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Photo-RDRP for everyone: Smartphone light-induced oxygen-tolerant 
reversible deactivation radical polymerization☆ 
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A B S T R A C T   

Oxygen-tolerant reversible deactivation radical polymerization (RDRP) was carried out utilizing a smartphone flashlight. Well-controlled poly(oligo(ethylene oxide) 
monomethyl ether methacrylate) (POEOMA500) with relatively low dispersity (Đ = 1.16–1.35) was obtained employing dual catalysis atom transfer radical poly
merization (ATRP) with CuBr2/tris(2-pyridylmethyl)amine (TPMA) and three different organic photocatalytic dyes (i.e. eosin Y (EY), fluorescein (FL), and riboflavin 
(RF)). The smartphone flashlight was also used for carrying out oxygen-tolerant photoinduced electron/energy transfer (PET) reversible addition–fragmentation 
chain transfer (RAFT) polymerization with EY and dithioesters RAFT agents , and photoiniferter (PI) RAFT polymerization with trithiocarbonate RAFT agent. The 
formation of crosslinked gels and facile measurement of gel points via recording the gelation process by in-built smartphone camera was also demonstrated.   

1. Introduction 

Reversible deactivation radical polymerization (RDRP), also known 
as controlled radical polymerization (CRP), is a powerful technique for 
synthesizing well-defined functional polymers. This technique presents 
several fascinating merits, including the formation of low dispersity (co) 
polymers with wide architectural diversity, high chain-end fidelity, and 
applicability to various monomers, solvents, and tolerance to impurities 
[1–3]. These advantages have propelled RDRP advances into many areas 
such as drug delivery, coatings, electronics, and agriculture [4–8]. The 
most widely used methods are atom transfer radical polymerization 
(ATRP), reversible addition-fragmentation polymerization (RAFT), and 
nitroxide-mediated radical polymerization (NMP) [2,9–11]. The versa
tility of RDRP has realized controlled radical polymerization of different 
monomers using various unconventional but yet interesting catalysts (i. 
e. red blood cells, 1 penny copper coins and bacteria) [12–15] and media 
(i.e. whisky, beers, honey and rain water) [16–19]. 

ATRP is a reversible redox process, that typically employs transition 
metal complexes (i.e., copper, ruthenium, or iron) to intermittently 
activate alkyl halide and generate radicals that react with vinyl mono
mers [20,21]. On the other hand, RAFT polymerization relies on a 
degenerative transfer mechanism through dynamic exchange of thio
carbonylthio compounds (coined chain transfer agents, CTA) with rad
icals [22,23]. For ATRP, it is crucial to maintain a dynamic equilibrium 
between prevalent dormant species and minute amounts of active rad
icals. Intermittent activation provides concurrent growth of all chains, 

and low radical concentration diminishes radical termination. 
Smartphones are interwoven into all aspects of our life with 

approximately 7 billion current users [24]. Smartphones are equipped 
with numerous applications, sensors, cameras, and flashlights (typically 
white LED or Xenon light) that have made them ubiquitous in many 
daily activities. Their flashlights present a relatively uniform light 
wavelength and intensity within the same model, which explains the 
current growing interest in their use for a plethora of applications from 
3D-printing [25,26], analyte detection [27], spectroscopy [28], and 
biosensing [24]; however, the use of smartphones as a tool for photo
chemical synthesis has remained unexplored. 

The advances in photochemistry have revolutionized RDRP and have 
generated new pathways for temporal and spatial control for RDRP 
[29–32]. Thus, RDRP has transformed from a very arduous process that 
required stringent deoxygenation (i.e., freeze–pump–thaw, nitrogen 
sparging, or using glove box) and long reaction times to simple, rapid, 
and energy-efficient experimental procedures with a tolerance to oxygen 
[33–37]. Nevertheless, limited accessibility to uniform and standardized 
light sources and inconsistency of different photoreactors (i.e. light in
tensity, the distance between source and reactor, reactor geometry, and 
temperature control) resulted in batch-to-batch variations and limited 
reproducibility of photochemical reactions [38–40]. While some com
mercial photoreactors (e.g., Kessil or EvoluChem) have attempted to 
surmount the problems of custom-made photoreactors, their price, and 
availability, especially in the resource-limited areas, have been a great 
constraint to their more general adaptability. With the growing interest 
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in carrying out RDRP outside of lab settings in applications spanning 
from 3D-printing [41,42], surface initiated (SI) polymerization [43–46], 
signal amplification [47,48], and microfluidics [49–51], the need for a 
uniform, portable and reliable photoreactor is also enhancing. 

We recently reported the photo-ATRP of methacrylates/acrylates 
using a dual catalytic ATRP system employing CuBr2/tris(2-pyr
idylmethyl)amine) (TPMA) and eosin Y (EY) as photocatalyst (PC) in 
aqueous environment [52–54]. Well-defined polymers were formed in a 
short reaction time (30 min) in open-to-air vials after irradiation with 
green light (λmax = 520 nm) using LED lamps. This prompted us to 
further investigate a more general and universal system for the poly
merization of oligo(ethylene oxide) monomethyl ether methacrylate 
(OEOMA500) using irradiation generated from smartphones flashlight by 
leveraging three distinct dyes: EY, fluorescein (FL), and riboflavin (RF) 

(Fig. 1A). While the efficiency of EY for dual catalytic ATRP with green 
light (λmax = 520 nm) was previously disclosed, the use of FL and RF for 
dual catalytic ATRP has never been studied before [55]. As depicted in 
Fig. 1B, the absorption of all three PC overlaps with the emission of 
white light generated from smartphones, suggesting that all dyes should 
take part in photochemical reactions. Tested smartphones (Table 1) 
produced consistent light with adequate intensity (9.3 mW/cm2 at λ =
450 nm) over time. The measured intensity depends on the distance to 
the reactor (Figure S1-S3). 

2. Results and discussion 

Oxygen tolerant ATRP. The first experiments were performed with 
iPhone 6 (Apple), EY as a photocatalytic dye, CuBr2/TPMA complex, 
and 2-hydroxyethyl α-bromoisobutyrate (HOBiB) as an initiator, in 
phosphate buffer saline (PBS) water and DMSO (10 % v/v) (Scheme 1). 
The vial was placed at a 2.5 cm distance from the smartphone flashlight 
source in a completely dark room (Fig. 1C). Importantly, due to the 
tolerance of dual catalytic ATRP to oxygen, the polymerization was 
performed without any deoxygenation in a closed cap vial (without 
stirring) [53,56]. 

After 6 h of irradiation with a smartphone flashlight, the monomer 
conversion was 85 %, and polymers with low dispersity (Đ = 1.23) were 
obtained (entry 1, Table 1, Figure S4 for SEC traces). To further 
demonstrate the oxygen tolerance of the system, polymerization was 
also carried out in an open-to-air glass vial (entry 2, Table 1). In this 
case, the polymerization still proceeded with good control (Đ = 1.22), 
but the polymerization was slower (7 h). The remarkable oxygen 
tolerance of dual catalytic ATRP can be attributed to the reduction of O2 
to O2

•- (superoxide anion) via single electron transfer (SET) from excited 
states of the photocatalyst (PC*), or conversion of triplet to singlet ox
ygen which can further react with DMSO to form dimethyl sulfone 
(DMSO2) [57,58]. Additionally, the continuous generation of Cu(I) via 
oxidative/reductive quenching of PC can act as a contributor to the 
oxygen scavenging in the system (Fig. 1D). Furthermore, polymerization 
of OEOMA500 was demonstrated in an organic solvent (i.e., DMSO) with 
very good control (Đ = 1.16, entry 3, Table 1). 

Fig. 1. (A) Chemical structures of EY, FL, and RF. (B) UV–VIS spectra of EY, FL, and RF compared to the emission of smartphone light. (C) Schematic and photograph 
of the experimental set-up for smartphone-induced RDRP. (D) Mechanism of dual catalysis ATRP in the presence of Cu/ligand (L) and PC. 

Table 1 
Properties of polymers synthesized by smartphone ATRP of OEOMA500 in the 
presence of different photocatalysts and smartphones.(a)  

Entry PC Light Time (h) bConv(%) Mn,the 

x1,000 

cMn,abs 

x1,000 

cĐ 

1 EY iPhone 6 6 85  85.2  96.2  1.23 
2d EY iPhone 6 7 95  95.2  87.3  1.22 
3e EY iPhone 6 6 31  31.2  42.2  1.16 
4 FL iPhone 6 17 93  93.2  91.8  1.30 
5 RF iPhone 6 6 95  95.2  99.8  1.35 
6f EY iPhone 6 6 97  97.2  246.7  2.65 
7 EY iPhone 5 6 90  90.2  113.1  1.25 
8 EY A31 6 >99  100.2  120.3  1.26 

(a) Reactions conditions: [OEOMA500]0/[HOBiB]0/[CuBr2]0/[TPMA]0/[PC]0 =

200/1/0.2/0.6/0.04, irradiated with Iphone 6 in 1.5 mL dram vial unless 
otherwise stated. [OEOMA500] = 300 mM, in aqueous PBS with DMSO (10 % v/ 
v). (b) Monomer conversion was determined by using 1H NMR spectroscopy. (c) 
Molar mass (Mn, abs) and dispersity (Ð) were determined by GPC analysis (DMF 
as eluent). Absolute molar mass (Mn,abs) was determined using dn/dc values of 
POEOMA500 = 0.05; dispersity (Ð) values were recorded from refractive index 
traces. (d) Polymerization was carried out in an open-to-air glass vial. (e) DMSO 
was used as a solvent. (f) Without CuBr2. 
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The polymerization with FL afforded polymers with Mn,abs = 91,800 
and Đ = 1.30, but at a much longer time (17 h, entry 4, Table 1). This 
could be attributed to the higher fluorescence quantum yield (Φ = 0.95) 
of FL than EY (Φ = 0.57), despite the fact that FL is a stronger reducing 
agent at excited state (E*red(PC+•/PC*= −1.22 for FL and −1.1 for EY vs. 
SCE) [59]. The polymerization using RF as a PC afforded polymers in the 
same period as EY (6 h) although the polymers had higher dispersity 
(Mn, abs = 99,800, Đ = 1.35, entry 5, Table 1). 

The control experiments revealed no conversion in the absence of EY 
or ambient light after 6 h. In addition, polymerization under metal-free 

ATRP conditions (without CuBr2) [60,61] resulted in very poor control 
of polymerization (Mn,abs = 246,700, Đ = 2.65, entry 6, Table 1). 
Finally, polymerization using other smartphones such as iPhone 5 
(Apple, 9.7 mW/cm2 at λ = 450 nm) and Galaxy A31 (Samsung, 14.1 
mW/cm2 at λ = 450 nm) yielded polymers with high conversion (90 % 
and > 99 %, respectively) and low dispersity (Đ = 1.25 and 1.26, 
respectively). Galaxy A31 yielded a faster polymerization, due to higher 
flashlight intensity (Figure S1). 

The molecular weight distributions for polymers prepared using all 
three smartphones were symmetrical and monomodal (Fig. 2A). The 

Scheme 1. General scheme for the polymerization of OEOMA500, HEMA or CBMA via dual catalysis ATRP with CuBr2/TPMA and EY via irradiation with a 
smartphone flashlight. 

Fig. 2. The results for ATRP of OEOMA500 with CuBr2/TPMA and EY. (A) SEC traces in the presence of different smartphone flashlight irradiation. (B) SEC traces of 
POEOMA500 synthesized at different target DPs. (C) Temporal control of polymerization. (D) SEC traces of chain extension experiments of POEOMA500. 
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polymerization followed first-order kinetics indicating a constant con
centration of propagating radicals throughout the reaction (Figure S5). 
Approximately 1 h induction period was observed, depending on the 
container size. 

Versatility of ATRP. To further demonstrate the versatility of 
smartphone-induced ATRP, the polymerization of OEOMA500 with 
different target degree of polymerization (DP) were tested. Polymers 
with molecular weights from 77,300 to 394,800 were generated using 
EY as a PC (Fig. 2B). The molecular weight distribution of the polymers 
remained monomodal for all targeted DPs (100, 400, and 800) with 
relatively low dispersity (Đ = 1.22, 1.33, and 1.40, respectively). Initi
ation efficiencies (I*) were limited, especially at lower DP (I* = 62 %, 74 
%, and 91 %, respectively). This could be due to termination of some 
initiating radicals by O2 as previously reported in oxygen tolerant sys
tems [52,62,63]. Polymerizations of other hydrophilic monomers such 
as 2-hydroxyethyl methacrylate (HEMA) and zwitterionic monomer, 3- 
[[2(methacryloyloxy)ethyl]dimethyl-ammonio]propionate (CBMA), 
were successfully carried out, yielding well-controlled polymers with 
relatively low dispersity (Đ = 1.21 and 1.41) (Figure S6). 

An important feature of smartphone flashlights is the ability to 
switch on/off light with only verbal commands by the virtual assistant 
(SIRI for iPhone). Therefore, the temporal control of dual catalytic ATRP 
was studied via communication using SIRI. This is an important feature 
given the current interest in automation and external control for RDRP 
[64–67]. Interestingly, the polymerization in the presence of smart
phone light progressed without any operator’s physical interaction and 
immediately stopped when the light source was turned off with verbal 
commands such as “SIRI, turn on/off the flashlight” (Figure S7). This 
cycle was repeated several times with complete resumption and cessa
tion of polymerization each time (Fig. 2C). The polymers obtained from 
this on/off cycle were monomodal with a low dispersity (Đ = 1.24) 
(Figure S8). In the next part of the study, the chain end fidelity of 
polymers produced by smartphone light was evaluated via a chain 
extension experiment. The POEOMA500 (Mn, abs = 30,500 and Đ = 1.18) 
was isolated and used as a macroinitiator for chain extension. Adding a 
new portion of OEOMA500 (target DP = 100) followed by irradiation 
with a smartphone afforded the second block of POEOMA500 (Mn,abs =

72,300 and Đ = 1.20). The SEC trace in Fig. 2D shows that the chain 
extension of POEOMA500 was successful without any unreacted mac
roinitiator remaining. 

Oxygen tolerant RAFT polymerization. Given the success in ATRP 
of methacrylates induced by smartphone flashlights, we extended it to 
other RDRP methods. First, we investigated photoinduced electron/en
ergy transfer reversible addition–fragmentation chain transfer (PET- 

RAFT) polymerization. PET-RAFT employs visible light to excite photo 
redox catalysts (e.g. zinc tetraphenylporphyrin, tris[2- 
phenylpyridinato-C2,N]iridium(III), eosin Y, or semiconductors) to 
activate RAFT agents via SET [39,68–73]. For aqueous PET-RAFT, 4- 
cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPDAP) was used 
as CTA, OEOMA500 as a monomer, EY as photocatalyst, and triethyl
amine (Et3N) as an electron donor in a closed cap vial but without 
deoxygenation (Scheme 2, Figure S9 for SEC traces). The first experi
ment using [OEOMA500]0 = 300 mM and target DP = 200 yielded 
polymers after a long reaction time (15.5 h) with high dispersity (Đ =
1.58; entry 1, Table 2). However, at lower target DP (DP = 100) and 
higher monomer concentration ([OEOMA500]0 = 800 mM), notable 
improvement in polymerization time (6 h, Conv. = 54 %) and polymers 
dispersity (Đ = 1.24) was observed (entry 2, Table 2). 

The smartphone was also employed for photoiniferter (PI) RAFT 
polymerization, which relies on the absorption of visible light via 
forbidden n–π* transition in trithiocarbonates RAFT agents, and subse
quent radical generation via homolytic cleavage [74]. The moderate 
oxygen tolerance of photoiniferter RAFT polymerization was reported in 
the literature and attributed to oxidation of the thiocarbonylthio com
pound and O2 reaction with radicals generated from RAFT agent 

Scheme 2. Polymerization scheme to synthesize POEOMA500 via PET RAFT and PI RAFT polymerization.  

Table 2 
Properties of polymers synthesized by PET-RAFT polymerization and PI RAFT 
polymerization of OEOMA500 in the presence of CPADP (entries 1–2) and 
DDMAT (entries 3–5), respectively.a).  

Entry DP [OEOMA500]0 

(mM) 
Time 
(hrs) 

bConv. (%) Mn,the 

x 1,000 

cMn,abs 

x 1,000 

cĐ 

1 200 300 15.5 60  60.3  76.9  1.58 
2 100 800 6 54  27.3  33.2  1.24 
3 200 300 17 94  94.4  96.6  1.52 
4d 200 300 2.1 55  55.4  58.8  1.41 
5 50 600 4.5 81  20.7  21.6  1.20 

(a) PET RAFT polymerization (entries 1–2) was carried out using CPADP as 
chain transfer agent with conditions: [OEOMA500]0/[CPADP]0/[EY]0/[Et3N]0 
= 100–200/1/0.02/1 in H2O and DMSO (10 % v/v). Photoiniferter RAFT 
polymerization (entries 3–5) was carried out using DDMAT as chain transfer 
agent with conditions: [OEOMA500]0/[DDMAT]0 = 50–200/1 in DMSO, irra
diated with iPhone 6 flashlights in a closed cap vial (1.5 mL). (b) Monomer 
conversion was determined by using 1H NMR spectroscopy. (c) Molecular 
weight (Mn, abs) and dispersity (Ð) were determined by GPC analysis (DMF as 
eluent). Absolute molecular weight (Mn, abs) was determined using dn/dc values 
of POEOMA500 = 0.05. Dispersity (Ð) values were recorded from refractive index 
GPC traces. (d) EvoluChem light (λmax = 527 nm, 66.0 mW/cm2) was used. 
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[75,76]. Smartphone flashlight enabled activation of 4-cyano-4-[(dode
cylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (DDMAT) without any 
additional additive and deoxygenation procedure (Scheme 2). Never
theless, the polymerization was slow (17 h) and poorly controlled (Đ =
1.52, entry 3, Table 2). The experiment with a commercial green light 
reactor (EvoluChem, λmax = 527 nm, 66 mW/cm2) generated polymers 
with only some improvement (Đ = 1.41, entry 4, Table 2), suggesting 
that the limited control arises from the polymerization conditions rather 
than the inefficiency of the light source. Analogous to PET-RAFT, 
reducing target DP (DP = 50) while increasing [OEOMA]500 = 600 
mM afforded polymers with lower dispersity (Đ = 1.20, entry 5, 
Table 2), generating one of the easiest and the most robust methods for 
synthesizing controlled polymers. 

Oxyegn-tolerant gel formation. To further demonstrate the 
advantage of the smartphones as versatile synthetic tools and to display 
other enabling features of smartphones in polymer science, we used 
them for the efficient formation of crosslinked gels by copolymerization 
of OEOMA500 and poly(ethylene glycol) dimethacrylate (DiOEOMA750), 
and facile measurement of gel points by an in-built smartphone camera 
(Fig. 3A-B). The formation of crosslinked gels is typically used as a visual 
indication of analytes presence in radical polymerization reactions for 
amplified biodetection signals [47,77]. The formation of OEOMA500 
crosslinked gels was monitored by a smartphone camera via tracking stir 
bar rotation under four different polymerization conditions: (1) Free 
radical polymerization (FRP) with EY and TPMA (electron donor). (2) 
Organic ATRP (O-ATRP) with EY, TPMA and HOBiB. (3) ATRP with EY, 
TPMA, HOBiB and CuBr2. (4) RAFT with EY, TPMA, and CPDAP. All 
experiments were carried out in triplicate and the results are shown in 
Fig. 3C. While the oxygen removal profile was relatively analogous 
under all polymerization conditions (Fig. 3D), the fastest gelation was 
observed in the order of O-ATRP > RAFT > ATRP > FRP. The most rapid 
gelation was observed in O-ATRP, suggesting the formation of high 
concentrations of radicals via activation of the HOBiB initiator by EY. 
The gelation process in ATRP and RAFT was slow due to the deactivation 
events induced by CuBr2 and CPDAP which reduces the concentrations 
of radicals. When higher concentration of CuBr2 or CPDAP was used, the 

formation of crosslinked gels was inhibited in 5 hr monitoring of the 
process. Overall, smartphone flashlights enabled the rapid and repro
ducible formation of crosslinked gels without rigorous deoxygenation 
procedure under all four polymerization conditions. 

3. Conclusion 

In conclusion, we demonstrated that visible light RDRP can be car
ried out with smartphones flashlight and conveniently provides well- 
controlled polymers employing commercially available reagents. 
Importantly, oxygen tolerance was conferred through the addition of 
photocatalytic dyes to the polymerization mixture (for both ATRP and 
PET-RAFT) or by the inherent oxygen scavenging ability of the system 
(for PI RAFT). Thus, this technique is very suitable for non-experts and in 
resource-limited settings. We envisage that smartphone provides easy 
and affordable access to a plethora of organic transformations and could 
enable RDRP to be widely applied outside of the synthetic chemistry 
laboratory, particularly for some emerging RDRP applications such as 
3D printing [41], signal amplification [48], ultra-low scale polymeri
zation [78], online reaction monitoring [79], as well as chemical edu
cation [80,81]. 
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