

Mass Spectrometry Imaging of *Arabidopsis thaliana* with *in vivo* D₂O Labeling

1 **Sumin Na, Young Jin Lee***

2 Department of Chemistry, Iowa State University, Ames, IA, United States

3 *** Correspondence:**

4 Young Jin Lee
5 yjlee@iastate.edu

6 **Keywords:** *Arabidopsis thaliana*, *in vivo* isotope labeling, mass spectrometry imaging, matrix-
7 assisted laser desorption/ionization, arabidopsides, chloroplast lipids, epicuticular wax.

8 Abstract

9 Commonly used analytical tools for metabolomics cannot directly probe metabolic activities or
10 distinguish metabolite differences between cells and sub-organs in multicellular organisms. These
11 issues can be addressed by *in vivo* isotope labeling and mass spectrometry imaging (MSI),
12 respectively, but the combination of the two, a newly emerging technology we call MSIi, has been
13 rarely applied to plant systems. In this study, we explored MSIi of *Arabidopsis thaliana* with D₂O
14 labeling to study and visualize D-labeling in three classes of lipids: arabidopsides, chloroplast lipids,
15 and epicuticular wax. Similar to other stress response, D₂O induced stress increased arabidopsides in
16 an hour but it was relatively minor for matured plants and reverted to normal level in a few hours.
17 The D-labeling isotopologue patterns of arabidopsides were matching with those of galactolipid
18 precursors, supporting the currently accepted biosynthesis mechanism. Matrix-assisted laser
19 desorption/ionization (MALDI)-MSI was used to visualize the spatiotemporal distribution of
20 deuterated chloroplast lipids, pheophytin *a*, MGDGs, and DGDGs, after growing day-after-sowing
21 (DAS) 28 plants in D₂O condition for 3-12 days. There was a gradual change of deuteration amount
22 along the leaf tissues and with a longer labeling time, which was attributed to slow respiration
23 leading to low D₂O concentration at the tissues. Finally, the deuterium incorporation in epicuticular
24 wax was visualized on the surfaces of stem and flower. The conversion efficiency of newly
25 synthesized C30 aldehyde to C29 ketone was very low in the lower stem but very high at the top of
26 stem near the flower or on the flower carpel. This study successfully demonstrated that MSIi can
27 unveil spatiotemporal metabolic activities in various tissues of *A. thaliana*.

28 1 Introduction

29 Metabolomics is one of the key 'omics' technologies to bridge the gap between phenotype and
30 genotype (Matsuda et al., 2012). It has been used to investigate the metabolic responses of plants to
31 biotic and abiotic stress or annotate gene functions (Alseekh and Fernie, 2018). A popular tool of
32 choice for metabolomics analysis is mass spectrometry (MS) with chromatographic separation,
33 allowing for the detection and quantification of hundreds or thousands chemical species present in
34 biological systems. The current MS-based metabolomics analysis has two critical limitations. One is
35 in typical sample preparation extracting metabolites from homogenized tissue samples in which the
36 metabolite differences between different cells and sub-organs are often ignored. The other is the fact
37 that it provides only metabolite concentration information, not the actual metabolic activities. The

38 former is addressed by mass spectrometry imaging (MSI) technique by micron-size direct sampling
39 of metabolites from the tissue sections and visualizing metabolites at cellular resolution (Lee et al.,
40 2010). The latter is addressed by introducing precursors with stable isotopes and tracing labeled
41 metabolites (Jang et al., 2018). However, there has been very limited study of combining the two,
42 MSI with *in vivo* isotope labeling here referred to as MSI*i*, in plant systems.

43 In this study, we adopt deuterium oxide (D₂O) labeling to explore the utility of MSI*i* in several
44 tissues of *Arabidopsis thaliana*. Other stable isotope precursors previously utilized for MSI*i* include
45 ¹⁵N-ammonium in maize root imaging (O'Neill and Lee, 2020) and [U-¹³C]glucose in
46 phosphatidylcholine (PC) imaging in Brassica seeds (Romsdahl et al., 2021). Compared to other
47 isotope labeling, D₂O labeling has an advantage in plants as a global labeling agent because all
48 hydrogens are originated from water (Nett et al., 2018). All hydrogen atoms are fixed via
49 photosynthesis and converted to nicotinamide adenine dinucleotide phosphate, a key biosynthetic
50 intermediate from which all carbon-bound hydrogen atoms are derived. It has previously proven
51 effective in the studies of protein turnover rate (Yang et al., 2010), tracing hormone metabolites
52 (Åstot et al., 2000) in *A. thaliana*, and D-labeling of annual ryegrass (Evans et al., 2014) and
53 switchgrass (Evans et al., 2015). D₂O labeling, however, has not been used for MSI*i* other than our
54 recent application to duckweed imaging (Tat and Lee, 2024) and cancer tissue imaging in mouse by
55 the Northen group (Louie et al., 2013).

56 Because D₂O labeling is commonly used in tracing fatty acid biosynthesis (Lee et al., 1994), lipids
57 were our major metabolites of interest in our study, as they are also readily detected in matrix-
58 assisted laser desorption/ionization (MALDI)-MSI. First, we investigated the effect of D₂O on
59 arabidopsides. The oxylipids arabidopsides are produced by the enzymatic oxidation of chloroplast
60 galactolipids under a wide range of stress conditions (Vu et al., 2012; Genva et al., 2019). We have
61 previously reported arabidopsides are highly enriched in *feronia*, a mutant deficient in FERONIA, a
62 receptor-like kinase in *A. thaliana* that functions broadly throughout plant development (Hansen et
63 al., 2019b). We tried to test two hypotheses: one, whether D₂O induced stress increases arabidopsides
64 as an abiotic stress; two, whether the D-labeling isotopologue pattern matches that of galactolipid
65 precursor. Second, D-labeled chloroplast lipids were visualized on leaves, specifically
66 monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerols (DGDGs), and chlorophyll *a*.
67 Deuterium incorporation into these chloroplast lipids changed dramatically across the leaf
68 development and D₂O labeling time. Finally, D-labeled epicuticular wax, especially C29 ketone and
69 C30 aldehyde, were visualized on the surface of flower and stem. The conversion efficiency of newly
70 synthesized C30 aldehyde to C29 ketone provided the insight on their biosynthesis rate throughout
71 the plant.

72 2 Materials and Method

73 2.1 Hydroponic growing conditions

74 Hydroponic culture of *Arabidopsis* was performed by modifying van Delden et al (Van Delden et al.,
75 2020). *A. thaliana* (Col-0) wildtype seeds were washed in a 1 mL centrifuge tube with 20% Tween
76 20, 70% ethanol, and 100% ethanol in sequence. Each cycle was repeated three times, with each
77 treatment lasting 5 minutes. Then, the seeds were transferred to 0.5x Hoagland medium (HM) in 1
78 mL centrifuge tube and stored at 4 °C in the dark for stratification. Three days later, the seeds were
79 sown on agar-filled 200 μ L PCR tubes that were pre-cut at the bottom. Germination was allowed to
80 occur by placing ~50 PCR agar holders on a 200 μ L pipette tip holder in a 2 L beaker with 120 mL of
81 0.5x HM. The beaker was covered with transparent plastic wrap. The air vent was made by making

82 small holes on the plastic wrap on day-after-sowing (DAS) 7-9, and the plastic wrap was removed on
83 DAS 10. The plants were transferred to 15-mL centrifuge tubes on DAS 14 filled with 0.5x HM by
84 placing the PCR tubes into the hole made in the centrifuge tube cap. Either a small plant growth tent
85 (2'x2'x4') or a plant growth chamber (AR-36L2; Percival, Perry, IA, USA) was used to grow the
86 plants. For the tent, a dimmable 600W LED grow light (VA600; ViparSpectra, Richmond, CA, USA)
87 and a humidifier with a humidity controller were used to provide the light and humidity, respectively.
88 For both conditions, the light intensity was \sim 160 $\mu\text{mol}\cdot\text{cm}^{-2}\cdot\text{s}^{-1}$, and the temperature and humidity
89 was maintained at 21-24 °C and 60%, respectively. The small plant growth tent was set up for a
90 short-day condition (8h light/16h dark) for vegetative growth, and the plant growth chamber was set
91 up for a long-day condition (16h light/8h dark) for flowering. The growth medium was replaced by a
92 new medium once a week, and 0.5-1mL of medium was added to 15-mL centrifuge tubes each day to
93 supplement the water loss.

94 2.2 Sample preparation to measure arabidopsides

95 For arabidopside experiment, the plants were transferred to new 15-mL centrifuge tubes filled with
96 35% D₂O with 0.5x HM on DAS 28 and incubated for 30, 60, 180, and 540 min. The lipids
97 extraction procedure utilized was based on a well-established method (Vu et al., 2012) with a minor
98 modification. Up to 8 leaves were harvested, cut into pieces, and quickly immersed in 3 mL 75°C
99 isopropanol with 0.01% butylated hydroxytoluene (BHT) for 15 min. Then, 1.5 mL chloroform and
100 0.6 mL H₂O were added and agitated for 1 hour. The lipid extract was transferred to a new glass tube
101 using a glass pipette. Four milliliters of chloroform:methanol (2:1, v/v) with 0.01% BHT was added
102 to the sample, and the lipid extract was combined with the first extract after shaken for 30 min. This
103 step was repeated three times and the final solution was stored at -80 °C until direct infusion
104 electrospray ionization (ESI)-MS analysis.

105 For wounding experiments, the plants were grown until DAS 28, and leaves were wounded by
106 crimping with a tweezer three or four times across the midvein of the leaf (Hansen et al., 2019b), and
107 harvested 15 min after the wounding. The lipid extracts were analyzed by direct infusion ESI-MS
108 method.

109 For the MS measurement of deuterated arabidopsides, the *fer* mutants were obtained from Hongqing
110 Guo in the Department of Genetics, Development, and Cell Biology, Iowa State University. The
111 plants were grown in the same way for the wildtype in 0.5x HM until DAS 28 and incubated in 35%
112 D₂O medium for 12 days. The leaves were wounded as above and harvested for direct infusion ESI-
113 MS for the lipid extract.

114 2.3 Sample preparation for MSI of chloroplast lipids in leaves

115 For MALDI-MSI of chloroplast lipids, *A. thaliana* were transferred to new 15-mL centrifuge tubes
116 filled with 35% D₂O medium on DAS 28 and harvested after 3, 6, and 12 days. The fourth true leaf
117 of each plant was selected and fractured to expose the middle layer of the leaf as described elsewhere
118 (Klein et al., 2015). Briefly, the leaf was washed in H₂O for 10 seconds, attached onto a packing tape,
119 dried in a vacuum for 2 h, enclosed the tape to attach both sides of the leaf to the tape, and passed
120 through a rolling mill to make mechanical damage to the internal tissues. Then, the packing tape was
121 pulled over to produce two separated half-leaves exposing the internal mesophyll layers. The top half
122 layer (adaxial side) was attached to a microscope slide using a double-sided tape, followed by gold
123 sputtering for 20s at 40 mA (Cressington 108; Ted Pella, Redding, CA, USA) to provide conductivity
124 to the surface and also as a MALDI matrix (Hansen et al., 2019a). Tissue samples were either
125 analyzed immediately or stored at -80 °C until the analysis.

126 **2.4 Sample preparation for MSI of epicuticular wax ion flower and stem**

127 For MALDI-MSI of epicuticular wax, *A. thaliana* were grown in the plant growth chamber for a
128 long-day condition and transferred to 15-mL centrifuge tubes filled with 35% D₂O medium on DAS
129 14. After 3 days of labeling, the plants that had entered to flower developmental stage C were
130 selectively harvested. Stem samples were taken from three regions, bottom (near to root), middle, and
131 top stem (near to flower). Flower and stem samples were attached onto stainless steel target plates
132 using conductive double sided carbon tape (Nissin EM, Tokyo, Japan). Forceps were used to attach
133 sample tissues onto the plate, while minimizing the contact with forceps to avoid physical damage.
134 All samples were dried in vacuum (~400 mTorr) for 75 min. An in-house ESI sprayer (Paulson et al.,
135 2023) was attached to TM sprayer nozzle (HTX Technologies, Chapel Hill, NC, USA), and used for
136 spraying colloidal silver as a matrix after 4:1 dilution (v/v) with methanol. The distance was kept at 3
137 cm between the tip of the ESI sprayer and the sample plate. The following conditions were used for
138 the automatic ESI spray: ESI voltage, +7 kV; sheath gas, 25 psi N₂; matrix flow rate, 0.03 mL/min;
139 robotic arm movement, eight passes at a 1200 mm/min. Colloidal silver (99.99% pure silver, 0.65
140 nm; 20 ppm) was purchased from Purest Colloids, Inc. (Westampton, NJ, USA).

141 **2.5 Mass spectrometry analysis and data processing**

142 All mass spectrometry analysis was conducted using a Q-Exactive HF Orbitrap MS (Thermo
143 Scientific, San Jose, CA, USA) with a MALDI/ESI dual source (Spectroglyph, Kennewick, WA,
144 USA) equipped with a 349 nm laser (Explorer One; Spectra Physics, Milpitas, CA, USA). For the
145 direct infusion ESI-MS analysis of arabidopsis, samples were diluted to 1:10 (v/v) using an ESI
146 solvent of chloroform:methanol (3:2, v/v) with 0.1% acetic acid, and analyzed in positive mode ESI
147 at +3 KV. Ten microliters of sample was injected through a loop injection at the flow rate of 10
148 $\mu\text{L}\cdot\text{min}^{-1}$ using the ESI solvent. Data were collected for the *m/z* range of 600-1100 with the mass
149 resolution of 120,000 at *m/z* 200. MS/MS analysis was performed for structural analysis under the
150 same condition as direct infusion ESI-MS using extracts prepared as indicated above. Isolation
151 window was 0.4 Da and collision energies were optimized for each metabolite. For the MALDI-MSI
152 of chloroplast lipids and epicuticular wax, tissue samples were analyzed in positive mode with the
153 mass resolution of 120,000 at *m/z* 200, and a raster steps of 30-50 μm . Data were collected for the
154 *m/z* range of 750-1100 for chloroplast lipids, and 300-600 for epicuticular wax, respectively.

155 Raw data were converted to imzML files using Image Insight (Spectroglyph), and loaded into
156 MSiReader (North Carolina State University; Raleigh, NC, USA) software (Robichaud et al., 2013).
157 The average spectrum was obtained for the entire data **using XCalibur (Thermo Scientific)** or for
158 the specific region of interest (ROI) using MSiReader and was used for the subsequent abundance or
159 isotopologue analysis. For the visualization of the fractional abundance of deuterium, the *m/z*
160 abundance and position data (X, Y) were exported into an Excel file using MSiExport tool of
161 MSiReader. This file was then imported into MATLAB (Mathworks, Natick, MA), and the fractional
162 abundance of deuterium was visualized. ElemCor was used to deconvolute natural isotope
163 contribution and obtain pure D-labeling isotopologue distributions (Du et al., 2019). The mass
164 tolerance of 2 ppm was used to identify the monoisotope peaks, and MS images were produced with
165 ± 2.5 ppm, except for 3-day MS images, in which ± 5 ppm was used due to highly abundant ¹³C
166 isotopes.

167 **3 Results**

168 **3.1 The effects of D₂O on arabidopsis**

169 *A. thaliana* plants were hydroponically grown in 0.5x HM until DAS 28 and transferred to new 0.5x
170 HM with or without 35% D₂O. The plants were harvested after four incubation times (30, 60, 180,
171 and 540 min) to monitor the abundance changes in arabidopsides. The identity of these lipids were
172 confirmed with MS/MS as shown in **Supplementary Figure S1** for arabidopside A, arabidopside B,
173 and MGDG 34:6, matching with the literature (Hu et al., 2012; Hansen et al., 2019b). The direct
174 infusion ESI-MS results are shown in **Figure 1A** and **1B** for the relative abundance of arabidopside
175 A and arabidopside B, respectively, the two most abundant arabidopsides known for significant
176 increase upon wounding (Stelmach et al., 2001; Buseman et al., 2006; Vu et al., 2012; Hansen et al.,
177 2019b). The abundance of arabidopside A and B were normalized by their precursors, MGDG 34:6
178 and MGDG 36:6, respectively. Upon transferring to new media, arabidopside A and B were slightly
179 increased in both H₂O and D₂O medium, peaking at 30 min and 60 min, respectively. While the
180 change in H₂O medium was completely insignificant ($p = 0.44$ and 0.84 for arabidopside A and B,
181 respectively, at 60 min), the change in D₂O showed a minute difference ($p = 0.17$ and 0.19 for
182 arabidopside A and B, respectively, at 60 min) compared to time zero. However, the difference was
183 not significant, and the arabidopside abundances were reverted to initial levels in a few hours. This
184 suggests that the observed changes may be partially attributed to a stress response from the transfer
185 procedure, and the effect of D₂O stress was rather minor to arabidopsides.

186 To further verify, we performed another experiment comparing the D₂O stress response and the
187 wounding response. **Figure 1C** shows the arabidopside abundances 15 min after wounding compared
188 to 60 min after transferring to H₂O or D₂O medium. With the sample size increase ($n = 7$), the
189 abundance differences in arabidopside A and B were now slightly significant ($p < 0.01$ and 0.05,
190 respectively) when comparing 35% D₂O and H₂O. However, the abundance increase was much
191 smaller than the increase of arabidopsides after wounding. We concluded that D₂O stress response
192 was relatively minor compared to other abiotic stress such as wounding. Similar trend was observed
193 for arabidopside D when comparing 60 min D₂O incubation with time zero or wounding response
194 (**Supplementary Figure S2**). In contrast to arabidopside A and B, however, arabidopside D had a
195 higher abundance up to 180 min in both H₂O and D₂O. It should be noted that direct infusion ESI-
196 MS is expected to be sufficient for the current purpose considering high mass resolution used in this
197 study should be able to distinguish most interferences for these lipids, but further verification might
198 be necessary with LC-MS to confirm the observed trend.

199 We also sought to observe deuterated arabidopsides, but there were not enough signals detected for
200 D-labeling within a few hours or even after a few days. This is attributed to the dilution of already
201 low arabidopside signals into multiple isotopologues. After multiple trials, we could detect deuterated
202 arabidopsides after wounding *fer* mutant with multiple days of labeling (**Figure 2**). We have
203 previously reported arabidopsides are highly enriched in *fer* mutant and increased further with
204 wounding (Hansen et al., 2019b). After growing *fer* mutants in 0.5x HM until DAS 28, *fer* mutants
205 were incubated in 35% D₂O medium for 12 days. The lipid extract from the leaves harvested after 15
206 min wounding was subject to direct infusion ESI-MS analysis. When the isotopologue profiles were
207 compared between the two arabidopsides and their MGDG precursors, they were very closely
208 matching, showing a similar D-incorporation pattern (**Figure 2**). There were slightly lower relative
209 abundances for arabidopsides than those of precursors in high deuteration (e.g., D₁₅ or higher), which
210 is expected considering arabidopsides have four fewer carbon-bound hydrogens than the precursors
211 as can be seen in binomial distribution simulation (**Supplementary Figure S3**).

212 **3.2 Mass spectrometry imaging of D-labeled chloroplast lipids**

Similar to the MSI_i of duckweed with D₂O labeling (Tat and Lee, 2024), we performed MSI_i of *A. thaliana* with D₂O-labeling to visualize the chloroplast lipids on leaves, specifically chlorophyll *a*, MGDGs and DGDGs. The aim was to elucidate spatial differences in their biosynthesis within the leaf tissues by monitoring deuterium incorporation into these lipids. *A. thaliana* were grown in 0.5x HM until DAS 28, then transferred to 35% D₂O medium for 3-12 days before subjected to MALDI-MSI with fracturing method (Klein et al., 2015). Fracturing method allows to split a leaf tissue into two halves across the longitudinal direction so that the internal mesophyll layers are exposed for the interrogation by laser in MALDI-MSI. While tissue damage is unavoidable in this sample preparation, the structural integrity was reported to have been mostly maintained at least at a resolution of ~10 μm in the SEM images. As shown in **Supplementary Figure S4**, the shift of mass spectral features was observed for the major lipids due to deuterium incorporation.

Supplementary Figure S5D-S5F shows a series of MS images with various deuterium incorporation for MGDG 36:6, DGDG 36:6 and pheophytin *a* (chlorophyll *a* after losing Mg²⁺ during MALDI-MS) on the fourth true leaf of *A. thaliana* incubated in 35% D₂O for 6 days. Interestingly, depending on the number of deuteration, there was a gradual change in localization from the tip of the leaf toward the base. In both galactolipids and pheophytin *a*, unlabeled monoisotope peaks (M0) were localized mostly at the tip of the leaf. As the number of deuteration increases, the distribution slowly propagates throughout the blades, with more or less even distribution for M6 or M7, then more localized toward the base for M12. MS images obtained after 12 days of D₂O labeling showed similar patterns but with many more deuterations, M10 or M11 being most abundant (**Supplementary Figure S5G-S5I**). Similar behavior was observed for MS images obtained after 3 days of D₂O labeling, although it was not as clear due to much less D-labeling and highly abundant unlabeled monoisotope (M0) and its ¹³C isotope (M1, M2) throughout the leaf (**Supplementary Figure S5A-S5C**). Similar trend was observed for other galactolipids, MGDG 34:6 and DGDG 34:6 (not shown).

To ensure the MS images of D-labeling is not an artifact due to the different levels of cell development in each cell, the fractional abundance of deuterium, F_{D-label}, was calculated at each spot and visualized as shown in **Figure 3** for 6-day D-labeling data. F_{D-label} can be calculated by the following equation and represents how much fraction of hydrogen is labeled out of the total hydrogens including those from the pre-existing unlabeled molecules (Larson et al., 2022).

$$F_{D-label} = \frac{(MW_{D_2O} - MW_{H_2O})/(m_D - m_H)}{(\text{number of } H_{c-bound}) \times (D_2O \text{ conc.})} \times 100 \text{ (%)}$$

where MW_{D₂O} and MW_{H₂O} represent the average molecular weights of the lipid species in D₂O and H₂O, respectively, and m_D – m_H is the mass difference between a deuterium and a hydrogen atom, 1.00627 Da. The number of H_{c-bound} refers to the number of hydrogen atoms bound to carbon within the lipid molecule that are available to be labeled by deuterium. Here, we considered only carbon-bound hydrogens because the washing step during the fracturing will provide the back exchange of exchangeable hydrogens (e.g., -OH). D₂O conc. represents the concentration of D₂O in the experiment, 35% in our experiment. The images of F_{D-label} showed similar patterns for all three lipid species. F_{D-label} was close to 1.5% at the tip of the leaf but gradually increasing toward the base with ~32% at the very end of base. This visualization removes the apparent cell-to-cell variation in raw signals, such as high abundance of galactolipids or low abundance of pheophytin *a* on the mid-vein (**Supplementary Figure S5D-S5F**). Almost no labeling at the leaf tip and the highest labeling at the leaf base coincide with the fact that the leaf base is cell proliferation zone with active cell growth while the leaf tip is matured zone with almost no new cells.

257 As D-labeling was most active at the leaf base, we calculated the D-labeling efficiency of five major
258 lipids for 3, 6, and 12 days of D₂O-labeling with the base of leaf as the region of interest (ROI), as
259 indicated in **Supplementary Figure S6**. It is similar to F_{D-label} but excluding pre-existing unlabeled
260 molecules and can be calculated using the following equation (Larson et al., 2022).

261
$$\text{D - Labeling efficiency} = \frac{\text{Average number of D}}{(\text{number of H}_{\text{c-bound}}) \times (\text{D}_2\text{O conc.})} \times 100 \text{ (%)}$$

262 Namely, D-labeling efficiency is a fraction how many deuterium are labeled in average compared to
263 theoretically possible. One technical consideration was the fact that there are significant ¹³C₁- and
264 ¹³C₂-natural isotope contribution that cannot be separated from D₁- and D₂-labeling with the mass
265 resolution used in this study. ElemCor software (Du et al., 2019) was used to deconvolute this natural
266 isotope abundance and obtain pure D-labeling efficiencies. As shown in **Figure 4**, pheophytin *a* had
267 D-labeling efficiency of 14% on Day 3, increased to 31% on Day 6, then increased further to 52% on
268 Day 12. In contrast, D-labeling efficiency was much lower than that of pheophytin *a* for all
269 galactolipids on Day 3, 7-10%, but increased to a similar level with pheophytin *a* by Day 6 and after.

270 3.3 D-labeling on epicuticular wax in the flower development

271 As the last example, we applied the D₂O-labeling to the epicuticular wax on flower and various parts
272 of stem. In the long-day condition, *A. thaliana* were transferred to 35% D₂O medium on DAS 14
273 about three days before flowering. After 3 days of labeling, the plants were harvested that had
274 entered flower developmental stage C, where emerging petals are perpendicular to the flower axis,
275 resulting in a clear physical separation from the adjacent tissues. As we have demonstrated
276 previously (Jun et al., 2010), use of colloidal silver as a matrix can ionize hydrophobic epicuticular
277 wax as silver ion adducts and visualize their localization across the flower surface with MALDI-MSI.
278 Mass spectra of D-labeled C29 alkane and C29 ketone are shown in **Supplementary Figure S7**.

279 **Figure 5** shows the MS images of D₃-labeled C30 aldehyde, C29 alkane, and C29 ketone on an *A.*
280 *thaliana* flower. Successful deuterium incorporation in just three days of labeling indicates that these
281 surface lipids are synthesized rapidly during the flower developmental stage. D-labeled metabolites
282 on each tissue of the flower showed unique distribution. C29 alkane was the most abundant on the
283 petal and stamen, and widely distributed among tissues. In contrast, C29 ketone and C30 aldehyde
284 were localized on the carpel of the flower. It is consistent with the previous report except for C30
285 aldehyde, which was not detected in the previous work due to the low mass resolution (Jun et al.,
286 2010). In a similar experiment for **Figure 6**, various parts of the stem (bottom, middle, near the
287 flower) were harvested to interrogate with MALDI-MSI as well as the flower. **Supplementary**
288 **Figure S8** shows the MS images of C29 ketone with various amount of deuteration on the flower and
289 the middle section of the stem. In both flower and mid-stem, up to six or seven deuterations could be
290 observed but three D-labeling (M3) was the most abundant in flower, but unlabeled C29 ketone (M0)
291 was the most abundant in mid-stem, which is not surprising considering there must be a significant
292 amount of pre-existing epicuticular wax in stem before transferred to D₂O medium. **Figure 6A** and
293 **6B** shows the isotopologue patterns of C29 ketone and C30 aldehyde (a precursor of C29 ketone) on
294 various parts of stem and carpel of the flower. Overall, there was a high level of deuterium
295 incorporation into C30 aldehyde in most tissues, but there was no or very little deuterium
296 incorporation into C29 ketone in mid or bottom part of the stem. This dramatic change between the
297 lower parts of stem vs near or on the flower can be more quantitatively compared using F_{D-label},
298 shown in **Figure 6C**. F_{D-label} for C30 aldehyde was already ~12% on bottom and mid stem after 3
299 days of D₂O labeling, slightly lower than top part of stem and flower, 16-17%. However, there was
300 only 0-3% of F_{D-label} for C29 ketone in lower stem, but ~10 and ~15% on top part of the stem and

301 flower, respectively. In other words, the conversion ratio of C30 aldehyde to C29 ketone was ~20%
302 or less on lower stem but 60 to 90% on the top part of the stem and flower.

303 **4 Discussion**

304 **4.1 Hydroponic culture with 35% D₂O provides significant but minor stress to Arabidopsis.**

305 For the first time, D₂O labeling was successfully applied to the MSIi of *A. thaliana*, a terrestrial
306 plant, using a hydroponic culture. Although unnatural for terrestrial plants, hydroponic culture is
307 commonly used for the D₂O labeling of *A. thaliana* to precisely control isotope concentrations (Åstot
308 et al., 2000; Yang et al., 2010). Van Delden and co-workers performed a systematic investigation on
309 the effect of nutrient solutions in the hydroponic culture of *A. thaliana* (Van Delden et al., 2020).
310 Nutrients with too high salt concentrations, such as in Murashige and Skoog, resulted in low biomass
311 on DAS 48. Among the best performing nutrients they reported, we adopted 0.5x HM for hydroponic
312 culture in this study. High D₂O concentration is toxic to any biological organisms and gradually
313 inhibits the root development of Arabidopsis as the D₂O concentration increases from 0 to 40%
314 (Yang et al., 2010). A concentration of 30% D₂O significantly altered gene expression in the short
315 term (4 h) compared to the long term (7 day), indicating an adaptation to D₂O induced stress (Evans
316 and Shah, 2015). To avoid the adverse effect in root development by D₂O induced stress, *A. thaliana*
317 was grown to DAS 14 or 28 in hydroponic culture before transferring to 35% D₂O medium in this
318 study.

319 Before we perform MSIi, we first studied the effect of D₂O on arabiopsides. D₂O concentration of
320 35% was used in all the experiments to maximize D-labeling but it may induce abiotic stress. Most
321 known as a wounding response, previous studies have reported that various stress resulted in the
322 accumulation of arabiopsides in *A. thaliana* in less than one hour (Stelmach et al., 2001; Buseman et
323 al., 2006; Vu et al., 2012). Another study reported that *A. thaliana* in 30% D₂O altered gene
324 expression related to wounding, with 16 genes up-regulated and one gene down-regulated after 4
325 hours of growth (Yang et al., 2010). It is not previously known, however, whether D₂O would
326 increase arabiopsides as abiotic stress. Considering previous reports, we hypothesized that D₂O
327 induced stress response may result in an increase of arabiopsides. Albeit slight, arabiopside A and
328 B were increased initially, supporting our hypothesis, but reverted to the normal level within a few
329 hours (**Figure 1**). The maximum increase after 60 min in D₂O medium was twice less than the
330 increase induced by wounding response, suggesting the D₂O induced stress might be relatively minor
331 and may not have serious long-term consequences. In fact, there was no apparent difference between
332 non-labeled vs labeled plants even after 12 days of labeling.

333 We tried all our efforts to visualize deuterated arabiopsides but unfortunately the amount of
334 arabiopsides were so low that they were not detected by MALDI-MSI. It is a downside of MSIi with
335 D₂O labeling that D-labeled metabolites can often be detected only for major species because the
336 binomial distribution of H- vs D-labeling results in the dilution of D-labeled metabolites to a wide
337 isotopologue distribution with multiple deuterations. Deuterated arabiopsides could be finally
338 detected by combining multiple strategies without visualization, including 1) direct infusion ESI-MS,
339 2) twelve days of D₂O labeling, 3) use of *fer* mutant, 4) wounding, and 5) combining multiple leaves.
340 When deuterium isotopologue distributions were compared, deuteration patterns were very closely
341 matching between arabiopsides and their precursors (i.e., MGDG 34:6 vs arabiopside A, MGDG
342 36:6 vs arabiopside B) (**Figure 2**). These data support a previous report that lipoxygenase oxidizes
343 both fatty acid chains in MGDGs to form arabiopsides after wounding (Stelmach et al., 2001).

344 **4.2 D-labeling of chloroplast lipids show gradual deuteration from the leaf tip to the base.**

345 In the second set of experiment, D-labeled chloroplast lipids were successfully visualized in MSI*i*
346 with D₂O labeling for 3, 6, and 12 days. To our surprise, the MS images of MGDG, DGDG, and
347 pheophytin *a* showed gradual changes across the leaf tissues depending on the fractional abundance
348 of deuterium (**Figure 3**) or the number of deuterations (**Supplementary Figure S5**). Further, their D-
349 labeling efficiencies at the leaf base increased slowly from Day 3 to Day 6 and 12 of D₂O labeling
350 (**Figure 4**). To explain the gradual spatiotemporal change in D-labeling of the chloroplast lipids, we
351 hypothesize that 1) the internal D₂O concentration changes very slowly over many days and 2) there
352 is D₂O concentration gradient across the entire plant. Water is a precious resource to terrestrial plants,
353 and it is released mostly through stomata with a tight regulation. Epicuticular wax cover all the air-
354 exposed plant surfaces, protecting water evaporation on other places. The transpiration rate seemed to
355 be very low in the given condition because we had to supplement only 0.5-1.0 mL of medium per
356 day. As a result, its internal D₂O concentration would not change immediately when the plants were
357 transferred to 35% D₂O medium but increases slowly over many days with a gradient across the
358 entire plant. Accordingly, the amount of D-labeling in the chloroplast lipids would be subject to
359 available D₂O concentration at a given cell at the time of their synthesis. The low D-labeling at the
360 leaf tip is attributed to 1) the lower D₂O concentration than at the leaf base and 2) being mostly "old
361 tissues" synthesized when D₂O concentration was even lower. Another explanation is a higher flux to
362 these lipids at the leaf base than at the leaf tip, which is supported by the fact that the leaf base is a
363 proliferation zone with active cell growth. While it can explain the gradual change of D-labeling
364 across the leaf tissues, it cannot explain the increase of D-labeling efficiency over time, suggesting
365 the D₂O concentration gradient might be the main reason for the spatiotemporal change in D-
366 labeling.

367 The gradual change of D-labeling across the leaf tissues is in contrast to our recent work in D₂O
368 labeling of duckweeds (*Lamna minor*) (Tat and Lee, 2024), in which three distinct isotopologue
369 groups of galactolipids were found for the first few days of labeling due to the partial D-labeling of
370 structural moieties. Their MS images, however, were essentially identical for the same isotopologue
371 groups, localized to parent frond tissues for galactose only D-labeling, intermediate tissues for
372 galactose and a fatty acyl chain D-labeling, and newly grown daughter frond tissues for the D-
373 labeling of entire molecule. It is because *L. minor*, as an aqua plant, has its fronds fully in contact
374 with water on abaxial side and thus has the same D₂O concentration across its fronds. Unlike D₂O
375 labeling of duckweeds, we could not observe the separation of each isotopologue group in D₂O
376 labeling of *Arabidopsis*, which is attributed to the combination of low signals, a lower D₂O
377 concentration (35% vs 50%), and a lower D-labeling efficiency (~50% vs ~97%).

378 Another interesting observation is that pheophytin *a* had a higher D-labeling efficiency than
379 galactolipids on Day 3, but similar on Day 6 and 12 (**Figure 4**), although not significant (*p* =
380 0.08~0.13) except for DGDG 36:6 (*p* = 0.04) due to the low sampling size (*n*=3). In our previous
381 D₂O labeling experiments of duckweeds (Tat and Lee, 2024), pheophytin *a* showed only one
382 isotopologue pattern corresponding to the D-labeling of entire molecule even in very early days of
383 labeling unlike galactolipids, which was attributed to the fast biosynthesis of pheophytin *a*. Similar to
384 duckweed, we expect pheophytin *a* would be fully labeled by Day 3 in *A. thaliana* due to its fast
385 biosynthesis, only limited by the low cellular D₂O concentration, but newly synthesized galactolipids
386 might be a mixture of partial and entire molecule labeling on Day 3, although there is no clear
387 separation among isotopologue groups, resulting in a low apparent D-labeling efficiency when
388 averaged together.

389 **4.3 D-labeling of epicuticular wax show tissue-specific metabolic conversion difference.**

390 As the last example, D-labeled epicuticular wax were imaged on stage C flower and several different
391 locations of stems (**Figure 5, Supplementary Figure S8**). These lipids with very long chain fatty
392 acids (VLCFAs) have a crucial role in forming the barrier on the outer plant surface (Yeats and Rose,
393 2013) and change dynamically during the flower developmental stages (Alexander et al., 2021). The
394 three particular lipids that are visualized, C30 aldehyde, C29 alkane, and C29 ketone, are in the same
395 alkane-forming pathway (Jenks et al., 2002). While C29 alkane was most abundant among all surface
396 lipids in *A. thaliana* and could be detected as a silver ion adduct in MALDI-MS using colloidal silver
397 as a matrix, the ionization efficiency was very low and deuterated C29 alkane could be detected only
398 on flower, but not on stems.

399 When the relative abundances of deuteration were compared between C29 ketone (final product) and
400 C30 aldehyde (a precursor of C29 ketone), the conversion ratio of newly synthesized C30 aldehyde
401 to C29 ketone was the highest on carpel followed by the top part of the stem near the flower, ~90 and
402 ~60%, respectively, but very low on middle and low part of the stem, as determined by the fractional
403 abundance of deuterium (**Figure 6**). The highest conversion rate on the carpel suggests the important
404 role of C29 ketone in the reproduction of *A. thaliana*. It is intriguing why the conversion rate is very
405 high on the top part of the stem, while very low in the middle or bottom part of the stem, which is in
406 contrast to the lignin biosynthesis on *Arabidopsis* stems. Wang and co-workers reported the
407 incorporation of ¹³C₆-Phe was most active near the base of the stem than in the top when cut stems
408 were incubated with the medium supplemented by ¹³C₆-Phe (Wang et al., 2018). Our result suggests
409 the enzymes involved in the conversion of C30 aldehyde to C29 ketone (aldehyde decarbonylase,
410 alkane hydrolase, or alcohol oxidase) may not be strictly tissue type specific but rather have high
411 expression near the flowers.

412 **4.4 Broad implication and limitation of this study.**

413 MSIi can elucidate the fine details of tissue-specific or cell-specific metabolism beyond MSI or
414 isotope tracing alone can offer. For example, by monitoring M3 vs M6 UDP-glucose as a marker for
415 glycolysis vs gluconeogenesis, differential metabolic activity could be observed between cortex and
416 medulla in MSI of mouse kidney by infusing [U-¹³C]glycerol or [U-¹³C]glucose (Wang et al., 2022).
417 In plants, there have been limited MSIi studies reported so far using stable isotopes. MSI of
418 developing seeds of camelina and pennycress labeled with [U-¹³C]glucose showed a higher ¹³C-
419 labeling in the cotyledons compared to the embryonic axis (Romsdahl et al., 2021). They also
420 observed a higher isotope enrichment in PC species with more saturated and longer chain fatty acids,
421 which was attributed to more rapid fatty acid elongation than desaturation. Using D₄- and ¹³C₉-Tyr,
422 new metabolites involved in Tyr metabolism were discovered and visualized in *Spirodela polyrhiza*
423 (Feldberg et al., 2018). Genotypic and developmental differences in free amino acids were visualized
424 in MSI of maize root cross-sections (O'Neill and Lee, 2020), in which ¹⁵N-ammonium was used to
425 differentiate between external (¹⁵N from media) and internal (¹⁴N from seeds) nitrogens. Nitrogen-
426 containing specialized metabolites were visualized in *Catharanthus* using ¹⁵N-labeling (Nakabayashi
427 et al., 2017). As discussed in the prior section, 50% D₂O labeling of duckweeds showed a partial
428 labeling of galactolipids, and revealed their spatiotemporal changes (Tat and Lee, 2024). Many more
429 MSIi studies are expected in the near future to unveil plant metabolic biology in unprecedented
430 spatiotemporal details.

431 The current MSIi study of *Arabidopsis* confirms some of the strengths and weaknesses of this
432 technological platform, specifically with D₂O labeling. A low sensitivity is a critical obstacle in MSI

433 in general hampered by micron-size small sampling size in each pixel, which is exacerbated in MSI*i*
434 because the same metabolite is split among isotopologues. It is particularly worse in D-labeling
435 compared to ¹³C or ¹⁵N because the maximum D₂O concentration is limited to 35-50% due to
436 toxicity, resulting in a wide isotopologue distribution with various degrees of partial labeling. D₂O
437 induced stress is another limitation in D-labeling, as it may lead to potential artifact. It is virtually
438 non-existent in ¹³C or ¹⁵N-labeling, with the minimum kinetic isotope effect for heavy isotopes. The
439 most benefit of D-labeling in MSI*i*, especially in plants, is that D₂O is a sole source of all hydrogens
440 in plants and easy to incorporate in hydroponic culture. It is in contrast to ¹³C or ¹⁵N. A completely
441 sealed growth chamber is required for a long-term ¹³CO₂ labeling while [U-¹³C]glucose enters carbon
442 metabolism almost exclusively through glycolysis. ¹⁵N-labeling should take into account a
443 complication coming from nitrogen fixation or transportation difference between ammonium and
444 nitrate and among plant species.

445 MSI or MSI*i* of primary metabolites is very difficult due to their low ionization efficiencies and
446 many possible structural isomers. Instead, lipids are most commonly interrogated by MSI including
447 this work thanks to their high abundance in cell membranes, minimum loss and less diffusion during
448 the sample preparation, and much smaller number of structural isomers. D₂O labeling is particularly
449 attractive for the isotope tracing of lipids as successfully demonstrated for *Arabidopsis* in this work
450 and previously for duckweeds. While many isomers are still possible for the lipid species with the
451 same molecular formulae depending on fatty acid chain length, sn-position, and double bond
452 position, many technical advancements are being made to resolve this issue including MS/MS
453 imaging (Sun et al., 2023), MSI with ion mobility separation (Jiang et al., 2023), and ozone (Claes et
454 al., 2021) or other chemical reactions (Li et al., 2024) to determine double bond position.

455 5 Conflict of Interest

456 The authors declare that the research was conducted in the absence of any commercial or financial
457 relationships that could be construed as a potential conflict of interest.

458 6 Author Contributions

459 Y.L. conceived the idea and developed the initial hydroponic culture. S.N. performed all the
460 experiments and data analysis. The manuscript was written through contributions of both authors.

461 7 Funding

462 This work is supported by the National Science Foundation, Plant Genome Research Program [GR-
463 025234-00001].

464 8 Acknowledgments

465 We acknowledge Prof. Hongqing Guo for providing us *fer* mutants.

466 9 Reference

468 Alexander, L. E., Gilbertson, J. S., Xie, B., Song, Z., and Nikolau, B. J. (2021). High spatial
469 resolution imaging of the dynamics of cuticular lipid deposition during *Arabidopsis* flower
470 development. *Plant Direct* 5, e00322. doi: 10.1002/pld3.322

471 Alseekh, S., and Fernie, A. R. (2018). Metabolomics 20 years on: what have we learned and what
472 hurdles remain? *Plant J.* 94, 933–942. doi: 10.1111/tpj.13950

473 Åstot, C., Dolezal, K., Moritz, T., and Sandberg, G. (2000). Deuterium in vivo labelling of cytokinins
474 in *Arabidopsis thaliana* analysed by capillary liquid chromatography/frit-fast atom
475 bombardment mass spectrometry. *J. of Mass Spectrom.* 35, 13–22. doi: 10.1002/(SICI)1096-
476 9888(200001)35:1<13::AID-JMS901>3.0.CO;2-I

477 Buseman, C. M., Tamura, P., Sparks, A. A., Baughman, E. J., Maatta, S., Zhao, J., et al. (2006).
478 Wounding Stimulates the Accumulation of Glycerolipids Containing Oxophytodienoic Acid
479 and Dinor-Oxophytodienoic Acid in *Arabidopsis* Leaves. *Plant Physiol.* 142, 28–39. doi:
480 10.1104/pp.106.082115

481 Cha, S., Song, Z., Nikolau, B. J., and Yeung, E. S. (2009). Direct Profiling and Imaging of
482 Epicuticular Waxes on *Arabidopsis thaliana* by Laser Desorption/Ionization Mass
483 Spectrometry Using Silver Colloid as a Matrix. *Anal. Chem.* 81, 2991–3000. doi:
484 10.1021/ac802615r

485 Claes, B. S. R., Bowman, A. P., Poad, B. L. J., Young, R. S. E., Heeren, R. M. A., Blanksby, S. J., et
486 al. (2021). Mass Spectrometry Imaging of Lipids with Isomer Resolution Using High-
487 Pressure Ozone-Induced Dissociation. *Anal. Chem.* 93, 9826–9834. doi:
488 10.1021/acs.analchem.1c01377

489 Du, D., Tan, L., Wang, Y., Peng, B., Weinstein, J. N., Wondisford, F. E., et al. (2019). ElemCor:
490 accurate data analysis and enrichment calculation for high-resolution LC-MS stable isotope
491 labeling experiments. *BMC Bioinformatics* 20, 89. doi: 10.1186/s12859-019-2669-9

492 Evans, B. R., Bali, G., Foston, M., Ragauskas, A. J., O'Neill, H. M., Shah, R., et al. (2015).
493 Production of deuterated switchgrass by hydroponic cultivation. *Planta* 242, 215–222. doi:
494 10.1007/s00425-015-2298-0

495 Evans, B. R., Bali, G., Reeves, D. T., O'Neill, H. M., Sun, Q., Shah, R., et al. (2014). Effect of D₂O
496 on Growth Properties and Chemical Structure of Annual Ryegrass (*Lolium multiflorum*). *J.*
497 *Agric. Food Chem.* 62, 2595–2604. doi: 10.1021/jf4055566

498 Evans, B. R., and Shah, R. (2015). “Development of Approaches for Deuterium Incorporation in
499 Plants,” in *Methods in Enzymol.*, (Elsevier), 213–243. doi: 10.1016/bs.mie.2015.07.014

500 Feldberg, L., Dong, Y., Heinig, U., Rogachev, I., and Aharoni, A. (2018). DLEMMA-MS-Imaging
501 for Identification of Spatially Localized Metabolites and Metabolic Network Map
502 Reconstruction. *Anal. Chem.* 90, 10231–10238. doi: 10.1021/acs.analchem.8b01644

503 Genva, M., Obounou Akong, F., Andersson, M. X., Deleu, M., Lins, L., and Fauconnier, M.-L.
504 (2019). New insights into the biosynthesis of esterified oxylipins and their involvement in
505 plant defense and developmental mechanisms. *Phytochem Rev* 18, 343–358. doi:
506 10.1007/s11101-018-9595-8

507 Hansen, R. L., Dueñas, M. E., and Lee, Y. J. (2019a). Sputter-Coated Metal Screening for Small
508 Molecule Analysis and High-Spatial Resolution Imaging in Laser Desorption Ionization Mass
509 Spectrometry. *J. Am. Soc. Mass Spectrom.* 30, 299–308. doi: 10.1007/s13361-018-2081-0

510 Hansen, R. L., Guo, H., Yin, Y., and Lee, Y. J. (2019b). FERONIA mutation induces high levels of
511 chloroplast-localized Arabidopsisides which are involved in root growth. *Plant J.* 97, 341–351.
512 doi: 10.1111/tpj.14123

513 Hu, B., Lai, Y.-H., So, P.-K., Chen, H., and Yao, Z.-P. (2012). Direct ionization of biological tissue
514 for mass spectrometric analysis. *Analyst* 137, 3613. doi: 10.1039/c2an16223g

515 Jang, C., Chen, L., and Rabinowitz, J. D. (2018). Metabolomics and Isotope Tracing. *Cell* 173, 822–
516 837. doi: 10.1016/j.cell.2018.03.055

517 Jenks, M. A., Eigenbrode, S. D., and Lemieux, B. (2002). Cuticular Waxes of Arabidopsis. *The
518 Arabidopsis Book* 1, e0016. doi: 10.1199/tab.0016

519 Jiang, L.-X., Hernly, E., Hu, H., Hilger, R. T., Neuweger, H., Yang, M., et al. (2023). Nanospray
520 Desorption Electrospray Ionization (Nano-DESI) Mass Spectrometry Imaging with High Ion
521 Mobility Resolution. *J. Am. Soc. Mass Spectrom.* 34, 1798–1804. doi:
522 10.1021/jasms.3c00199

523 Jun, J. H., Song, Z., Liu, Z., Nikolau, B. J., Yeung, E. S., and Lee, Y. J. (2010). High-Spatial and
524 High-Mass Resolution Imaging of Surface Metabolites of *Arabidopsis thaliana* by Laser
525 Desorption-Ionization Mass Spectrometry Using Colloidal Silver. *Anal. Chem.* 82, 3255–
526 3265. doi: 10.1021/ac902990p

527 Klein, A. T., Yagnik, G. B., Hohenstein, J. D., Ji, Z., Zi, J., Reichert, M. D., et al. (2015).
528 Investigation of the Chemical Interface in the Soybean–Aphid and Rice–Bacteria Interactions
529 Using MALDI-Mass Spectrometry Imaging. *Anal. Chem.* 87, 5294–5301. doi:
530 10.1021/acs.analchem.5b00459

531 Larson, E. A., Rensner, J. J., Larsen, K. R., Bellaire, B., and Lee, Y. J. (2022). Rapid Antibiotic
532 Susceptibility Testing by Deuterium Labeling of Bacterial Lipids in On-Target Microdroplet
533 Cultures. *J. Am. Soc. Mass Spectrom.* 33, 1221–1228. doi: 10.1021/jasms.2c00056

534 Lee, D. Y., Bowen, B. P., and Northen, T. R. (2010). Mass spectrometry–based metabolomics,
535 analysis of metabolite–protein interactions, and imaging. *BioTechniques* 49, 557–565. doi:
536 10.2144/000113451

537 Lee, W. N., Bassilian, S., Ajie, H. O., Schoeller, D. A., Edmond, J., Bergner, E. A., et al. (1994). In
538 vivo measurement of fatty acids and cholesterol synthesis using D2O and mass isotopomer
539 analysis. *American Journal of Physiol.-Endocrinol. and Metabol.* 266, E699–E708. doi:
540 10.1152/ajpendo.1994.266.5.E699

541 Li, Y., Wang, Y., Guo, K., Tseng, K., Zhang, X., and Sun, W. (2024). Aza-Prilezhaev Aziridination-
542 Enabled Multidimensional Analysis of Isomeric Lipids via High-Resolution U-Shaped
543 Mobility Analyzer–Mass Spectrometry. *Anal. Chem.*, acs.analchem.4c00481. doi:
544 10.1021/acs.analchem.4c00481

545 Louie, K. B., Bowen, B. P., McAlhany, S., Huang, Y., Price, J. C., Mao, J., et al. (2013). Mass
546 spectrometry imaging for in situ kinetic histochemistry. *Sci Rep* 3, 1656. doi:
547 10.1038/srep01656

548 Matsuda, F., Okazaki, Y., Oikawa, A., Kusano, M., Nakabayashi, R., Kikuchi, J., et al. (2012).
549 Dissection of genotype–phenotype associations in rice grains using metabolome quantitative
550 trait loci analysis. *Plant J.* 70, 624–636. doi: 10.1111/j.1365-313X.2012.04903.x

551 Nakabayashi, R., Hashimoto, K., Toyooka, K., and Saito, K. (2017). Top-down Metabolomic
552 Approaches for Nitrogen-Containing Metabolites. *Anal. Chem.* 89, 2698–2703. doi:
553 10.1021/acs.analchem.6b04163

554 Nett, R. S., Guan, X., Smith, K., Faust, A. M., Sattely, E. S., and Fischer, C. R. (2018). D₂O
555 Labeling to measure active biosynthesis of natural products in medicinal plants. *AIChE J.* 64,
556 4319–4330. doi: 10.1002/aic.16413

557 O'Neill, K. C., and Lee, Y. J. (2020). Visualizing Genotypic and Developmental Differences of Free
558 Amino Acids in Maize Roots With Mass Spectrometry Imaging. *Front. Plant Sci.* 11, 639.
559 doi: 10.3389/fpls.2020.00639

560 Paulson, A. E., Larson, E. A., and Lee, Y. J. (2023). Mobilized Electrospray Device for On-Tissue
561 Chemical Derivatization in MALDI-MS Imaging. *J. Am. Soc. Mass Spectrom.* doi:
562 10.1021/jasms.3c00290

563 Robichaud, G., Garrard, K. P., Barry, J. A., and Muddiman, D. C. (2013). MSiReader: An Open-
564 Source Interface to View and Analyze High Resolving Power MS Imaging Files on Matlab
565 Platform. *J. Am. Soc. Mass Spectrom.* 24, 718–721. doi: 10.1007/s13361-013-0607-z

566 Romsdahl, T. B., Kambhampati, S., Koley, S., Yadav, U. P., Alonso, A. P., Allen, D. K., et al.
567 (2021). Analyzing Mass Spectrometry Imaging Data of ¹³C-Labeled Phospholipids in
568 *Camelina sativa* and *Thlaspi arvense* (Pennycress) Embryos. *Metabolites* 11, 148. doi:
569 10.3390/metabo11030148

570 Stelmach, B. A., Müller, A., Hennig, P., Gebhardt, S., Schubert-Zsilavecz, M., and Weiler, E. W.
571 (2001). A Novel Class of Oxylipins, sn1-O-(12-Oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-
572 monogalactosyl Diglyceride, from *Arabidopsis thaliana*. *J. of Biol. Chem.* 276, 12832–12838.
573 doi: 10.1074/jbc.M010743200

574 Sun, R., Tang, W., Li, P., and Li, B. (2023). Development of an Efficient On-Tissue Epoxidation
575 Reaction Mediated by Urea Hydrogen Peroxide for MALDI MS/MS Imaging of Lipid C=C
576 Location Isomers. *Anal. Chem.* 95, 16004–16012. doi: 10.1021/acs.analchem.3c03262

577 Tat, V. T., and Lee, Y. J. (2024). Spatiotemporal Study of Galactolipid Biosynthesis in Duckweed
578 with Mass Spectrometry Imaging and in vivo Isotope Labeling. *Plant and Cell Physiol.*,
579 pcae032. doi: 10.1093/pcp/pcae032

580 Van Delden, S. H., Nazarideljou, M. J., and Marcelis, L. F. M. (2020). Nutrient solutions for
581 *Arabidopsis thaliana*: a study on nutrient solution composition in hydroponics systems. *Plant
582 Methods* 16, 72. doi: 10.1186/s13007-020-00606-4

583 Vu, H. S., Tamura, P., Galeva, N. A., Chaturvedi, R., Roth, M. R., Williams, T. D., et al. (2012).
584 Direct Infusion Mass Spectrometry of Oxylipin-Containing *Arabidopsis* Membrane Lipids
585 Reveals Varied Patterns in Different Stress Responses. *Plant Physiol.* 158, 324–339. doi:
586 10.1104/pp.111.190280

587 Wang, L., Xing, X., Zeng, X., Jackson, S. R., TeSlaa, T., Al-Dalahmah, O., et al. (2022). Spatially
588 resolved isotope tracing reveals tissue metabolic activity. *Nat Methods* 19, 223–230. doi:
589 10.1038/s41592-021-01378-y

590 Wang, P., Guo, L., Jaini, R., Klempien, A., McCoy, R. M., Morgan, J. A., et al. (2018). A ^{13}C
591 isotope labeling method for the measurement of lignin metabolic flux in *Arabidopsis* stems.
592 *Plant Methods* 14, 51. doi: 10.1186/s13007-018-0318-3

593 Yang, X., Chen, W., Rendahl, A. K., Hegeman, A. D., Gray, W. M., and Cohen, J. D. (2010).
594 Measuring the turnover rates of *Arabidopsis* proteins using deuterium oxide: an auxin
595 signaling case study. *Plant J.* 63, 680–695. doi: 10.1111/j.1365-313X.2010.04266.x

596 Yeats, T. H., and Rose, J. K. C. (2013). The Formation and Function of Plant Cuticles. *Plant Physiol.*
597 163, 5–20. doi: 10.1104/pp.113.222737

598

599 **10 Supplementary Material**

600 The Supplementary Material for this article can be found online.

601 **11 Data Availability Statement**

602 Mass spectrometry imaging data used in this study are available upon request to the corresponding
603 author.

604 **12 Figure Captions**

605 **Figure 1.** Change in relative abundances of (A) arabinopside A and (B) arabinopside B in *A. thaliana*
606 after moving to H_2O or 35% D_2O medium ($n = 3$). (C) Comparison of relative abundances of
607 arabinopside one hour after moving to new media vs 15 min after wounding ($n = 7$). All the
608 abundance of arabinopside A and B were normalized by their precursors, MGDG 34:6 and MGDG
609 36:6, respectively. Arabinopside and MGDGs were all detected as Na^+ adduct.

610 **Figure 2.** Comparison of deuterium incorporation in arabinopides and their MGDG precursors in *fer*
611 mutant, which was incubated in 35% D_2O medium for 12 days, after 15 min wounding. (A)
612 arabinopside A and MGDG 34:6 and (B) arabinopside B and MGDG 36:6. Arabinopides were
613 detected as Na^+ adduct and MGDGs were detected as K^+ adduct. ElemCor was used to deconvolute
614 natural ^{13}C -isotopes.

615 **Figure 3.** Visualization of the fractional abundance of deuterium, $F_{\text{D-label}}$, for MGDG 36:6, DGDG
616 36:6 and pheophytin *a* on the fourth true leaf of *A. thaliana* incubated in 35% D_2O for 6 days. All
617 detected as K^+ adduct.

618 **Figure 4.** The comparison of D-labeling efficiency of pheophytin *a*, MGDGs, and DGDGs in the leaf
619 base after 3–12 days of D_2O labeling ($n = 3$). All detected as K^+ adduct. Contribution from the natural
620 ^{13}C isotope was deconvoluted using ElemCor.

621 **Figure 5.** (A) Optical and (B) MALDI-MS images of *A. thaliana* flower after 3 days of D_2O labeling
622 on DAS 14. MS images were obtained on the surface of flower as silver ion adducts, $[\text{M}^{+107}\text{Ag}]^+$.

623 **Figure 6.** Isotopologue distributions of deuterated (A) C30 aldehyde and (B) C29 ketone and (C)
624 their fractional abundance of deuterium, $F_{D\text{-label}}$, in various parts of *A. thaliana* after 3 days of D₂O
625 labeling ($n = 3$). All detected as $^{107}\text{Ag}^+$ adduct. Contribution from the natural ^{13}C isotope was
626 deconvoluted using ElemCor.