(5-15 Hz) or beta- (14-18 Hz) band activity, though local field
potentials are not actively relayed between regions (Bastos et al., 2015).
More recent work in the visual cortex argues that feedforward and feedback
signaling rely on separate “channels” since correlations in neuronal popu-
lation activity patterns, which are actively relayed between regions, are dis-
tinct during feedforward- and feedback-dominated periods (Semedo et al.,
2022). Freq-prop is also related in spirit to the idea of frequency multiplex-
ing in biological neural networks (Naud & Sprekeler, 2018; Payeur et al.,
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Frequency Propagation 613

2021; Akam & Kullmann, 2014), which uses the simultaneous encoding of
two or more signals.

While Freg-prop here uses only two separate signals—an activation sig-
nal and an error signal—one can envision multiple activation and error
signals being encoded to accommodate vector inputs and outputs and to
accommodate multiple, competing cost functions. With multiple activation
and error signals, one can also envision coupling learning via chemical sig-
naling (see appendix C) with Freq-prop, for example, to begin to capture
the full computational creativity of the brain.

Appendix A: Details of the Training Process

We train the network on a standard machine learning task: classifying
Iris flowers. The Iris data set (Fisher, 1988) contains 150 examples of Iris
flowers belonging to three species (Setosa, Virginica, and Versicolor), and,
therefore, 50 examples for each category. Each example is of the form X =
(X1, Xz, X3, X4), composed of four features of the flower (petal width, petal
length, sepal width, and sepal length, all measured in centimeters), and
comes with its assigned Iris category, denoted Y. So an example would
look something like X = (5.1, 3.5, 1.4,0.2) and Y = setosa. Given the four
features of the flower as input, the trained network should be able to tell
which species it belongs to:

1. Network generation: A network consisting of N nodes, with a vary-
ing number of edges M, is created. For this, we first create a Barabdsi-
Albert network with connection parameter 1. This graph generation
algorithm connects a new node with one existing node in a manner
that nodes with higher degree have a stronger likelihood for selec-
tion. This creates a network with N nodes and N — 1 edges. To create
a network with M edges, we add M — (N + 1) unique edges.

2. Four pairs of input nodes are chosen from this flow network, where
the input data (the normalized features of the Iris) are given as exter-
nal currents across these four pairs of boundary nodes. Three pairs
of nodes are chosen as the output nodes. Once the network is trained
for a given input, the set of potential drops across these output node
pairs should tell the category of Iris the input data correspond to.

The network architecture remains fixed throughout the training-testing pro-
cess. Only the conductances of these weights are modified. As for how the
flow network interfaces with the Iris data set:

1. The data set is divided into two subsets: one training set (used for
training) and one test set (used for testing). Each of these sets has 75
examples of Irises, 25 from each category.

2. The data setis normalized. That is, for each example X in the data set

X, xmin
and for each feature X; of X, we set X*™ = 1 - e » Where XX
; }
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614 V. Anisetti, A. Kandala, B. Scellier, and J. Schwarz

and XI.rnin are the minimum and maximum values for that feature X;
in the training set. We choose A = 5 for all simulations.

While choosing the desired outputs, we must keep in mind the fact that
this linear system may not be able to find a set of weights that give out the
desired output. In other words, we must choose desired outputs that are
physically attainable. We therefore implement the same technique as de-
scribed by Dillavou et al. (2021) to choose the desired output voltages for
each of the three Iris categories. For each category, the desired voltage is the
average, normalized input data. That is, each Iris category has 25 examples
of four input features, and each input feature is averaged out over 25 ex-
amples. Finally, we obtain a four-tuple of averaged input features for each
Iris category. When this is given as input to the initial network, we aim to
arrive at an output voltage that corresponds to the average behavior of the
input, which is the desired voltage.

To conduct the training process, first the input data are given to the net-
work as a DC voltage and the output is observed. If the output is not equal
to the desired output for that Iris category, feedback AC currents are ap-
plied at the output nodes. The weights of the network are modified using
the learning rule mentioned above. This process is repeated consecutively
for all examples.

Once the entire data set is exhausted, we say that one epoch has passed.
We train the network for multiple epochs. At the beginning of each epoch,
because the network has changed significantly, new desired voltages are
calculated. Therefore, each epoch has its own set of desired voltages. To
conduct the testing process, after the network is trained for multiple epochs,
we record how well it classifies unseen data from the test set. To be specific,
the test set has 25 examples per Iris category. The Iris features from these test
examples are given as input, and the output voltage is compared with the
desired voltage. The desired voltage is calculated using the testing data set.
An example is then classified into that Iris category, for which the output
voltage is closest to the desired output.

Appendix B: Further Details on the Nudging Signal

Let f(t) denote the nudging signal. Assuming that f is bounded, recall that
for every j, the measured response v;(t) at node j is of the form v;(t) = a; +
bif(t+t;)+ O(y?), where ajand b; are the numbers that we wish to recover
(up to O(y?)) to implement the parameter update and f; is an unknown
time delay. Our goal is to obtain for every node j the values of a; and b; by
measuring only v;(t), without any knowledge of ¢;.

We now establish a necessary and sufficient condition on the nudging
signal f(t) so that one can, at least in principle, uniquely obtain the values
of a; and b; for every node j. We are concerned with quantities that depend
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Frequency Propagation 615

only on a single node and hence will drop the node index with the under-
standing that all of the analysis applies to any arbitrary node.

Let F denote the set of all real-valued, bounded functions, and let f be
an element of F. Let Cf : R® — F be the function that maps the parame-
ters (a, b, fp) to the function v(-) =a+ bf(- +ty). We define the following
equivalence relation on F: two functions g, i € F are equivalent if they dif-
fer by a time translation, that is, g ~ &, if and only if there exists a fp € R
such that g(t) = h(t + ty) for all t € R. Let F = F/ ~ be the quotient of F un-
der this equivalence relation and let [g] be the equivalence class that con-
tains the function g. The map Cy can be lifted to yield Cy : R* — F such that
Cf(a,b) =[a+ bf]. In order to be able to uniquely extract 2 and b from any
equivalence class of the form [a + bf], the function Cy has to be injective.
This can be reexpressed as a direct condition on the nudging signal f.

Proposition 1. The following statements are equivalent:
P1: The function Cy : R* — F defined by Cs(a, b) = [a + bf] is injective.
P2: There exists no v € R such that forall t € R,
ft)=sup f+inf f — f(t + 1),

wheresup f = sup, f(t)andinf f = inf; f(t) denote the supremum and infimum
values of the nudging signal f, respectively.

Proof. We establish this by proving that the negations of the two statements
are equivalent, that is, the following statements are equivalent:

N1: There exist two distinct pairs of real numbers (a1, b1) and (a2, by) such
that

[a1 + b1 f] = [a2 + Do f].

N2: There exists a T € R such that forallt € R,

ft)y=sup f+inf f — f(t + 7).

Suppose that N2 is true: there is a v € R such that for all t € R, f(t) =
sup f +inf f — f(t 4+ t). Thismeans that f and sup f +inf f — f arerelated
by a time translation, thatis, [ f] = [sup f + inf f — f]. Therefore, N1is true,
with (a1, b1) = (0, 1) and (a2, bp) = (sup f +inf f, —1).

Conversely, suppose that N1 is true: there exist two distinct pairs of real
numbers (a1, b1) and (a3, by) and a t € R such that

VteR, @m+bif(t)=a+bf(t+1). (B.1)

The numbers b; and b, cannot be both zero; otherwise, equation B.1 implies
that a; = a5, a contradiction. If by = 0 and b, # 0, that equation implies that
f is a constant, in which case N2 is clearly true. Otherwise b; # 0, and we
can rewrite the above equality as
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VteR, f(t)=a+bf(t+r7) (B.2)

with a = (a4, — a1)/b1 and b = b, /b1. Now there are two possibilities: either
b>0orb<0.

First, let us suppose that b > 0. The above equality imposes the following
conditions on the minimum and maximum values of the function f:

sup f =a+bsup f, (B.3)
inf f = a+ binf f. (B.4)

Subtracting equation B.4 from B.3 and reorganizing the terms, we get (1 —
b)(sup f —inf f) = 0.1f b = 1, thena = 0, contradicting our assumption that
(a1, b1) and (az, by) are distinct pairs. Therefore, sup f = inf f, f is constant,
and N2 is true.

Second, let us suppose that b < 0. As before, we have

sup f = a+ binf f, (B.5)
inf f =a+bsup f, (B.6)
and again (1 4 b)(sup f —inf f) = 0. Either f is a constant, or b = —1, im-
plying in turn that a = sup f +inf f. Therefore, coming back to equa-

tion B.2, we have f(t) =sup f +inf f — f(f + 7) for all t € R, which is the
statement of N2. a

Appendix C: Multimechanism Learning via Chemical Signaling

In this appendix, we generalize the learning algorithm via chemical signal-
ing (Anisetti, Scellier et al., 2023) to nonlinear networks. Learning via chem-
ical signaling is another example of multimechanism learning in physical
networks. It uses pressures and chemical concentrations to implement a lo-
cal learning rule. This way of using multiple independent “mechanisms” is
the central idea behind multimechanism learning.

Consider a flow network, one of nodes interconnected by tubes. A flow
network is formally equivalent to the resistive network of section 2, with v
being the configuration of node pressures and 6, being the conductance of
the branch between nodes j and k.

Learning via chemical signaling proceeds as follows. In the first phase,
given 6 and input signals x, the configuration of node pressures stabilizes
to its equilibrium value v(0, x) given by

v(0, x) = argmin E(0, x, v). (C1)
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Frequency Propagation 617

In the second phase, we inject chemical currentse = —p % (v(0, x), y) atout-
put nodes, where g is a (positive or negative) constant. As a result, a chemi-
cal concentration u develops at each node. Assuming that the configuration
of node pressures v(6, x) is not affected by the chemical, the chemical con-
centration u at equilibrium satisfies the relationship

2275(9, x,v0,x)) - u= —ﬁ%(v(&, x),Y). (C2)

Indeed, diffusion along a tube follows the same equation as that of flow
along the same tube, up to a constant factor (replacing node pressures and
flow conductivity by chemical concentration and diffusion constant, respec-
tively). When there is no ambiguity from the context, we write v = v(6, x)
for simplicity. We note that although v is not affected by the chemical, u
depends on v. In particular 1 also depends on 6 and x through v.

Next, denoting u = (uj, uy, ..., uy), we update each parameter 0 ac-
cording to the learning rule

Abjr = —a(u]- — Ug) - (v]- — vg), (C.3)

where « is some constant. Note that this learning rule is local (just like the
learning rule of Freg-prop), requiring only information about nodes j and
k for each conductance 6.

Theorem 3. For every parameter 0, it holds that
9L
Abj = —a B—(0, x, ). C4
jk (o4 ﬁ aejk ( X y) ( )

Namely, the learning rule of equation C.3 performs one step of gradient
descent with respect to the loss, with step size o 8. We note that learning via
chemical signaling comes in two variants, either with § > 0 and « > 0 or
with 8 < 0and @ < 0. The procedure performs one step of gradient descent
as long as the product o is positive.

Proof. First, we write the first-order equilibrium condition for v(0, x),
which is

%(9, x,v(0,x))=0. (C.5)

We differentiate this equation with respect to 6:

92E v 92E
707 k] 95 795
guz 0% v(60.0) 750, %) + =g

®, x, v(8, x)) = 0. (C.6)
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Multiplying both sides on the left by u", we get

92E
990

+9%E v .
u —(0,x,v(0,x)—(0,x)+u @, x,v(,x)) =0. (C.7)
v 90

On the other hand, multiplying both sides of equation C.2 on the left by
20, x)7, we get

a—”(e, x)TaZTE(Q, x,v(0,x))u = —,32—;(9, x)T%(v(O, x),Y)
oL
==-—ﬂ;i5(9ax7y)- (C.8)

Comparing equations C.7 and C.8, we conclude that

9°E AL
T —
u avae(G,x,v(G,x))-— ﬂ}ii(e’x’y)' (C.9)

Finally, using the form of the energy function 2.2, we have for each param-
eter 6;,

L
(u,-—uj)~(vi—vj):;3%(0,x,y). (ClO)
1

Therefore, the learning rule

AOjk = —(X(Ll,' — Ll]) . (vz- — U]) (Cll)
satisfies
oL
Aby = —aB—(0 . 12
o= =g =(6.%.9) (€12)
Hence, the result. O
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