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1 Introduction

String compactifications lead to a rich array of effective supergravity (SUGRA) and quantum
(and sometimes conformal) field theories in 6- and 5- dimensions which have been the focus
of much recent work [1–11]. The close relationship between the 5/6-dimensional theories
under a circle (S1) reduction has yielded much information about the possible structure of
both theories (see e.g. [12–14]) and inspired many recent classifications. In this work, we are
interested in a new example of such 6D/5D relationships as they arise in compactications of
M/F-theory on elliptically and genus one fibered Calabi-Yau threefolds. In particular, we
are interested in circle reductions of 6-dimensional F-theory effective theories which include
flux along the circle and the possibility of twisted circle reductions[7, 15–19] (leading to
different ranks in the 5-dimensional gauge theories compared to their 6-dimensional uplifts).
It is important to note at this point that the phrase “twisted reduction” has been used
in multiple ways in the literature (sometimes indicating only circle reductions including
flux/Wilson lines). In the context of this work we will only use the term “twisted reduction”
to refer to reductions which change the rank of the gauge group. This will include an
F-/M-theory realization of automorphisms that “fold” affine Dynkin diagrams [20–22] to
produce twisted algebras and Calabi-Yau genus-one geometries with markedly different
physics (including different rank gauge groups) to their Jacobian fibrations.

Let us begin by briefly reviewing a now well-established story [23–25] of F-theory
circle reductions with Abelian gauge groups and M-theory on genus one fibered Calabi-Yau
manifolds. We will outline a few key ideas here and leave a more detailed review for section 2.
For the purposes of this discussion it should be noted that a “genus-one fibered” manifold
is one whose generic fiber is a T 2 and which does not in general admit a section to that
fibration, but rather a multi-section (which intersects the generic fiber n > 1 times). In
contrast, a T 2-fibered manifold which does admit a rational section is referred to as an
“elliptically fibered” manifold. A 5-dimensional compactification of M-theory on a genus
one fibered Calabi-Yau threefold X is closely related to a 6-dimensional compactification of
F-theory on a particular elliptically fibered Calabi-Yau threefold known as the Jacobian of
X and denoted J(X/B2). In mathematical terms, the Jacobian of a genus-one fibered CY
manifold is an elliptically fibered manifold which shares the same base and discriminant
locus to the fibration (and the same J-function). In general, for torus-fibered CY threefolds
J(X/B2) and X are topologically distinct and many different genus one fibered manifolds
can share the same Jacobian.

The set of such geometries (together with information about the form of the birational
mapping takes) form the group of CY Torsors [26, 27]. In many cases this reduces to
the Weil-Châtalet group WC(X) [22, 26, 28–30]. The Weil-Châtalet group contains the
Tate-Shafarevich (TS) group X(X) [28, 29] as a subgroup and the two coincide if the
genus-one fibrations do not contain isolated multiple fibres. In such simple situations, the
number of Kähler moduli among all TS elements have been observed to match [31–34].
Multiple fibres over smooth points1 on the other hand appear to be closely linked to the

1For a discussion of multiple fibres over isolated singularities in B2 see [22, 30] and for smooth points see
eq. B of [21].
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twisted affine algebras that we construct in this work and hence in these cases the WC(X)
group does not simply reduce to the TS group X(X).

Returning to the F-/M-theory physics of these manifolds, a compactification of F-
theory requires the existence of a section in addition to a T 2 fiber [35, 36] and thus, we
can consider defining F-theory on a given elliptically fibered CY threefold. However, this
single compactification of F-theory can give rise to a number of distinct 5-dimensional
compactifications of M-theory via circle reduction with Wilson lines (and possibly matter
field vevs). As an example, if we consider a purely Abelian 6D effective theory arising from
F-theory, then it is possible to choose a non-trivial U(1)-charged vev ⟨ϕq⟩ ̸= 0 and discrete
Wilson line (i.e. discrete circle flux) along the circle

ξ ∼
∫
S1
A . (1.1)

As was demonstrated in [31, 32, 37], different choices of ξ lead to compactifications of
M-theory on (possibly) distinct genus-one manifolds which are elements of the group of CY
torsors (note that the reduction with ξ = 0 leads to an M-theory compactification on the
elliptically fibered manifold J(X/B2) itself). The set of these 5-dimensional theories are
connected by geometric transitions in the underlying genus one fibered manifolds [31, 32, 37,
38]. This framework has been used to gain a deep understanding of discrete symmetries in
F-/M-theory. In particular the associated Jacobian fibrations admit non-trivial torsion [32]
and terminal singularities that do not admit a crepant resolution [39, 40]. When compactified
on one more circle to 4D, one obtains type IIA strings on the same geometry but it is
possible to twist along this additional cycle, which allows to resolve the singularity via a
non-commutative resolution [41–43].

In the present paper, we will be interested in compactifications of F-theory in 6-
dimensions which include not only an Abelian factor, but also a non-Abelian gauge algebra
(e.g. g× Zn for the Jacobian theory or g× u(1) if we move to an enhanced loci in moduli
space to simply describe the dimensional reduction). In this case, the circle reductions can
involve flux from gauge fields in the Cartan subalgebra of g as well as the U(1) factors.
Importantly, a feature that is possible in this context is the presence of boundary conditions
which can mix these different fluxes together in non-trivial ways:

AB(y) = σB(AC(y + 2π)) (1.2)

where σ is associated to a discrete automorphism of the gauge group. In reductions of pure
gauge theories the discrete symmetry action σ is known to be an outer automorphism of
the gauge group. As we will discuss in this work, in the context of F-theory (as a theory of
supergravity) this discrete symmetry is expected to be gauged and to be locally realized
in the Calabi-Yau geometry. This involves a more complex interplay between the gauge
theory and local discrete automorphisms of the Calabi-Yau geometry.

Non-trivial circle boundary conditions such as in (1.2) (and fluxes) have been imple-
mented in a variety of other contexts under the name of “twisted” circle reductions (see
e.g. [7, 15, 17, 44]) but have not been previously studied in the compact setting in F-
theory. As we mention above, we will refer to reductions implementing non-trivial boundary
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Figure 1. From left to right: upon affinization, the e7 Dynkin diagram obtains an Z2 outer
automorphism that interchanges the affine and fundamental root α0 and α1. Quotienting by that
automorphism, yields twisted affine e

(2)
6 .

conditions such a (1.2) as “twisted reductions”. We find that in the presence of these
boundary conditions we generate a new set of 5-dimensional vacua associated to M-theory
compactifications on genus-one fibered manifolds with “twisted” torus fibrations realizing
twisted Lie algebras (e.g. e(2)6 ) in their fibers and non-Abelian gauge algebras of the form
hi × u(1) where hi ⊆ g is a sub-group of the 6D F-theory gauge algebra. Geometrically,
these geometries are intriguing in that the genus one fibered manifold and its Jacobian can
realize different non-Abelian gauge groups, despite the fact that they share a discriminant
locus. This arises through a discrete “folding” of the affine Dynkin diagrams found in the
elliptic/genus-one fibers.

In this work we will provide several examples of the geometric structure described above
in which a genus-one fibered CY manifold and its Jacobian differ significantly in terms of
their respective 5D/6D physics. As our central, illustrative example, we will study in detail
the geometry and BPS spectra of a manifold whose fibers correspond to the twisted algebra
e
(2)
6 . The e

(2)
6 twisted algebra admits an f4 finite sub-algebra, as observed from the Dynkin

diagram in figure 1. Upon unfolding one notices that the Dynkin diagram is obtained from
an e

(1)
7 cover, twisted by its outer automorphism. A key feature of this construction is

that this folding symmetry only exists in the diagram upon affine extension but not the
finite e7 gauge algebra alone. Correspondingly, if this is to be realized inside a compact
CY fibration, the folding is incompatible with the existence of a single section, as that
would mark the affine node α0 breaking the symmetry α0 ↔ α1. Instead, as we will review
in detail below, the folded fibers appear in genus one geometries with a 2-section [7]. As
described in section 4, such a 2-section comes with a special divisor D2 = d28 + 4d5 across
which the two branch points are interchanged. This monodromy divisor plays a crucial
role in realizing the folded fibers: to obtain the e

(2)
6 geometry, we require the e7 divisor in

the base to intersect D2 non-trivially. As we will outline in detail in section 4 below, the
singular genus-one fibration admits a quartic fiber presentation in F2, given as

Z2 = z3d1X
4 + z3d2X

3Y + z2d3X
2Y 2 + zd4XY

3

+ d5Y
4 + d6z

2X2Z + zd7XY Z + d8Y
2Z , (1.3)

with what we call a type III∗ non-split fiber that can be resolved to e
(2)
6 .

This fiber structure leads to several open questions regarding the 5D/6D effective
physics which are explored in this work. The torus-fiber of the genus-one fibration indicates
a 6D F-theory uplift. As the 6D F-theory geometry is simply the encoding of the monodromy
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data of the IIB axio-dilaton, this information can be obtained by mapping the singular
genus-one model into the Jacobian fibration [45] which takes at leading order the form

f = z3D2 +O(z4) , g = z5q +O(z6) , ∆ = z9D
3
2 +O(z10) . (1.4)

Due to the presence of the section in the Jacobian, the Kodaira/Tate classification applies
and we do not obtain an f4 (e.g. via a IV ∗,ns-singularity) but instead a type III∗ which
yields an e7 gauge algebra. Thus, we find an enhancement of the non-Abelian gauge
symmetry in the 6D theory compared to that in 5D. This observation regarding the
F-theory lift of such genus-one models differs from those previously studied in the literature
(see e.g. [46]). In particular we find a difference of the Kähler moduli of the (maximally
resolvable) Jacobian and the genus-one fibrations as also observed in [20, 21, 47]. From
the point of view of circle reductions of 6D gauge theories, this may come as a surprise,
as “twisted” dimensional reductions leading to e

(2)
6 fibers are realized in theories decoupled

from gravity by twisted reductions of e6 (see e.g. [7, 19]). In the present context, we find
that the Jacobian symmetry instead reflects the geometric cover of e(2)6 , that is e7. This is
further discussed in section 3. This structure appears in each of our examples and applies
also to the su

(2)
3 and so

(3)
8 geometries that are explored in section 5.

Further interesting differences between the 5/6D theories arise when considering the
spectrum of light states in the two theories. Upon resolving the genus-one model, we study
the geometry over an arbitrary two-fold base and compute the number of light 5D BPS
states associated to the twisted fibration which are determined by the number of R = [z] ·D2
ramification points and the genus g of the base curve. Computing those we find that our
results are in full agreement with the multiplicities of 5D states that would arise from an e6
twisted circle reduction (despite the fact that the apparent 6D gauge symmetry is e7 as
described above). We also discuss several conifold-type transitions of the threefold, and
match it to 5D geometric transitions which change the fiber structure as e

(1)
7 → e

(2)
6 . Field

theoretically we realize this transition via motion along the Higgs/Coulomb branches of the
theories. We test our constructions also in the context of little string theories, by matching
higher group symmetries across T-dual pairs, as well as SCFTs.

The structure of this paper is as follows. In section 2 we give a brief introduction to
circle compactifications in F-theory and M-theory on genus-one fibrations. In section 3 we
discuss twisted circle reductions of u21 and e7 × u1 theories and a rich array of questions
that arise in those contexts. From there we proceed to the discussion of 5D M-theory vacua
and genus one fibrations with e

(2)
6 fibers in section 4, where we describe the full geometry,

compute BPS multiplicities and geometric transitions to untwisted theories. In section 5
we then discuss further examples including su

(2)
3 and so

(3)
8 twisted fibers. In section 6 we

employ the geometric constructions described above to discuss twisted T-dual little string
theories and match their global symmetries. These considerations provide a non-trivial
cross-check for our constructions. Finally, in section 7 we compare the moduli spaces of
twisted and untwisted genus-one fibrations before we conclude in section 8. Appendix A
and appendix B are devoted to additional geometric data for some of the explicit examples
presented in this work.
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2 Circle reductions of F-theory to M-theory

In the following sections we provide a brief review of the relationships between 6/5 dimen-
sional theories and the geometry of Calabi-Yau elliptic and genus-one fibrations.

2.1 A brief review of twisted circle reductions

Following the analysis of [31, 48], one can consider a compactification of a 6-dimensional
U(1) gauge theory on a circle of radius R. In particular, we consider the possibility of giving
a field ϕ of charge q an expectation value, possibly depending upon the circle direction,
whose coordinate we denote by y. Denoting the five-dimensional coordinates by x we can
perform the usual Fourier expansion of the scalar field.

ϕ(x, y) =
∑
n∈Z

ϕn(x)e2πinyτ , (2.1)

with the inverse circle radius τ = 1
R . In addition to a scalar field vev, one could consider

turning on a Wilson line associated to the U(1) gauge field which can be denoted by ξ =
∫
S1 A

as in (1.1). In such a background, the mass term obtained for the n’th Kaluza-Klein (KK)
mode ϕn is proportional to the following

mn = |qξ + nτ | . (2.2)

In this setting that there are several distinct possibilities for the nature of the compactified
theory. The mode of ϕ which is given an expectation value must be massless according
to (2.2). For example, if we choose ξ = −τk/q this is simply the mode n = k. One can then
ask, if we give an expectation value to a KK mode ϕn then what symmetry is preserved?
This is straightforward, but we write out the argument below here as we will soon need to
repeat it for more complicated examples. The mode transforms under the symmetry as
follows.

ϕn → ei(qθ+nψ)ϕn . (2.3)

Here θ and ψ are the parameters associated to U(1)6D and U(1)KK respectively. Given (2.3)
the expectation value is invariant if,

qθ + nψ = 2πγ , (2.4)

where γ ∈ Z. Clearly we will always have a U(1) symmetry simply by taking γ = 0 and
θ = n/qψ. To complete the analysis we simply need to decide if any non-zero values of γ
are not identified with the γ = 0 case.

The two gauge parameters are identified under

θ ≈ θ + 2πα , ψ ≈ ψ + 2πβ . (2.5)

Therefore,
qθ + nψ ≈ qθ + nψ + 2π(qα+ nβ) . (2.6)

Comparing (2.6) and (2.4), we see that values of γ for which γ = (qα+nβ) can be identified
with zero. The question therefore becomes what is the smallest positive integer combination

– 5 –
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of q and n. This is, of course gcd(q, n) and thus values of γ can be identified under integer
multiples of this greatest common divisor. Given this analysis, a dimensional reduction of
this type results in a symmetry U(1)× Zgcd(q,n).

As an example, we see from this analysis that if q = 3 then one should obtain a U(1)
symmetry unless n is an integer multiple of 3 as noted in [31]. It should be noted that
this result has implications of the structure of the group of Calabi-Yau Torsors under the
standard F-theory framework of how such geometries are related to sets of genus one fibered
geometries which share a Jacobian [26, 31, 38, 46, 48] as we discuss next.

2.2 F/M-theory circle reductions and Calabi-Yau geometry

In this section we review the geometry and physics of genus-one fibrations in M-and F-theory
on a compact threefold and its relation to discrete symmetries. Those properties can be
deduced intrinsically from the threefolds [41, 49, 50] however we will rather discuss them in
terms of a Higgs transition following [32].

In that we discuss with an elliptic threefold with a rank one MW group [2, 23, 25]
(also see the reviews [51, 52] and reference therein). A well explored example is the
Morrison-Park [2] model [24] given as the elliptic curve inside of BL1P2

1,1,2,

p= e31s1X
4+e21s2X3Y +e1s3X2Y 2+s4XY 3+e21s6X2Z+e1s7XY Z+s8Y 2Z+e1s9Z2 .

(2.7)

Here the X,Y, Z, e1 can be thought of the analog of the Weierstrass coordinates, and the si
are some non-vanishing sections of the base that are specified in appendix B. The fibral
part of the Stanley-Reisner ideal (SRI) is given by

SRI : {XZ , e1Y } , (2.8)

where both X = 0 and e1 = 0 are sections S0 and S1 respectively, that generate a MW
group given by the Shioda map:

σ(s1) = [e1]− [X] . (2.9)

The form dual to this divisor leads to a U(1) gauge potential by an expansion of the
M-theory three-form that also survives in the F-theory limit. Notably, this fibration admits
two kinds of reducible curves over codimension two points in the base, where the fiber
becomes of I2 form. The first is over the toric locus s4 = s8 = 0 where the fiber degenerates
into T2 → C1 + C2 and the other one over a non-toric ideal I(2) where the fiber becomes
T2 → B1 +B2. The fiber structures and especially their intersections with the two set of
sections are given as

C1 C2
S0 1 0
S1 −1 2
σ(s1) −2 2
vol t0 2ts

,

B1 B2
S0 1 0
S1 0 1
σ(s1) −1 1
vol t0 + ts ts

. (2.10)

– 6 –
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The volumes of those effective curves were computed using the fibral part of the Kähler
form (see [48]) given as

J = t0S0 + ts(S0 + S1) . (2.11)

This geometry admits two conifold transitions that either branch towards a genus-one
fibration or its Jacobian respectively. In order to do so, either of the two P1’s must be
blown-down which yields a singularity which we can then deform. The two phases are
topologically distinct geometries:

1. t0 → 0 yields the genus-one fibration (after deformation). Note that the residual fibers
B1/2 stay at finite volume.

2. ts → 0 yields the Jacobian fibration (after deformation). The curve B2 shrinks to
zero size, which results in an I2 singularity that can not be (crepantly) resolved.

In the genus-one fibration we deform the singular curves C1 by adding the terms s5Y 4

to obtain

p = s1X
4 + s2X

3Y + s3X
2Y 2 + s4XY

3 + s5Y
4 + s6X

2Z + s7XY Z + s8Y
2Z + s9Z

2 ,

(2.12)

which yields the genus-one fibration. Shrinking C2 preserves the section and yields the
Jacobian fibration. From a 6D perspective, the resulting F-theory lift yields a discrete Z2
symmetry. This is clear once from observing that we Higgs on a non-minimal U(1) charged
state but also due to the fact the all elements in the TS group X(X) must yield the same
6D F-theory and thus a (discrete) gauge symmetry.

In the absence of a section we can at most define an N-section, which refers to a divisor
SN0 that intersects the generic torus N times

SN0 · [T 2] = N . (2.13)

Those N-points make sense only as a collection, as they are permuted along monodromies
in the base along the Monodromy divisor DN,S0 . This divisor can be computed from the
discriminant locus of SN0 . For the quartic the relevant monodromy divisor is given as

D2,X = s28 − 4s9s5 . (2.14)

While the different elements of X(X) uplift to the same 6D F-theory, their 5D M-theory
physics differs. As described previously, since M-theory is related to F-theory by a circle
compactification, the differences in 5D effective theory arise from a choice of a circle flux ξ

in the 6D gauge algebra G×U(1). In the context of the geometries above, these choices can
be seen by following the Higgsing in 5D and noting that M2 branes can wrap the curves Ci
which, on a generic point on the Coulomb branch (CB) obtain the masses

mw,n = |wIξI + qξ + nτ | , (2.15)

– 7 –
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whereas wI denotes a weight of the 6D representation Rq under G×U(1). The ξI and ξ

denote the 5D Coulomb branch parameters of the non-Abelian and Abelian gauge algebras
respectively. Geometrically, those 5D Coulomb branch parameters correspond to fibral
Kähler parameters and the weights wI and q can be explicitly computed via the intersections
of the fibral curve C with the fibral divisors DI and the U(1) Shioda map respectively. For
a singlet state under the non-Abelian gauge algebra, 1N , the choice of circle flux ξ = − n

N

from the perspective of the 6D theory allows for massless states in the 5D theory that
enable the geometric/Higgsing transitions described above. The choice of ξ = 0 corresponds
to the Jacobian geometry.

From the point of view of the circle reduction, the unbroken U(1)E in 5D is a linear
combination of both U(1)6D and U(1)KK symmetries given as

flux 5D symmetry
ξ = − n

N U(1)E = n ·U(1)6D −N ·U(1)KK
ξ = 0 ZN ×U(1)KK

(2.16)

(where we have taken gcd(q, n) = 1 here for simplicity). Also note that the Jacobian vacuum
with ξ = 0 preserves the discrete gauge algebra factor in 5D2 The choice with a discrete
holonomy will be relevant in the next section in conjunction with additional non-trivial 6d
gauge symmetries to lead to twisted affine type of fibers.

Note that at the origin of the Coulomb branch in the Jacobian, with ξ = 0 there are
KK zero-modes which yield massless 5D states. Note also that discrete charged singlets stay
massless on a generic point of the Coulomb branch moduli space. These states correspond
to terminal I2 fibral singularities, that do not admit any crepant resolution [39, 40]. In the
genus-one fibration on the other hand every massless 6D state with representation Rq and
ZN remnant charge q mod N admits shifted 5D mass

mw,n = |wIξI +
(
n− q

n0
N

)
τ | . (2.17)

The total contribution qE = (n−q nN ) is identified with the charge3 under U(1)E which is the
shifted U(1)KK . The U(1)E charges can be computed geometrically via the intersections with
the “discrete Shioda map”4 which is used to construct multi-section that is orthogonalized
with respect to all shrinkable fibral curves (see [45] and eq. (5.23) in [50]). Note that states
with weight w ∈ R and non-trivial U(1)E charges stay massive at the origin of the Coulomb
branch ξI = 0.

Whenever g is an untwisted algebra the codimension one and two singularity structure in
either elements of the TS group X(X) are the same, as observed in all known examples [20,
34, 45, 49], with the only exception that singularities are terminal in the Jacobian. Hence
for computational purposes it is often times more convenient to use the genus-one fibration

2See [32, 41] for a discussion of the torsion cycles in the Jacobian that yield the discrete symmetry.
3The q mod N identification of the 6D discrete charges is resembled by the integer shift symmetry of the

KK charges n in 5D.
4Note that the U(1)KK -tower is still integer spaced, while we will mostly use a U(1)E charge normalization

for the N-section such that KK-charges have N -integer spacing.
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to compute states and charges, as the geometry can be fully resolved.5 These states then
become massless in the 6D F-theory uplift and therefore must satisfy the 6D (SUGRA)
anomaly cancellation conditions.

When moving away from untwisted algebras to twisted ones however, the simple
relationship between states no longer holds. In the following we discuss in detail that these
geometries admit multiple fibers and hence, we expect that the Weil-Châtalet group WC(X)
will not reduce to the Tate-Shafarevich group X(X) in these cases.

3 Twisted dimensional reductions in F-theory?

The geometries described in section 1 highlight an intriguing possibility, namely that circle
reductions of F-theory to M-theory may dramatically change the nature of non-Abelian
factors in the gauge group in a way that cannot be explained by standard circle fluxes
alone. The natural question then arises: what is the physical mechanism that accomplishes
this change?

At least a partial answer seems to lie within the study of twisted circle reductions of
gauge theories which have appeared in a wide range of contexts (see e.g. [7, 15, 17, 19, 44, 53]).
In brief, if we begin with a theory with gauge symmetry G, in n-dimensions and consider
the dimension reduction of this theory on an S1 to produce an (n− 1)-dimensional theory,
it is natural to consider the possibility of non-trivial boundary conditions on S1 for the
gauge theory. Denoting the coordinate along the S1 as y, the fields of the theory could
experience ‘twisting’ conditions around the circle. For example the gauge potentials could
obey a schematic relationship of the form

AB(y) = σB(AC(y + 2π)) (3.1)

where σ is some discrete action mixing components of the gauge field. For pure gauge
theories, the possible discrete actions σ are well understood [7]. In particular, σ must be
compatible with gauge transformations of the theory but not trivializable under them,
leaving the group of outer automorphisms of G as a natural choice.

Importantly for our present purposes, for simple Lie algebras the group of outer
automorphisms are exactly the group of graph automorphisms of the associated Dynkin
diagram. This means that there is a natural identification of nodes of the Dynkin diagrams
that can “fold” the diagram in way a that feels similar in spirit to the relationship between
fibers of the twisted genus one fibered manifold X and it’s Jacobian, J(X/B2) sketched in
section 1 and explored in detail in section 4. For example, a natural Z2 automorphism of e6
can fold the group to its f4 subgroup (see figure 2). Physically, then this symmetry in (3.1)
would lead to a breaking of e6 symmetry to f4 under a circle reduction.

Within gauge theories, the mechanism above is well understood and frequently utilized.
However in theories coupled to supergravity new subtleties arise. The most important of
these is that it is believed that discrete symmetries such as those appearing in (3.1) must
be gauged in the full supergravity theory. Thus, one must ask how the local discrete actions
such as σ in (3.1) are realized explicitly in a given string/M-/F-theory context?

5As shown in [41, 42], terminal singularities can be resolved with non-Kähler non-commutative resolutions
in the type IIA compactifications. Using those resolutions, discrete charged Gopakumar-Vafa invariants
have been proposed [41], that allow to compute charges and states in the Jacobian directly.
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α0

α1

α5
α4

α2
α3α6 α0 α4 α3 α̂2 α̂1

Figure 2. Depiction of the Dynkin diagrams of e(1)
6 and f

(1)
4 , where the affine node is highlighted in

black. The later is obtained by folding by the Z2 automorphism of e6. Note that f
(1)
4 is Langland

dual to e
(2)
6 given in figure 1.

An interesting example of this question arises in the CHL compactifications of the
heterotic string [54]. Beginning with the E8 × E8 heterotic theory in 10-dimensions it is
possible to perform a circle reduction to obtain a 9-dimensional theory with, for example,
E8 symmetry. In this case the discrete action (3.1) is simply the Z2 outer automorphism
of the product group E8 × E8 which interchanges the two E8 factors, leaving a single E8
gauge group in 9-dimensions. The question of how this apparent global symmetry is gauged
might be somewhat opaque within the 10-dimensional heterotic theory. However the local
nature is clearly visible from the viewpoint of 11-dimensional heterotic M-theory [55] in
which this Z2 symmetry is realized as a discrete automorphism of the S1/Z2 geometry
itself which interchanges the two E8-fixed planes (i.e. the 9-dimensional theory is found
from compactification on a Mobius strip [56]). As an important final note on this example,
it is useful to observe that this symmetry only appears at special/tuned (i.e. higher co-
dimensional) loci within the moduli space of the heterotic compactification (or heterotic
M-theory). At generic points in the moduli space the two E8 bundles are not symmetric. It
is only by moving to a special locus where the gauge connections, etc are identical that the
symmetry becomes manifest. We will return to this important point in other contexts below.

With these general comments in hand we come now to the question of how can such
twisted dimensional reductions be realized in F-theory? There are several immediate
observations that can be made — which in turn lead to questions about the nature of
any twisting symmetries akin to (3.1) in this context. The first of these is that since we
expect this discrete action to be gauged in a compact geometry, it is natural to expect
that the symmetry must be realized in some way in the Calabi-Yau geometry of F-theory
itself (indeed, in a sense F-theory is just a geometric encoding of field theory information in
Calabi-Yau geometry). But that raises the question of how can a twisting symmetry act on
the elliptically fibered geometry?

To answer this question it is useful to first recall how diagrams such as in figure 2
are realized in F-theory. To work directly with the Calabi-Yau geometry it is helpful to
consider the resolved limit as guide, despite the fact that the physical theory is determined
by (singular) Weierstrass models (i.e. thinking of F-theory as a limit of M-theory). In the
resolved CY geometry, the Dynkin diagrams of gauge groups are realized geometrically (via
blow-ups of degenerate elliptic fibers) as diagrams of affine groups. This affine diagram
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is reduced to that of the actual gauge group by the inclusion of a section to the elliptic
fibration which intersects one component of the fiber. In the F-theory limit, all components
of the fiber that do not intersect the section (i.e. all fibral divisors) are taken to zero size.

In this context we might expect that a twisting symmetry should be visible in the
F-theory geometry itself as a discrete automorphism. But at this point several immediate
questions arise. The first puzzle is that it is the Dynkin diagrams of affine Lie groups
rather than their finite counterparts that arise in the explicit (resolved) elliptically fibered
Calabi-Yau geometry. Thus, we must ask how is the discrete action in (3.1) uplifted to the
full elliptically fibered geometry? And how does such a symmetry interact with the section
(or sections) to the elliptic fibration?

It is clear that any discrete symmetry which “folds” a Dynkin diagram such as in
figure 2 realized in an elliptic fibration must act compatibly with section(s) of the fibration.
In figure 2 this is straightforward as the affine node “spectates” through the folding, but for
some actions on affine diagrams this is not so simple. For example, the Z2 action which
folds e

(1)
7 to e

(2)
6 identifies the affine node (intersected by the zero-section in an F-theory

fiber) with another node as in figure 1. Here the presence of a section intersecting the
fibers could generically break the symmetry. Such a symmetry could only be restored if the
fibration admitted more than one rational section (which could intersect the diagram in an
appropriately symmetric way). It is exactly this latter configuration that we find explicitly
realized in the Jacobians of CY genus-one fibrations studied here.

Summarizing the observations above: generic features of the examples we find explicitly
realized in (resolved) elliptic Calabi-Yau geometries indicate that

• The twisting symmetries are expected to “lift” to discrete automorphims (i.e. foldings)
of the affine Dynkin diagrams realized in the elliptic fibers.

• In order for symmetries to exist which can serve as twisted boundary conditions for
the actual (finite) gauge groups, the Mordell-Weil group of the geometry is frequently
required to be non-trivial, i.e. there must be more than one rational section. The
presence of these sections can “restore” folding symmetries to the fibers that would
not otherwise be present with a single rational section.

Due to the geometric relationships between CY genus-one fibrations and their Jacobians,
we do not find the standard twisted boundary conditions that arise in gauge theory (for
example the e6 → f4 folding in figure 2, though they may exist). Instead, in the explicit
CY geometry we find that only foldings such as those in figure 1 can be realized. From the
geometric perspective, the appearance of e7 instead of e6 in the Jacobian is perhaps more
expected, as its affine extension is the geometric cover for e

(2)
6 fibers. These foldings arise

in the context of more complicated geometries with higher rank Mordell-Weil groups and
discrete symmetries. As a result, twisted dimensional reductions appear to be part of the
rich geometric structure linking genus one fibered Calabi-Yau manifolds and their Jacobian
manifolds as described in section 1 and 2.

Finally, similarly to the example of the CHL string mentioned above, it is clear that we
may need to tune the F-theory geometry to a special locus in complex structure moduli
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space to make any possible discrete twisting automorphisms visible. Here we expect that
these tunings may be more difficult to find/engineer explicitly depending on the interplay
between the discrete symmetries in (3.1) and the full F-theory gauge group (including
non-Abelian and Abelian factors as described by reducible elliptic fibers in the resolved
geometry and a higher rank Mordell-Weil group [35]).

3.1 A twisted circle reduction of a U(1) × U(1) theory

In the sections below we will begin by outlining a twisted dimensional reduction in which
the twisting symmetry is made completely manifest in the geometry by restricting ourselves
to a highly symmetric point in the complex structure moduli space of the elliptic Calabi-Yau
variety. In later sections we will postulate that for many examples milder tunings are
possible and can still lead to twisting symmetries involving interchange of rational sections
(similar to the freedom studied in [57]).

3.1.1 The Calabi-Yau geometry

Here we briefly review the geometry of a singular elliptic CY variety which leads to an
F-theory background with Abelian gauge symmetry U(1)×U(1).

To begin we recall the logic taken by Morrison and Taylor in [38] in characterizing a
geometry with two sections to its elliptic fibration (i.e. Mordell-Weil rank 1) and hence
a U(1) gauge symmetry in F-theory. As a starting point, one may consider a genus one
fibration defined in an ambient P1,1,2

X,Y,Z , defined by (2.12). Fixing s9 as a constant, redefining
and shifting the coordinates X,Y, Z and classes si, we can obtain the reduced form of
the quartic

Z2 = s1X
4 + s2X

3Y + s3X
2Y 2 + s4XY

3 + s5Y
4 . (3.2)

The si are sections of line bundles in the base read off from appendix B as

[s1] ∼ 2(c1 − S9) , [s2] ∼ 2c1 − S9 , s3 ∼ 2c1 , [s4] ∼ 2c1 + S9 , [s5] ∼ 2(c1 + S9) ,
(3.3)

with S9 some line bundle class6 defined in the base B2 of the genus one fibration π : XCY →
B2 and c1 the anti-cannonical class of B2. This genus one fibration degenerates over higher
codimensional loci in the base (in particular the I2 loci) where the discrete singlets 11 are
located (see [38] for an explicit discussion).

The Jacobian of this geometry, is a hypersurface in P2,3,1
X,Y,Z given as

y2 = x3 − s3x
2z2 + (s2s4 − 4s1s5)xz4 − (s22s5 + s1s

2
4 − 4s1s3s5)z6 (3.4)

from which we can read off the Weierstrass coefficients

f =
(
s2s4 −

1
3s

2
3 − 4s1s5

)
(3.5)

g =
(
−s1s24 +

1
3s2s3s4 −

2
27s

3
3 +

8
3s1s3s5 − s22s5

)
. (3.6)

6The line bundle S9 is only restricted by the conditions that all [si] are all effective sections.
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It should be noted that at the singlet locus, the discriminant becomes singular (and the
genus-one fibration reducible).

The geometry given above can be U(1) enhanced by tuning in a section. There are
actually two inequivalent ways of doing so. We call the enhancement U(1)a and U(1)b that
are given by setting

U(1)a : s1 → d21/4 U(1)b : s5 → d25/4 . (3.7)

The above factorizations make sense, as s1 and s5 are both elements of even classes in the
base and therefore d1 and d5 are integral. We can directly see that the above factorization
yields another section in the genus one geometry e.g. in the first enhancement as

1
4(d1X

2 − 2Z)(d1X2 + 2Z) = s2X
3Y + s3X

2Y 2 + s4XY
3 + s5Y

4 (3.8)

where we have two sections at Z = ±1
2d1X

2 . So now we have a section and thus, this
quartic equation is in birational to the Weierstrass model. The same factorization above
happens for the U(1)b.

Finally, a U(1)a ×U(1)b model (our goal in this section) is then given as

Z2 = 1
4(d

2
1X

4) + s2X
3Y + s3X

2Y 2 + s4XY
3 + 1

4(d
2
5Y

4) . (3.9)

The above geometry admits a symmetry under the exchange

d1 ↔ d5 s2 ↔ s4 X ↔ Y (3.10)

while keeping s3 and Z fixed. This is only possible for the line bundle choices S9 = 0 (but
of course for many choices of base manifold, B2, in particular for every weak Fano base).
As we will see in future sections this type of tuned Weierstrass model (and its symmetries)
is similar in spirit to the Jacobians varieties of genus-one fibered manifolds with twisted
fibers studied in this work.

3.1.2 Field theory: twisted dimensional reduction

With the geometry above in hand as a background for F-theory, we can consider the
compactification of the resulting six-dimensional U(1) × U(1) gauge theory on a circle.
We will consider giving a vev to a scalar field ϕq1,q2 charged under both U(1) factors and
including Wilson lines ξ1 and ξ2 in both gauge factors. The Fourier expansion of the
scalar field, and the mass term for the associated modes are then very similar to (2.1)
and (2.2) above.

ϕq1,q2(x, y) =
∑
n∈Z

ϕq1,q2,n(x)e2πinyτ (3.11)

mn = |nτ + q1ξ1 + q2ξ2|

For simplicity let us consider the special case where one gives an expectation value to a
field where q1 = q2 = q which we will denote simply by ϕ. We will also specialize to the
case where ξ1 = ξ2 = ξ. In such an instance, the mass in (3.11) simplifies and we can isolate
a special case of backgrounds.
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The analysis of the unbroken five-dimensional gauge group in this case mirrors the
situation of a single six-dimensional U(1). Taking ξ = −k/2q we find from (3.11) that the
massless mode is n = k. This mode transforms under the symmetries as

ϕn → ei((θ1+θ2)q+ψn)ϕn (3.12)

where θ1 and θ2 are the parameters of the two six-dimensional U(1)’s and ψ is that of
the KK gauge factor. The expectation value of ϕn is therefore invariant if the following
condition holds for some γ ∈ Z.

q(θ1 + θ2) + nψ = 2πγ (3.13)

Clearly, we will always have a U(1) × U(1) symmetry simply by taking γ = 0 and ψ =
−q/n(θ1+ θ2). As before, to complete the analysis we simply need to decide if any non-zero
values of γ are not identified with the γ = 0 case (and so are not part of the continuous
symmetry group already identified).

The gauge parameters are identified under

θ1 ≈ θ1 + 2πα1 , θ2 ≈ θ2 + 2πα2 , ψ ≈ ψ + 2πβ . (3.14)

Therefore we have the following identification.

q(θ1 + θ2) + nψ ≈ q(θ1 + θ2) + nψ + 2π(q(α1 + α2) + nβ) (3.15)

Comparing (3.15) and (3.13), we see that values of γ for which γ = q(α1 + α2) + nβ for
some α1, α2 and β can be identified with zero. Since α1 + α2 is still just some general
integer, as α was in the proceeding analysis, the answer is unchanged. The full gauge group
seen in five-dimensions is thus U(1)×U(1)× Zgcd(q,n).

Where this simple example of a U(1)× U(1) reduction differs from the analysis with a
single abelian factor is in the possibility of there being additional symmetries of the system
which can be used as boundary conditions in the circle reduction. In the proposal we
present in this paper this symmetry is an emergent one, only appearing on special loci in
the moduli space of the Calabi-Yau manifold (i.e. the tuning given in (3.7) for this example).
For those choices of complex structure there exists a Z2 symmetry which exchanges the
two U(1) factors in six-dimensions as described in the previous subsection. If we use such
a symmetry as a boundary condition in traveling once around the S1 upon which we are
compactifying, then the analysis of the nature of the five-dimensional theory changes.

A symmetry of the type described in the previous paragraph leaves fields of the form ϕq,q
invariant. Therefore the mode expansions (3.12) is unchanged in this case. The symmetry
does identify θ1 and θ2 mod 2π at the point where the boundary condition is applied,
however, and if we assume that these have no y dependence, then they are set equal mod 2π
everywhere. We are thus left with a U(1)× Zgcd(q,n) theory in five-dimensions.

It is useful to also briefly review the fate of the particle spectrum on dimensional
reduction. From fields of type ϕQ,Q in six-dimensions which were not those which for which
there was an expectation value we obtain degrees of freedom of charge 2Q under the low
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energy U(1). From the field of this type which we gave a vev, we of course obtain an
uncharged degree of freedom. In order for the symmetry which we have used as a boundary
condition to exist, fields of type ϕq1,q2 must always be paired with fields of type ϕq2,q1 in the
six-dimensional spectrum. This is automatic when starting with six-dimensional theories
of course, but the entire discussion here is essentially unchanged in compactifying from
four-dimensions where this requirement becomes non-trivial. The symmetry identifies the
fields in these pairs, and as such, each pair gives rise to a single field of charge q1 + q2 in
five-dimensions.

As a final comment, it should be noted that we could give an expectation value to a
pair of fields of the form ϕq1,q2 and ϕq2,q1 instead of the case of equal charges under the
two six-dimensional U(1)’s described above. In such a case, the mode expansion (3.12) is
more complicated as the boundary condition transforms one field into the other as the S1

is traversed. We have the following.

ϕq1,q2 =
∑
n∈Z

ϕn(x)eπinyτ , (3.16)

ϕq2,q1 =
∑
n∈Z

ϕn(x)eπin(y+1)τ .

The mass of the KK mode ϕn is then given by the following expression.

mn =
∣∣∣∣n2 τ + q1ξ + q2ξ

∣∣∣∣ . (3.17)

By choosing ξ = −k/(2(q1 + q2))τ we can therefore ensure that the mode n = k is massless.
Under the symmetries present in the system, this mode transforms as follows.

ϕn → ϕne
i(q1θ1+q2θ2+n

2 ψ) . (3.18)

Thus the condition that we have an unbroken symmetry is simply,

q1θ1 + q2θ2 +
n

2ψ = 2πγ , (3.19)

for γ ∈ Z. Since the symmetry operation equates θ1 = θ2 mod 2π the γ = 0 possibility
here leads to a U(1) symmetry in the five-dimensional theory. The gauge parameters are
identified under 2π shifts as in (3.15), and as such, while non-vanishing values for γ are
potential elements of a discrete symmetry group, they will be identified with a vanishing
transformation if the following condition holds.

2α1q1 + 2α2q2 + βn = 2γ (3.20)

The integer on the left hand side of this expression is always a multiple of

gcd(2q1, 2q2, n) = gcd(gcd(2q1, 2q2), n) = gcd(2 gcd(q1, q2), n) . (3.21)

Therefore (3.20) has a solution iff γ is a multiple of lcm (gcd(2 gcd(q1, q2), n), 2) /2. Finally,
then we arrive at a symmetry group for the compactified theory of,

U(1)× Zlcm(gcd(2 gcd(q1,q2),n),2)/2 . (3.22)

The discussion of the U(1) charges of the matter spectrum in this case is identical to that
seen in the cases where ϕq,q was given an expectation value.
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3.2 A non-Abelian twisted circle reduction: the E7 × U(1)/Z2 theory

With the observations of the previous sections in hand, we can return now to the geometry
mentioned in section 1. In the CY geometry defined by (1.4) we see a smooth, genus one
fibered CY 3-fold with e

(2)
6 fibers which yields an elliptically fibered Jacobian geometry (as

given by (1.4)) with e
(1)
7 fibers. We expect these geometries to be part of a single group of

CY torsors and that the 5D M-theory vacua should be related to circle compactifications of
the 6D F-theory. We will explore the structure of the genus one geometry and its associated
5D M-theory physics in section 4, but to begin we will consider briefly the 6D F-theory
background and the associated circle reduction (which is dual to M-theory on the genus one
geometry in 5D). Keeping the connection between the genus-one geometry and its Jacobian
in mind, we can try to understand how the 6D/5D theories are related. In particular, we
hope to shed some light on the difference between the 6D and 5D gauge groups.

It is worth briefly taking stock of the ingredients at our disposal. As reviewed in
previous sections, for ease of description, we begin with a 6D F-theory compactification
defined via a Weierstrass model with (E7 × U(1))/Z2 symmetry. How would this theory
reduce to a F4 × U(1) theory upon circle reduction? As in section 2 we expect that the
F-theory compactified on S1 vacuum could include

1. Vevs for matter with a profile along the circle (as in (2.1))

2. Gauge fields (i.e. fluxes) around the circle (i.e. (1.1))

3. Non-trivial boundary conditions (i.e. “twisting” of the circle reduction as in (1.2))

Considering the form of the genus one geometry and its Jacobian (with E7 × Z2
symmetry) we expect the first two elements of the list above to be present. The first of these
is necessary in that a matter field vev for a U(1) charged field (as we will see in section 4,
⟨12⟩ ̸= 0 for the present example) is required to break the 6D U(1) symmetry to the finite
group Z2 seen in the Jacobian. Likewise, we expect non-trivial gauge flux along the circle
in order for the theory to be dual to M-theory on a genus one fibration (see [31, 32]).

However it is clear that these two ingredients alone are not enough. Given the 6D E7
symmetry visible in the Jacobian it is clear that only U(1)-charged matter (i.e. E7 singlets)
can possibly be given a vev. Likewise with the allowed matter vevs, purely Abelian circle
fluxes could not change the rank of the gauge group. Thus, these possibilities alone could
not lead to the correct 5D gauge group to match M-theory compactified on the twisted
genus one geometry. As a result, we must consider the third item in the list above and the
possibility of a “twisted” reduction of F-theory as described in previous subsections.

As described in the start of this section, the key question in this context is what is the
F-theory origin of the twisting symmetry of (1.2)? As discussed previously, the resolution
of this singular elliptic fibration sketched in (1.4) displays the affine algebra e

(1)
7 . Taken

in isolation from the rest of the geometry, this affine Dynkin diagram admits an outer
automorphism σ̃2 of order two. Modding the diagram by this outer automorphism leads to
e
(2)
6 (i.e. finite gauge group F4) which is depicted in figure 1.

Importantly, as noted in section 1 these “folded” Dynkin diagrams (here e
(2)
6 ) appear to

arise in the fibers of a compact, genus one fibered CY threefold which admits an E7 × Z2
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Weierstrass model as its Jacobian in the 6-dimensional theory. This is intriguing structure
as the diagram for the affine e

(1)
7 admits such a Z2, but of course its finite counterpart e7

does not. Thus, the central puzzles to be addressed include the following:

• Can we perform a twisted dimensional reduction to connect a 6D Weierstrass model
with our “folded fiber” genus one geometry in 5D?

• Does the finite Z2 symmetry which “twists” E7 → F4 under a dimensional reduction
appear as a true symmetry of the elliptic fibers (of the Jacobian Weierstrass model)
which produces the folded (i.e. genus one) threefold? Is this symmetry apparent not
just in an action on fibers, but on the full 6D theory/geometry? What is the action
on the physical theory?

In trying to address these questions we will begin by using the full, smooth resolved CY
Jacobian geometry to explore the structure of possible twisting symmetries, realizing that
we must take a singular limit (by blowing down all reducible curves in the fibers that do
not intersect the zero section) in order to discuss the 6D F-theory physics. It should be
emphasized that in this context we are only using the symmetries of the resolved Jacobian
as a guide to the symmetries of 6-dimensional theory, since in the (singular) Weierstrass
limit these symmetries may not be apparent due to some Kähler moduli being taken to the
zero-volume limit. Note that this is the same logic that allowed us to deduce the Z2 action
on the U(1)×U(1) theory in section 3.1.

As we will see below, a complete answer to the above questions proves to involve a
number of subtle aspects and it is beyond the scope of the present work. However, we will
attempt to sketch some of the ideas and the obstacles that arise in fully determining the
effective physics of the reduction.

In the resolved geometry, the diagram above makes it clear that the e
(1)
7 fiber could

admit an appropriate Z2 folding to correspond to the desired e
(2)
6 fiber in the 5D genus

one geometry. However, as discussed in the previous section this apparent symmetry is
manifestly broken in the full geometry if there exists only a single section to the elliptic
fibration which would intersect the affine node (α0 above). However, the folding symmetry
could possibly exist if there were to exist two rational sections s0, s1 to the elliptic fibration
(i.e. Mordell-Weil rank 1) and those sections intersected appropriate (i.e. symmetric) nodes
in the affine fiber appropriately as shown below:

(α7)
(α0)

|
s0

(α6)(α5)(α4)(α3)(α2)(α1)
|
s1

. (3.23)

In this case, the Z2 automorphism that folds the fiber would only be a true automorphism
of the (resolution of the) F-theory Weierstrass model at a higher-codimensional locus in
moduli space. For example, it could arise if the geometry were fully symmetric under
the interchange of the two rational sections (similar to the geometry in section 3.1). It
is natural to ask whether this can be achieved by tuning non-Abelian symmetry into a
model such as that given in (3.9)? Unfortunately, In this context we find that the geometry
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becomes too singular for a purely field theoretic analysis. More precisely, tuning the
Weierstrass model given in section 3.1 to achieve a E7 ×U(1) symmetry leads to vanishings
of (f, g,∆) ≥ (4, 6, 12) at points. This implies that the theory contains so-called “SCFT
loci” and is not described purely as an ordinary perturbative field theory. Importantly, such
geometric limits are likely still be within the realm of “good” string vacua, but we are not
able to write down a purely perturbative field theoretic circle reduction of the form shown
in section 3.1.2 in this setting.

Alternatively, the higher codimensional locus that makes manifest the Z2 twisting
symmetry should be obtainable by a suitable tuning of the resolution of the Jacobian
CY 3-fold given in (1.4). Unfortunately, without knowing the particular form of the Z2
symmetry this is difficult to reverse engineer.

There is a final observation that can be made regarding the possible geometric origin of
the Z2 folding symmetry. In the resolved geometry of the Jacobian CY 3-fold, either of the
two rational sections can be chosen as the zero section. The resulting Weierstrass models
that arise from blowing down fibral components not intersecting the chosen section are
identical. Moreover, the action of this interchange changes the Dynkin weights as expected
for the Z2 folding symmetry of the Affine Dynkin diagram and acts on the U(1) charged
matter as charge conjugation. This action (combined with the action of R-symmetry on
the hypermultiplets) leads to an apparent symmetry of the 6D theory. Moreover, in the 5D
theory, this can be directly seen when constructing the two corresponding Shioda maps that
are required to compute the U(1) charges: their forms, in terms of the weights αi is given as

σ(s1) = [s1]− [s0] +
1
2(3α1 + 4α2 + 5α3 + 6α4 + 4α5 + 2α6 + 3α7) , (3.24)

σ(s′1) = [s0]− [s1] +
1
2(3α0 + 4α6 + 5α5 + 6α4 + 4α3 + 2α2 + 3α7) . (3.25)

From the above form we find that U(1) charges flip sign under exchange, which as expected,
implements a charge conjugation operation. The symmetry of this interchange in the 5D
theory provides a hint that this symmetry may survive under the M-theory to F-theory uplift.

We view the observations above as suggestive of the origin of the twisting symmetry in
6D, but due to the higher co-dimensional nature of this symmetry in the F-theory moduli
space (and the potential presence of (4, 6, 12) points), there is no clear path to obtain its
explicit action, and as a result it is beyond the scope of the present work to solve. For now,
we turn our attention to the 5-dimensional theory and relationships between twisted and
untwisted genus one fiberations in the 5D M-theory geometries.

4 Phases and lifts of e
(2)
6 in 5D

In this section we discuss the geometry of an e
(2)
6 twisted algebra in a torus fibered threefold.

The geometric origin of such a fibre is the fact that affine e
(1)
7 (unlike its finite sub-algebra)

admits a Z2 outer automorphism. Using a genus-one fibration we can therefore engineer
a monodromy in the base of the fibration that folds by this automorphism, which yields
e
(2)
6 as shown in figure 1. The key ingredient to achieve such a monodromy, is to start with

a torus fibration that does not have a section but a two-section. We will also show, that
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Lift
Conifold

XB XAXC

5D M-Th on
Genus One

6D F-Th on
Jacobian

G=E7×U(1)
Z2

Fiber: E(1)
7

G = E7×U(1)2

Z2

G=E7×Z4
Z2

Fiber: E(1)
7

G = E7×U(1)E

Z2

Fiber: e
(2)
6

G = F4 ×U(1)E

G= E7 × Z2

Figure 3. M-and F-theory compactifications of three types of geometries XI , connected via
geometric transitions. For I ̸= C, the threefolds have a non-trivial TS group X, which results in
disconnected 5D vacua.

this monodromy is missing in the respective Jacobian sketched in (1.3), precisely due to
the presence of the section, such that those types of fibres evade the famous Koraira/Tate
classification of singular fibers.

Below, we will study the intersection matrix of the fibral curves of e(2)6 type inside the
genus one fibered manifold (over a compact two-fold base) in some detail. We also discuss
the structure of the Jacobian and its type III∗ fiber structure. By directly studying the
geometry, we compute the light 5D BPS states in the M-theory compactification in both
theories explicitly for a general base.

Finally, it is possible to explore other genus one fibered geometries, related to e
(2)
6

by geometric transitions as sketched in figure 3. Such geometric transitions usually have
an interpretation in terms of Higgs transitions across special loci in the Coulomb branch
moduli space. Identifying the massless matter multiplets is more intricate in the present
case, which we comment on below.

4.1 The geometry of e
(2)
6

To engineer the e
(2)
6 fibration we require a 2-section model to realize the folded fiber type.

To obtain such a model we employ a quartic fiber model [38] that was already introduced
in the section 1. We repeat the respective hypersurface equation here for convenience, as

p = s1X
4 + s2X

3Y + s3X
2Y 2 + s4XY

3 + s5Y
4 + s6X

2Z + s7XY Z + s8Y
2Z + s9Z

2 ,

(4.1)

where we can fix s9 = 1 globally and with the monodromy divisor for the 2-section X = 0

D2,X = s28 − 4s5 . (4.2)

In order to engineer an e
(2)
6 type of fiber over the base divisor Z := z = 0, we treat the si

of (4.1) as the generalization of the Tate coefficients in the quartic genus-one model. All of
those sections are associated to certain line-bundles7 that are given in appendix B. Similarly

7Sometimes care has to be taken, that the si do not become constants. In such situations the multi-section
may split into multiple one-sections and Abelian gauge enhancement may occur [45].
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to the Tate-model, we engineer singularity by imposing certain vanishing orders of the si in
codimension one. In order to do so, we factor powers of the line bundle z out of the si as

si → diz
ni , such that [di] ∼ [si − niZ] , (4.3)

which characterises the singularity in the genus-one fiber at the vanishing locus of z. We
package those vanishing orders into the generalized Tate-vector n⃗. For an elliptic fibration
those singularities are classified, but for a genus-one model this remains an open problem.8
A toric classification has been given in [58] in terms of tops, introduced in [59] which we are
using throughout this work. In this section it is our goal to engineer what we call a III∗
non-split singularity that corresponds to an e

(2)
6 resolution, specified by the Tate vector

n⃗ = {3, 3, 2, 1, 0, 2, 1, 0} . (4.4)

Note that this factorization is specifically chosen such that the monodromy divisor (4.2)
intersects Z generically. The resolution (following [58]) is given via the following four
additional coordinates g1, g2, k1, l1 given in the toric hypersurface9

p = d1f
3
2 g

2
2h1X

4 + d2f
3
2 g

2
1g

3
2h

3
1k

3
1X

3Y + d3f
2
2 g

2
1g

2
2h

2
1k

2
1X

2Y 2 + d4f2g
2
1g2h1k1XY

3

+ d5g
2
1Y

4 + d6f
2
2 g1g

2
2h

2
1k

2
1X

2Z + d7f2g1g2h1k1XY Z + d8g1Y
2Z + Z2 (4.5)

which admits the following Stanley-Reisner ideal10

SRI : {Y X, Y f2, Y g2, Y h1, Y k1, Zg1, Xg1, Xg2, Xh1, Xk1, f2h1, f2k1, g2k1} . (4.6)

In our toric description, the base divisor Z is then given via the projection

π : X3 : (f2, g1, g2, h1k1) → Z = f2g
2
2h

3
1k

4
1g

2
2 . (4.7)

The intersections of the fibral curves is depicted in figure 4. Note that we have highlighted
when multiple curves are part of a fibral divisor, e.g. when the self-intersection is −4 instead
of −2. E.g. the fibral intersection Di,j = Di ·Dj and the Cartan matrix Ci,j = −2Di,j

Dii is
given as

D =


−4 2 0 0 0
2 −4 2 0 0
0 2 −4 2 0
0 0 2 −2 1
0 0 0 1 −2

 and C =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −2 0
0 0 −1 2 −1
0 0 0 −1 2

 (4.8)

Those fibral curves are given as the expressions
P1
±,0 : {p = f2 = 0} : d5g

2
1 + d8g1Z + Z2

P1
±,1 : {p = g2 = 0} : d5g

2
1 + d8g1Z + Z2

P1
±,2 : {p = h1 = 0} : d5g

2
1 + d8g1Z + Z2

P1
3 : {p = k1 = 0} : d5g

2
1 + d1h1 + d8g1Z + Z2

P1
4 : {p = g1 = 0} : 1 + d1f

3
2 g

2
2h1 .

(4.9)

8At present even a classification of genus-one fiber models and the range of possible N-sections is not
known. The state of the art is the 5-section model presented in [37].

9See [34, 60] for a discussion of related techniques used here.
10Note that we have resolved the ambient space, such that the singular point X = Y = 0 is absent.
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[X]

[f2] [g2] [h1]

[k1]
[Z] [Y ]

4

1 2 3

D2,X =0
−−−−−→

[g1]

2 2 4 6 4 2

Figure 4. Depiction of the e
(2)
6 fiber. On the left, fibral divisors, curves, intersections and Kac

labels are depicted. Crossing the 2-section monodromy divisor D2,X , interchanges the two fibral
curves in [f2], [g2] and [h1]. At D2,X = 0 the fiber degenerates into a multiplicity two fiber, depicted
on the right.

Importantly inside of P1
±,j with j = 0, 1, 2 we find two curves that are interchanged along

the monodromy divisor (4.2) of the 2-section X = 0. This is also clear by inspection of the
intersection picture given in figure 4. There we find that the 2-section X intersects each
of the two curves of P1

±,0, inducing a monodromy action on the respective curves as well.
From the intersection picture we find the affine Cartan matrix of e(2)6 .

An important consequence for this type of geometries is the appearance of multiple
fibers [22, 30, 61, 62]: these appear exactly at the smooth codimension two degeneration
loci where the monodromy divisor D2,X = 0 intersects the base curve of the type III∗
fiber Z. In order to see this, recall that the generic fiber E over Z becomes reducible and
degenerates into

[E ] → [f2] + 2[g2] + 3[h1] + 4[k1] + 2[g1] , (4.10)

where the multiplicity factors are the respective Kac labels. Now at the codimension two
intersection locus with D2,X = 0 the fibral curves in [f2], [g2] and [h1] degenerate into a
single curve of multiplicity two as depicted on the right side of figure 4. Hence the whole
fiber becomes

[E ] D2,X=0
−−−−−→ 2 · ([f2] + 2[g2] + 3[h1] + 2[k1] + [g1]) , (4.11)

that is a non-reduced fiber of multiplicity two. Note again, that those multiplicity two fibers
appear over smooth points in B2 and hence are of very different kind than those discussed
in [22, 30, 61, 62]. More generally, the presence of those multiple fibers implies that the
group of CY torsors does not reduce to the TS group X(XA/B2) but the Weil-Châtalet
group WC(XA/B2) [28].

Similar degeneration structures also appear for non-simply laced groups, at the loci
where two fibral curves are interchanged. The important difference in the present case is
that this monodromy action can never involve a section, as these are just a single point.
A section, in turn, must intersect a multiplicity one fibral curve, typically the affine node.
Hence an elliptic fibration can never have a monodromy action on the affine node of some
ADE fiber and therefore can only lead to untwisted algebras.

Having discussed the geometry of a non-trivial WC(XA/B2) element we can discuss
the geometry of the Jacobian J(XA/B2). The singular Jacobian is obtained, by employing
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the tuning as given by the generalized Tate-Vector in (4.4) and substituting it into the
Jacobian map given in appendix B of [45]. To compare the fiber structures over Z, we only
give the relevant leading order Weierstrass coefficients as

f = z3d1D2,X +O(z4) , g = z5d1P(4d) +O(z6) , ∆ = 4z9d31D
3
2,X + d21O(z10) . (4.12)

Note that we find a type III∗ fiber, just as in the genus-one geometry, i.e. an e7 singularity.
This may come as a surprise as one could have expected a IV ∗ split singularity here, i.e. an
e6 instead, as this is the field theory lift of an e

(2)
6 reduction. Instead the Jacobian yields

the geometric cover of the twisted algebra. Interestingly the monodromy divisor of the
genus one fibration appears at leading order of the discriminant in (4.12) and leads to local
matter fields.11 Unlike in the genus-one fibration, we can not expect the monodromy divisor
to lead to a non-simply laced type of group in the Jacobian, simply because E7 does not
possess an outer automorphism, only its affine extension does. Consequently we find the
genus-one fibration and its Jacobian do not have the same number of Kähler moduli similar
to the cases discussed in [20, 21, 47] which had multiple fibers as well. It appears that this
may be a common feature in the presence of non-trivial Weil-Châtelet groups.

Note that we use the typical polynomial map from the genus-one fibration to the
Jacobian, which might not see potential non-polynomial deformations. Indeed, such
deformations are often times present, which we will discuss in section 7 in more detail.

4.2 Geometric state counting

Having discussed the difference in codimension one structure between the genus-one threefold
and its Jacobian, we now compute the number of charged states for each geometry. We will
focus in particular on those states that carry non-trivial representations under the maximal
5D finite sub-group f4 ⊂ e

(2)
6 and ignore massive singlet states in the rest of this work. We

wish to return for a complete discussion of all such states in future work.

State counting in the e
(2)
6 genus-one fibration. Having discussed the general features

of the genus-one geometry, we turn now to the generic matter spectrum of the e
(2)
6 fibration.

To do so, we first need to understand which line bundles the si, and upon tuning the
di, are sections of. These are determined by the line bundles/divisor classes summarized
in appendix B and tuning by the generalized Tate-Vectors in (4.3). From the resolved
geometry as well as its Jacobian we find a non-minimal singularity over z = d1 = 0 that
exhibits a vanishing order ordvan(f, g,∆) = (4, 6, 12). Those points are generally associated
to superconformal matter, i.e. E-string theories associated with tensionless strings in the
spectrum. To avoid further complications we use the line bundle class S7 dependency of
[d1] to restrict to fibrations where such loci are absent by demanding

[z] · [d1] = 4c1 · Z − 2S7 · Z − 3Z2 = 0 . (4.13)

11For non-simply laced groups, the monodromy divisor also appears at leading order in ∆ but does not
directly imply localized matter there.
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In this way we can solve for the intersection S7 · Z, which yields the intersections

[d8] · Z = S7 · Z = 2c1 · Z − 3
2Z

2 = 4(1− g) + 1
2Z

2 , (4.14)

with g being the genus of the curve Z ⊂ B2. Throughout this work we implicitly assume
the base B2 to be smooth and hence all base divisors to be Cartier [63] resulting in
integral intersection numbers. It may therefore seem puzzling to find a factor 1

2 factor
in the intersection formula (4.14). However as we explicitly assumed a smooth base, we
should view this ocurance rather as a geometric condition that forces Z2 to be an even
self-intersection. This condition has also been found in [19]. In section 4.3 we give a physical
interpretation of this phenomenon which is related to 56-plets that are not pseudo-real and
must therefore appear in pairs of half-hypers.

To compute the multiplicity of BPS particles, charged under the physical gauge group
inside e

(2)
6 , we need to compute the moduli spaces of divisors D that collapse to curves

Z. The collapsing P1’s are wrapped by M2 branes in M-theory which yield states in the
5D theory. In order to do so we adopt the geometric framework pioneered in [64–66]
and [46]. The main complication to consider is the monodromy under which the fibral P1’s
are branched in the base. Before computing the exact moduli spaces we want to find the
respective weights of the states. To do so we start with the covering algebra and then
implement the monodromy in a second step. In our case, we have an e7 cover and the M2
states that wrap those shrinkable curves form the adjoint representation. We write those
curves schematically as C = ∑

i aiCi for i = 1 . . . 8. The curves satisfy the Ci · Cj = −Ci,j(e(1)7 )
being the affine Cartan matrix. In the following we write those curves graphical as

C = a1 − a2 <
a3 − a4 − a5
a6 − a7 − a8

(4.15)

We can then generate the 126 curves with ai ≥ 0 and C2 = −2 that generate the roots of e7
following [46].

In the next step we implement the monodromy on the 126 curves. In order to do so,
we need to decompose all curves into orbits under the Z2 action

Z2 : C5 ↔ C8 , C4 ↔ C7 , C3 ↔ C6 , (4.16)

and group them into the invariant curves such as

C = (C1, C2, C3 + C6, C4 + C7)(C5+C8) , (4.17)

with the combination C5 + C8 denoting the affine curve. We have summarized this split
in table 1 for several example curves. Shrinking all but the affine curve yields a maximal
f4×u1,E ∈ e

(2)
6 sub-algebra. We can verify this explicitly when computing the representations

and multiplicities of states obtained by M2 branes that wrap the collapsing fibral P1’s.
First note that the moduli space of a degree d branched curve g can be computed via the
Riemann-Hurwitz (RH) theorem

g − g = (d− 1)(g − 1) + 1
2deg(R) . (4.18)
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Mono # Curves Example Curve f4 weight χ

Inv 24 1− 1 < 0− 0− 0
0− 0− 0 (−1,−1, 2, 0)0 g

Z2 24 1− 1 < 1− 0− 0
0− 0− 0 + 1− 1 < 0− 0− 0

1− 0− 0 (−1, 0, 0, 1)0 g

Z2 24 0− 1 < 1− 0− 0
1− 1− 1 + 0− 1 < 1− 1− 1

1− 0− 0 (1, 0,−1, 1)−1 g

Z2 3 1− 2 < 2− 1− 1
1− 1− 0 + 1− 2 < 1− 1− 0

2− 1− 1 (0, 0, 0, 0)1 g

Table 1. Schematic reduction of the 126 curves of e7 roots into Z2 invariant linear combinations,
their f4 ⊂ e

(2)
6 charges and respective moduli spaces dimension χ computed in (4.20).

Here g denotes the genus of the curve Z ⊂ B2, d denotes the order of the cover and deg(R)
the degree of the ramification. The degree deg(R) can be computed from the intersection
of the monodromy divisor with Z as

deg(R) = [D2,X ] · [Z] = 2[d8] · [Z] , (4.19)

given in (4.14) and in our case we have d = 2. Putting it all together we get

g − g = 3(1− g) + 1
2Z

2 . (4.20)

Now we can read off the associated 5D states, when the respective curves collapse. We first
consider the shrinkable curves, given by those that admit trivial affine weight, depicted
by the 24 + 24 curves in the first and second row of table 1. Upon including the four
invariant Cartan generators those make up the 52-dimensional adjoint representation of f4.
In total those curves contribute a 5D vectormultiplet and g hypermultiplets in the adjoint
representation [64].

Note that the moduli space of the of the 24 Z2 branched states, computed in (4.20) is
g-dimensional. Hence there are still g − g massless hypermultiplets that did not get paired
up to the adjoint representation. Those left-over states are completed to 260-plet charged
hypermultiplets, upon adding two uncharged fields. The later ones are counted as complex
structure deformations on the CY geometry (see section 7 for more details).

The other representations work similarly: there are 24 non-shrinkable curves that admit
an affine charge and weights of the 261 with multiplicity g. Note that two singlets from the
last row in table 1 are needed to complete the 24 states to a full 261-plet. Summarizing the
hypermultiplet sector in terms of geometric data we then have

n520 = g ,

n260 = g − g = 3(1− g) + 1
2Z

2 ,

n261 = g = 3(1− g) + 1
2Z

2 + g .

(4.21)
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The residual charged singlets are given as

n11 = g = 3(1− g) + 1
2Z

2 + g . (4.22)

Note again that all fields, that have a non-trivial u1,E charge should be regarded as having
a shifted KK-momenta and thus, stay massive at the origin of the f4 Coulomb branch.
Evidently, the above formula does not satisfy the 6D anomaly cancellation condition for an
f4 algebra by exactly one

n260 + n261 = 5(1− g) + Z2 + 1 . (4.23)

As the 6D lift of the above theory is not an f4 however there is no direct reason to expect
such a cancellation to occur. In fact, in our construction we argue that the correct lift
is given by the Jacobian, i.e. an e7 theory with a matter spectrum that we will discuss
momentarily. It is important to remark, that our results are different than the interpretation
provided in [46, 61], where it was proposed that the maximal finite subgroup, f4 in our case,
would lift to 6D. It turns out however, that there do exist distinct but related geometries
which exhibit f

(1)
4 fibers instead of e(2)6 that do lift to Jacobians with F4 gauge symmetry in

6D, as we discuss in section 7.

Comparison with e6 → e
(2)
6 reduction. The typical way in which a 5D twisted theory

with f4 symmetry is obtained in the literature [7, 19, 67], is by starting from a 6D e6
gauge theory and performing a twist by an outer automoprhism (as in figure 2) when
compactifying on a circle. In contrast to this, we find an e7 theory in the Jacobian, instead
of e6. Despite this difference however, we find the e6 ⊂ e7 subgroup to be acted upon as in
the “usual” twisted reduction. In the following we show that the spectrum agrees between
these two viewpoints.

To begin we will consider a 6D e6 gauge theory. In order to make contact with our
geometric formulas, we will express the number of 6D hypermultiplets in terms of the
standard formulas that include the self-intersection and the genus g of the curve Z that
a stack of 7-branes with e6 world-volume gauge theory wraps. Assuming a geometric
engineering of such a symmetry in F-theory the massless hypermultiplet spectrum can be
expressed as

n27 = 6(1− g) + Z2 , n52 = g . (4.24)

This 6D theory is the starting point for a twisted compactification. The Z2 twist σ appearing
in (1.2) acts as the outer automorphism of e6 by exchanging the two legs of the e6 Dynkin
diagram as shown in figure 2. This acts as complex conjugation on the representations

σ : 27 ↔ 27 . (4.25)

Upon the S1 reduction we impose σ twisted boundary conditions when going around the
circle. This effectively shifts the KK-tower by a half-integer multiple and leaves a f4 finite
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sub-algebra in 5D. For an integer-spaced KK tower we obtain the decomposition of the
adjoint [7, 19] as

78 → 520 ⊕ 26 1
2
, (4.26)

where the subscript denotes the shifted KK-charge. Since a 6D hyper contains a fundamental
and its conjugate, we can take a pair of them and mod by the σ upon the circle reduction.
This condition requires an even amount of 6D hypermultiplets which in terms of the F-theory
geometry requires Z2 to be even. Note that this is exactly the geometric condition we
found in the section before.12 Decomposing a pair upon the σ-quotient one obtains

(27 ⊕ 27) → (260 ⊕ 26 1
2
⊕ 1 1

2
⊕ 10) . (4.27)

The subscript denotes the shifted KK-mass of the fields. As discussed before, we expect
those fields to stay massive, as e.g. the 26 1

2
vectormultiplets. Collecting the multiplicities

of 5D hypermultiplets in terms of the geometric data of the e6 theory we find

n260 = 3(1− g) + 1
2Z

2 , n26 1
2
= 3(1− g) + 1

2Z
2 + g ,

n1 1
2
= n10 = 3(1− g) + 1

2Z
2 , n520 = g ,

(4.28)

where we added the contribution of fundamentals from 6D adjoint hypermultiplets.
Upon rescaling the shifted KK-charges by two, to obtain the same charge normalization

as used in our geometric derivation, we find full agreement of the multiplicities (4.21).
Moreover, we also find a prediction for the amount of additional neutral singlets n10 in
the geometry that we were not able to obtain from in the geometric computations. Those
later ones we identify as complex structure moduli specific non-polynomial realized complex
structure deformations, that we will discuss in more detail in section 7.

While the state counting coincides with those of a typical e6 → e
(2)
6 twisted reduction,

the e7 in the Jacobian suggests a potential different 6D uplift in our case. Note however,
that the 6D e7 is always Higgsable to the desired e6. Hence, it might be that the Jacobian
map that we used in this work might somehow implicitly require those complex structure
deformations to acquire non-trivial values and hence breaks e7 → e6 in the Jacobian. As
discussed in section 3 we expect the 6D Z2 twisting symmetry to be of more intricate origin
in the elliptic fibered geometry. But as seen above, its action on the e6 subgroup of e7 must
be consistent with that given above.

Another interesting distinction between the reduction proposed in this work and the
standard e6 construction is their relationships to the IIB axio-dilaton τ : as the genus-one
fibration admits the same τ -profile as the Jacobian, the type III∗ singularity fixes this
value to τ = i. An e6 singularity on the other hand, fixes the coupling to τ = e−2πi/3 locally.
In this regard, our construction with e

(2)
6 fibers seems to have a different 6D origin to the

usual twisted reductions considered in the literature.
12Cases with unpaired matter have been considered in [68] and are not described by our geometric setup.
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State counting in the e
(1)
7 Jacobian. Having analyzed the e

(2)
6 fibration, we turn

now to its Jacobian given by the Weierstrass model in (4.12). For this we consider the
codimension two enhancements of the Weierstrass model of the e7 divisor Z : z = 0 with
the monodromy divisor D2,X of the genus-one model. At those loci the vanishing orders
enhance as

z = 0 : ord|van(f, g,∆) = (3, 5, 9) D2,X=0
−−−−−→ ord|van(f, g,∆) = (4, 5, 10) , (4.29)

i.e. from a type III∗ to a type II∗ singularity which corresponds to an E8. Those enhance-
ment loci we associate with 56-plet representations. Note that the multiplicity of those
states is precisely given by the number of ramification points in the genus-one fibration

n56 = 2 · [d8] · Z = deg(R) = 8(1− g) + Z2 , (4.30)

consistent with the 6D anomalies. Next we should infer the Z2 charges of the e7 fundamentals.
In order to do so, we would typically use the genus-one fibration and uplift the 5D shifted
U(1)E charges to discrete ones in 6D. As the genus-one fibration admits a very different 5D
gauge group however, we can not use this approach here. In fact, the following two charge
assignments are consistent with the pseudo-reality of the states

56q with q = 0, 1 mod 2 . (4.31)

This is still a non-trivial charge assignment, as there could have been a non-trivial mixing of
the Z2 discrete gauge symmetry, with the center of e7, which have lead to fractional charges
that are not compatible with the pseudo reality, as we demonstrate in the next sections. It
would be interesting however to deduce those discrete charges from first principles.

Toric examples. To be fully concrete, we give explicit toric examples. For the first one,
we specify the toric rays that make up the 4D ambient variety in appendix A: the example
is a genus-one fibration on an F0 base, with an e

(2)
6 on a Z2 = 0 curve of genus g = 0. The

Hodge numbers are computed as

(h1,1, h2,1 (h2,1np ) )(XC) = (7, 95(9)) . (4.32)

We have also added the h2,1np non-polynomial contribution of the complex structure defor-
mations, that we will discuss in more detail in section 7. The resulting 5D theory admits
3× 260 ⊕ 3× 261-plets in its spectrum. The spectrum also contains several I2 fibers and
95 uncharged singlets. We will not discuss those charged singlets but comment on the 95
complex structures via a Higgs transition in the next section. As expected, we find three
Kähler parameters from generic fiber and Hirzebruch base as well as four more from the
e
(2)
6 .

Consulting the general expressions for the spectrum in (4.28), we find the possibility
for a 5D theory with a trivial Higgs branch, i.e. a trivial hypermultiplet spectrum for
g = 0 and Z2 = −6. Indeed, we can engineer a simple toric example, where the genus-
one fibration has an F6 base as given in table 2. The associated threefold X̂C admits
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Generic Fiber
X (−1, 1, 0, 0)
Y (−1,−1, 0, 0)
Z (1, 0, 0, 0)

F6 Base
x1 (1, 0, 0, 1)
y0 (−4, 5,−1,−6)
y1 (−10,−10, 1, 0)
f2 (−3, 0, 0,−1)

e
(2)
6 Fiber

g1 (−5,−2, 0,−2)
g2 (−5,−1, 0,−2)
h1 (−7,−2, 0,−3)
k1 (−9,−3, 0,−4)

Table 2. The toric rays, of an e
(2)
6 genus-one fibration X̂C over a F6 base with f2 being the affine

node.

Hodge numbers

(h1,1 , h2,1 (h2,1np ) )(X̂C) = ( 7 , 151(0)) . (4.33)

The structure of the fibration can be readily be read off from the structure of the toric
vertices: the F6 base is given via the projection onto the last two coordinates of each ray.
The identification of base rays are

{x1; y0; y1; f2, g1, g2, h1, k1} π−→ {x̂1; ŷ0; ŷ1; x̂0} with x̂0 = f2g
2
1g

2
2h

3
1k

4
1 . (4.34)

The base curves Dŷi are the respective 0-curves while Dx̂1 is the +6 curve and we identify
Z = Dx̂0 : x̂0 = 0 as the −6 curve. This example is significant for various reasons: first, it
has a trivial f4 charged hypermultiplet spectrum, i.e. a trivial Higgs branch, analogously to
the Non-Higgsable cluster theories. Second, this 5D theory makes it clear, that this theory
can not be uplifted to 6D with an f4 gauge theory, as the −6 self-intersection would make it
impossible to satisfy the 6D gauge anomalies.

4.3 Transitions to e
(2)
6

Another way to understand various 6D and 5D theories is to connect them via geometric
transitions. In the following we will carry this out for the e

(2)
6 fibration and its Jacobian.

These geometric transitions typically map to chains of Un/Higgsings in the effective theories.
We can therefore learn a lot about the (change of) degrees of freedom in the various theories
by moving in a larger moduli space. In particular we want to discuss the relationship
between the twisted affine fibration and an untwisted one. Hence we need to consider
tunings in the complex structure moduli space that result in an unfolding of the fibers and
match the geometric quantities to the associated 5D states. Our starting point is therefore
a tuning of the geometry that introduces a section to the genus-one fibration such that it
becomes birationally equivalent to the Jacobian fibration. This gives us a useful starting
point from which we can follow the branching structure in 5D towards the phase with the
twisted e

(2)
6 .

For this we recall the critical role of the monodromy divisor D2,X and its intersection
with the curve Z in the base to produce the affine folding. To unfold the geometry we thus
have two options:

1. Tuning the monodromy divisor, such that it does not intersect Z anymore, resulting
in an un-folded genus one fibration with e

(1)
7 fiber. This model might correspond to
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the generalized Tate-tuning

n⃗ = {3, 3, 2, 1, 1, 2, 1, 0} . (4.35)

2. Tuning the geometry to an elliptic fibration results in a complete removal of the
monodromy divisor and adding a two sections via the generalized Tate-vector

n⃗ = {3, 3, 2, 1,−, 2, 1, 0} for e
(1)
7 . (4.36)

Here the entry “−′′ refers to setting the coefficient d5 to zero globally. Doing so splits
the monodromy divisor into a perfect square

D2,X
d5→0−−−→ d28 . (4.37)

In the following we will discuss a chain of transitions, that will go through both phases.
For ease of exposition we start from the tuning to an elliptic fibration, i.e. the second type
of tuning.

The e
(1)
7 × u1 model. Using the tuning in eq. (4.36) we obtain a Morrison-Park type of

U(1) model. The singular model can directly be mapped into the birational Weierstrass
model where we find at leading orders

f = z3d1d8 +O(z4) , g = z5d1p4(di) +O(z6) , ∆ = z9d31d
6
8 +O(d21z10) . (4.38)

We can directly infer the gauge group and matter structure from the above model. We
find two discriminant components. The first component is given by z = d1 = 0. This
is a (4, 6) locus which we have tuned to zero via the specialization given in (4.13). The
second component is a (4, 5, 10) locus at z = d8 = 0 where we find matter in the 56
representation which admits a non-trivial charge under the additional U(1)6D. By resolving
the full geometry, we can compute its charge directly. The U(1)6D symmetry is associated
to the higher rank Mordell-Weil group of the geometry whcich is generated by the two
1-sections

s0 : X = 0 and s1 : e1 = 0 , (4.39)

as reviewed in section 2. The fully resolved model is then given as the hypersurface

p = d1f
3
2 f

2
4 g

2
2g3h1X

4e1 + d2f
3
2 f

2
4 g

2
1g

3
2g

2
3h

3
1h

2
2l

3
1X

3Y e21 + d3f
2
2 f4g

2
1g

2
2g3h

2
1h2l

2
1X

2Y 2e1

+ d4f2g
2
1g2h1l1XY

3 + d6f
2
2 f

2
4 g1g

2
2g

2
3h

2
1h

2
2l

2
1X

2Ze21 + d7f2f4g1g2g3h1h2l1XY Ze1

+ d8g1Y
2Z + f4g3k2Z

2e1 , (4.40)

with the Stanley-Reisner ideal

SRI = {XY, e1Y, f2Y, f4Y, g2Y, g3Y, k1Y, h1Y, h2Y,XZ, f2Z, g1Z, g2Z, k1Z, h1Z, g1X,
e1g1, f4g1, g1g3, g1h2, f4X, g2X, g3X, k1X,h1X,h2X, e1g2, e1g3, e1k1, e1h1,

e1h2, f2g3, f2k1, f2h1, f2h2, f4k1, f4h2, g2h2, h1h2, g2g3, g2k1} . (4.41)
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[g1]
2

[k1]
4

[f2]

[X]

[g2]
2

[f4]

[e1]

1
[h1]

31
[h2]

3
[g3]

2

Figure 5. Depiction of the e
(1)
7 fiber and their corresponding fibral divisors. Depicted are also the

two section X = 0 and e1 = 0 that intersect the affine and fundamental node respectively.

The fibral divisors f2, f4, g1, g2, g3, h1, h2, l1 resolve the fibral singularity fully and exhibit
an intersection picture as depicted in figure 5. The fibral divisors intersect like the affine
e
(1)
7 -Cartan matrix as expected, with ordering as

(g1)
(f2)(g2)(h1)(k1)(h2)(g3)(f4)

= (α7)
(α0)(α6)(α5)(α4)(α3)(α2)(α1)

. (4.42)

The intersection picture is relevant as the additional section s1 intersects the fundamental
node α1 of the e

(1)
7 fiber. This signals a non-trivial mixing of the U(1)6D with the center of

e7 which yields the global gauge group

G6D = E7 ×U(1)6D
Z2

.

This is clear, when writing the U(1) generator in terms of the orthogonal divisors. First we
note that the naive U(1) generator is generated by the difference of the sections [e1]− [X].
However, this combination is not properly orthogonalized with respect to f4, that is the
fundamental node α1. We thus must therefore orthogonalize the U(1)6D properly by taking
the linear combination of fibral divisors

σ(s1) = [e1]− [X] + 1
2

∑
biαi︸ ︷︷ ︸

WC

, with bi = {3, 4, 5, 6, 4, 2, 3} , (4.43)

to obtain the actual U(1)6D that is orthogonal to the e7. The important point is that the
linear combination WC corresponds to the Z2 center generator of E7. Hence its appearance
in the U(1)6D generator implies a global shift by a Z2 center values [13, 69] of E7. Note that
the above configuration admits also a Z2 symmetry when interchanging the two sections13

and reordering the fibral divisors:

ω : α0 ↔ α1 , α6 ↔ α2 , α3 ↔ α4 and s0 ↔ s1 . (4.44)

13Similarly, one can obtain the dual Shioda map

ω : σ(s̃1) = σ(s̃1) + ∆ ,

upon relabeling roots and zero-section. The difference term ∆ = 2(s0−s1)+ 3
2 (α1−α0)+(α6−α2)+ 1

2 (α5−α3)
vanishes upon the identification of the four classes that are related via the folding procedure.
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From this perspective we directly see that a fundamental 56 must have a 1
2 -fractional

charge under the U(1)6D. Clearly, the U(1)6D get conjugated upon exchanging the Shioda
map generator. Hence we have constructed a concrete geometric realization of the section-
interchange symmetry, discussed in section 3.2. This can be verified by investigating the
explicit degeneration locus of the E7 fiber over d8 = 0, where 56-plet states reside. Their
charges and multiplicities can then be computed as

n56 1
2
= 4(1− g) + 1

2Z
2 , (4.45)

which we have expressed in terms of geometric intersection numbers. Note that this might
look puzzling at first: as 56-plets are pseudo-real, one typically obtains half-hypermultiplts
in 6D. In our case the 56-plets carry U(1)6D charge and hence renders the states not
pseudo-real anymore. We therefore expect to find full hypermultiplets, which is exactly
accounted for by the multiplicity formula (4.45).

In an example model over an F0 base given in appendix A.2 we find the Hodge numbers

(h1,1, h2,1)(XA) = (11, 59) . (4.46)

We identify the Kähler moduli as the eight from the gauge group and three from the fiber
and base respectively. We then identify

Z ∼ H1 , S9 ∼ 2H2 , (4.47)

and c1 ∼ 2H1 + 2H2 where H1,2 are the hyperplane classes in F0. Using the divisor
classes given in appendix B and (4.36) we can then identify [d4] ∼ 3H1 + 6H2 and [d8] ∼
2H1 + 4H2. This allows us to deduce the 6D/5D F/M-theory spectrum which includes the
following matter

H = 4 · 56 1
2
⊕ 24 · 12 ⊕ 70 · 11 ⊕ 60 · 10 , T = 1 , V = 133 ⊕ 1 . (4.48)

The e
(1)
7 genus-one model. The next step in the chain towards the e

(2)
6 theory is to

remove the sections. This can be done via a conifold transition which does not affect the
e
(1)
7 fiber but only the additional U(1)6D part as reviewed in section 2.2. From a geometric

point of view, we simply change the generic fiber structure from an Bl1P2
112 to P2

112 which
does not affect the E7 fiber itself. This is associated to a Higgsing on a field which is
a hypermultiplet with charges 12 and a non-trivial KK charge. The resulting resolved
genus-one fibration XB is given via the hypersurface

p = d1f
3
2 f

2
4 g

2
2g3h1X

4 + d2f
3
2 f3f

2
4 g

2
1g

3
2g

2
3h

3
1h

2
2k

3
1X

3Y + d3f
2
2 f3f4g

2
1g

2
2g3h

2
1h2k

2
1X

2Y 2

+ d4f2g
2
1g2h1k1XY

3 + d5f2g
4
1g

2
2g3h

3
1h

2
2k

4
1Y

4 + d6f
2
2 f

2
4 g1g

2
2g

2
3h

2
1h

2
2k12X2Z

+ d7f2f4g1g2g3h1h2k1XY Z + d8g1Y
2Z + d9f4g3h2Z

2 , (4.49)

with the following Stanley-Reisner ideal

SRI : {Y X, Y f2, Y f4, Y g2, Y g3, Y h1, Y h2, Y k1, Zf2, Zg1, Zg2, Zh1, Zk1, k1h1,
Xg1, f4g1, g1g3, g1h2, Xg2, Xg3, Xh1, Xh2, Xk1, f4h1, f4h2, f4k1, f2g3, f2h1,

f2h2, f2k1, g2h2, g3k1, g2k1} . (4.50)
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Figure 6. Depiction of the (E7 × Z4)/Z2 Dynkin diagram obtained by unfolding e
(2)
6 . We depict

the divisor classes of the respective P1’s as well as their Dynkin multiplicity and intersections with
the two sections [X] and [Y ] as well as the 4-section [Z]. The affine node is given by the fibral curve
at f2 = 0.

Note that the fiber model is the quartic model which we obtain by adding the monomials
d5Y

4 after removing the MW generator given by the divisor e1 = 0. The intersection
picture is summarized in figure 6 which yields the expected e

(1)
7 shape. As a result of the

conifold, the two 1-sections s0 and s1 of the Morrison-Park model have merged into a single
2-section s

(2)
0 : X = 0 that maintains their intersections with the fiber as shown in figure 6.

However as we identify the class of the 2-section with the generator of generic fiber class
which contains the u1,KK we find that it is not orthogonalized to the e7 fibral divisors. This
is not surprising when recalling that the 5D U(1)E is a linear combination of KK U(1) and
the massive u1,6D which mixed with the center of E7. Hence the orthogonalized 2-section
analog in the genus-one fibration is given as

σ(s(2)0 ) = [X] + 1
2WC , (4.51)

shifted by the same center Wilson line combination WC as in (4.43). In the above linear
combination we have fixed the u1,E charges and its mixture with the KK-tower. E.g. since
X = 0 is a two-section we have

σ(s(2)0 )[T 2] = 2 . (4.52)

Thus an M2 brane state that wraps the a fibral curve and the generic torus n times yields
5D particle with u1,E charges q + 2n. The above structure is in fact useful to deduce the
discrete charges q in the 6D (and Jacobian) compactification as we discuss next.

Shrinking all nodes but the affine f2 we can map the configuration into the Jacobian,
i.e. the singular Weierstrass form. At leading order in z we still find the form to be given
as (4.38).

In the following we investigate the locus of the e7 fundamentals (inside d8 = 0) in a bit
more detail. In order to discuss the degeneration at this codimension two locus we list all
eight fibral curves of e(1)7 in detail as

Pα0 : f2 = 0 = d9f4 + d8g1 ,

Pα1 : f4 = 0 = d4f2g2 + d5f2g
2
2g3 + d8Z ,

Pα2 : g3 = 0 = d4g2h1k1 + d8Z ,
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Pα3 : h2 = 0 = d1g3 + d4k1 + d8Z ,

Pα4 : k1 = 0 = d8g1 + d1g3h1 + d9g3h2 ,

Pα5 : h1 = 0 = d8g1 + d9g3 ,

Pα6 : g2 = 0 = d8g1 + d9f4g3 ,

Pα7 : g1 = 0 = 1 + d1f
3
2 g

2
2h1 . (4.53)

Some curves above become reducible when imposing d8 = 0 where curves split as

P1
αi

d8=0−−−→
∑
j

P1
i,j . (4.54)

Indeed, we find the curves to degenerate into 9 distinct curves with an intersection structure
which resembles the affine E8 Dynkin diagram as given in figure 7. This is in fact also what
we expect from the Jacobian, which highlights again the close connection between the two
(non-birational equivalent) geometries.

We can use the resolved geometry to deduce the properties of the 5D theory on the
Coulomb branch. We do so by considering M2 branes that wrap the reducible fibral curves
and compute their charges under the Cartan subalgebra. This allows us to compute E7
weights and U(1)E charges by considering the following set of intersections

(f4, g4, h2, k1, h1, g2, g1|f2)σ(s2
0)
· P1

i,j . (4.55)

We pick two of the reducible curves, given in figure 7 and compute the intersections

P1
1,1 : (−1, 1, 0, 0, 0,−1, 0|1)( 1

2 )
, (4.56)

P1
2,1 : (1,−1, 0, 0, 1,−1, 0|1)( 1

2 )
. (4.57)

Note that we have also highlighted non-trivial charges under the affine node f2, which is
non-trivial for both curves. The above charges are weights of an 56 representation with
u1,E charges q = 1

2 as expected.
When taking the singular limit, the above genus-one fibration admits the 5D gauge

group G5D = (E7 × U(1)E)/Z2. The global shift by WC effectively mixes the E7 center
with U(1)E similar to the case of the Shioda map [51]. This non-trivial global structure
lifts in a non-trivial way to the 6D theory as the u1,E contains the massive u1,6D and in
particular its discrete remnant. Recall that the 6D theory is obtained from the Higgsing on
a 12 state, which breaks the u1,6D to a Z2 subgroup. The non-trivial center mixing however
changes this group to

G5D = (E7 ×U(1)E)/Z2
F-theory lift−−−−−−−−→ G6D = E7 × Z4

Z2
, (4.58)

(see [70] for related effects). This global structure is compatible with the 6D charge
assignment

56 1
2
, 11 , (4.59)
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[h2]

[f4] [g2] [g3] [k1]
[g1]

[h1][f2]
P1

1,2 P1
α0 P1

1,1 P1
2,1 P1

2,2 P1
2,3 P1

4,1 P1
α7

P1
α3

Figure 7. The fiber structure over Z and d8 = 0 where 56 1
2

matter resides. The fiber admits an
E8 structure consistent with the expectation of the Jacobian.

given that they are taken mod 2, even though that the e7 fundamentals have a fractional
charge. Furthermore these discrete charges make clear that the e7 fundamentals are
not pseudo-real and thus not half hypermultiplets, consistent with the count of their
multiplicities (4.45).

When performing the transition from XA to XB as shown in figure 8, the U(1)
generator gets eaten by the 12 Higgs fields. The remaining degrees of freedom of the same
charge become neutral singlets. This can be seen in the example geometry, which admits
Hodge numbers

(h1,1, h2,1)(XB) = (10, 82) . (4.60)

Note the decrease in Kähler parameters in XB compared to XA (see (4.46)) agrees with
the breaking of U(1)6D and the enhancement of 23 complex structure parameters can be
explained by the 24 12 fields.

Transition to e
(2)
6 . The geometry XB provides a key step in our goal of engineering a

transition to the e
(2)
6 fibration. In terms of the singular geometries this is due to the fact

that the order two monodromy divisor does not intersect the e7 singularity, while it does in
the e

(2)
6 . This can also be observed by comparing the vanishing orders in the two relative

singular genus-one geometries (i.e. one can compare the Tate-vectors in (4.4) with (4.35)).
The e

(2)
6 leaves the monodromy divisor invariant, while the e7 tuning does not.

In the following we want to discuss the geometric transition and match it to the 5D
field theory. The two types of states of relevance, are the scalars in the 5D vector multiplets,
that break the theory to a (partial) Cartan subgroup and parametrize the Coulomb branch,
and the 56 1

2
-plets whose VEV parametrize the Higgs branch of the e7 theory. A straight

forward way to obtain the f4 theory from e7, is via the non-Levi type branching as given as

e7 × u1,E → f4 × su2 × u1,E → f4 × û1,E , (4.61)

which can be attributed to a VEV in the (1,4) 1
2
∈ 56 1

2
. This however raises an immediate

puzzle: in order to trigger the Higgsing on the 56 1
2
-plets, we require those fields to

be massless.
Those states however admit a u1,E charge, and hence one expects them to admit a

non-trivial mass, proportional to the u1,E Coulomb branch parameter. As the u1,E Coulomb
branch parameter is proportional to the inverse of the 6D circle radius. It cannot be taken
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to zero size at finite distance in the moduli space.14 However, the fact that we can perform
an infinitesimal deformation in complex structure moduli space to go from the singular XB

geometry to XC suggests that those states should be massless.
We do not resolve the above puzzle here, instead we bypass it by a different mechanism

to obatin a massless Higgs field. Instead of a simple complex structure deformation in
the singular limit, we first move on the 5D Coulomb branch by performing a particular
resolution of the singular fiber. Thus we break the gauge algebra to e7 → e6 × u1 which
then will allow us to obtain massless states, that can be given a vev.

In geometry this branch corresponds to only shrinking the e6 sub-diagram inside of the
affine e

(1)
7 given in figure 6, keeping the affine and fundamental nodes at finite sizes. The

resulting 5D theory admits an e6 × u1,A × u1,E gauge algebra and the e7 representations
decompose as

1330 → 780,0 ⊕ 27 2
3 ,0

⊕ 27− 2
3 ,0

⊕ 10,0 ,

56 1
2
→ 27− 1

3 ,
1
2
⊕ 27 1

3 ,
1
2
⊕ 1−1, 1

2
⊕ 11, 1

2
.

(4.62)

As expected only 5D states with trivial u1,A × u1,E charges are massless which again is not
possible at a generic point in moduli space. The masses of the resulting particles becomes

m27− 1
3 , 1

2
= | − 1

3ξA + 1
2τ | . (4.63)

Hence when taking the linear combination

û1,E = 3
2u1,A − u1,E , (4.64)

there is a combined CB parameter

ξ̂ = 3
2ξA − ξE . (4.65)

Setting ξ̂ = 0 makes the 27− 1
3 ,

1
2

plets massless. Now we are in the position to give those
states a vev and break the gauge symmetry. The resulting gauge theory breaking is then
given as e6u1,A × u1,E → f4 × û1,E . Note that the e6 → f4 folding inside of the e7 resembles
nicely the geometry action of the e

(1)
7 → e

(2)
6 fiber. After collecting the charges under the

massless u1 generator, we can obtain the multiplicities of the massless f4 BPS states in
terms of the e7 ones as

n260 = n561/2 + n1330 − 1 , (4.66)

which matches the geometric computation. Similarly, the massive 261 plets are given as

n261 = n561/2 + 2n1330 . (4.67)

The above expression however, deviates from the geometric computation of 261 multiplicities,
performed in the e

(2)
6 theory by over counting by one. This suggests that one more massive

field should decouple in the transition. It would be interesting to investigate this miss-match
in future work.

14Recall that Higgsing from the e7 × u1,6D theory has fixed the U(1)6D Coulomb branch parameter to
ξ6D = τ/2. This also implies that 56 1

2
must be massive at the origin of the e7 Coulomb branch as well.
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We can proceed similarly with the û1,E-charged singlets. However we want to focus
in particular on the change of neutral singlets 10, as those contribute to the change in
complex structure moduli h2,1 which is easy to match across the transition. E.g. there
are neutral fields 27− 1

3 ,
1
2
→ 260 ⊕ 10 upon the breaking to f4 × û1,E that contribute

uncharged singlets to the geometry. However further singlet contributions are more subtle
and deserve a more detailed discussion: recall that the shifted KK symmetry is given as
u1,E = u1,6D − 2u1,KK . Thus before Higgsing, a singlet state with charges 1−1, 1

2
∈ 56 1

2
under u1,A × u1,E is accompanied with a KK-tower 1−1, 1

2+2n having KK momenta n. Upon
the Higgs transition such singlet towers therefore change into of 1−2+2n under the unbroken
û1,E . This is important as there is a mode in the tower with n = −1 that is neutral and
massless and therefore contributing to h2,1 in the geometry XA of the e

(2)
6 theory.

The second source of neutral singlets are the massless representations 260. Recall that
those hypermultiplets admit only 24 non-trivial weights and two more trivial ones that
contribute to h2,1(XA) each. (see section 7 for more details). Hence, each 56 1

2
KK-tower

of states, contributes four neutral singlet components upon the Higgsing. Finally we need
to take the 7 neutral states in any 133 hypermultiplet that reduce to just 4 in 52 and
therefore need to be subtracted. Also recall, that there are the Goldstone modes 260 ⊕ 10
that need to be removed and thus, subtract three more neutral fields.

Summing up all contributions, we obtain the following change in neutral charged fields

∆10 = −3 · n1330 − 3 + 4 · 561/2 = 13(1− g) + 2Z2 − 6g , (4.68)

which is identified with the change in complex structure moduli upon the conifold transition.
The above considerations are confirmed in the example geometries. Recall the Hodge

numbers of the two geometries are

(h1,1, h2,1) : (10, 82) → (7, 95) . (4.69)

As the respective gauge algebras are over Z2 = 0 of genus g = 0, we find exactly the
difference of 13 complex structure moduli that was expected.

Another puzzle remains, the Higgs transition in the 6D theory associated to the Jacobian
geometry appears to be more subtle than that realized in the 5D genus one geometries.
When making the transition from the Jacobian of XB to that of XC we find the codimension
one structure unchanged i.e. the E7 singularity is preserved. At codimension two however,
the locus of 56-plets has changed to the intersection locus with the two section monodromy
divisor. In particular we find that the 56q-plets should now be counted as half-hypers
which implies a change in the discrete Z2 charge to q = 0 or q = 1 but not q = 1

2 . This
furthermore implies a subtle modification of the global gauge group structure in the 6D
theory as

G6D = E7 × Z4
Z2

→ G6D = E7 × Z2 . (4.70)

It would be interesting to explore the origin of the corresponding transition and its relation
to the 5D twisted reduction in more detail in the future.
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Lift
Conifold

XB XAXC

5D M-Th on
Genus One

6D F-Th on
Jacobian

G=g × U(1)

Fiber: g(1)

G = g × u21

G=g × Zn

Fiber: g(1)

G = g× u1,E

Fiber: g(n)

G = g◦ × u1,E

G= g × Zn

Figure 8. The chain F/M-theory vacua on torus fibered threefolds XI , highlighting the 6D gauge
symmetry G and 5D fiber structures.

s1 s2 s3 s4 s5 s6 s7 s8 s9 f g ∆ Genus-1 Fiber Jac Fiber
0 0 0 0 1 1 1 1 1 2 3 6 g

(1)
2 g

(1)
2

0 0 0 0 0 1 1 1 1 2 3 6 su
(2)
3 g

(1)
2

0 0 0 0 0 0 0 0 1 0 0 2 su
(1)
2 su

(1)
2

Table 3. Tunings of sections in the quartic genus one model (4.1) for su(2)
3 fibers and related models.

The fiber structure in genus-one and Jacobian is given in the two rightmost columns.

5 More twisted affine fibrations

In this section we will follow the same approach used in section 4 to study the e
(2)
6 geometry

and discuss further examples of twisted fibers. We will consider the twisted algebras su
(2)
3

and so
(3)
8 . For each we will discuss the structure of their Jacobians and the general conifold

relations as given in figure 8.

5.1 The geometry of su
(2)
3

In this section we describe the geometry of the su
(2)
3 fiber. Its fiber structure is given on

the left of figure 9. When interpreted as a fiber graph, we see that its geometric cover is
that of an so

(1)
8 with a degree 4 folding acting on the four outer nodes. More precisely,

the folding proceeds by its Z2 × Z2 center. In order to perform this geometric action, we
require a four-section with the appropriate monodromy. One such example can be found
in a manifold with CICY genus-one fiber given by P3[2, 2] [49]. Luckily, there is a simpler
model which allows us to resolve the singularity in a single hypersurface: the model is the
quartic fibration given in (4.1). Besides the two 2-sections X,Y there is also a 4-section
Z = 0 that brings with it the right monodromy.

To proceed, we employ the same algorithm used to analyze the geometry in section 4:
we need to tune an I∗0 type of singularity over Z = 0 in the quartic model and let it
intersect the order four monodromy divisor. This monodromy divisor can be found by first
considering the four-section Z = 0 which yields

σ4 : {Z = p = 0} : s1X4 + s2X
3Y + s3X

2Y 2 + s4XY
3 + s5Y

4 (5.1)
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and then finding its discriminant locus

D4,Z = 2s32(2s34 − 9s3s4s5) + 2s1s2s4(−9s3s24 + 40s23s5 + 96s1s25)
+ 27s42s25 + s22(−s23s24 + 4s33s5 + 6s1s24s5 − 144s1s3s25)
+ s1(4s33s24 + 27s1s44 − 16s3(s33 + 9s1s24)s5 + 128s1s23s25 − 256s21s35) .

(5.2)

Proceeding further, in table 3 we have summarized the vanishing of the generalized Tate-
coefficients and the resulting fiber structures in the quartic threefold and its Jacobian
fibration. Hence the singular genus-one su

(2)
3 is given via the tuning

si → znidi , with n⃗ = (0, 0, 0, 0, 0, 1, 1, 1, 1) . (5.3)

Note that we are required to keep the s9 section explicitly at this point to be able to perform
the tuning.

The twisted affine fiber is given by the second row of table 3. The tuning is chosen so
that it respects the generic four-monodromy locus. The resolved quartic hypersurface is
then given as

p = d1X
4 + d2X

3Y + d3X
2Y 2 + d4XY

3 + d5Y
4

+ d6f1g1X
2Z + d7f1g1XY Z + d8f1g1Y

2Z + d9f1Z
2 . (5.4)

The geometry can be fully analyzed given the Stanley-Reisner ideal

SRI : {Y XZ,Zg1} , (5.5)

and the two fibral divisors are explicitly given as

P1
0,i : {p = f1 = 0} : d1X4 + d2X

3Y + d3X
2Y 2 + d4XY

3 + d5Y
4 , i = 1 . . . 4 ,

P1
1 : {p = g1 = 0} : d1X4 + d2X

3Y + d3X
2Y 2 + d4XY

3 + d5Y
4 + d9f1 .

(5.6)

Note that the four P1s inside of f1 = 0 admit an S4 symmetry and take the very same form
as the four-section Z = 0 and hence, experience the same mondromy effect.

In order to obtain the correct gauge algebra factor of the quartic model we need
to choose the fibration so that upon factorizing the divisor Z : z = 0, the residual d9
polynomials becomes a constant. For this we set

[z d9] ∼ c1 − S7 + S9 , (5.7)

and solving for S7 ∼ c1 + S9 −Z. In what follows we will then set d9 = 1.
The fibral graphs and intersections with the 2-sections and 4-section is given in figure 9.

Note again, that we obtain an order two multiple fiber, over each intersection locus of D4,Z
with the fibral curve Z as depicted in figure 9.
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[g1]

1

2

[X] [Y ]

[f1]

[Z]
D4,Z =0
−−−−−→ 2 4

Figure 9. Depiction of an su
(2)
3 fiber. The two two-sections X,Y both intersect the middle node.

All four fibral curves in [f1] are permuted by the four-section Z. At the intersection with the
monodromy divisor the fiber degenerates to a multiplicity two fiber.

5.1.1 Counting states in the su
(2)
3 genus-one model

As in the previous section, we turn our attention now to the BPS states. To count the
states, within the twisted affine fiber we split up all curves of the so8 cover into orbits of the
Eigenspaces of the monodromy action. The starting point are curves C of self-intersection
−2 that are linear combinations C = ∑

i aiCi for i = 0 . . . 4 where the basis curves Ci intersect
as nodes of the affine Dynkin diagram so

(1)
8 . Graphically we write those curves as

Ci = a0 −
a1
a2
a3

− a4 , with ai ∈ N and i = 0 . . . 4. (5.8)

In this way we setup the 24 states that make up the W bosons of the adjoint of the covering
so8. In the second step, we incorporate the Z4 action that fixes C2 but rotates the other Ci.
The invariant combination of curves is then given by the collection (C2, C1 + C3 + C4 + C5)
which we will also use in order to compute the weights of states via the intersections of the
covering algebra. Then within the 24 states, we need to collect together the Eigenspaces
under the action and split them up into shrinkable and non-shrinkable curves. The result is
given in table 4.

The permutation action σ4 acts on the outer roots as

σ4 :
2.

4.− 0− 1.
3.

, (5.9)

where we have chosen the i − th root to be permuted to i + 1 under the Z4 we quotient
by.15 We find two 2 1

2
doublets as well as two types of singlets as shown in table 4. Note

that one of the singlets is only an order two ramified curve under the order four action.
In order to compute the moduli space dimensions, we need the divisor class of the

monodromy divisor. In order to deduce it, we first note that the ramification divisor is
15Note that there might be other potential subgroups of the S4 symmetry to quotient by and an interesting

point for future research (see. e.g. [71] for S3 example of so8).
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Mono #Curves Example Curve su2 ⊂ su
(2)
3 weight χ

Inv 2
0

0− 1− 0
0

(−2) g

Z4 2

0
1− 0− 0

0
+

1
0− 0− 0

0

+
0

0− 0− 0
1

+
0

0− 0− 1
0

(−1) g′

Z4 2

0
1− 1− 0

0
+

1
0− 1− 0

0

+
0

0− 1− 0
1

+
0

0− 1− 1
0

(−1) g′

Z4 1

1
0− 1− 0

1
+

1
0− 1− 0

1

+
0

1− 1− 0
1

+
0

1− 1− 1
0

(0) g′

Z2 1
1

1− 1− 0
0

+
0

0− 1− 1
1

(0) g′

Table 4. Schematic splitting of the 24 curves of so8 roots into Z4 invariant curves, their su2 ⊂ su
(2)
3

charges and respective moduli space dimensions χ computed in (5.13).

associated to the base line bundle class

[D4,Z ] ∼ 2[d1] + 4[d4] , (5.10)

and we further observe

[d1] ∼ 2c1 − 2S9 + Z [d4] ∼ 2c1 + S9 − 2Z . (5.11)

Plugging those in, we find that S9 cancels out and we obtain

[D4,Z ] ∼ 12c1 − 6Z . (5.12)

Intersecting the monodromy divisor DZ,4 with Z yields the points of ramification that we
need to compute the moduli spaces of fibered P1’s. There we count the moduli spaces g′
and g′ for degree 4 and 2 covered curves respectively which are given as

g′ = 9(1− g) + 3Z2 + g , g′ = 11(1− g) + 3Z2 + g . (5.13)

When adding up, the non-trivial representations, we obtain

n30 = g , n2 1
2
= 18(1− g) + 6Z2 + 2g , (5.14)

n1 = 20(1− g) + 6Z2 + 2g . (5.15)

Note that all states carry a non-trivial u1,E charge and are therefore generically massive.
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Comparison with su3 → su
(2)
3 reduction. In pure field theories, the 5D su

(2)
3 theories

have been observed to arise from an outer automorphism twisted 6D theory with a su3
gauge algebra. The autormorphism acts as complex conjugation among the fundamental
representations, and leaves an su2 maximal sub-algebra. Similarly to the examples given in
section 4 we will observe below that the Jacobian admits an g2 gauge algebra instead of
su3. Thus, we expect that the genus one geometry we outline here will arise from a circle
reduction of a 6D g2 F-theory background, but that the twisting symmetry will act on the
su3 ∈ g2 sub-algebra as in the usual gauge-theoretic twisted reductions.

The decomposition of the fields under the twisted reduction16 results in

8 → 30 ⊕ 2 1
4
⊕ 2 3

4
⊕ 1 1

2
and (3 ⊕ 3) → 2 1

4
⊕ 2 3

4
⊕ 10 ⊕ 1 1

2
. (5.16)

The subscript Rs denotes the shifted KK charge q = s+ n and KK-momentum n typically
used in the literature.

Recollecting the 5D multiplicities of states, we write the 6D spectrum in geometric
terms as

n30 = 18(1− g) + 6Z3 , n8 = g . (5.17)

Since 2 1
4

states are in the same tower as 2 3
4

we can simply sum them up to obtain the
multiplicity of

n2 1
4
= 18(1− g) + 6Z2 + 2g . (5.18)

Finally we need to match the normalization of the shifted KK-charges with those used for
our intersections. In order to do so, we need to multiply the above shifted KK-charges by
two to obtain a match of both multiplicities.

Similar as in the e
(2)
6 case, we also obtain a prediction for the neutral singlets that are

inherited from the fundamentals, given as

n10 = n3
2 = 9(1− g) + 3Z2 . (5.19)

The states above in (5.19) we will interpret as non-polynomial deformations of the toric
hypersurface in section 7.

State counting in the g
(1)
2 Jacobian. Lets compare those computations with that of

the Jacobian which admits an unaltered 6D uplift. Similar as for the e
(2)
6 geometry, we

expect to find a generic I∗0 fiber i.e. a g2. Indeed at leading order of the Weierstrass form
along the singularity at z = 0 we find

f = −z2 13(d
2
3 + d2d4 − 4d1d5) +O(z3) ,

g = −z3 2
27(2d

3
3 − 9d2d3d4 + 27d1d24 + 27d22d5 − 72d1d3d5) +O(z4) ,

∆ = z6D4,Z +O(z7) .

(5.20)

16Note that our shifted KK charge for the fundamentals differ from those, given in [19].
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Generic Fiber
X (−1, 1, 0, 0)
Y (−1,−1, 0, 0)
Z (1, 0, 0, 0)

F3 Base
x1 (−2,−1, 0, 1)
y0 (10, 10,−1,−3)
y1 (−9,−10, 1, 0)
f1 (1, 0, 0,−1)

su
(2)
3 Fiber

g1 (1, 0, 0,−2)

Table 5. Toric rays, of a genus-one fibration over F3 base, with su
(2)
3 where the ray f1 yields the

affine node.

with D4,Z the monodromy divisor. In the Jacobian we find over z = 0 simply an I∗0 non-split
fiber, i.e. an g2 singularity. The monodromy divisor takes on a similar role as in the
genus-one fibration but in this case, it only rotates three of so8 outer roots, instead of four.
Hence the fibral P1’s undergo a degree d = 3 monodromy. This is important to compute
the moduli spaces of the curves that yields n7 = (g − g) fundamental hypermultiplets of g2.
Using the same amount of ramification points as for su

(2)
3 but this time d = 3 in the RH

theorem yields the multiplicities

n14 = g , n7 = 10(1− g) + 3Z2 , (5.21)

which satisfies the g2 anomalies in 6D.

Toric examples. In the following we discuss two concrete toric examples. The first
threefold, admits a P2 base with an su

(2)
3 over a Z2 = +1 curve of genus g = 0. The toric

rays are given in appendix A and the respective Hodge numbers are computed as

(h1,1, h2,1(h2,1np )) = (3, 107(12)) . (5.22)

Note that the number of Kähler parameters matches the expectation. The charged spectrum
comes with multiplicities

n30 = 0 , n2 1
2
= 24 . (5.23)

We will return to the model above, when discussing another transition to an actual su(1)2
fiber, which shares the very same Hodge numbers as the model above in section 7.

Finally we also present the geometry that correspond to the twisted reduction of a
non-Higgsable su3 theory. From a 6D perspective, this comes when g = 0 and Z2 = −3.
From the general considerations we find, that we should also find no su

(2)
3 particles. Such

an example can easily be constructed, over an F3 base. The toric rays for this model are
given in table 5 and the Hodge numbers can be computed as

(h1,1, h2,1(h2,1np )) = (4, 130(0)) , (5.24)

admitting the four expected Kähler parameters and notably only polynomial complex
structure deformations.
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[X] [Y ]

[U ]
[f2] [g1] [f1]

[Z]
1 2

1

1 2

1
[X] [Y ]

[Z][f2]
[g1]

[f1]

P1
1

P1
0,1

P1
0,+

P1
0,−

P1
2,−

P1
2,+

[X]

d4=0−−−→

Figure 10. Summary of three fiber structures. On the left is the g2 fiber in the elliptic model and
in the middle in the genus-one model and their intersections. Shown are the two-sections X,Y and
the four-section Z = 0. On the right is the so10 degeneration shown where matter is localized.

5.1.2 Transitions to su
(2)
3

In the following we explore various transitions towards the 5D su
(2)
3 theory. We have

observed already, that this theory admits a g2 × Z2 theory in its Jacobian. We therefore
tune the theory to an g2 × u1,6D in 6D via various transitions.

Geometrically, the way this fibration is constructed follows the same approach as in
the e

(2)
6 theory, by having a monodromy that acts non-trivially an the affine node.

The g2 × [U(1)6D → Z2] transition. The basis for the su
(2)
3 model was the existence

of the 4-section monodromy divisor that folds the so
(1)
8 covering fiber. We will not present

a complete such unfolding, but only a deformation which grants us a section and hence an
elliptic model. As the generic fiber description is the same as in the e

(2)
6 model.

For this we can start with an g2× u1,6D 6D theory by using the tuning given by general
Tate-vector17 specified in table 3 and at the same time tuning d5 to zero globally.

The resolved hypersurface is given as

p = d1f
3
2U

3X4 + d2f
2
2U

2X3Y + d3f2UX
2Y 2 + d4XY

3

+ d6f1f
2
2 g1U

2X2Z + d7f1f2g1UXY Z + d8f1g1Y
2Z + d9f1UZ

2 . (5.25)

The zero-section is again denoted by U = 0 and the second section by X = 0. The
above fiber is of g2 type as can be seen from the fibral curves and their intersections using
the

SRI : {Y X, Y U, Y f2, e1Z, e1U, e1f1, e1g1, e1f2, XZ,Zg1, Zf2, Xf1, f1f2, Xg1} . (5.26)

This leads to the following form of fibral curves:

P1
i : [f1] : d1U

3 + d2U
2Y + d3UY

2 + d4Y
3 , i = 1, 2, 3 ,

P1
2 : [g1] : d9f1U + d1f

3
2U

3 + d2f
2
2U

2Y + d3f2UY
2 + d4Y

3 ,

P1
0 : [f2] : d8g1 + d9U + d4X .

(5.27)

17Note that we have used f1 as the affine coordinate to make contact with the su
(2)
3 geometry. The affine

coordinate however is given as f2, which can equally well be given by the tuning

n⃗ = {3, 2, 1, 0,−, 2, 1, 0, 0}

in the quartic model. Consistently, this tuning also leaves D3,Z invariant.
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The divisor f1 = 0 itself is a cubic polynomial that decomposes into three irreducible curves
P1
i , that are interchanged by the monodromies. Note that Z = 0 is a 3-section in the MP

model but will become a 4-section in the quartic genus-one fibration.
The intersections in the fiber are depicted in figure 10. To compute the spectrum it

is convenient to map the geometry into the Weierstrass form which we sketch to leading
orders here

f = −1
3(d

2
3 − 3d2d4)z2 +O(z3) ,

g = − 1
27(2d

3
3 − 9d2d3d4 + 27d1d24)z3 +O(z3) ,

∆ = z6d24D3,Z +O(z7) ,

(5.28)

with D3,Z the Z3 monodromy divisor of the three-section Z = 0, that also permutes the
three P1’s in f1 = 0. Its polynomial equation is explicitly given as

D3,Z = (−d22d23 + 4d1d33 + 4d32d4 − 18d1d2d3d4 + 27d21d24) . (5.29)

Precisely due to the reason that D3,Z is not a perfect cube leads to the non-split type I∗0
fiber. From the intersections with the additional section, we find the U(1) Shioda map to
be simply given as

σ(s1) = [X]− [U ] . (5.30)

Unlike to the other examples there is no geometric mixing of the U(1) with the g2 center at
this point as this is simply trivial. The presence of the extra U(1) leads to the expectation
of non-trivial charged matter. The first source is non-localized matter induced by the
monodromy locus D3,Z but we also find a (2, 3, 7) enhancement locus over z = d4 = 0. In
the resolved model we find the curves P1

2 to split into two curves which thus gives the fiber
the topology of so(1)10 as depicted in figure 9. One of these components, e.g. g1 = U = 0
contains the zero-section and admits the following intersections with the Cartan generators
(f1, g1, f2)σ(s1)

(1,−1; 1)1 ∋ 71 , (5.31)

i.e. a weight from the fundamental of g2 with non-trivial U(1) charge.
When Higgsing to the genus-one model, the g2 stays basically as it is, so we will not

discuss matter multiplicities up to this point.
When performing the conifold transition to the genus-one geometry we blow down

U and add the deformation term d5f1g
2
1Y

4 to the hypersurface. This results in changing
Z = 0 and X = 0 into a four- and a two-section respectively. This is reflected by the change
in the intersection picture depicted in the middle of figure 10 for which we used the fibral
Stanley-Reisner ideal

SRI = {Y X, Y f2, Zg1, Xf1} . (5.32)

In analogy to the procedure before we use the two-section X = 0 as the analog of the
zero-section. As all of its strains intersect the affine node P1

α0 only, we do not have to
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node Irreducible components over d4 = 0
P1
1,i : [f1] P1

0,1 : f2 ∩ f1 , P0,± : f1 ∩ (f2 ± pY )
P1
2 : [g1] P1

2 : g1 ∩ (d9f1 + d1f
3
2 + d2f

2
2Y + d3f2Y

2)
P1
0 : [f2] P1

0,1 : f2 ∩ f1 P1
0,± : f2 ∩ (f0g1 ± qZ)

Table 6. The codimension two irreducible components of the fiber at d4 = 0, where g2 fundamentals
71 are located. Their intersection picture is given on the right of figure 10.

orthogonalize it with respect to other g2 Cartan generators, just as in the case before.
Hence we use X as the discrete Shioda map generator itself which in order to compute the
6D discrete Z2 charges or 5D KK charges. Lets investigate the reducible fibers below in
codimension one, for which we find

P1
α1,i : [f1] ∩ d1f32 + d2f

2
2Y + d3f2Y

2 + d4Y
3 , i = 1, 2, 3 ,

P1
α2 : [g1] ∩ d9f1 + d1f

3
2X

4 + d2f
2
2X

3Y + d3f2X
2Y 2 + d4XY

3 ,

P1
α0 : [f2] ∩ d5f1g21 + d4X + d8f1g1Z + d9f1Z

2 .

(5.33)

From the point of view of the four-section Z = 0 it is notable, that the three fibral curve P1
i

undergo only a Z3 monodromy. Indeed one of the four-section strains of Z = 0 attaches
to the affine node in f2 = 0. This is also reflected in the Jacobian of the genus-one model
which at leading order is exactly the same as given in (5.28). Hence we also find the same
degeneration locus over d4 = 0 again. This is the important locus that triggers the 5D
Higgs transition to the su

(2)
3 theory so we will discuss it in a bit more detail. Moving onto

the locus d4 = 0, the fibral curves split as summarized in table 6. When investigating the
curve P1

0,±, we find the M2 brane states to support the following weights

P1
0,± : (1, 0;−1)1 ∋ 71 , (5.34)

Similar as in U(1)6D phase, the new fibral component gives rise to a charged fundamental.
When lifting to 6D, the charge under U(1)E becomes a Z2 charge, while in the genus-one
geometry it combines with the U(1)KK charge.

Up to this point we have not yet computed the multiplicities of the g2 charged states
in either geometry. In order to do so, we take f1 as the affine coordinate that factored out
of di. The full factorization in terms of the quartic model is given in table 3.

Using the formulas for the classes first, we need to set d9 to be a constant in order
to avoid additional su2 gauge factors. In order to achieve this, we can fix the line bundle
classes of the base as

S7 ∼ c1 + S9 −Z . (5.35)

Important for what follows are the classes of the two sections d1 and d4. Those can be
deduced to transform in the base classes

[d1] ∼ 2c1 − 2S9 + Z , [d4] ∼ 2c1 + S9 −Z . (5.36)
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From this data we can read off the class of the Z3 monodromy divisor (5.29) to

[DZ,3] · Z = [2d1 + 2d4] · Z = 8c1 · Z − 2Z2 − 2S9 · Z = 16(1− g) + 6Z2 − 2S9 · Z .

(5.37)

With this topological information we can compute the multiplicities of the charged matter.
First there is as usual the adjoint valued fields counted by the genus of Z. Then there are
the two sources of 7-plets The first source is counted by the intersections of z = 0 with
d4 = 0, while the second uses the moduli spaces of the degree three branched curve z = 0
via Riemann-Hurwitz. The result is

n71 = [d4] · Z = 4(1− g) + S9 · Z , n140 = g ,

n70 = 2(g − 1) + 1
2R = 6(1− g) + 3Z2 −Z · S9 .

(5.38)

Note that there is the additional free line bundle class S9 which is not fixed. The freedom
of tuning this classes and the intersection with Z allows to control the relative difference of
charged and uncharged 7-plets.18 Consistent with gauge anomalies we find that the sum of
the representation does not depend on the additional parameter S9 as it must be

n71 + n70 = 10(1− g) + 3Z3 . (5.39)

To illustrate those general considerations, we discuss a concrete toric example in the following
For this we fix the base to be P2 and the full toric data is given in appendix A. The

model admits an g2 over a genus 0 curve with the additional data Z · S9 = Z2 = 1 and
Hodge numbers

(h1,1, h2,1) = (4, 98) . (5.40)

Indeed, besides the two classes of fiber and base, there are two more Kähler classes that
parametrize the g2 Coulomb branch. Focusing on the g2 charged spectrum, we find

n71 = 5 , n70 = 8 . (5.41)

Transition to su
(2)
3 . With all the details at hand, we can perform the conifold type of

transitions. In order to do so, we first need to go to a partial Coulomb branch, as in the
e7 → e

(2)
6 case. The reason is again, that the 71 states admit a non-trivial u1,E charge and

therefore do not become massless at the Coulomb branch origin of g2. While we can break
the g2 → su2 × su2 and then move to the Coulomb branch, followed by a Higgsing.

Instead we break the g2 → su2 × u1,A such that there is a second CB modulus to make
states massless. In geometry, the respective curve in g1 may be shrunk while f1 and f2
stays finite. This realizes an su2 × u1,A × u1,E gauge algebra and the 7 plets decompose to

71 → 2 1
2 ,1

⊕ 2− 1
2 ,1

⊕ 1−1,1 ⊕ 11,1 ⊕ 10,1 ,

70 → 2 1
2 ,0

⊕ 2− 1
2 ,0

⊕ 1−1,0 ⊕ 11,0 ⊕ 10,0 ,

140 → 30,0 ⊕ 2× 2− 1
2 ,0

⊕ 2× 2− 1
2 ,0

⊕ 11 ⊕ 1−1,0 ⊕ 10,0 .

(5.42)

18The class S9 is constrained by the existence of sections di to be effective.
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 f g ∆ Genus-1 Fiber Jac Fiber

2 2 1 0 2 1 0 1 0 1 3 4 8 f
(1)
4 f

(1)
4

2 2 1 0 2 1 0 1 0 0 3 4 8 so
(3)
8 f

(1)
4

2 1 1 0 1 0 0 1 0 0 3 4 8 g
(1)
2 g

(1)
2

Table 7. Tunings of sections in the cubic genus one model and the resulting fiberes.

In the 1−1,1 ∈ 71, we find a good Higgs candidate, that leaves the su2 subgroup invariant.
This state can become massless when the u1,A and u1,E CB moduli become the same. Now,
we can Higgs on the 1−1,1 by giving it a VEV that corresponds to a complex structure
deformation of the geometry. Field theoretically, the Higgsing leaves a û1,E = u1,A + u1,E
symmetry unbroken.

Collecting the 2 1
2
-plets19 yields a collection of massive states of multiplicity

n2 1
2
= 2n71 + 2n70 + 4n140 , (5.43)

which matches the geometric computation but over counts by two.
In a similar way, also the charged and neutral singlets can be counted. Especially the

later ones correspond to complex structure moduli, which can be used to predict the change
in h2,1 upon the conifold transition, given as

∆h2,1 = 2n71 − 1 . (5.44)

Note that the 70 and 140 representations already contain one and two neutral singlets
respectively before and after the transition that are included in the overall count already.
Importantly, we must also count the 12-plets that originiated from the 71-plets, as neutral
states that contribute to h2,1. This is again due to the fact, that the whole tower of KK
states, is given as 12+2n and hence, for n = −1, there is a zero mode that contributes a
neutral singlet.

When comparing the amount of complex structures upon the g
(1)
2 → su

(2)
3 deformation,

we find the Hodge numbers

(h1,1, h2,1) = (4, 98) → (3, 107) , (5.45)

where we have ∆h2,1 = 2n71 − 1 = 9 as expected from the above field theory arguments.

5.2 The geometry of so
(3)
8

In this section we describe the geometry of the twisted so
(3)
8 algebra. This geometry can

be interpreted as the twisted compactification of an so8 by its order three automorphism,
which admits a g2 invariant sub-algebra. However, when viewed as a fiber graph, the so

(3)
8

Cartan matrix admits reversed arrows when compared to g
(1)
2 . Hence its geometric cover

is rather that of an e
(1)
6 affine Dynkin diagram folded by its order three automorphism.

19Note that 2 3
2

are part of the same KK-tower and are therefore counted as the same representation.
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To engineer a geometry with such an order three (affine) automorphism, we are therefore
required to consider genus-one fibrations with a three-section. We must therefore depart
from the quartic fiber model, that worked well in the models before, but not in this case.

The simplest choice for a three-section genus-one model is the cubic fibration, where
the fiber is represented as a generic degree three polynomial, given as

p = s1u
3 + s2z

2u2v + s3uv
2 + s4v

3 + s5u
2w + s6uvw + s7v

2w + d8uw
2 + s9vw

2 + s10w
3 ,

(5.46)

in P2
u,v,w. To promote the genus-one curve to a fibration, the si must become sections of

line bundle of the base B2 which we consider as the generalized Tate-sections of the cubic.
The specific dependencies of those line bundle classes that are in agreement with the

CY conditions can be found in appendix B and follow the convention used in [45]. The
above model admits a 3-sections, given by the vanishing of any of the toric coordinates
which makes the geometry into a genus-one fibration. Following the logic in the sections
before, we define the monodromy divisor as the discriminant locus of a three-section. In
the following we use u = 0 as the reference 3-section, which results in the solutions of
the polynomial

s
(3)
0 = s4 + s7w + s9w

2 + s10w
3 , (5.47)

with discriminant locus

D3,u = 27s210s24 + 4s10s37 − 18s10s4s7s9 − s27s
2
9 + 4s4s39 . (5.48)

The line bundle classes of the monodromy divisor can then be read off from appendix B as

[D3,u] ∼ 2S9 + 2S7 = 2R . (5.49)

The respective 3-section class σ(s(3)0 ) = [u] is also used to obtain the respective charges
under u1,E of the 5D states. Due to the usual mixing, KK-tower states admits charges
qE = q + 3n for the n-th KK-mode.

Similar as in the quartic, this can be tracked field theoretically by a u1,6D Higgsing of
a q = 3 state, that carries 5D KK-momentum [31, 45].

Using the Artin-Tate algorithm, we can map the cubic into the Weierstrass form
(see [45]). Following the usual logics, we need to tune a type IV ∗ singularity that intersects
the monodromy divisor D3,u non-trivially. This ansatz is motivated as the geometric cover
of so(3)8 is e(1)6 . We again employ a tuning of the si → diz

ni in (5.46) and emply the following
generalized Tate-vector

n⃗ = {2, 2, 1, 0, 2, 1, 0, 1, 0, 0} , (5.50)

which yields an so
(3)
8 singularity. The respective toric resolution requires two more resolution

divisors, which yield the toric hypersurface

p =d1f21 g1u3 + d2f
2
1 g

2
1h

2
1u

2v + d3f1g1h1uv
2 + d4v

3 + d5f
2
1 g

2
1h

2
1u

2w

+ d6f1g1h1uvw + d7v
2w + d8f1g1h1uw

2 + d9vw
2 + d10w

3 . (5.51)
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[u]

[f1] [g1]

[h1]

3

1 2

[v] [w]
D3,u=0
−−−−−→ 3 6 3

Figure 11. Depiction of the intersection structure of the so
(3)
8 fiber. Numbers denote the multiplicity

of the divisor, that coincide with the Kac labels. The three-section u = 0 interchanges the three
curves in [f1] and [g1] along its monodromy divisor. Along its intersection the fiber degenerates into
an order three multiple fiber depicted on the right.

Here f1 replaces the singularity z and g1, h1 yield the exceptional divisors. Using the
Stanley-Reisner ideal

SRI : {ug1, uh1, f1h1, wvu,wvf1, wvg1, wvh1} . (5.52)

The explicit form of the fibral curves is given as

P1
α0,i : f1 ∩ d4v3 + d7v

2w + d9vw
2 + d10w

3 ,

P1
α1,i : g1 ∩ d4v3 + d7v

2w + d9vw
2 + d10w

3 ,

P1
α2 : h1 ∩ d1g1 + d4v

3 + d7v
2w + d9vw

2 + d10w
3 .

(5.53)

Note that the first two fibral divisors contain three irreducible curves each that are permuted
along the Z3 monodromy of the 3-section D3,u = 0 given in (5.48). This allows us to
compute the intersections as given in figure 11. Similar to the other twisted algebras before
the degeneration picture of the fibral curves, with the monodromy divisor is of central
importance: as can be seen from the fibral curves in eq. (5.53), at the intersection point
of the curve Z with the monodromy divisor D3,u, we find the fiber to degenerate into a
degree three multiple fiber. This phenomenon is indicative, that the group of CY-torsors,
the Weil-Châtalet group does not simply reduce to the Tate-Shafarevich group.

When compared to the singular Weierstrass model, this structure is absent due to the
presence of a section. Here we find at leading orders the Weierstrass coefficients

f = 1
2z

3d1(9d10d4d6 − 6d10d3d7 + 2d27d8 − d6d7d9 − 6d4d8d9 + 2d3d29) +O(z4) ,

g = −1
4z

4d21D3,u + d1O(z5) ,

∆ = 27
16d

4
1z

8D
2
3,u + d31O(z9) ,

(5.54)

which yields the expected type IV ∗,ns, i.e. f4 singularity. Just as in the other twisted
cases, we find the monodromy divisor D3,u of the genus-one fibration, to also appear as a
codimension two component in the discriminant in the Weierstrass model. However, note
that there is also an E-string component localized over z = d1 = 0 where the WSF sections
vanish to orders (4, 6, 12). To keep the discussion simple, we want to avoid those additional
non-perturbative contributions in the following.
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5.2.1 State counting in so
(3)
8 genus-one fibration

Next we compute the number of BPS states that are non-trivially charged under so
(3)
8 from

geometry. The discussion is analogous to that in the e
(2)
6 model.

The starting point here are the 72 W-bosons of the adjoint representation of the e6
covering algebra as this is the geometric cover of so

(3)
8 . The M2 branes states wrap the

curve C that we are the linear combinations of the base curves Ci which intersecting as the
affine e6 Cartan matrix. We express those curves graphically as

C = a0 − a1 − a2 <
a3 − a4
a5 − a6

, (5.55)

with ai ∈ N0 and start with all combinations that yield the 72 W-roots of the e6 adjoint.
In the second step, we implement the Z3 monodromy action which is given as

Z3 : {C0 → C4 → C6 → C3} and {C1 → C3 → C5 → C1} . (5.56)

An invariant basis of curves under the Z3 action is given by the combination20

{C2, C1 + C3 + C5, C0 + C4 + C6} . (5.57)

We can now split up the 72 base curves of e6 into invariant curves under the Z3 action
and compute their weights. The g2 weights are then computed as

C · (C2, C1 + C3 + C5) . (5.58)

Furthermore it is important to identify shrinkable and non-shrinkable curves, given by a
non-trivial combination of affine curves a0 + a4 + a6 modulo 3. Those later three numbers
also yield the shifted KK-momenta.

Reducing the 72 roots by the Z3 monodromy into invariant curves is depicted in table 8.
In order to compute the moduli spaces, we first need to compute the intersection of the
monodromy divisor with Z. Before doing so, we need to restrict to the locus without
E-strings by demanding [d1] · Z = 0, which results in the condition

(S7 + S9) · Z = R · Z = 3c1 · Z − 2Z2 . (5.59)

From this we can compute the number of ramification points R = 2R · Z. Using the RH
theorem, we can compute the moduli spaces of each of such curve for d = 3 for which
we obtain

g′ = 4(1− g) + Z2 + g . (5.60)

Computing the moduli spaces g′ on the other hand is a bit more involved. These elements
have a trivial S3 stabilizer and were for an g = 0,Z2 = 1 case computed in [46]. In the
following we propose to compute the general case as follows: we start with the order three

20For more details, the very same fiber geometry has been discussed in [46] with a P2 base.
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Mono #Curves Example Curve g2 ∈ so
(3)
8 weight χ

Inv 6 0 − 0 − 1 <
0 − 0
0 − 0

(−3, 6) g

Z3 6 0 − 1 − 0 <
0− 0
0− 0 + 0 − 0 − 0 <

1− 0
0− 0 + 0 − 0 − 0 <

0− 0
1− 0 (−2,−3) g′

Z3 6 0 − 0 − 1 <
1− 1
0− 0 + 1 − 1 − 1 <

0− 0
0− 0 + 0 − 0 − 1 <

0− 0
1− 1 (−1, 0) g′

Z3 6 1 − 1 − 1 <
1− 0
1− 1 + 0 − 1 − 1 <

1− 1
1− 1 + 1 − 1 − 1 <

1− 1
1− 0 (−1,−3) g′

Z6 1
0− 0− 1 < 1− 0

1− 1 + 1− 1− 1 < 1− 0
0− 0 + 0− 1− 1 < 1− 1

0− 0

0− 0− 1 < 1− 1
1− 0 + 1− 1− 1 < 0− 0

1− 0 + 0− 1− 1 < 0− 0
1− 1

(0, 0) g′

Z6 1
0− 1− 2 < 2− 1

1− 1 + 1− 1− 2 < 2− 1
1− 0 + 0− 1− 2 < 1− 1

2− 1

1− 2− 2 < 1− 1
1− 0 + 1− 2− 2 < 1− 0

1− 1 + 1− 1− 2 < 1− 0
2− 1

(0, 0) g′

Table 8. Schematic decomposition of the 72 curves of e6 roots into Z3 invariant curves, their
g2 ⊂ so

(3)
8 charges and respective moduli space dimensions χ computed in (5.60) and (5.61).

ramified P1’s, given by g′ and take another order two cover, ramified at the same points.
This then yields

g′ = (g′ − 1) + 1
2R+ g′ , (5.61)

= 13(1− g) + g + 3Z2 , (5.62)

which reproduces the result given in [46]. We are now in the position to identify the
respective 5D states and their representations. First we have the states with trivial weights
under C0 + C4 + C6 which are hence shrinkable curves. Those 6 + 6 states from the first two
rows in table 8, together with the two Cartan generators combine to the vector multiplets
of g2 as well as g adjoint charged hypermultiplets. The moduli space of the shrinkable
Z3 branched states however has dimension g′ and thus, additional hypermultiplets in the
fundamental of g2 are provided upon adding the neutral hyper. Subtracting the contribution
to the g adjoint hypers, we therefore get

n70 = g′ − g = 4(1− g) + Z2 , (5.63)

fundamentals with trivial U(1)E charge. In the last four rows of table 8 we find the
non-shrinkable curves, i.e. states that have a non-trivial U(1)E charge which therefore stay
massive at the origin of the g2 Coulomb branch.

Curves in the third and fourth row of table 8 makeup 71 and 72-plets respectively.
Their multiplicities are given as

n71 = n72 = g′ = 4(1− g) + Z2 + g . (5.64)

When turning to the singlets 11 and 12 we again need to take into account, that each of
them is needed to complete the shifted 7-plets. Hence we find for both of them

n11 = n12 = g′ − g′ = 9(1− g) + 2Z2 . (5.65)
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We summarize the non-trivially charged spectrum under the g2 subgroup as

n140 = g , n71 = 4(1− g) + Z2

n71 = n72 = 4(1− g) + Z2 + g .
(5.66)

Comparison with so8 → so
(3)
8 reduction. An so

(3)
8 theory can be obtained, by starting

with an so8 6D theory and mod by the triality symmetry that interchanges vector, spinor
and co-spinor representations upon the circle compactification. In geometric terms of an
(unfrozen) 6D F-theory model, the mulitplicites of the respective states are given as

n8V = n8S = n8C = 4(1− g) + Z2 , n28 = g . (5.67)

The twisted compactifiation breaks so8 to its g2 subgroup. The light states then branch to

28 → 140 ⊕ 7 1
3
⊕ 7 2

3
, (5.68)

(8V ⊕ 8S ⊕ 8V ) → (70 ⊕ 7 1
3
⊕ 7 2

3
⊕ 10 ⊕ 1 1

3
⊕ 1 2

3
) , (5.69)

where the subscript denotes the usual shifted KK-charge. Collecting the multiplicities of g2
charged states in terms of geometric data, we find

n70 = 4(1− g) + Z2 , n7 1
3
= n7 2

3
= 4(1− g) + Z2 + g , (5.70)

which matches the geometric count upon rescaling the KK-charges to our geometric conven-
tions. This perspective also gives a prediction for additional singlet states, counted as

n10 = 4(1− g) + Z2 . (5.71)

In section 7 we will come back to those states and interpret them, as parts of the complex
structure moduli space, not realized as polynomial deformations of the CY hypersur-
face equation.

State counting in the f
(1)
4 Jacobian. The Jacobian of the so

(3)
8 model lifts to the

geometric cover, which is a generic Type IV ∗,ns singularity, as given in (5.54). This can be
readily seen by noting, that the monodromy divisor of the genus-one model D3,u appears
at leading order at the discriminant as well as the g coefficient of the discriminant. Hence
g/z4 at z = 0 is not a perfect square by construction and therefore the fiber is non-split.
Note also once again, the appearance of the E-string points at z = d1 = 0 which we have
switched off by fixing the base line bundle intersections accordingly.

We continue to compute the spectrum in a similar way as in the cases before. Here the
appearing monodromy is only of degree d = 2 and split the e6 adjoint as

78 → 52 ⊕ 26 . (5.72)

The multiplicity of the adjoint is simply given by the genus g of Z and the fundamentals
originate from degree 2 ramified curves. Their moduli spaces are just computed as before,
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Generic Fiber
u (−1,−1, 0, 0)
v (0, 1, 0, 0)
w (1, 0, 0, 0)

F4 Base
x1 (−1,−1, 0, 1)
y0 (8, 8,−1,−4)
y1 (−7,−8, 1, 0)
f1 (1, 0, 0,−1)

su
(2)
3 Fiber

g1 (1, 0, 0,−2)
h1 (1, 0, 0,−3)

Table 9. Toric rays, of an so
(3)
8 genus-one fibration X̂C over a F4 base with f1 being the affine node.

using the RH theorem using R = [D3,u] · Z. Upon absorbing g × 26-plets to complete the
adjoint of f4 we are left with the following spectrum

n52 = g , n26 = (g − 1) + 1
2R = 5(1− g) + Z2 , (5.73)

which is exactly what one expects from an anomaly free f4 gauge group in 6D. Note also,
that we can not infer the potential discrete charges for the f4 fundamentals directly from
the genus-one fibration.

Toric examples. We close by presenting two explicit toric examples. The first one is an
so

(3)
8 on a Z2 = −1 curve within a dP1 base. The toric divisors are given in appendix A.

The Hodge numbers are given as

(h1,1, h2,1(h2,1np )) = (5, 71(6)) . (5.74)

We find the 1 + 2 + 2 expected Kähler parameters that originate from fiber, base and the
g2 Cartan generators as well as six non-toric polynomial deformations. The non-trivial g2
charged spectrum is given as

n70 = n71 = n72 = 3 . (5.75)

Another interesting example, is to have a trivial g2 hyerpmultiplet sector, which can
be achieved by having Z being a curve of self-intersection Z2 = −4 and genus g = 0
(see (5.70)).

Such geometry is nothing but the so8 non-Higgsable cluster theory after a twisted
reduction. The minimal compact base, that hosts such a curve is therefore F4. It is then
straightforward to find a toric realization of so(3)8 over the −4 curve. The toric rays that
engineer the respective polytope are given in 9. The polytope data one can compute the
Hodge numbers to

(h1,1, h2,1(h2,1np )) = (5, 92(0)) . (5.76)

The five Kähler moduli can again be attributed to three classes coming from fiber and base,
and two more from the g2. Also note, that the geometry does not posses any non-polynomial
complex structure deformations. We will come back to this point in section 7 and propose
a physics explanation for that.
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5.2.2 Transitions to so
(3)
8

In the following we want to use geometric transitions to connect other torus-fibered threefolds
with enhanced gauge symmetries to the so

(3)
8 model.

In order to do so, we employ the toric tunings of the generalized Tate-vectors as
summarized in table 7 and first start with an enhanced singularity which engineers an f4 in
the Jacobian and genus-one model with a three-section. It is straightforward to unhiggs the
Z3 to an u1,6d by tuning the section d10 to zero globally (see [31, 45] for more details). We
will skip this part, for brevity and keep in mind that the f4 singulariry is simply a spectator
of this transition, similar to the unhiggsings of Z2 → u1,6D we encountered in the examples
before. Recall however, that the resulting 5D u1,E is a linear combination of the 6D Z3
with the KK U(1).

When compared to the so
(3)
8 geometry, the main difference is the additional tuning

d10 → zd10 . (5.77)

Due to this, the type IV ∗ singularity in the genus-one model is not intersected by the order
three monodromy divisor D3,u in (5.48) and hence, does not experience the full monodromy
but only a subgroup thereof. This can be observed by noting, that the monodromy divisor
D3,u splits over z = 0 as

D3,u → d29D2,u , with D2,u = d27 − 4d4d9 . (5.78)

The appearance of the D2,u divisor intersecting z = 0, highlights the fact that the type IV ∗

singularity is folded to an f4. This can be explicitly seen in the resolved genus-one fibration
which is given as

p= d1f
2
1 f2g1u

3+d2f21 f22 g21g22h21u2v+d3f1f22 g1g22h1uv2+d4f22 g22v3+d5f21 f2g21g2h21u2w
+d6f1f2g1g2h1uvw+d7f2g2v2w+d8f1g1h1uw2+d9vw2+d10f1g21g2h31w3 , (5.79)

where the additional exceptional coordinates g1, h1, g2, f2 are required. Computing their
intersections can be done, when employing the Stanley-Reisner ideal

SRI : {wf2, wg2, vf1, vg1, vh1, ug1, ug2, uh1, f1g2, f1h1, f2h1, wvu} . (5.80)

The fibral intersections are summarized in figure 12. We find that this figure corresponds
to a folding along two legs of the e6 cover. The respective fibral curves are given as

P1
α0 : f2 ∩ d10f1g21g2 + d8f1g1u+ d9v ,

P1
α1 : g2 ∩ d1f2g1 + d8g1h1 + d9v ,

P1
α2 : h1 ∩ d1g1 + d4g

2
2 + d7g2w + d9w

2 ,

P1
α3,± : g1 ∩ d4f22 g22 + d7f2g2w + d9w

2 ,

P1
α4,± : f1 ∩ d4f22 + d7f2w + d9w

2 .

(5.81)

Note that the fibral divisors f1 = 0 and g1 = 0 consist both of two fibral curves, that are
interchanged along D2,u. Note again, that we took f1 as the singular divisor upon which
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node Irreducible components over d9 = 0
P1
α0 : [f2] P1

0,1 : f2 ∩ f1 , P1
0,2 : f2 ∩ g1 , P1

0,3 : f2 ∩ (d10g1g2 + d8u)
P1
α1 : [g2] P1

1,1 : g2 ∩ g1 , P1
1,2 : g2 ∩ (d1f2 + d8h1)

P1
α2 : [h1] P1

2 : h1 ∩ d1g1 + d4g
2
2 + d7g2w

P1
α3 : [g1] P1

0,2 : g1 ∩ f2 , P1
1,2 : g1 ∩ g2 , P1

3,2 : g1 ∩ (d4f2g2 + d7w)
P1
α4 : [f1] P1

0,1 : f1 ∩ f2 P1
4,1 : f1 ∩ (d4f2 + d7w)

Table 10. The codimension two irreducible components of the fibre at d9 = 0, where f4 funda-
mentals 261 are located. Their intersection picture is given on the right of figure 12.

we tuned the model, although here f2 yields the affine node. However, independent of
which node we use to map into the singular Weierstrass model, it leads in both cases to the
following form

f = 1
2z

3d1(9d10d4d6 − 6d10d3d7 + 2d27d8 − d6d7d9 − 6d4d8d9 + 2d3d29) +O(z4) ,

g = 1
4z

4d21d
2
9D2,u + d1O(z5) ,

∆ = 27
16z

8d41d
4
9(D2,u)2 + d31O(z9) .

(5.82)

It is straight forward to see, that also the Jacobian admits an f4 singularity over z = 0 as
long as the polynomial D2,u does not become a perfect square at z = 0. As the genus-one
fibration does not posses multiple fibers, it admits the same type of fiber structure as
its Jacobian. We can therefure use the Weierstrass form, to deduce codimension two
singularities, which should lead to charged matter in both models. First we find an E-string
locus over z = d1 = 0, which was also present in the so

(3)
8 model. The second component

at the locus z = d9 = 0 yields a vanishing order (3, 5, 9) singularity, which is an E7 point
where we expect to find matter. Finally, we also have the monodromy divisor appearing.
Indeed, apart from d1 = z = 0, we find the other two loci to yield reducible fibers whose
intersections are depicted in figure 12.

In order to compute the charges under u1,E in the genus-one geometry, we pick u = 0
as the reference 3-section class and orthogonalize the other generators to obtain the discrete
Shioda map as

σ(u) = [u] + 2[g2] + 4[h1] + 3[g1] + 2[f1] , (5.83)

which is constructed such, that all three intersection points of σ(u) intersect only f2 = 0.
Over z = d9 = 0 we expect to find charged fundamentals, which we will verify in the
following. To do so, we impose d9 = 0, which results in the fibral curves to split into various
fibral P1s. The irreducible curves are given in table 10.

The intersections of the curves are summarized in figure 12 and admits the shape of
E

(1)
7 , just as suggested by the Jacobian. These components are of importance as they get

wrapped by M2 branes giving rise to multiplets that trigger the Higgsing in 5D to the so
(3)
8
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[f2][g2][h1]

[g1][f1]

[u]
1 2

3 2 1

P1
1,2

P1
1,1

P1
0,3 P1

0,1 P1
0,2 P1

2 P1
3,2 P1

4,1

D2,u=0
−−−−−→

d9=0−−−→

2 4 3 2 1

Figure 12. Depiction of the f
(1)
4 fiber in the cubic model and its intersections with the three-section

[u]. There are two loci, where the fiber degenerates further, depicted on the right. Multiplicities of
fibral curves are highlighted below.

fiber geometry, by effectively folding the third leg of the e
(1)
6 . Computing intersections of

the reducible fibral curves and the divisors allows to deduce weights of the hypermultiplets
at the Coulomb branch. We obtain the weights by intersection with the fibral divisors
(g2, h1, g1, f1)(σ). In the following we pick the curve P1

1,2 and compute the weights

P1
1,2 · (g2, h1, g1, f1)(σ) : (−1, 0, 1, 0)(1) , (5.84)

which indeed are weights of an 261-plet. The U(1)E charge is given by σ(u) which lifts to
the Z3 charge in the 6D F-theory lift.

The second type of matter originates from the monodromy divisor D2,u, leading to
non-localized f4 fundamentals. Due to the geometric origin in the e6/f4 adjoint, they must
have a trivial u1,E-charge.

We can then continue by counting the multiplicities of those states in terms of inter-
sections of line bundles of the base. There are two line bundle classes S7 and S9 as before.
Demanding absence of E-string points, fixes the sum of the intersections (5.59), analogous
to the so

(3)
8 model.

To compute the multiplicity of 261-plets we simply take the intersection of d9 = 0 with
Z which hence results in

n261 = S9 · Z . (5.85)

The second source of the 260-plets originates from the monodromy divisor that yields the
ramification points R = D2,u · Z which is used in the RH theorem, resulting in

n260 = 5(1− g) + Z2 − S9 · Z , (5.86)

where we have used (5.59).
The sum of the two contributions of fundamentals is given as

n260 + n260 = 5(1− g) + Z2 , (5.87)

consistent with the 6D gauge anomalies of f4. This result is expected, as the theory admits
no twisted algebras and hence a 6D SUGRA lift with the same gauge algebra structure. In
that lift, only the u1,E charges turn into Z3 discrete charges.
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Similar to the g2 model in the section before, the S9 · Z intersection may result in
different numbers of charged and uncharged fundamental multiplets depending on the
chosen compactification.

Before discussing the Higgsing in the next section, we present a concrete toric example.
The base is a dP1, where the f4 is placed over the Z2 = −1 curve of genus g = 0. The
toric rays that of the 4D polytope that underlie the CY hypersurface are summarized in
appendix A. The Hodge numbers are given as

(h1,1, h2,1(h2,1np )) = (7, 67(4)) . (5.88)

Indeed, we find three Kähler parameters of fiber and base, and four more that correspond
to the f4 Cartan generators. Analysis of the geometry reveals the intersection number
S9 · Z = 2 by finding the class of the section d9 which yields the spectrum

n260 = n261 = 2 . (5.89)

Higgsing to so
(3)
8 . To Higgs to the twisted algebra so

(3)
8 and its g2 finite sub-algebra,

we can employ the group theory decomposition

f4 × u1,E → g2 × su2 × u1,E , (5.90)

and then in the second step to break su2 × u1,E . A related type of breaking, that resembles
the same type of breaking directly in the 5D Coulomb branch is given as follows: starting
off with the maximal enhanced gauge algebra f4 × u1,E that we constructed in the geometry
before, we move to a partial Coulomb branch by keeping the curves inside of the fibral
divisor f1 and f2 finite. On this locus in the Kähler moduli space, there is a breaking as

f4 × u1,E so7 × u1,A × u1,E
520 21(0,0) ⊕ 8(1,0) ⊕ 8(−1,0) ⊕ 7(2,0) ⊕ 7(−2,0) ⊕ 1(0,0)
260 8(1,0) ⊕ 8(−1,0) ⊕ 7(0,0) ⊕ 1(−2,0) ⊕ 1(2,0) ⊕ 1(0,0)
261 8(1,1) ⊕ 8(−1,1) ⊕ 7(0,1) ⊕ 1(−2,1) ⊕ 1(2,1) ⊕ 1(0,1)

(5.91)

This group theory breaking is clear from geometry, simply by observing that we shrunk an
so7 ⊂ f

(1)
4 sub diagram.

On this more generic point in the CB moduli space, we may identify the 8−1,1 ∈ 261
as the Higgs candidate to break so7 down to g2. Note that this constrains the line bundle
S9 and in particular its intersection with Z to be non-trivial for the respective Higgs to
exist and the transition to be possible.

This path in the CB moduli space, allows to find the locus, where the 8−1,1-plets become
massless in order to allow for a non-trivial VEV that triggers the respective Higgsing. At a
generic point of the 2D Coulomb branch the 5D 8-plet admits the mass

m8−1,1,n = | − ξA + τ(1 + 3n)| , (5.92)

with ξA and τ being the CB parameters of u1,A × u1,E . The respective state becomes
massless, when choosing ξA = τ and picking the n = 0 KK-mode. Upon this choice of
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Coulomb branch parameters one obtains the new unbroken generator û1,E = u1,A + u1,E .
Upon the Higgsing, we collect all states with non-trivial charges as

n210 = n520 = g ,

n70 = n260 + n261 − 1 + n520 = 4(1− g) + Z2 ,

n71 = n72 = n260 + n261 + 2n520 = 5(1− g) + Z2 + 2g ,
(5.93)

which matches the geometric computation, but over counts the multiplicity of massive states
by one.

Note that the states recombine exactly in such a way, that the dependence on the class
S9 drops out.

Having identified the Higgs particles, we can also obtain predictions for the change in
complex structure moduli upon the transition. Care needs to be taken when doing so as the
260 contains already two uncharged states, just as 70 of g2 that contribute to h2,1. Taking
this into account, we simply obtain

∆h2,1 = 3n261 − 2 = 3S9 · Z − 2 . (5.94)

Another important detail, that already appeared in the examples before, is the number
of neutral fields. I.e. we also find singlets states with u1,E 13 in the transition. However
as there is full a KK-tower of such states present, we also should have states, such as
13+3n with masses m = |(3 + 3n)τ |. Therefore, for n = −1, there is a zero model that
contributes a neutral massless hypermultiplet, which appears as a complex structure modulus
in the geometry.

Our general considerations are consistent with the toric examples. Consider for this,
the change in Hodge numbers, given as

(h1,1, h2,1) = (7, 67) → (5, 71) . (5.95)

First we find a rank reduction by 2, consistent with the f4 → g2 reduction in gauge symmetry.
Second, there is a change of four complex structure moduli that originate from the n261 = 2
Higgs fields.

6 Decoupling gravity and non-compact limits

Up to this point, all the theories studied in this work were associated to compact geometries
and hence gravitational theories. This proved useful in understanding symmetries and
global constraints arising from the geometry. In this section however, we take a different
approach and systematically decouple gravity by taking a decompactification limit of the
threefold. The limits are chosen such that the non-compact threefold still admits compact
divisors with twisted fibers.

The resulting theory is not a SUGRA, but merely a supersymmetric quantum field theory
(SQFT) (which thanks to its origin, is guaranteed to have a consistent UV completion). In
particular, we will chose the decompatification limit such that the SQFT flows to a little
string theory (LST) in the UV. Analyzing this LST will the provide an additional cross
check of our geometric construction.
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In order to do so, we exploit two of the striking features of little string theories. First,
they admit a continuous global 2-group symmetry [72] and second, they often exhibit
T-duality. T-duality in this context refers to the feature that one or multiple theories can
share a Coulomb branch upon circle compactification.21 In [74] it was proposed that the
universal part of the 6D 2-group symmetries should match across T-duality.22 This is very
useful as the 2-group symmetries depend on the dual Coxeter numbers hvg of gauge algebra
factors that are coupled to the 6D tensors and therefore on the un/twisted affine extension.

The match of the 2-group structure constants among two dual theories therefore provides
another robust test of our geometric construction.

6.1 Supergravity phase and T-duality

The starting point of our construction is a compact genus-one fibered threefold X specified
by a toric hypersurface in an ambient fourfold, obtained from a regular fine star triangulation
of the toric rays given in table 11. The threefold X admits the following Hodge numbers,
that can be computed from the structure of the polytope as

(h1,1, h2,1(h2,1np ))(X) = (15, 63(3)) . (6.1)

This geometry admits two toric fibrations that are inherited from the ambient space which
can be identified by its 2D relexive sub-polytope structure23 in ∆. We are then guaranteed
to have (at least) one regular fine star triangulation that respects that fibration structure.
We will discuss the two fibrations in detail: one is a genus-one fibration and the other an
elliptic fibration. The two corresponding 6D theories are therefore (twisted) T-duals.

In the following we use the quiver notation of base curves and their fibers, which is
commonly used in the literature (see e.g. [4, 77]). A quiver is written as

. . .
g

(s)
i
ni . . . (6.2)

where g
(s)
i an (s) twisted affine algebra sitting over a curve wi of genus zero and self-

intersection w2
i = −ni and two neighbouring curves in the quiver intersect. For more details

see [4, 77] for recent reviews. The full structure can readily be obtained from the toric
diagram of the base.

The genus-one fibration. The first fibration admits an F4 ambient space in the
(a, b, 0, 0) plane in the enumeration used in [45]. The base is spanned by the primitive
rays that have the F4 ambient space over the generic point. This yields the base divisors
w0,0, w1,0, w2, y1, y1,0, y2, y3, y4,0 obtained from the primitive rays of (−,−, c, d) vertices and
then constructing a fan from those. The resulting base admits h1,1(B2) = 6 or equivalently

21See also [73] for related work.
22See also [75–77] for a systematic exploration of heterotic LSTs and their T-duals exploiting the match of

2-group structures.
23The 2D sub-polytope criterion [78] also allows to deduce a triangulation that respects the fibration of

the ambient space, although it might lead to a non-reflexive but VEX polytope.
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T = 5 in six dimensions. In addition there are fibral divisors of su
(1)
3 , su

(1)
2 , su

(1)
2 and

e
(2)
6 -type. This is consistent with the number of Kähler moduli

h1,1(X) = 2 + T + rk(G) = 2 + 5 + 8 = 15 . (6.3)

The full quiver of the model admits the following ring like structure

su
(1)
2
0 0

su
(1)
3
2

su
(1)
2
21

e
(2)
6
4 21

(6.4)

Red marks the choosen curve, whose volume is send to infinity in the decompactification
limit to a little string theory in the next section.

As discussed in section 4, the e
(2)
6 twisted algebra admits a spectrum as follows

260 ⊕ 261 ⊕ 11 ⊕ 10 (6.5)

This twisted reduction admits a Jacobian fibration with an e7 gauge algebra and two full
hypers in the 56 representation.

The second elliptic fibration. The second torus fibration is given by the second 2D
sub-polytope structure and found by projecting onto the (a, 0, 0, d)-slice in the ambient 4D
polytope. The 2D sub-polytope that is given by F6 yields a Morrison-Park model [24, 45]
which is elliptic and hence not twisted. As before, the base is found by inspection, resulting
in the ring like-quiver

su
(1)
3
3 0 −1

21

f
(1)
4
5 221

(6.6)

In the LST decompactification limit, the volume of the curve in red is taken to infinite.
This curve is dual to the one in the quiver (6.4). Note that there is also a curve with a
geometric self-intersection +1, which we denote as −1 in the quiver convention. Due to
the presence of a section, the resulting 5D compactification is untwisted and hence we only
find untwisted algebras over each curve. The 6D theory admits T = 6 and an su3 × f4 × u1
gauge algebra, which matches the 15 Kähler moduli of the geometry.

6.2 Little string limit and twisted T-duality

In this subsection we will decouple gravity to obtain an LST. At the level of the quiver, this
can be achieved by removing the curve w2 from the base, such that the resulting intersection
form of the residual curves wI ·wI = ΩI,J is positive semi-definite [26]. The respective base
curve lifts to a toric divisor of the ambient space, given by the ray (1,−1,−1,−1).
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Genus 1 fiber
X (-1,1,0,0)
Y (-1,-1,0,0)
Z (1,0,0,0)
w0,0 (-1,0,0,-1)
w0,1 (-1,-1,0,-1 )
w0,2 (0,-1,0,-1)
w1,0 (0,0,0,1)
w1,1 (-1,0,0,1)
w2 (1, -1,-1,-1)

Compact curves
y1 (-3,-1,1,1)
y1,i (-3,0,1,0), (-5,-2,2,0) , (-7,-2,3,0), (-9,-3,4,0) ,(-5,-1,2,0)
y2 (-7,-3,3,-1)
y3 (-5,-2,2,-1)
y4,i (-3,-2,1,-1) , ( -3,-1,1,-1)

Table 11. Toric rays of the compact threefold with inequivalent genus-one and elliptic fibration
descending from the ambient space.

The residual toric rays lift to divisors on the full threefold and in fact also to the 4D
ambient space24 which yields a non-compact ambient space. This limit is exactly chosen
such that it removes the red 0 curves in the quiver diagrams (6.4) and (6.6). While the red
curve is completely removed, the neighbouring quiver nodes become non-compact and their
fibers become flavor algebra factors that we denote by [g(s)F ]. The decompactification limit
of the threefold is chosen such that the two torus-fibration structures are still part of the
non-compact threefold which preserves T-duality for the LSTs.

As there are two LSTs we can compute and match their 2-group structure constants.
In order to do so, we first need to compute the little string charges NI . These are given as
the multiplicities of the unique null vector [26] of the intersection form ΩIJ

Σ0 =
∑
i

NIw
I . (6.7)

We summarize the resulting non-compact quiver with its LS charges as the vectors

[su2] 1
e
(2)
6
4 1 2

su
(1)
2
2 [su3] , NI = (1, 1, 3, 2, 1) . (6.8)

The above LST admits four compact base curves and twisted fibers of total rank 5 and
hence a Coulomb branch of dimension dim(CB) = 9. We have excluded other flavor and
matter factors from the quivers, as they are not important for our arguments. The second
LST quiver is given as

[su3] 1
f
(1)
4
5 1 2 2 2 , NI = (1, 1, 4, 3, 2, 1) . (6.9)

The theory admits five compact base curves and a rank four gauge group which also yields
a Coulomb branch dimension dim(CB) = 9 as expected.

Consistency check from 2-groups. As mentioned above, the fact that these two theories
have the same compact geometric origin implies that the two LSTs are (twisted) T-duals.

24More details to the construction can be found in [76].
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Beyond that however we can also match the 2-group structure constants characteristic to
the LSTs as proposed in [74].

In the following we focus on the universal 2-group structure constants obtained from
the mixing of the u1 LST 1-form symmetry and the Poincare and SU(2)-R-symmetry. Their
structure constants are computed as [72, 74]

κP =
∑
I

NI(2− ΩII) , κR =
∑
I

NIh
v

g
(s)
I

. (6.10)

Here ΩII = nI and hv
g

(s)
I

being the dual Coxeter number of the s twisted gauge algebra g(s)

coupled to the curve wI with string charge NI . The dual Coxeter number can simply be
computed from the sum of the Kac labels of the Dynkin diagram. For su

(1)
n algebras, the

dual Coxeter is given as

hv
su

(1)
n

= n . (6.11)

We formally assign the value hv = 1 for curves that are paired to the trivial gauge algebra.
Most importantly, the dual Coxeter number is sensitive to a twisted or untwisted affinization
of a finite gauge algebra. For the case at hand, there is

hv
e
(2)
6

= 12 , hv
f
(1)
4

= 9 . (6.12)

Taking the above difference into account, we obtain the matching 2-group structure coeffi-
cients in the two theories

(κP , κR) = (2, 20) . (6.13)

The above check is highly non-trivial and confirms that the two LSTs are indeed T-dual as
implied from geometry.

Untwisting the fiber. At this point one might wonder how the threefold would differ if
the e

(2)
6 fiber were to be replaced by a regular f

(1)
4 fiber over the same curve in a genus-one

geometry. In such a case at least the number of Kähler moduli would agree, but what about
the rest of the theory?

Fortunately, such a geometry exists with polytope vertices given in table 12 and is
obtained simply by exchanging the vertex (−9,−3, 4, 0) for (−2,−1, 1, 0). It should be
noted that the resulting threefold has not only the same number of Kähler moduli, but also
complex structure moduli

(h1,1, h2,1)(X2) = (15, 63(2)) , (6.14)

as the one with e
(2)
6 fiber (however the number of complex structure moduli realized

“non-polynomially” has reduced in number).
In this new geometry, the e

(2)
6 fibration over the curve Z with self-intersection Z2 = −4

has now changed to an untwisted f
(1)
4 fibration. Upon decoupling gravity the LST quiver

for the first genus-one fibration is given as

[su2] 1
f
(1)
4
4 1 2

su
(1)
2
2 [su3] , NI = (1, 1, 3, 2, 1) . (6.15)
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Genus 1 fiber
X (-1,1,0,0)
Y (-1,-1,0,0)
Z (1,0,0,0)
w0,0 (-1,0,0,-1)
w0,1 (-1,-1,0,-1 )
w0,2 (0,-1,0,-1)
w1,0 (0,0,0,1)
w1,1 (-1,0,0,1)
w2 (1, -1,-1,-1)

Compact curves
y1 (-3,-1,1,1)
y1,i (-3,0,1,0), (-5,-2,2,0) , (-7,-2,3,0),(-5,-1,2,0),(-2,-1,1,0)
y2 (-7,-3,3,-1)
y3 (-5,-2,2,-1)
y4,i (-3,-2,1,-1) , ( -3,-1,1,-1)

Table 12. Toric rays of the threefold where the e
(2)
6 fiber got exchanged for f

(1)
4 . Both geometries

share the same Hodge numbers but differ not only in curve structure but also the number of
non-polynomial complex structures deformations.

Since the Hodge numbers have not changed, the Coulomb branch dimension of the LST
remains the same. As we will explore in more generality in section 7, the f

(1)
4 fiber over

the Z2 = −4 curve admits a single 260-plet only. Although the change in fiber structure
was very subtle, the 2-group structure constant κR is able to detect it, as the dual Coxeter
number of f(1)4 is lower than e

(2)
6 .

Importantly, the change in the fiber structure has not eliminated the second elliptic
fibration and as a result we can discuss the change in the T-dual geometry in this new
context as well. Here we find the LST quiver

[su3] 1
f
(1)
4
5 1 2 2 , NI = (1, 1, 3, 2, 1)
1 1,

. (6.16)

The resulting quiver is similar to the original one given in (6.9). The only difference is
that an E-string curve to the right of the 5 curve has been moved down, making it a
trivalent vertex.

The change in base curve structure has altered the LST charge vector NI exactly in
such a way that the 2-group structure constants still match in both theories, given as

(κP , κR) = (2, 17) . (6.17)

In the following we propose a physical interpretation of the two (dual) transitions
as specific Higgs branch deformations. Indeed, in [76], the proposal was made that κR
should be thought of as a measure of the degrees of freedom of an LST which decrease
monotonoically along Higgs branch deformations, analogously to the a-coefficient in an
SCFT. This might at first seem puzzling as both geometries admit the very same number of
complex structure coefficients. However we have observed that in the untwisted case, one of
those deformations changed from non-polynomial to a polynomial deformation. This hints
at the possibility that the twisted algebra lives on an enhanced point of symmetry in the
moduli space of the theory. In section 7 we will consider this type of transition in further
generality. Similarly, for the T-dual theory we have an exotic type of E-string transition,
which has changed the number of M-strings, i.e. 2 curves into an E-string.
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We close this section by discussing how all of the above theories/geometries can be
similarly used to construct twisted 5D SQFTs with an SCFT limit in the UV. The plan
we employ is the same as for the LST phase. One simply needs to remove an arbitrary
compact base curve from an LST quiver25 to obtain an SQFT that flows to an SCFT.

The two simplest choices are to decompactify the left most 1 curve or rightmost 2 curve
in the quiver (6.8) resulting in an SCFT quiver such as

e
(2)
6
4 1 2

su
(1)
2
2 . (6.18)

All of the constructions presented in this sections, straightforwardly generalize to the other
twisted reductions that we discuss in section 5. In particular many of the explicit toric
examples given in appendix A have twisted algebras over 0 curves or shrinkable curves that
yield LSTs or SCFTs in their respective decompactification limits.

7 Twisted VS. untwisted genus-one fibers

In the previous section we encountered the possibility of exchanging a twisted algebra with
its untwisted counterpart

g ∈ ĝ(n) and g ∈ g(1) . (7.1)

In the
e
(2)
6
4 →

f
(1)
4
4 case, we noted that the two compact threefolds share some important

features, in particular identical Hodge numbers. In this section we will compare twisted and
untwisted fibers more systematically and observe that these relationships can be formulated
in more generality. In fact in all the examples we have encountered, the geometries with
twisted fibrations exhibit “cousins” in the form of untwisted fibrations which share the very
same Hodge numbers and can be connected through a geometric transition.

These observations help to resolve a puzzle in the literature: in [46] the geometry of
a genus-one fibration with a twisted so

(3)
8 algebra was considered and in that work it was

expected to lift to a 6D F-theory with an g2 gauge algebra. It was noted that all gauge and
gravity anomalies could be cancelled. In view of the geometries we have seen in the present
work, this conclusion may come as a surprise as the Jacobian admits a very different fiber
structure and we therefore do not expect such a gauge algebra in the 6D F-theory lift (see
section 5.2). The fact that the gauge algebra must change in the 6D lift is further signaled
from the 5D BPS state count enumerated throughout this work, which deviates from [46].
In the present work, we find that the twisted algebras do not solve the 6D anomalies if
their finite gauge algebra is not altered. At first glance, this may appear as a very unlikely
coincidence: how did the lifts of [46], which assumed that the gauge algebra was unaltered
between 5D/6D, lead to a seemingly consistent 6D SUGRA theory?

This puzzle is resolved by the geometries we present in this section by noting that most
of the twisted algebras we study are closely related to a similar geometry with an untwisted

25As noted in [76] any such removal destroys other inequivalent torus fibration in the geometry.
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fiber. These untwisted algebras have the same fiber structure in the Jacobian and complex
structure and BPS states consistent with the 6D anomalies as proposed in [46]. This section
is therefore devoted to a comparison of these two type of geometries and the transitions
among them.

Besides the subtle difference in the fiber structure of the two geometries, there is
another similarly subtle difference in the complex structure moduli sector: we find that
twisted fibrations generally admit complex structure deformations that are realized as non-
polynomial deformations in the toric hypersurface description, as opposed to the untwisted
one. Such terms can be conveniently computed via the Batyrev formula from the toric
polytope. While this observation might first appear just as a technical detail, we propose a
physical interpretation, making those deformations relevant to understand the difference
between twisted and untwisted fibers. In order to do so, we first discuss their physical
significance in elliptic fibrations.

7.1 Enhanced symmetries and non-poly defs

The number of complex structure moduli and their non-polynomial contributions in toric
hypersurfaces can be conventiently computed from the pair of relexive polytopes ∆,∆∗ in
the Batryev construction [79]. It is given via the combinatorial formula

h2,1(X) = l(∆∗)− 4−
∑
Γ∗
l◦(Γ∗) +

∑
Θ
l∗(Θ)l∗(Θ∗)︸ ︷︷ ︸

h2,1
np

. (7.2)

Here (l◦)l counts (interior) points, with Γ∗ being edges in ∆∗ and Θ∗ being codimension
two faces of ∆∗ with duals Θ. The part h2,1np is the main relevant contribution for us, that
counts complex structures without a corresponding hypersurface monomial.

For elliptic fibration such deformations can be given a physical interpretation in the F/M-
theory picture. For this we first introduce the neutral components of hypermultiplet fields

δh2,1np (R) = Dim(R)−Hch(R) . (7.3)

Hch(R) denotes the non-trivial weights of a hypermultiplet representation R, called the
charge dimension of a representation. In the case of the adjoint representation, Hch(Adj) is
simply the number of roots and δh2,1np (Adj) the number of Cartan generators. As δh2,1np (R)
are themselves uncharged fields everywhere at the Coulomb branch, they are counted as
complex structure moduli in the threefold. In fact there is a natural reason why those
contributions should be non-polynomial when giving them a symmetry breaking vev. For
adjoint hypermultiplets, such Higgs branches typically breaks to the maximal Cartan
sub-algebra as in

su2 → u1 , (7.4)

via 3 → 11 ⊕ 1−1 ⊕ 10. There are more options for non-simply laced algebras as those
typically admit non-trivial (lower dimensional) representations with non-trivial δh2,1np (R)
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besides the adjoint. When those representations acquire non-trivial vevs, a rank preserving
Higgsing is possible such as in

g2 → su3 , f4 → so8 , (7.5)

via the decompositions of the Hypermultiplet representations

7 → 3 ⊕ 3 ⊕ 1 , 26 → 8v ⊕ 8s ⊕ 8c ⊕ 1 ⊕ 1 , (7.6)

that acquire the symmetry breaking vevs. Those vevs sit precisely in the δh2,1np (R) parts
of R. As the Higgsing is rank preserving, no Cartan generator becomes massive and the
number of neutral fields is preserved, resulting in a conservation of Hodge numbers.

The above considerations are reflected in the geometry of the respective elliptic fibration:
e.g. for each 26-plet representation of an f4 fiber, one finds two δh2,1np , realized as non-
polynomial complex structure deformations. When Higgsing to so8, the threefolds admits
the very same Hodge numbers. The difference however is, that the associated δh2,1np
deformations became all realized as polynomial deformations. Similarly, when Higgsing su2
on g × 3-plets, all g non-polynomial deformations become polynomial and the geometry
acquires a non-trivial Mordell-Weil rank [38].

Turning this logic upside down, the knowledge about non-polynomial deformations may
allow us to track representation content26 of the gauge algebra, directly from geometry.
Furthermore it suggests a direct physics interpretation. In the symmetry broken phase, the
vevs are moduli that parameterize the (partial) Higgs branch of the two gauge algebras of
same rank. As those vevs are moduli, they can take on any non-vanishing value matching
the (real part of the) monomial coefficients in the hypersurface. At the locus of enhanced
symmetry, the vevs must vanish, matching the absence of the respective polynomial
coefficients, while the number of neutral fields is preserved.

We adopt this interpretation of the non-polynomial defs for the twisted algebras in
what follows. As already anticipated in section 6, the presence of those non-polynomial
deformation is a universal feature for (almost) all twisted fibers. Furthermore it suggests
the possibility that they are part of a larger twisted affine type of representation, which
can be Higgsed in a rank preserving way to a non-twisted one. Moreover we will use the
field theory of twisted compactifications, to match/predict non-poly defs in the compact
threefolds. At the same time, their presence yields a criterion when geometric transitions to
an untwisted algebra may be possible. These Higgsing transitions/singlets are generically
present but with the exception of the twisted versions of 6D non-Higgsable cluster theories
e
(2)
6
6 ,

su
(2)
3
3 and

so
(3)
8
4 as already alluded to in section 4 and section 5.

7.2 e
(2)
6 vs f

(1)
4 genus-one fibers

In the following we consider another singular genus-one model which is related to the e
(2)
6

twisted fibration of the quartic which we will call XD. For this we consider the generalized
26Care has to be taken from other sources of such deformations, such as adjoints or empty −2 curves. See

for example [80].
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Tate-vector

ni = {3, 2, 2, 1, 0, 2, 1, 0} , (7.7)

which reduces the vanishing order of the X3Y term in the quartic fiber model by one. From
this perspective, the e

(2)
6 model appears as an enhanced singularity.

As we will discuss in the following, the resulting singularity will be of IV ∗,ns type both
in the genus-one and Jacobian fibration. Note that the above tuning is such, that the
monodromy divisor D2,X = d28 − 4d5 stays un-affected, still intersecting the base divisor Z
non-trivially. When mapping the singular genus-one model, specified by the Tate vector (7.7)
to the Jacobian we obtain (at leading order in z) the expressions

f = z3p̂+O(z4) ,

g = z4d22D2,X +O(z5) ,

∆ = z8d42D
2
2,X +O(z9) .

(7.8)

As long D2,X |z = 0 does not become a perfect square, which is the case by construction,27 we
have a Type IV ∗ non-split singularity i.e. an f4 in the Jacobian as claimed. Thus we expect
an f4 × Z2 gauge algebra in the 6D F-theory. We begin by analyzing the spectrum in the
Jacobian and then argue that this spectrum coincides with that in the genus-one fibration
as well. In order to do so, we first note that the discriminant admits two codimension
two components over z = 0: first there is the monodromy divisor D2,X and the second
component d2 = 0. The later one yields a codimension two vanishing order (3, 5, 9) which
corresponds to an E7 singularity. The hypermultiplets that are localized here yield 261
matter multiplets which we will double check in the genus-one model momentarily.

When computing the multiplicity of states, we first start by being fully general. For
this we recall the line bundle classes of the various sections to be given as

[d2] ∼ 2c1 − S9 − 2Z , [d8] ∼ c1 + S9 , (7.9)

which are needed to compute the multiplicities of states. Those of the 261 states are simply
evaluated via the intersections Z · [d2] whereas the neutral 260-plets are non-localized states
over the loci where the fibral curves of Z are branched, which is fixed by the number of
ramification points R = [D2,X ] · [Z] in the RH theorem eq. (4.18). Taking the degree of the
cover to be d = 2, we find the following multiplicities

n520 = g , n261 = 4(1− g)− S9 · Z , n260 = (1− g) + Z2 + S9 · Z , (7.10)

which admits the additional degree of freedom, to dial the relative multiplicities via the
S9 · Z intersections. Notably, the combined multiplicity of the f4 fundamentals yields

n261 + n260 = 5(1− g) + Z2 , (7.11)

which is consistent with 6D gauge algebra anomaly cancellation conditions (see e.g. [81]).
27The polynomial in f is given as p̂ = d2d7d8 − 2d1d2

8 − 2d2d4 + 8d1d5.

– 67 –



J
H
E
P
0
1
(
2
0
2
4
)
0
1
7

In order to compare the above model with an geometric transition to the e
(2)
6 geometry

however, we also need to impose the extra condition that [d1] · [Z] = 0 which resulted in
(4, 6, 12) points. These points are generally absent in the f

(1)
4 model, but would appear when

performing the respective deformation to e
(2)
6 . This extra condition removes the degree of

freedom and yields

S9 · Z = 2(1− g) + 1
2Z

2 . (7.12)

Plugging this restrictions into (7.11) gives

n520 = g , n261 = 2(1− g) + 1
2Z

2 , n260 = 3(1− g) + 1
2Z

2 . (7.13)

When compared to the e
(2)
6 multiplicities that were computed in section 4.1, we find the

260-plets to exactly coincide with the multiplicity there, whereas the number of 261 is
reduced by one.

This computation concludes the f4 spectrum in the Jacobian. In the following however,
we want to double check the claim, that the spectrum coincides with the genus-one model.

For this we consider the resolved genus-one fibration XD, given as

p = d1f
3
2 g

2
2h1X

4 + d2f
2
2 g2X

3Y + d3f
2
2 f3g

2
1g

2
2h

2
1X

2Y 2 + d4f2f3g
2
1g2h1XY

3

+ d5f3g
2
1Y

4 + d6f
2
2 f3g1g

2
2h

2
1X

2Z + d7f2f3g1g2h1XY Z + d8f3g1Y
2Z + f3Z

2 , (7.14)

with fibral Stanley Reisner ideal

SRI : {Y X, Y f2, Y g2, Y h1, e1Z, e1f2, e1f3, e1g1, e1g2, e1h1, Zf1,
f1f3, f1g2, f1h1, Zg1, Xf3, f2f3, f3g2, Xg1, Xg2, Xh1, f2h1} . (7.15)

The base divisor Z then pulls back to the reducible divisor

Z = f2g
2
2h

3
1g

2
1f3 , (7.16)

with fibral curves

P1
0,± : f2 ∩ d5g21 + d8g1Z + Z2 ,

P1
1,± : g2 ∩ d5g21 + d8g1Z + Z2 ,

P1
2 : h1 ∩ d5f3g21 + d2g2 + d8f3g1Z + f3Z

2 ,

P1
3 : g1 ∩ f3 + d1f

3
2 g

2
2h1 + d2f

2
2 g2Y ,

P1
4 : f3 ∩ d1h1 + d2Y .

(7.17)

In figure 13 we have summarized the fibral intersections of the curves. The monodromy
divisor D2,X of the 2-section X is again central as it is also the locus along which the two
fibral curves in f2 and g2 get interchanged.

Note that the 2-section X intersects the node f2 which is the affine node we associate
with the base coordinate z. This however might come as a surprise, as it is f3 which lifts to
an actual F4 singularity in the genus-one geometry! In fact, when shrinking all but the f3
node, we need to again orthogonalize the reference 2-section properly with respect to the
unbroken gauge group.
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[X]

[f2] [g2]

[h1] [g1]
[Y ]

[Z]
2

1 2

3

D2,X =0
−−−−−→

[f3]

1

2 4 3 2 1

d2=0−−−→

1

1

2

2

3

3

2 1

Figure 13. Depiction of the XD genus-one fibration and its f
(1)
4 fibral structure. Choosing f2 as

the affine node results in an so9 singularity while keeping f3 finite results in an f4 singularity. The
two codimension two degeneration loci shown on the right.

In order to account for both singular limits, we consider the two possible discrete Shioda
map combinations

σ2(X) = [X] , σ′2(X) = [X] + 2[f2] + 3[g2] + 4[h1] + 2[g1] , (7.18)

for which we have the intersections

σ2(X) · (f2, g2, h1, g1, f3) = (2, 0, 0, 0, 0) , and σ′2(X) · (f2, g2, h1, g1, f3) = (0, 0, 0, 0, 2) .
(7.19)

While the topology of the resolved fiber is that of f(1)4 the two singular limits, keeping either
f2 or f3 finite, yield an so9 or f4 singularity respectively.28

In order to cross check the computations made in the Jacobian, we investigate the
matter loci in the resolved genus-one geometry next. First we recall the codimension two
locus d2 = 0. When investigating the fibral curves, we indeed find a split into an E7 type of
fiber, just as in the Jacobian. We can then compute the intersections with the other fibral
divisors e.g. for the P1

2,± curve and obtain the intersections

P1
2,± · (f2, g2, h1, g1, f3)(σ2,σ′

2) = (0, 1,−1, 0, 1)(0,−1) . (7.20)

These intersections numbers yield the charges of (massive) 5D particles obtained from M2
branes wrapping the respective curve. When taking f3 as the affine node and hence finite,
such that we obtain the f4 limit we find weights of an 261 just as claimed in the Jacobian
fibration. Similarly we find, over D2,X = 0 to support the monodromy divisor that yields
the 260-plets. As opposed to the e

(2)
6 model, the fiber does not become a degree two multiple

fiber over such loci as the degree one curve P1
3 does not split here. Therefore we expect the

Weil-Châtelet group to reduce to the Tate-Shafarevich group X(XD), which we take as
the main criterion, why Jacobian and genus-one fibration admit the very same f

(1)
4 fiber

structure. From this perspective it is also clear, why the matter and its multiplicities in
genus-one and Jacobian are the same, with the only difference being that the 261-states
stay massive at the origin of the f4 Coulomb branch.

28Note however, that both singular limits become identical when being mapped into the singular Weier-
strass model.
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The spectrum of the f
(1)
4 genus-one geometry XD appears to be very similar to that

of the f4 ∈ e
(2)
6 geometry XA albeit the difference in the massive 261 multiplicities. One

might then wonder, if and how the two fibrations might be related. This can be deduced
by having a closer look at the precise geometry and recalling that we kept different curves
finite throughout the transition. In XA, we kept curves in f2 finte, which resulted in an
f4 singularity, keeping f2 finite in XD yields an so9 ∈ f

(1)
4 singularity. Using the methods

from section 4 and section 5 and can indeed compute the shrinkable curves in XD while
keeping f2 finite resulting 32 + 4 = 36 vector multiplets, that make up the adjoint of so9.
Hence when performing the conifold transition from f4 ∈ e

(2)
6 we rather obtain an so9 via

the breaking

52 → 36 ⊕ 16 , 26 → 16 ⊕ 9 ⊕ 1 .

The curious fact however is, that the resulting genus-one fibration admits another limit
in the Coulomb branch moduli space of so9 × û1,E such that an f4 × u1,E gauge algebra
arises with a massless spectrum just as in the e

(2)
6 theory. This on the other hand suggests,

that not only Coulomb branch dimension but also the number of complex structure moduli
of XD coincides with that of XA. This is indeed the case, as we will demonstrate in an
example in the following.

Toric example. Let us move from these general considerations to a concrete toric example.
The toric rays defining the threefold are given in appendix A and the Hodge numbers can
be computed via the Batyrev construction. In our example geometries, we have the same
Hodge numbers

(h1,1, h2,1)(XA) = (h1,1, h2,1)(XD) = (7, 95) . (7.21)

This seems to be at odds with the fact that we performed a tuning of the generalized Tate
coefficients when relating the two theories. The resolution to this puzzle is the fact that
not all complex structure moduli in the toric hypersurface equation of XA are realized as
polynomial deformations. Computing the complex structure moduli, and the respective
fractions of non-poly deformations of the two geometries, we obtain

h2,1(h2,1np )(XA) = 95(9) and h2,1(h2,1np )(XD) = 95(6) . (7.22)

Note that there are several contributions of non-poly deformations in both geometries that
need to be discussed. The six deformations in the f

(1)
4 geometry XD are contributions from

the 3× 2 neutral components inside the three 260-plets.
For the twisted fiber e

(2)
6 of geometry XA we have two contribtutions to the nine

non-poly deformations: first there is the contribution of the 3 × 260-plets neutral fields,
which is the same as in the f

(1)
4 model. We propose that the three missing neutral fields

correspond to neutral localized singlets. These can be directly deduced from the twisted
reduction of the e6 theory, which we reviewed in section 4. From this 6D origin, we can
obtain a prediction for the non-poly deformations as

δh2,1np = n10 + 2n260 + 4n520 = 9(1− g) + 3
2Z

2 + 4g . (7.23)
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In the case at hand, the curve of consideration admits self-intersection Z2 = 0 and g = 0,
such that we have a match of all non-poly deformations in XA. Note that this also implies,
that an e

(2)
6 on a Z2 = −6 curve of genus zero does not posses any such singlets. Indeed,

the respective genus one model, given in section 4.1 admits 151 complex structure moduli
with h2,1np = 0.

In analogy to the elliptic threefolds, discussed in the section before, it becomes apparent
that those singlets are an integral part of a non-trivial twisted e

(2)
6 representation, and not

only its f4 subgroup. Hence, when breaking the e
(2)
6 symmetry via the f4 → so9 chain, it is

suggestive that those singlets are not fixed to a vanishing vev any longer which translates
to polynomial deformations in the toric hypersurface. We wish to return to this specific
point in future work.

7.3 so
(3)
8 vs g

(1)
2 genus-one fibers

We now turn to a genus-one fibration XD that admits a g
(1)
2 fiber which shares the same

Hodge numbers as the genus-one fibration XA with twisted so
(3)
8 fiber. The singular

genus-one model with an g
(1)
2 fiber is obtained via the generalized Tate-vector

ni = {2, 1, 1, 0, 1, 1, 0, 1, 0, 0} . (7.24)

The so
(3)
8 model, is obtained upon a further tuning of the above vanishing orders to

d2 → zd̂2 , d5 → zd̂5z , d6 → zd6 . When mapping the respective tuning into the singular
Weierstrass model, we obtain at leading orders the Jacobian J(XD/B2)

f = 1
3z

2(−9d10d2d4d5 + 3d10d22d7 − d25d
2
7 + 3d4d25d9 + d2d5d7d9 − d22d

2
9) +O(z3) ,

g = z3P +O(z4) ,

∆ = z6Q2D3,u +O(z7) ,

(7.25)

with P some longer irrelevant polynomial and Q given as

Q = d10d
3
2 − d4d

3
5 + d2d

2
5d7 − d22d5d9 . (7.26)

The resulting singularity is of I∗,ns0 type i.e. an g
(1)
2 fiber upon resolution. Note that we also

find here the order three monodromy divisor appearing at leading orders of the discriminant.
Lets compare this to the fiber structure in the genus-one model XD after sufficient resolution,
which is given as

p = d1f
2
1 g1u

3 + d2f1u
2v + d3f0f1g1uv

2 + d4f0v
3 + d5f1u

2w

+ d6f0f1g1uvw + d7f0v
2w + d8f0f1g1uw

2 + d9f0vw
2 + d10f0w

3 , (7.27)

with Stanley-Reisner ideal

SRI : {uf0, f0f1, ug1, wvu,wvf1, wvg1} . (7.28)
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The intersection picture of the fiber is given in figure 14. The fibral curves are given as

P1
α0 : f0 ∩ d1g1 + d2v + d5w ,

P1
α1 : g1 ∩ d2f1v + d4f0v

3 + d5f1w + d7f0v
2w + d9f0vw

2 + d10f0w
3 ,

P1
α2,i : f1 ∩ d4v3 + d7v

2w + d9vw
2 + d10w

3 .

(7.29)

where P1
α2,i admits 3 components that are interchanged along the D3,u monodromy divisor.

We conclude that we find a type I∗,ns0 fiber in the genus-one model XD just as in its Jacobian.
It is important to recall that the affine node f1 in the so

(3)
8 model now hosts the three

nodes of the g
(1)
2 , while the new divisor f0, yields the usual single affine node. Interestingly,

we could have also blow-down f1, g1 and used f0 to map the geometry into the Jacobian,
which would result in the very same singularity type. As the fiber structure is the same
in both models, we can use the Jacobian to find reducible fibers and similarly, we can use
the genus-one model to compute the 6D discrete Z3 charges of the g2 matter states. To
do so, we first note that the discriminant over z = 0 factorizes into two components in
codimension two. The first component is given by z = Q = 0 where the fiber singularity
enhances to vanishing orders (2, 3, 7), which is an so10 singularity. The second component
in the discriminant is the intersection locus with monodromy divisor D3,u. The later
determines the ramification points that fold the covering so8 to g2 and provide non-localized
mater. In this situation, the curves P1

1,i degenerate to a single curve of degree three as
depicted in figure 14. Apparently, the associated genus-one fibration does not admit multiple
fibers and hence we expect the WC(XD) group to reduce to the Tate-Shavarevich group
X(XD). We can now discuss these two loci in the genus-one model to deduce the respective
matter charges.

As we have selected f0 as the affine component and u = 0 as the reference 3-section,
we need to orthogonalize the respective u1 generators, which yields the discrete Shioda map

σ(s(3)0 ) = [u] + (2[f1] + 3[g1]) , (7.30)

which admits the intersections with the fibral divisors as

σ(s(3)0 ) · {f0, g1, f1} = {3, 0, 0} . (7.31)

We can then impose Q = 0 and deduce the reducible components when solving for d5.
The respective components are summarized in table 13. A graphical representation of the
intersections of these irreducible curves is given in figure 14 and we them to have the shape
of an affine so

(1)
10 Dynkin diagram, consistent with the Jacobian prediction. The weights of

particles, obtained from M2 branes wrapping the curve P1
1,1 are computed as

P1
1,1 · (g1, f1)σ(s(3)

0
= (−1, 1)−1 ∋ 7−1 . (7.32)

Hence upon the singular limit, those weights are completed to full 7−1-plets with non-trival
u1,E charge, which lifts to a Z3 charge in 6D. The non-localized states, obtained from
the monodromy divisor on the other hand, are obtained from the so8 adjoint and hence
correspond to uncharged 7-plets.

– 72 –



J
H
E
P
0
1
(
2
0
2
4
)
0
1
7

node Irreducible components over Q = 0
Pα0 : [f0] P1

0 : f0 ∩ (d1g1 + d2v + d5w),

Pα1 : [g1] P1
1,1 : g1 ∩ (d2v + d5w) , P1

1,2 : g1 ∩ (d10d
2
2f0v

2 + d2
5d7f0v

2 − d2d5d9f0v
2

+d3
5f1 − d10d2d5f0vw + d2

5d9f0vw + d10d
2
5f0w

2)
Pα2,i : [f1] P1

2,1 : f1 ∩ (d2v + d5w) P1
2,± : f1 ∩ (v + (a1 ± a2)w)

Table 13. The codimension two irreducible components of the fiber at Q = 0 where g2 charged
matter resides. The intersections are depicted in figure 14.

We turn now to the computation of the multiplicity of the states described above. To
this end, we compute the intersections that lead to localized 71 plets and the 70-plets that
originate from the monodromy divisor. Since we took f0 as our new affine node, we need to
change the factorization in the genus-one fibration above. For this we need the classes of
the monodromy divisor in the new factorization29 geometry given as

[D3,u] ∼ 2S9 + 2S7 − 4Z , (7.33)

as well as the class of

[Q] ∼ −S7 − S9 −Z + 6c1 . (7.34)

The number of charged 71 is given by

n71 = [Q] · Z = 12(1− g)− S7 − S9 + 5Z2 (7.35)

The neutral 7-plets are computed from the monodromy divisor and the Riemann-Hurwitz
theorem, which yields

n70 = 2(g − 1) + 1
2R = 2(g − 1) + S7 + S9 − 2Z2 . (7.36)

Taking the sum of the two representations we obtain

n71 + n70 = 10(1− g) + 3Z2 , n140 = g , (7.37)

which satisfies the 6D anomalies as expected. Note again, that there is a degree of freedom
to tune the relative number of charged and uncharged 7-plets.

In the second step we want to relate the so
(3)
8 and g

(1)
2 models. In order to do so, we

need to make sure that there are no (4, 6, 12) points after tuning, which requires d1 = z = 0
to be trivial (see section 5.2). This condition can be translates into the following intersection
of the line bundle classes

(S7 + S9) · Z = 3c1 · Z .

29We read this off from [d10] ∼ 2S9 − S7 −Z, [d7] ∼ S7 −Z and [d2] ∼ 2c1 − S9.
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[u]
[w]

[v]

[f0]

1 2

1

[g1]

[f1]

P1
0

P1
1,2

P1
2,1

P1
2,+

P1
2,−

Q=0−−−→

D3,u=0
−−−−−→ 1 2 3

Figure 14. The fiber structure of the g
(1)
2 cubic genus-one fiber and its two degeneration loci.

When using the above constraint and plugging them into the multiplicities of the states
we obtain

n70 = 4(1− g) + Z2 , n71 = 6(1− g) + 2Z2 . (7.38)

We can now compare the multiplicity of states in the g
(1)
2 cubic genus-one fibration XD with

that of the so
(3)
8 fibration XA (given in (5.66)) we find perfect agreement for the massless

70 multiplicities. However, just as in the e
(2)
6 case, there is a difference in the massive 7-plet

sector. We remark, that we do not find 72 states in the g
(1)
2 theory. This can be explained

by noting, that the 7-plets are real representations. Thus, when conjugating a 72 state, it
becomes a 7−2. Recall that our KK tower is normalized with the three-section as 7−2+3n.
Hence, when shifting the KK-tower to n→ n+ 1, we find the 72 states to sit in the same
KK-tower as the 71 states. Therefore the multiplicity given in (7.38) yields the combined
multiplicities of massive 71 and 72 states.

Similar to the other twisted fibrations, we find the number of massive 7-plets to differ
when engineered in their untwisted variants. In particular both the numbers of 71 and 72
states are each enhanced in the so

(3)
8 model, when compared to those in g

(1)
2 .

Similar to the e
(2)
6 → g

(1)
2 case, there exists a chain of geometric transitions from so

(3)
8

to g
(1)
2 . For this we first need to choose the usual g2 ∈ so

(3)
8 limit when shrinking the curves

in g1, h1 that yields massless 70-plets which can be used as a Higgs resulting in the familiar
breaking g2 → su3 with the branchings 14 → 8 ⊕ 3 ⊕ 3 and 7 → 3 ⊕ 3 ⊕ 1. After the
deformation we replace the g2 singularity by an su3, which is resolved by f0 and g1 which
results in the g

(1)
2 diagram given in figure 14. As g2 → su3 deformations preserve the Hodge

numbers of the threefolds, we therefore claim that there exists an g
(1)
2 with exactly the

same Hodge numbers. We give an example in the following.

Toric examples. In the following we give toric example of a threefold geometry XD in
which the gauge group is supported over a curve of self-intersection Z2 = −1 and genus 0
within a dP1 base. The toric rays can be found in table 19 of appendix A. The g2 spectrum
is given as

n70 = 3, n71 = 2 , (7.39)

– 74 –



J
H
E
P
0
1
(
2
0
2
4
)
0
1
7

which indeed cancels the 6D g2 anomalies. When compared to the so
(3)
8 model XA, we

find the very same Hodge numbers and a difference only in the non-polynomial complex
structure deformations

(h1,1, h2,1(h2,1np ))(XA) = (5, 71(6)) , and (h1,1, h2,1(h2,1np ))(XD) = (5, 71(3)) . (7.40)

The three non-polynomial deformations in the XD geometry can be attributed to the singlet
in the three 70-plets. The very same three 70-plets are also present in XA where three
additional non-poly deformations are present. Analogously to the e

(2)
6 model, we propose

those contributions to the additional singlets from the twisted reduction. In particular, we
expect to find the total contribution of non-polynomial deformations

δh2,1np = n10 + n70 + 2n140 = 12(1− g) + 3Z2 + 2g , (7.41)

in the so
(3)
8 model XA. Thus, we find three additional contributions, coming from 10 for

the Z2 = −1 , g = 0 case. Those considerations also show, that those non-poly deformations
should be absent for so

(2)
8 fibers over curves with Z2 = −4 and g = 0 as constructed in

section 5. As expected from the 6D anomalies, this fiber can not be Higgsed to g
(1)
2 .

7.4 su
(2)
3 vs su

(1)
2 genus-one fibers

Finally we discuss the relation between the twisted fibrations XA with fibers su
(2)
3 and their

untwisted cousins, XD with fibers su
(1)
2 . The later geometry is obtained by the generalized

Tate-vector

ni = {0, 0, 0, 0, 0, 0, 0, 0, 1} . (7.42)

This theory admits an su
(1)
2 fiber, both in the Jacobian and the genus-one fibration. The

Jacobian J(XD/B2) to leading orders in z is given as

f = Q2 +O(z) ,
g = Q3 +QO(z) ,
∆ = z2PQ2 +QO(z3) .

(7.43)

With P and Q polynomials in the di

Q=−d27+4d6d8 , (7.44)

P = d25d
4
6−d4d5d36d7+d3d5d26d27−d2d5d6d37+d1d5d47+d24d36d8−2d3d5d36d8−d3d4d26d7d8

+3d2d5d26d7d8+d2d4d6d27d8−4d1d5d6d27d8−d1d4d37d8+d23d26d28−2d2d4d26d28+2d1d5d26d28
−d2d3d6d7d28+3d1d4d6d7d28+d1d3d27d28+d22d6d38−2d1d3d6d38−d1d2d7d38+d21d48 .

(7.45)

The fully resolved genus-one fibration XD on the other hand is given as

p = d1f0X
4 + d2f0X

3Y + d3f0X
2Y 2 + d4f0XY

3 + d5f0Y
4

+ d6X
2Z + d7XY Z + d8Y

2Z + d9f1Z
2 , (7.46)
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[X]

[Y ]

[Z]

[f1]

11

[f0]
P=0−−−→

P1
α1

P1
0,1

P1
0,2

[f1]

Figure 15. Depiction of the su2 fiber in the quartic. Intersections with the fibral curves in the
divisors f0 and f1 with respect to the two 2-section classes X and Y are depicted, as well as with
the 4-section Z.

with the fibral Stanley-Reisner ideal

SRI : {Y X,Zf0} . (7.47)

The two fibral curves are given as

P1
α0 : f1 ∩ d1f0X4 + d2f0X

3Y + d3f0X
2Y 2 + d4f0XY

3

+ d5f0Y
4 + d6X

2Z + d7XY Z + d8Y
2Z ,

P1
α1 : f0 ∩ d6X2 + d7XY + d8Y

2 + d9f1 .

(7.48)

This results in an intersection picture as given in figure 15: Hence again, we have to
orthogonalize our reference two-section X with respect to the su2 divisor that we want to
shrink, that is f0 which yields the discrete Shioda map

σ(X) = [X] + 1
2[f0] . (7.49)

Note that the su2 model is precisely the same as the most general quartic fibration which
makes our discussion fully analogous to the one in [45] (see page 32).

To discuss the matter loci, it is again sufficient to simply deduce them from the Jacobian
J(XD/B2) and then investigate them further in the respective genus-one geometry. First
there is the discriminant locus Q = 0 for which we find the vanishing orders (1, 2, 3) in
the Weierstrass model and hence a type III enhancement where no additional matter
resides. Over the codimension two locus P = 0 instead, we find a type I3 fiber and hence
fundamental matter. Over this locus, the fibral curve P1

α0 splits into P1
0,1 + P1

0,2 which gives
rise to 2 1

2
-plets. Note that the 1

2 charge highlights a non-trivial mixing of u1,E with the
Z2 center of the su2, similar to the e7 case in section 4, resulting in a G = SU(2)×Z4

Z2
gauge

group in the F-theory lift.
In order to compute the multiplicities, we use appendix B to deduce the classes of the

polynomial P which is

[P ] ∼ [2d1 + 4d8] with [d8] ∼ c1 + S9 −Z . (7.50)
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This results in the multiplicity

n2 1
2
= Z · (8c1 − 2Z) = 16(1− g) + 6Z2 , (7.51)

consistent with the 6D gauge anomalies.
Finally we are in the position to comment on the relation of the su

(1)
2 theory to that of

su
(2)
3 . As noted above, the su

(1)
2 geometry XD does not posses multiple fibers and admits

a consistent 6D F-theory uplift, highlighted by a matter spectrum that solves the 6D
anomalies. The su

(2)
3 geometry XA on the other hand admits two more massive 2 1

2
-plets.

We expect again, that there exists a geometric transition between the two threefolds, that
preserves gauge algebra rank and number of flat direction, i.e. the exact Hodge numbers.
The exact type of conifold transition between the twisted and the untwisted theory is more
obscure than in the other cases as there is not much room for a rank preserving Higgsing in
the su2 × u1,E theory, apart from using adjoints. Similarly to the other examples discussed
in this section, we expect such fields to exist and return to this question in future works.

Toric example. We exemplify the general considerations with a toric example. The details
of the toric rays, from which the threefolds XA and XD are constructed are summarized
appendix A. The threefold XD with su

(1)
2 fiber is engineered over a Z2 = +1 curve with

g = 0 in a P2 base. The massless su2 ∈ su
(1)
2 charged spectrum is then given by the

multiplicities

n30 = 0 , n2 1
2
= 22 , (7.52)

consistent with the 6D anomalies. The corresponding su
(2)
3 model XA on the other hand,

admits 24 massive doublets states but leads to a threefold with exactly the same Hodge
numbers, given as

(h1,1, h2,1)) = (3, 107) . (7.53)

Besides the fiber structure, another difference shows up in the number of non-polynomial
complex structure deformations:

h2,1np (XC) = 12 , h2,1np (XD) = 0 . (7.54)

As before, we use the twisted reduction of the 6D su3 theory, to give a prediction of such
non-poly deformations. Those contributions come from singlets, and adjoint hypermultiplet
representations as discussed in section 5.1 that sum up to

δh2,1np = n10 + n30 = 9(1− g) + 3Z2 + g . (7.55)

Thus, for our toric example we expect to have 12 singlet state contributions in XA. Similarly
we find that the su

(2)
3 fiber over a −3 curve has a trivial spectrum. Therefore, there is no

transition to an su
(1)
2 consistent with the fact that there are no non-polynomial complex

structure deformations.
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8 Summary and outlook

In this work we have initiated a detailed exploration of the geometry of genus-one fibrations
with twisted algebras and their F/M-theory physics. We have focused explicitly on the
cases of e(2)6 , so

(3)
8 and su

(2)
3 over an arbitrary smooth and compact curve in the 2D base.

Our analysis only imposes flatness of the fibration and one non-trivial codimension one
fiber over an otherwise arbitrary base.30 For these cases the geometry exhibits multiple
fibers over smooth points in the base and hence a non-trivial Weil-Châtalet group is a
prerequisite for these twisted algebras to exist. We compute the multiplicities of the lightest
BPS states charged under the f4, g2 and su2 finite sub-algebras purely from geometry and
find agreement with prior results on twisted field theory reductions of 6D gauge algebras
e6, so8 and su3 respectively. To gain additional insight into these M-theory backgrounds, we
consider 5D geometric transitions from e

(1)
7 , f

(1)
4 and g

(1)
2 respectively, to the twisted algebras.

While we do not fully determine the 6D background that leads to these twisted M-theory
compactifications upon circle reduction, we do identify a range of features and symmetries
that it must possess. In particular we give the explicit Jacobian fibration associated to each
genus-one fibration. In each case, the fiber structure we find in the Jacobian differs from
that found in the genus-one geometries and from what would be expected from a typical,
field-theoretic twisted reduction. Instead of e6, so8 and su3 we find the generic geometric
cover of the twisted algebras, that is e7, f4 and g2 respectively. As a result we find different
dimensionality in the Kähler moduli spaces associated to the genus-one fibrations and their
Jacobians. We further discuss several applications of the geometry of twisted algebras in
SUGRAs, LSTs and SCFTs. In particular we discuss twisted T-dualities and match the
generalized symmetries, following the proposal in [74], to provide another cross-check of
our construction.

The connection between untwisted and twisted algebras with the same finite sub-algebra
are also investigated. We find evidence of (chains of) geometric transitions among them.
Surprisingly, the connected geometries admit the very same Hodge numbers, but differ not
only in the fibral curve structure but also in the number of non-polynomial complex structure
deformations of the CY hypersurface equation. We propose a physics interpretation for
those non-polynomial deformations and further use the twisted field theory reduction as a
way to understand them.

The results outlined here open up several exciting directions that deserve further
exploration in the future. In particular, limits of the geometries in consideration here
connect with several topics within the Swampland program [82] (see [83–85] for recent
reviews) such as the weak gravity [86] and emerging string conjecture [87]. First, we find
that a twisted compactification in a SUGRA theory does not only require a gauge algebra
that can be twisted but also a discrete zero-form gauge symmetry to embed the twist into as
the later ones are always accompanied in the respective F-theory lift of genus-one fibrations.
At first glance, this observation may not come as a surprise, as one expects an unbroken
discrete symmetry to be gauged in a gravity theory. However, one would have expected

30Note that restricting to only one non-trivial fiber implicitly restricts the 2D bases to have only curves of
self-intersection C2 ≥ −2 otherwise. On the other hand our spectrum computations apply for any twisted
algebra, that appears over any isolated curve in an arbitrary base.
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that a discrete automorphism of the respective gauge algebra would have been enough to
twist by. Our geometric analysis therefore suggest that an additional compatible discrete
gauge symmetry needs to be present as well to perform a perform a twisted reduction in a
SUGRA theory.

Secondly, these twisted dimensional reductions make 6D discretely charged states
generally massive, and gives them a fractional 5D U(1)KK charge, which hence makes
them relevant in the context of the (sub-lattice) weak gravity conjecture (see e.g. [88] and
reference therein). Finally, twisted compactifications display an interesting feature in that
the decompactification limit not only results in an extra dimension but also leads to a gauge
algebra enhancement.

This work has also raised a number of interesting open questions. First there is the
gauge symmetry of the Jacobian fibration, which is associated with the untwisted circle
reduced theory. There the gauge algebra seems to always be enhanced compared to the
purely field theoretic expectation (e.g. an e7 symmetry instead of e6 for the geometries of
section 4, for example). This enhancement is also directly related to puzzles regarding the
twisted reduction from 6D to 5D as outlined in section 3. One potential explanation might
involve the non-polynomial complex structure deformations present in the twisted genus
one fibrations studied in this work. It is possible that in the presence of such degrees of
freedom the mapping to the Jacobian geometry might be modified in a way that fixes some
complex structure moduli, potentially breaking the naive symmetry group to that expected
from ordinary gauge theory reductions.

As a further intriguing observation, in our geometric analysis the multi-section mon-
odromy divisors played a key role in describing the twisting of the fibers and also appears
to be linked to co-dimension 2 structure in the Jacobian fibration. This co-dimension 2
structure is crucial in the cancellation of the 6D discrete gauge anomalies [50] (which were
beyond the scope of the present work to explore). This observations hints at a non-trivial
interplay between the 6D discrete gauge anomalies and the existence of twisted dimensional
reductions that may also solve the puzzle outlined before. Moreover, the explicit form of the
twisted fibrations and their Jacobians here would also in principle allow for the computation
of twisted/twined elliptic genera. It would be interesting to do this and compare with the
results of [19] in non-compact scenarios as well as for those for twisted T-dualities [16, 18, 74]
and 5D SCFTs [7].

Finally it should be noted that fibrations exhibiting twisted algebras are not yet fully
mathematically explored. While we have discussed only three different types of twisted
fibers, a full Kodaira/Tate type of classification of singular genus-one fiberd threefolds would
be desirable. This could in particular include series such as su

(2)
n or so

(2)
k . As those are only

degree two twisted algebras, one might succeed in constructing these in relatively simple
2-section models such as the quartic. This is linked of course, to the question of whether all
possible n-section geometries can be classified. Thus far, some models for n < 6 [49] have
been constructed and analyzed explicitly, with an expectation that n should not be much
larger than 6 [19]. While such high multi-section degrees might not be directly required
to explore the unexplored twisted algebra series’, they are still relevant in cases where sun
gauge algebras are twisted to nothing as e.g. explored in [20–22, 47]. We hope to return to
some of these questions in future work.
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A Toric data for threefold geometries

In this appendix we present concrete threefold examples and give their concrete spectra
together with their Hodge numbers. The associated vertices of the toric variety are
listed below.

A.1 su
(2)
3 example geometries

Base with
(g,Z2,S9 · Z) 5D Gauge Algebra h1,1 h2,1 Reps

P2 with
(0, 1, 1)

g2 × u1,F × u1,kk 5 89 5× 71
8× 70

g2 × u1,E 4 98 5× 71
8× 70

su2 × u1,E ∈ su
(2)
3 3 107 24 ×2 1

2

su2 × u1,E 3 107 22 ×2 1
2

su2 × u1,F × u1,kk 4 93 22 ×2 1
2

P2
1,1,2 with

(0,−2,−2)

g2 × u1,F × u1,kk 6 96 2× 71
2× 70

g2 × u1,E 5 109 2× 71
2× 70

su2 × u1,E ∈ su
(2)
3 4 112 6 ×2 1

2

su2 × u1,E 4 112 4 ×2 1
2

su2 × u1,F × u1,E 5 97 10 ×2 1
2

Table 14. A chain of 5D theories, obtained from genus-one fibrations over a P2 and a an F2 base
with gauge algebras over a Z2 = 0 curve of genus g = 0 and their light BPS states.

Generic Fibers
X (-1,1,0,0)
Y (-1,-1,0,0)
Z (1,0,0,0)
U (0,1,0,0)

g
(1)
2 Fiber

f1 (1,0,1,0)
f0 (0,0,1,0)
g1 (1,0,2,0)
f2 (0,1,1,0)

su
(2)
3 Fiber

f1 (1,0,1,0)
f0 (0,0,1,0)
g1 (1,0,2,0)

su
(1)
2 Fiber

f1 (1,0,1,0)
f0 (0,0,1,0)

P2 Base 1
x0 (-3,0, -1,-1)
x1 (0, 0, 0, 1)

P2
112 Base 2

x (0,0, 1,1)
y (0, 0, 1, -1)
z (-2,0,-1, 0)

Table 15. The collection of toric rays that can be combined to the five threefolds summarized
in table 14: first pick the base and elliptic fibers is picked from the leftmost column. Second a
non-trivial fiber top is added from either of the other columns.
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A.2 e
(2)
6 example geometries

5D Gauge Algebra h1,1 h2,1 Reps
e7 × u1,F × u1,KK 11 59 4 ×561/2

e7 × u1,E 10 82 4 ×561/2

f4 × u1,E 7 95 2× 261
3× 260

f4 × u1,E ∈ e
(2)
6 7 95

2× 261
3× 260
2× 1 × 3

Table 16. A chain of 5D theories, obtained from genus-one fibrations over a F0 base with gauge
algebras over a Z2 = 0 curve of genus g = 0 and their light BPS states.

Generic Fiber
X (−1, 1, 0, 0)
Y (−1,−1, 0, 0)
Z (1, 0, 0, 0)
e1 (0, 1, 0, 0)

F0 Base
x1 (1, 0,−1, 0)
y0 (0, 0, 0, 1)
y1 (−2,−2, 0,−1)

e7 Fiber
f2 (−3, 0, 1, 0)
f4 (−2, 0, 1, 0)
g1 (−5,−2, 2, 0)
g2 (−5,−1, 2, 0)
g3 (−4,−1, 2, 0)
h1 (−7,−2, 3, 0)
h2 (−6,−2, 3, 0)
k1 (−9,−3, 4, 0)

e
(2)
6 Fiber

f2 (−3, 0, 1, 0)
g1 (−5,−2, 2, 0)
g2 (−5,−1, 2, 0)
h1 (−7,−2, 3, 0)
k1 (−9,−3, 4, 0)

f4 Fiber
f2 (−3, 0, 1, 0)
f3 (−2,−1, 1, 0)
g1 (−5,−2, 2, 0)
g2 (−5,−1, 2, 0)
h1 (−7,−2, 3, 0)

Table 17. The collection of toric rays that can be combined to the five threefolds summarized
in table 16: first pick the base and elliptic fibers is picked from the leftmost column. Second a
non-trivial fiber top is added from either of the other columns.
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A.3 so
(3)
8 example geometries

5D Gauge Algebra h1,1 h2,1 Reps

e6 × u1,F × u1,kk 9 60 2× 271
3× 270

f4 × u1,F × u1,F 8 62 2× 261
2× 270

f4 × u1,E 7 67 2× 261
2× 270

g2 × u1,E ∈ so
(3)
8 5 71

3× 71
3× 72
3× 70

g2 × u1,E 5 71
2× 71
2× 72
3× 70

Table 18. A chain of 5D theories, obtained from genus-one fibrations over a dP1 base with gauge
algebras over a Z2 = −1 curve of genus g = 0 and their light BPS states.

Generic Fibers
w (-1,0,0,0)
v (0, 1,0,0)
u (1,-1,0,0)
e1 (1,0,0,0)

dP1 Base
x0 (0,0, -1,0)
x1 (-1, 2, 1, -1)
x2 (0,0,0, 1)

e
(1)
6 Fiber

f0 (-1,1,1,0)
f1 (0,0,1,0)
f2 (-1,0,1,0)
f3 (0,1,1,0)
g1 (-1,1,2,0)
g2 (-2,1,2,0)
g3 (-1,2,2,0)
h1 (-2,2,3,0)

f
(1)
4 Fiber

f0 (-1,1,1,0)
f1 (0,0,1,0)
f2 (0,1,1,0)
g1 (-1,1,2,0)
g2 (-1,2,2,0)
h1 (-2,2,3,0)

so
(3)
8 Fiber

f1 (-1,1,1,0)
f0 (0,0,1,0)
g1 (-1,1,2,0)
h1 (-2,2,3,0)

g
(1)
2 Fiber

f1 (-1,1,1,0)
f0 (0,0,1,0)
g1 (-1,1,2,0)

Table 19. The collection of toric rays that can be combined to the five threefolds summarized
in table 18: first pick the base and elliptic fibers is picked from the leftmost column. Second a
non-trivial fiber top is added from either of the other columns.
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B Line bundle data for genus-one fibrations

The various F2 and P2 ambient fiber types imply that the coordinates are certain projective
bundles whose data we will list here. This data is important to fix the base divisor classes
of the generalized Tate-coefficients that is used throughout this work. First the Quartic
P2
1,1,2 coordinates transform as given in table 20.

Section Bundle
X H − E1 + S9 − c1
Y H − E1 − S7 + S9
Z 2H − E1 + S9 − c1
e1 E1

Section Divisor Class
s1 3c1 − S7 − S9
s2 2c1 − S9
s3 c1 + S7 − S9
s4 2S7 − S9
s5 −c1 + 3S7 − S9
s6 2c1 − S7
s7 c1
s8 S7
s9 c1 − S7 + S9

Table 20. Summary of the line bundle classes of a generic quartic fibration given in (2.12).
Throughout most of this work, we fix S7 ∼ c1 + S9 such that s9 is just a constant.

The second model relevant for this work is the cubic fibration with a three-section, which
admits the bundle data as summarized in table 21.

Section Bundle
u H + S9 − c1
v H − S7 + S9
w H

Section Divisor Class
s1 3c1 − S7 − S9
s2 2c1 − S9
s3 c1 + S7 − S9
s4 2S7 − S9
s5 2c1 − S7
s6 c1
s7 S7
s8 c1 + S9 + S7
s9 S9
s10 2S9 − S7

Table 21. Summary of the line bundle classes of a generic cubic fibration given in (5.46).
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