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ABSTRACT

Radical ring-opening (co)polymerization (RROP) provides an accessible method for synthesizing main chain degradable vinyl polymers. Although the applications of
reversible deactivation radical polymerization (RDRP) into RROP have been reported, the use of photo-mediated RDRP methods has received less attention than the
thermal process. Here, photo-RROP of the thionolactone dibenzo [c,e]-oxepine-5(7H)-thione (DOT) and methyl acrylate (MA) was studied using photo-iniferter (PI)
reversible addition-fragmentation (chain) transfer (RAFT) polymerization at ambient temperature without external radical initiators or photocatalysts. Despite the
occurrence of some side reactions including desulfurization-oxygenation and O-S isomerization of DOT promoted by photoexcited thiocarbonyl groups, polymers

with thioester linkages in the backbone were prepared, which degraded in the presence of amines and bleach.

1. Introduction

Degradable vinyl polymers are of increasing interest for many ap-
plications ranging from drug delivery, medical devices, sustainable
materials, and anti-biofouling coating [1-4]. While the degradation of
pendant groups in vinyl polymers generates a small loss of polymers
molecular weight, the degradation of the main chain/backbone disin-
tegrates polymers into small size fragments [5-8]. The synthesis of
backbone degradable vinyl polymers can be achieved through three
general strategies: 1) polymerization from degradable initiators/chain
transfer agents [9-12], 2) radical ring-opening (co)polymerization
(RROP) of cyclic monomers such as cyclic ketene acetals, allylic sulfi-
des/sulfones, lipoic acid, and thionolactone [13-20], 3) copolymeriza-
tion with reactive monomers that generates midchain radicals and
induces p-carbon fragmentation [21-23]. In addition, depolymerization
of vinyl polymers can be achieved above ceiling temperature (T.) or
below equilibrium monomer concentration (Meq) at higher tempera-
tures (>100 °C) [24-26].

Introduced separately by Roth and Gutekunst [27,28], thionolactone
dibenzo [c,e]-oxepine-5(7H)-thione (DOT) has seen increasing interest
as a versatile monomer for RROP to form degradable vinyl polymers via
formation of thioester linkages in the backbone. The versatility of DOT
in terms of relatively easy synthesis, diverse copolymerizability, and
facile degradation under benign conditions (i.e., aminolysis, thiolysis,
methanolysis and oxidation) has inspired its use in various applications
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spanning from drug delivery [29], pressure sensitive adhesive [30],
degradable networks [31], and 3D printing resin additive [32]. DOT was
polymerized using free radical polymerization (FRP) [27,33], thermally
initiated reversible addition fragmentation (RAFT) polymerization [28,
34], nitroxide mediated polymerization (NMP) [29,35], and atom
transfer radical polymerization (ATRP) [36]. It was copolymerized with
acrylates [27,28], acrylamides [27], acrylonitrile [27], styrene [33],
isoprene [29], maleimides [37], and methacrylates [38]. Other thio-
nolactone derivatives were also copolymerized with vinyl esters [39,40]
and styrene [41,42]. All the above methods require high temperature
(>60 °C) for the polymerization, and most require external radical ini-
tiators which lead to unfunctionalized polymer chains.

The photo-mediated controlled radical polymerization (CRP)/
reversible deactivation radical polymerization (RDRP) has witnessed
remarkable progress leading to the development of methods such as
photo-ATRP [43-45], photo-induced electron/energy transfer (PET)--
RAFT [46], photo-iniferter (PI)-RAFT [47], and photo mediated iodine
polymerization [48,49]. The benefits of light such as spatial and tem-
poral control, energy efficiency, short reaction time, and oxygen toler-
ance have facilitated the formation of well-defined polymers by
photo-RDRP  [50-55]. However, RROP of thionolactone via
photo-RDRP has not been yet investigated and the only examples of
applications of photo-RDRP in RROP (photo-RDRP-RROP) for gener-
ating degradable vinyl polymers are limited to cyclic ketene acetals and
allylic sulfide/sulfone macrocycles [56-58], albeit examples of
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Fig. 1. Radical ring-opening polymerization (RROP) of DOT with PI RAFT polymerization for the preparation of backbone degradable vinyl polymers.

photo-RDRP-RROP of other cyclic monomers (i.e., vinylcyclopropanes,
4-methylene-1,3-dioxolane, or cyclic allylic sulfides) which generate
non-degradable backbones were described [59-62].

In this study, we report PI RAFT copolymerization of methyl acrylate
(MA) and DOT with 4-cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]
pentanoic acid (CDTPA) as a chain transfer agent (Fig. 1). We were
especially interested in using PI RAFT due to its merits including
ambient temperature polymerization, photo-catalyst-free, visible light
photo-activation, absence of exogenous radical initiators, and moderate
oxygen tolerance [47,63]. It was expected that metal- and
photocatalyst-free conditions of PI RAFT would minimize the side re-
actions that are common for photoreactions of thiocarbonyl groups [64].
The side reactions of DOT in the photoexcited conditions were
comprehensively investigated to pave the way for future extension of
photo-mediated RDRP methods to other thionolactone derivatives.

2. Results and discussion

Photophysical properties of DOT and CDTPA. Considering our
aim to use RAFT polymerization for the copolymerization of DOT and

DOT0.31 mM
CDTPA 0.31 mM

A5.0- m—-T1
4.5

325 350 375
Wavelength (nm)

275 300 400 425

B 20, .

MA, which also relies on thiocarbonyl chemistry, it was necessary to
initially evaluate and compare the photophysical properties of DOT and
CDTPA. When the UV-VIS spectra of DOT were compared to CDTPA, it
was noticed that both DOT and CDTPA absorb in a similar region in the
UV (4nax = 280 nm and 299 nm for DOT and CDTPA, respectively) and
blue region (A4mgx = 433 nm and 450 nm for DOT and CDTPA, respec-
tively), which correspond to their n—n* and n—n* transitions
(Fig. 2A&B). However, the molar extension coefficient of n—x* transi-
tion of DOT was significantly higher than CDTPA (¢ = 453.2 M~ 'Cm™!
and 30.7 M~1Cm ™ at Apqy for DOT and CDTPA, respectively), giving rise
to the characteristic dark yellow color of DOT versus the light-yellow
color of CDTPA (Fig. 2C). Notably, the molar extension coefficient of
DOT and CDTPA are similar at the UV region (¢ = 1.17 x 10*M~1Cm™,
1.04 x 10* at Amay for DOT and CDTPA, respectively) suggesting that
both DOT and CDTPA could absorb equivalent photons at UV region to
undergo photochemical reactions.

PI RAFT copolymerization of DOT and MA with blue light.
Because PI RAFT polymerization employing CDTPA is best operative
under blue light irradiation [65], we performed the first experiments
with a commercial Kessil blue light source (456 nm, 75 mW/cmZ). DOT
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Fig. 2. UV-VIS spectra of 1—n* (A) and n—n* (B) transition of DOT and CDTPA compared to the emission of UV (370 nm), blue (456 nm) and green (525 nm) light
source and digital image (C) of DOT and CDTPA in DMF. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)
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Table 1

Properties of copolymers synthesized by RROP-PI RAFT copolymerization of DOT and MA..
Entry M/DOT Light (nm) Time (hr) bConv (%) My, he (x1000) M app (x1000) p

(M/DOT)

1 100/2.5 456 24 88/>95 8.5 4.5 1.28
2 100/5 456 27 76/>95 8.0 5.1 1.25
3 100/0 456 17 95>/- 8.2 10.9 1.08
4¢ 100/2.5 456 24 0/>95 - - -
5 100/10 456 43 68/>95 8.5 0.47 1.98
6f 100/2.5 456 27 83/>95 42.4 15.6 1.44
7 100/5 370 45 93/>95 9.5 4.4 1.67
8 100/0 525 7 0/30 - - -
98 100/2.5 525 48 58 > 95 - - -

(a) PI RAFT polymerization was carried out using CDTPA as a chain transfer agent in DMF using Kessil lights: Blue (456 nm, 75 mW/Cm?), UV (370 nm, 100 mW/Cm?)
and green (525 nm, 75 mW,/Cm?). Temperature of the reactor during the polymerization was 37 °C. [CDTPA], = 58 mM, [MA], = 5.8 M. (b) Monomer conversion was
determined by using 'H NMR spectroscopy. DOT conversion was based on the reduction of 'H NMR peaks at 5.15 and 5.45 p.m. and represent the conversion to both
thioester in the polymer and conversion to other side products. (c) Calculated by (conversion of MA x target DPya x MWypya) + (conversion of DOT x target DPpor X
MWpot) + MWcprpa. (d) Molecular weight (M, app) and dispersity (P) were determined by SEC analysis (THF as eluent). (e) Without RAFT agent. (f) OEOA4g, was used
as monomer. Molecular weight (My, .pp) and dispersity (D) were determined by SEC analysis (DMF as eluent). (g) CPDAP was used as CTA and MMA was used as

monomer.
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Fig. 3. 'H NMR of PMA-co-P(DOT) (entry 2, Table 1) after purification
in CDCls.

was synthesized and characterized by 'H NMR and gas
chromatography-mass spectrometry (GC-MS) according to the previous
literatures (Figs. S1-S2) [28]. The polymerization of MA with different
feed ratios of DOT (2.5 or 5 mol%) was carried out employing CDTPA as
a chain transfer agent in dimethylformamide (DMF). After 24 h, the
conversion of MA and thionolactone were 88 % and 95>%, respectively
(entry 1, Table 1). The final conversions of MA were reduced with
increasing the feed ratio of DOT (entry 2, Table 1). Furthermore, the
experiment without DOT in the feed resulted in a faster polymerization
rate and a narrower molecular weight distribution (entry 3, Table 1).
This suggests the successful copolymerization of DOT and MA and
agreed with previous literature where DOT acted as a retarder of the
polymerization [27,28]. 'H NMR of the purified copolymer (PMA-co-P
(DOT)) shows the broadening of aromatic peaks as well as the appear-
ance of new peaks at 4.1-4.3 ppm (Fig. 3), which were assigned to the
methine groups adjacent to the thioester [35]. Notably, new peaks at
5.0-5.2 ppm in 'H NMR and 170 ppm in *C NMR were also observed,
which were not present in 'H NMR of PMA-co-P(DOT) synthesized via
FRP and AIBN initiated RAFT polymerization [27,28]. This peak was
assigned to the desulfurization (dethionation)-oxidation side reaction of
DOT in photo-induced conditions (vide infra) [36]. The ratio of the peaks
for the side product at 5.0-5.2 ppm versus the thioester in the backbone
at 4.1-4.3 ppm was 49 %, suggesting that nearly half of DOT was lost
due to the side reactions. The control experiment without RAFT agent
under the blue irradiation resulted in no conversion of MA (<5 %, entry
4, Table 1), excluding the possibility of direct radical generation from
DOT in the presence of light. Nevertheless, it was observed that the
yellow color of DOT completely faded, and its characteristic peaks at
5.15 and 5.45 ppm in 'H NMR and 216 ppm in '3C NMR disappeared,

indicating the side reaction which led to the loss of thiocarbonyl group.
The polymerization with a higher content of DOT was unsuccessful and
led to the formation of polymers with significantly lower molecular
weight (M, app) than theoretical molecular weight (Mj, the), as measured
by SEC with poly(methyl methacrylate) (PMMA) standards. This was
attributed to the increased extent of side reactions of MA and DOT that
interfered with the polymerization (entry 5, Table 1). Also, the copo-
lymerization of DOT with another acrylic monomer, oligo(ethylene
oxide) methyl ether acrylate (average M, = 480, OEOA4g() was feasible
via PI RAFT polymerization (entry 6, Table 1; Fig. S3). This polymeri-
zation led to the formation of polymers with slightly higher dispersity
(b =1.44).

In all cases, polymers with monomodal size exclusion chromatog-
raphy (SEC) traces and narrow molecular weight distributions were
obtained (Fig. S4). We also noticed that My app of all polymers prepared
with DOT were lower than the M, . and also the control polymers
without DOT. This further supports the successful incorporation of DOT
into the copolymers, which may change the hydrodynamic volume of
polymers, resulting in different elution time in SEC.

Photo-induced desulfurization-oxygenation of DOT. The loss of
color in the polymerization of DOT and MA in the absence of a radical
source underpins the susceptibility of thionolactone to undergo side
reactions in photo-induced conditions. Interesting insights were ob-
tained when model reactions of DOT and MA were performed in
dimethyl sulfoxide (DMSO) under blue irradiation and analyzed by 'H
NMR, '3C NMR, and GC-MS (Figs. S5-S7). Upon irradiation of DOT and
MA in DMSO and disappearance of methine peaks adjacent to C=S (5.15
and 5.45 ppm in 'H NMR and 216.0 ppm in '3C NMR), new peaks
appeared at 5.0-5.2 ppm in 'H NMR and 170.0 ppm in 3C NMR. The
results revealed that DOT undergoes desulfurization-oxygenation and
converts to the (oxo)lactone dibenzo [c,e]oxepin-5(7H)-one (Fig. 4A).
Such desulfurization of DOT was reported in the previous literature
during ATRP and was catalyzed by copper (I) complexes [36]. Addi-
tionally, desulfurization of other thiocarbonyl derivatives was observed
in photo-induced conditions employing photocatalyst (i.e., eosin y (EY)
and chlorophyl) in the presence of ambient oxygen [66,67]. Neverthe-
less, DOT can undergo desulfurization-oxygenation in deoxygenated
conditions and the absence of photocatalysts via reaction with MA while
it remained nearly stable in DMSO alone.

We first speculated that water traces in the polymerization media are
the possible oxygen source for desulfurization of DOT, but the photo-
irradiation of DOT in the mixture of water and DMSO (1/1 v/v) resulted
in formation of mostly the O-S isomerization product [68], the thio-
lactone dibenzo [c,e]thiepin-5(7H)-one (Figs. S8-S10). Although the
mechanism of desulfurization-oxidation of DOT is still unclear and is not
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Fig. 4. Conversion of DOT to (oxo)lactone upon light irradiation after deoxygenation by N, sparging. The UV-VIS was measured at 3.5 mM of DOT in DMF and

conversions of n—n* at 434 nm were used for calculating the conversions.

the focus of this study, it is known that photo-excited thiocarbonyls react
with acrylates and form 4- and 5-membered thioether rings via 2-2
cycloaddition (Scheme S1), suggesting that monomers could be the
source of oxygen for this reaction [69,70].

The effect of solvent on the desulfurization-oxygenation of DOT was
also investigated using DMF, a typical solvent for the copolymerization
of DOT. We found that DOT can undergo side reactions in DMF even in
the absence of MA, possibly because DMF can act as a reagent in some
organic reactions too [71]. To get further insight into the effect of light
on the desulfurization of DOT in DMF, we monitored the kinetics of DOT
n—n* absorption reduction upon irradiation with UV, blue, and green
irradiation. As illustrated in Fig. 4, the irradiation with blue light yielded
the fastest decrease of absorbance of C=S of DOT, whereas the UV
irradiation resulted in ca. 3-Fold lower effects, albeit a UV light source
with higher intensity was used. Expectedly, the irradiation with green
light caused a negligible change in absorption, as there is very little
overlap of absorption of DOT with the emission of green light source
(Fig. 2). Collectively, these results suggest the extent of desulfurization
of DOT follows the increasing order of blue > UV > green. The effect of
two other solvents, namely anisole and toluene, in the photo-induced
side reaction of DOT was investigated. Both solvents were previously
used for RROP of DOT [35,38]. The results revealed that the loss of
yellow color upon blue light irradiation, which indicates the side reac-
tion, could not be prevented even in these non-polar solvents (Fig. S11).
Also, it was observed that the extent of conversion correlates with the
concentration of DOT, as the kinetics of conversion to (oxo)lactone
plummeted when a higher concentration of DOT was irradiated with
blue light.

PI RAFT copolymerization of DOT and MA with UV and green
light. Challenges surrounding the side reaction of DOT upon irradiation
with blue light may result in a significant loss of intact DOT for incor-
poration into the polymer’s main chain. The higher molar absorptivity
of DOT versus CDTPA suggests that DOT absorbs more photons and may
undergo side reactions more rapidly than CDTPA to generate radicals to
react with DOT. Indeed, the kinetics of polymerization of MA in the

presence of DOT indicated that >95 % of the DOT is consumed in 7 h
(incorporated into the polymers or converted to (oxo)lactone), while
only 19 % of MA formed polymers.

Given the less pronounced effects of UV light on DOT desulfuriza-
tion, we explored the photo-induced RROP of DOT and MA upon UV
irradiation. The copolymerization afforded polymers with broader mo-
lecular weight distribution (P = 1.67; entry 7, Table 1) and slower
polymerization rate (95 % conversion in 45 h), although the molar ab-
sorption of CDTPA was much higher in the UV region versus the blue
region, and UV light source with higher intensity (100 mW/Cm?) was
used for the polymerization. This observation is explained by the smaller
overlap of UV light source emission with the absorption of CDTPA
(Fig. 2), and the improved radical generation of trithiocarbonates upon
excitation of n—n* transition (blue light region) versus n—n* (UV re-
gion) [72]. 'H NMR analysis of the polymers prepared after UV irradi-
ation indicated that the peaks of the (oxo)lactone were still present. It
was concluded that although the desulfurization of DOT is much slower
with UV irradiation, the slower polymerization time results in longer
exposure of light to DOT which eventually results in a similar outcome
as blue light.

The reduced extent of DOT desulfurization under green light irra-
diation renders it as the best light source for photo-RROP of DOT. Thus,
we investigated the copolymerization of MA and DOT using another
RAFT agent, the dithioester 4-cyano-4-(phenylcarbonothioylthio)penta-
noic acid (CPDAP), because the photoactivation of CDTPA by green light
did not occur (entry 8, Table 1) [47]. The extension of copolymerization
of MA and DOT to green light employing CPDAP was also not possible,
and no polymerization of MA happened in DMF after green light irra-
diation. This is because the dithioesters are typically considered ineffi-
cient RAFT agents for the polymerization of acrylates [73]. Replacing
MA with methyl methacrylate (MMA), however, afforded 58 % and >95
% conversion of MMA and DOT by green light, but no DOT incorpora-
tion into the main chain was found (entry 9, Table 1). This is congruent
with the previous works where DOT was reported to be a bystander in
the copolymerization with MMA in thermal RAFT polymerization [27].
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Fig. 5. Degradation of PMA-co-P(DOT) for entry 1, 2 and 3 in Table 1 after treatment with amines and bleach.

Our other attempts to extend photo-RROP of DOT to green light by
employing PET RAFT polymerization with EY as photocatalyst were also
unsuccessful, as EY rapidly photobleached in the presence of DOT upon
light irradiation (Fig. S12).

Degradation of PMA-co-P(DOT) copolymers. Notwithstanding the
side reactions of DOT in the photo-excited conditions, some DOT
inserted into PMA backbones and formed thioester linkages that
degraded under aminolysis or oxidation. The representative copolymers
with 2.5 % and 5 % (entries 1 and 2 in Table 1) were treated with a
primary amine source (tris(2-aminoethyl)amine, TREN) or bleach and
analyzed by SEC after 25 h. In the presence of amines, the thioester
cleaves to form thiol ends polymers (Fig. 5A), whereas bleach cleaves
the thioester and forms several sulfur species in different oxidation
states (i.e., thiol, sulfoxide, sulfone, disulfide, and sulfonic acid). Both
tested polymers disintegrated into polymers with low molecular weights
(Fig. 5B and C); however, the most remarkable degradation was
observed with the polymers having higher DOT contents. Given the
higher reactivity of DOT compared to MA and gradient incorporation of
the thioesters at the polymer head, the copolymers did not degrade to
very small size fragments that correspond to the statistical distribution
of thioester in the backbone. The control polymers almost remained
intact under analogous conditions except for a minor broadening in the
SEC trace which is attributed to the reaction of amines with ester side
chains.

3. Conclusion

The RROP of the thionolactone DOT and MA was mediated by visible
light irradiation using PI RAFT polymerization, yielding polyacrylates
with thioester linkages in the backbone. In parallel to the RROP of DOT,
photoexcitation of the thionolactone induced unwanted reactions and
formed side products such as (oxo)lactone via desulfurization-
oxygenation and O-S isomerization in the presence of water. Although
the side reactions could be detrimental to the copolymerization due to
the transformation of reactive thiocarbonyl to inert (oxo)lactone, some
DOT was incorporated into the backbone and generated main chain
degradable vinyl polymers that underwent main chain scission under
both oxidation and aminolysis.
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