

Communications

How to cite: Angew. Chem. Int. Ed. 2023, 62, e202309440 doi.org/10.1002/anie.202309440

Tribochemically Controlled Atom Transfer Radical Polymerization Enabled by Contact Electrification

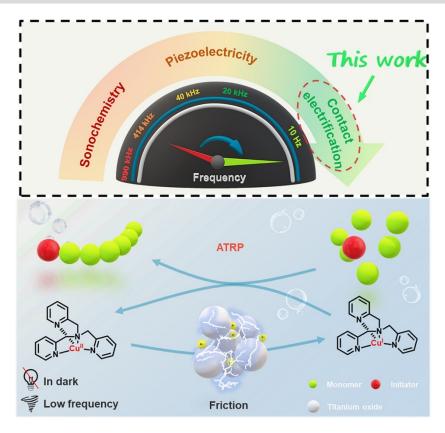
Chen Wang, Ruoqing Zhao, Wenru Fan, Lei Li,* Haoyang Feng, Zexuan Li, Ci Yan, Xiaoyang Shao, Krzysztof Matyjaszewski,* and Zhenhua Wang*

Abstract: Traditional mechanochemically controlled reversible-deactivation radical polymerization (RDRP) utilizes ultrasound or ball milling to regenerate activators, which induce side reactions because of the highenergy and high-frequency stimuli. Here, we propose a facile approach for tribochemically controlled atom transfer radical polymerization (tribo-ATRP) that relies on contact-electro-catalysis (CEC) between titanium oxide (TiO₂) particles and CuBr₂/tris(2-pyridylmethylamine (TPMA), without any high-energy input. Under the friction induced by stirring, the TiO₂ particles are electrified, continuously reducing CuBr₂/TPMA into CuBr/TPMA, thereby conversing alkyl halides into active radicals to start ATRP. In addition, the effect of friction on the reaction was elucidated by theoretical simulation. The results indicated that increasing the frequency could reduce the energy barrier for the electron transfer from TiO₂ particles to CuBr₂/TPMA. In this study, the design of tribo-ATRP was successfully achieved, enabling CEC (ca. 10 Hz) access to a variety of polymers with predetermined molecular weights, low dispersity, and high chain-end fidelity.

Reversible-deactivation radical polymerization (RDRP) has offered intriguing possibilities for the rational design of polymers with desired chain length, tunable dispersity and high chain-end fidelities.^[1] Recently, the convergence of RDRP and piezocatalysis has enabled access to a large range of polymers, gels and hybrids, with the ability to modify their macromolecular structure in response to mechanical stimuli.^[2] Atom transfer radical polymerization (ATRP)[3] and reversible addition-fragmentation chaintransfer (RAFT)^[4] polymerization are the most prevailing RDRP techniques with highly effective feasibility and

[*] C. Wang, R. Zhao, W. Fan, Prof. Dr. L. Li, H. Feng, Z. Li, C. Yan, X. Shao, Prof. Dr. Z. Wang

Frontiers Science Center for Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University


Xi'an 710072 (China)

Prof. Dr. K. Matyjaszewski 4400 Fifth Avenue, Pittsburgh, PA 15213 (USA) E-mail: matyjaszewski@cmu.edu

E-mail: iamleili@nwpu.edu.cn iamzhwang@nwpu.edu.cn Department of Chemistry, Carnegie Mellon University tolerance to functional groups.^[5] The key to achieving mechanochemically controlled ATRP and RAFT is the regeneration of active species by ultrasound^[6] or ball milling.^[7] A wide range of deactivators, including Cu^{II}, aryldiazonium salts, [8] and thiols, [9] have been converted into radicals or activators for initiating RDRP by the polarized piezoelectric particles. Although elegant designs have been achieved for mechanochemically controlled RDRP based on piezocatalysis, it requires high-energy mechanical stimuli to drive the polymerization, which could inevitably induce the side reaction or impurities.[10]

Contact electrification (CE) is a well-established physical phenomenon which can be used to harvest or transform lowfrequency mechanical wave into electrical or chemical signals.[11] Taking advantage of contact-electro-catalysis (CEC), many chemical reactions, such as degradation of organic dyes, [12] direct production of hydrogen peroxide, [13] reduction of metal ions, [14] and generation of flammable gases, [15] have been successfully conducted. All these processes were ascribed to the electron exchange at the interface of water and powder.[16] Under mechanical stimuli, electron exchange could occur between dielectric particles and water with repeated contact and separation cycles at the interface. [17] Electrons could flow from the water to the surface of particles, resulting in a charged interface that could efficiently catalyze chemical reactions, which usually cannot occur at normal temperature and pressure. These results indicated that contact electrification could be utilized to induce the electron transfer for the conversion of deactivators into initiating radicals for RDRP.

In this study, we proposed a facile approach for tribochemically controlled ATRP (tribo-ATRP), relying on contact-electro-catalysis between titanium oxide (TiO₂) particles and CuBr₂/tris(2-pyridylmethylamine (TPMA), without any high-energy input, such as ultrasound, ball milling, and ultraviolet light. Under the friction induced by stirring, the TiO₂ particles were electrified, continuously reducing CuBr₂/TPMA into CuBr/TPMA, thereby converting dormant alkyl halides into active growing radicals to start ATRP. In addition, the effect of friction induced by stirring on the reaction was explored by the theoretical simulation. The results indicated that elevation of frequency could reduce the energy barrier for the electron transfer from TiO₂ particles to CuBr₂/TPMA. Thus, the design and execution of tribo-ATRP was successfully achieved, enabling a CEC ($\approx 10 \, \text{Hz}$) access to a variety of polymers with predetermined molecular weights, low dispersity, and high chain-end fidelity (Scheme 1).

Scheme 1. Proposed mechanism of tribo-ATRP under ultralow frequency stimulation.

In ATRP, control over the polymer structure is gained through a catalytic cycle in which a low oxidation state transition-metal catalyst activates an alkyl halide to generate an alkyl radical and an oxidized form of the transition-metal complex. In most often employed systems, the activator and deactivator complexes are Cu^I/L and X–Cu^{II}/L, respectively. However, normal ATRP requires a high concentration of Cu^I/L to trigger polymerization since each radical termination event leads to the irreversible formation of the deactivator complex by the persistent radical effect. In recent years, mechanochemical approaches based on sonochemistry and piezocatalysis have been developed that allow ATRP to proceed with catalyst concentrations at or below 100 ppm. [3c,6a] The key to achieve low-ppm ATRP is the continuous reduction of the excess deactivator complex (X-Cu^{II}/L) into the activator complex (Cu^I/L) in the presence of mechanical force.

To confirm the pathway for the generation of the activators in this system, the UV/Vis-NIR spectra of Cu^{II}Br₂/TPMA were monitored before and after stirring (Figure 1a). All the reactions were conducted in the dark to eliminate the effect of light. As shown in Figure 1b, the absorption of Cu^{II}Br₂/TPMA remained constant without TiO₂ (Figure 1c), indicating no reduction occurred. In contrast, the intensity of the characteristic absorption band for Cu^{II}Br₂/TPMA in the range 550–1100 nm dramatically decreased in the presence of TiO₂ after 24 h stirring. These results suggested that TiO₂ is essential to the reduction of Br-Cu^{II}/TPMA into Cu^I/TPMA with the assistance of stirring.

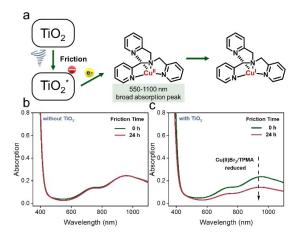


Figure 1. a) Mechanistic Scheme of the reduction of Cu^{II}. b) UV/Vis-NIR spectra without TiO₂ at different friction times. c) UV/Vis-NIR spectra with TiO₂ at different friction times. Results of UV/Vis-NIR spectra under the conditions [CuBr₂] = 0.75 mM, [TPMA] = 3 mM in DMSO, 2.4 wt.% TiO₂, (20–30 °C, 7 Hz).

To examine whether tribo-ATRP could proceed in the presence of ${\rm TiO_2}$, the polymerization of methyl acrylate (MA) was initially attempted in the presence of ${\rm TiO_2}$ using ethyl α -bromoisobutyrate (EBiB) as the initiator, CuBr₂/TPMA as the catalyst, and dimethyl sulfoxide (DMSO) as the solvent. Magnetic stirring was employed for generating disturbances in the reaction and increasing the probability of

5213773, 2023, 37, Downloaded from https://onlinelibtary.wiley.com/doi/10.1002/anie.202309440 by Carnegie Mellon University, Wiley Online Library on [2/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use and the use of use and use and

Communications

contact separation. The original transparent and dilute solution became viscous after 24 h with 2.4 wt.% TiO₂, giving a poly(methyl acrylate) with number-average molecular weight $(M_n) = 12~900$ and dispersity (D) = 1.16 (Figure S1). In order to further investigate the mechanism of frictional electrocatalysis, we systemically investigated the factors affecting the tribo-ATRP reaction, including the loading of TiO2, frequency of stirring, and the surface materials of stirring rods.

Initially, tribo-ATRP with varying TiO₂ loadings was performed. As shown in Figure 2b, the polymerization of MA with TiO₂ gave a linear semilogarithmic kinetic plot and excellent control over molecular weights and dispersity (Figure 2c). The rate of polymerization increased with elevating the loading of TiO2. After 24 h stirring, the polymerization reached 45% conversion in the presence of 0.8 wt.% TiO₂, yielding a polymer with $M_n = 7$ 400 and D =1.16 (Figure S2). The conversion increased to 61% with 1.2 wt.% TiO_2 , affording a polymer with $M_n = 12$ 300 and D=1.09 (Figure S3). When the TiO₂ loading increased to 2.4 wt.%, polymerization gave 80% conversion after 24 h stir, and a polymer with $M_{\rm n} = 12~900$ and D = 1.16 was achieved (Figure S1). In contrast, no conversion was observed after 24 h stirring in the absence of TiO₂ (Figure S4), indicating the essential contribution of TiO₂ to the polymerization. The apparent rate constant of propagation $(k_{p,app})$ increased from 0.002 h⁻¹ without TiO₂ to 0.065 h⁻¹ with 2.4 wt.% TiO₂.

To investigate the effect of stirring frequency on the polymerization, a series of reactions were conducted at different stirring rate. As shown in Figure S5a, the polymerization of MA increased to 65% conversion after 24h at 2 Hz of stirring frequency, resulting in a well-defined polymer with $M_{\rm n} = 10~100$ and D = 1.14 (Figure S7). While the stirring frequency increased to 7 Hz, the conversion increased to 80% after 24 h, and the polymer with $M_{\rm n}=14$ 300 and D=1.14 was obtained (Figure S8). With further increase of stirring speed, the conversion after 24 h increased to 94% at 13 Hz, giving a PMA with $M_n = 15~800$ and D=1.10 (Figure S9). Accordingly, the $k_{p,app}$ increased

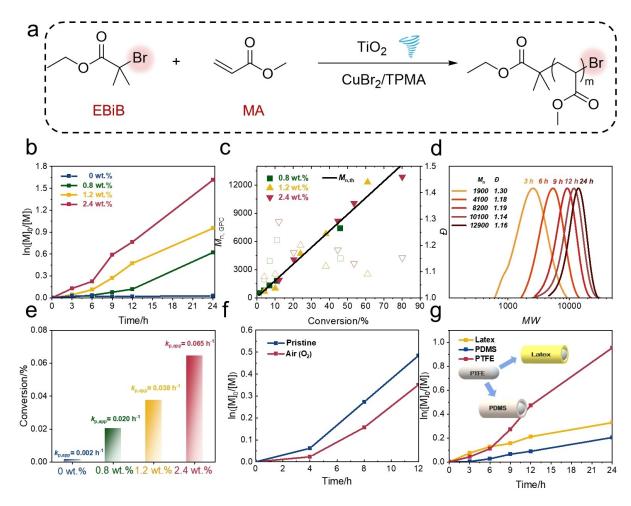


Figure 2. Results of the effect of different friction frequencies. [MA]₀: [EBiB]₀: [CuBr₂]₀: [TPMA]₀ = 200:1:0.03:0.12, in 50% (v/v) DMSO, magnetic stirrer ($20^{\circ}\text{C} \pm 5^{\circ}\text{C}$). b) Semi-logarithmic kinetic plot evolution of polymerization under various friction frequencies. c) The number-average molecular weight (M_n) and dispersity (D) with conversion, and d) GPC trace evolution at a friction frequency of 13 Hz. e) Results of the effect of different TiO2 contents, under different atmospheres and with different contact surface materials. Semi-logarithmic kinetic plot evolution of polymerization with f) TiO2 under various atmospheres (2.4 wt.% TiO2, 12 h), and g) coated with different materials (1.2 wt.% TiO2, 24 h).

5213773, 2023, 37, Downloaded from https://onlinelibtary.wiley.com/doi/10.1002/anie.202309440 by Carnegie Mellon University, Wiley Online Library on [2/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use and the use of use and use and

from 0.04 h⁻¹ at 2 Hz to 0.12 h⁻¹ at 13 Hz. To verify that the reduction of Cu^{II} in the ATRP reaction comes from the charges generated by CEC on the TiO₂ surface rather than reductive impurities in TiO₂, tribo-ATRP with TiO₂ powders treated in different atmospheres was performed. As shown in Figure 3f, the polymerization of MA with initial TiO₂ reached 33.5 % conversion and 35.2 % conversion with TiO₂ treated in O₂ after 12 h stirring. The results showed that there was no significant difference in the effect of TiO₂ under O₂ atmosphere treatments on the polymerization rate (Figure S10–11).

To compare the effect of variation of other parameters, all subsequent experiments were performed at 7 Hz with

2.4 wt.% TiO₂ unless otherwise stated. The influence of surface materials of stir bar on the polymerization rate was compared. As manifested in Figure 2g, three magnetic stirring bars coated with different materials were used to confirm the significance of the contact materials of the magnetic bar. Among them, Bar I was a normal PTFE-sealed bar, Bar II was a bar coated with latex and Bar III was a bar coated with polydimethylsiloxane (PDMS). With the same stirring rate, higher polymerization rate was obtained by Bar I. When Bar II was used, the polymerization reduced to 28% after 24 h, giving a PMA with M_n = 5 500 and D=1.17 (Figure S12). When silcone-coated bar was used, the conversion was further reduced to 18% after

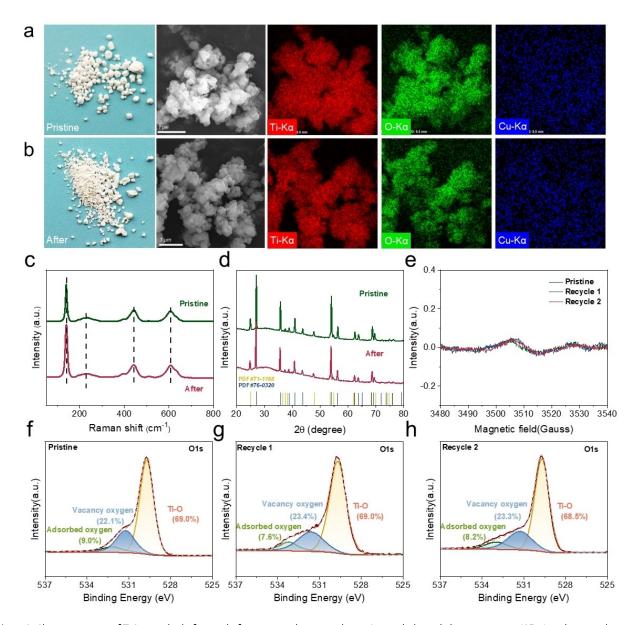


Figure 3. Characterization of TiO_2 powder before and after contact-electro-catalysis. a) Morphological characterization (SEM) and energy dispersive X-ray (EDX) analysis of the pristine TiO_2 powder before reaction, as well as b), after the reaction. c) Raman spectra of TiO_2 powder before (green) and after (red) the reaction. d) XRD patterns of TiO_2 powder before (green) and after (red) the reaction. e) EPR spectra of TiO_2 powder before (green) and after one (blue) and two (red) recycles. O1s XPS spectra of TiO_2 powder f) before and after g) one (blue) and h) two (red) recycles.

24 h at the same stirring rate, obtaining a PMA with $M_n = 2$ 000 and D=1.25 (Figure S13). These results suggested the polymerization rate could be affected by the surface materials with varying ability to abstract electrons.

To confirm the chain-end fidelity of the polymer synthesized by this tribo-ATRP procedure, chain extension was carried out (Figure S14). The first block was conducted under identical conditions, providing a PMA-Br macroinitiator with $M_{\rm n} = 14\,600$ and D = 1.14 with 88 % conversion (Figure S15). After precipitation and purification, the macroinitiator was obtained. The chain extension of PMA-Br with ethyl acrylate was conducted. After 24 h, the chainextended polymerization was conducted, yielding of PMAb-PEA-Br with $M_n = 47\,000$ and D = 1.11 (Figure S16).

Subsequently, the tribo-ATRP of MA targeting varying degrees of polymerization (DP) was carried out in DMSO, and the results were summarized. The concentration of monomers was maintained constant in all reactions, while the concentrations of EBiB, CuBr₂ and TPMA varied relative to the target DP (DP_T) . As shown in Table 1, the experimental molecular weights matched well the theoretical values. The polymerization reaction conversion was 82 % for $DP_{\rm T}$ =100, giving a PMA with $M_{\rm n}$ =7 100 and D=1.09 (entry 1, Table 1). The polymerization with $DP_T = 200$ resulted in 80% conversion, yielding a PMA with $M_{\rm n}=14$ 300 and D=1.14 (entry 2, Table 1). When DP_T was set at 400, the conversion reached 45% after 24 h (entry 3, Table 1). The polymerization of MA with $DP_T = 800$ reached a conversion of 37 %, yielding a PMA with $M_n = 27700$ and D=1.29 (entry 4, Table 1). This procedure could also be employed in the polymerization of other monomers, including methyl acrylate, ethyl acrylate, tert-butyl acrylate, butyl acrylate, and methyl methacrylate (entry 5-8, Table 1), yielding well-defined polymers with low dispersity and predetermined molecular weights (Figure S21–24).

To reveal the underlying mechanism of triboelectrically driven ATRP of MA, we first investigated whether the mild stirring would change the physical and chemical properties of the TiO₂ surface. Morphological characterization (SEM and TEM) and element mapping analysis of TiO₂ particles were performed before and after the reaction by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). From TEM images, it can be seen that TiO₂ nanoparticles present a sheet structure with a diameter of about 25 nm (Figure S25). And the specific surface area (SSA) of TiO₂ measured by Brunauer-Emmet-Teller (BET) nitrogen adsorption method was 23.74 m² g⁻¹. Figures 3a and b illustrated that neither color nor the morphology changed before/after the catalytic process. According to quantitative analysis by EDX, the surface of TiO₂ powder after reaction adsorbed a small amount of copper element (Table S1-2). Apart from morphological characterization, spectroscopic analysis techniques were also performed to deliver more indepth information on the chemical properties of TiO₂ powder. Figure 3c present Raman spectroscopy results. In Raman spectroscopy, the skeleton vibration pattern of TiO₂ before and after the experiment was identical. X-ray diffraction (XRD) spectra of TiO₂ before/after the reaction matched well with the standards, indicating that the structure and properties of TiO2 particles did not change after the friction process. The chemical state changes of TiO₂ particles before and after the reaction were analyzed using X-ray photoelectron spectroscopy (XPS) method. The O1s spectra of the TiO2 powder before, after one and two recycles were listed in Figure 3 f-h, respectively. The O 1s XPS spectra of the three TiO2 samples were deconvoluted into three peaks, corresponding to lattice oxygen (Ti-O, \approx 529.7 eV), oxygen vacancies (\approx 531.2 eV), and chemisorbed oxygen (\approx 532.3 eV), respectively. It can be observed that after polymerization, the peak of Ti-O bond and oxygen vacancies did not undergo shift or change in intensity. Electron paramagnetic resonance (EPR) spectroscopy was also been used to elucidate the chemical stability of TiO₂ after tribo-ATRP. The significant peaks of three samples were detected at g=2.003, and the intensities of the peaks were almost constant. This result is consistent with the aforementioned XPS result, suggesting the stability of the structure of TiO_2 particles. Zeta-potential (ξ) was further recorded. Due to the involvement of TiO2 surface electrons in the reduction process of Cu^{II} , the value of ξ_{TiO2} increased from -11.09 my to -8.18 my after 1st recycle. However, after second cycle of TiO_2 , the ξ of TiO_2 remained almost constant (Figure S26). This trend was similar with the evolution of catalytic efficiency for the recycled TiO2. In the first tribo-ATRP with TiO2, the polymerization reached a conversion of 81 % after 24 hours. When 1st recycled TiO2 was used for tribo-ATRP, its conversion decreased to 13% after 24 h. When the 2nd recycled TiO₂ was further used for polymer-

Table 1: Results for the polymerization of different monomers targeting various DPs.

Entry ^[a]	Monomer	DP_{T}	T [h]	$K_{p, app} [h^{-1}]^{[b]}$	Conversion	$M_{\rm n,th}^{\rm [c]}$	$M_{\sf n, GPC}^{\sf [d]}$	$\mathcal{D}^{[d]}$
1	MA	100	24	0.071	82%	7,300	7,100	1.09
2	MA	200	24	0.069	80%	14,000	14,300	1.14
3	MA	400	24	0.025	45%	15,700	20,900	1.23
4	MA	800	24	0.019	37%	25,600	27,700	1.29
5	EA	200	24	0.085	87%	17,600	17,600	1.11
6	tBA	200	24	0.019	36%	9,300	12,300	1.45
7	BA	200	24	0.016	32%	8,400	10,400	1.39
8	MMA	200	24	0.014	28%	11,400	15,700	1.21

[a] Reaction conditions: [Monomer]₀:[EBiB]₀:[Cu^{II}]₀:[TPMA]₀=X:1:0.03:0.12, 2.4 wt.% TiO₂, 50% v/v DMSO, magnetic stirrer (20°C \pm 5°C, 7 Hz). [b] Conversion (p) was determined using ¹H NMR spectroscopy. [c] Calculated on the basis of conversion (i.e., $M_{n,th} = M_{EBiB} + [Monomer]_0/$ $[EBiB]_0 \times conversion \times M_{monomer}). \ [d] \ Determined \ using \ GPC \ in \ THF, \ based \ on \ linear \ PMMA \ as \ the \ calibration \ standard.$

5213773, 2023, 37, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/anie.202399440 by Carnegie Mellon University, Wiley Online Library on [22/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use of use

Angewandte

ization, the conversion dropped to 8% under standard conditions (Figure S27). As electrons on the TiO₂ surface participated in the reaction, its surface potential became more positive, giving rise to poor reductive ability for the recycled TiO2...

CEC is proposed as the mechanism for MA polymerization in the presence of TiO2 particles. Electrons accumulated at TiO₂* surface are captured by Cu^{II}, forming Cu^I to activate polymerization. To simplify the calculation, CuBr₂ was used for monitoring. As shown in Figure 4a, the energy barriers for realizing electron exchange processes between CuBr₂ and TiO₂ was assessed by Density Functional Theory (DFT). The specific calculation method is available in Method section. As shown in the Figure, under normal pressure, the wave function of LUMO energy level is on CuBr₂ and the HOMO energy level is on TiO₂. The energy difference between them is 0.08 eV, suggesting that the electron could hardly transfer from TiO2 to CuII under

ambient condition. While under mechanical deformation induced by stirring, the energy difference between them reached 0.97 eV, facilitating the electron transfer from TiO₂ to Cu^{II} and generating the activating complex for ATRP.

In summary, tribo-ATRP was successfully performed under moderate stirring. The results showed that surface charges accumulated on the surface of the TiO2 under continuous stirring, continuously regenerating CuBr/TPMA (activator) from oxidized CuBr₂/TPMA (deactivator), and triggering ATRP. This tribo-ATRP technique allows access to the polymerization of a wide range of (meth)acrylates, yielding well-defined polymers with high end-group fidelity, predetermined molecular weights, and low dispersity. This study provides new insights for the design of green polymerizations to address the issues related to high energy consumption and ultrasonic scission.

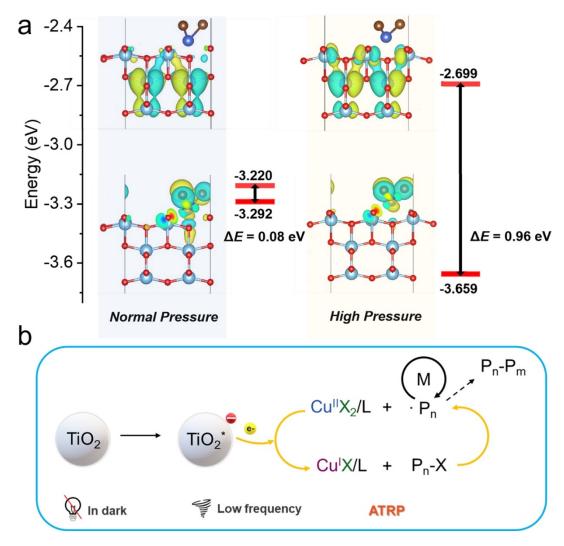


Figure 4. Mechanism of contact-electro-catalysis. a) DFT calculations of the values of LUMO and HOMO levels for TiO2-CuBr2 under various conditions as indicated by the legend. b) Proposed mechanism for the ATRP of MA by contact-electro-catalysis generated radicals.

5213773, 2023, 37, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/anie.202309440 by Carnegie Mellon University, Wiley Online Library on [22/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons. License

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21901207), KM acknowledges support by NSF (CHE 2000391).

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: Atom Transfer Radical Polymerization · Contact Electrification · Friction · Mechanochemistry · Titanium Oxide

- [1] a) K. Matyjaszewski, Macromolecules 2012, 45, 4015–4039;
 b) N. Corrigan, K. Jung, G. Moad, C. J. Hawker, K. Matyjaszewski, C. Boyer, Prog. Polym. Sci. 2020, 111, 101311.
- [2] a) H. Mohapatra, M. Kleiman, A. P. Esser-Kahn, *Nat. Chem.* 2017, 9, 135–139; b) Z. Wang, J. Ayarza, A. P. Esser-Kahn, *Angew. Chem. Int. Ed.* 2019, 58, 12023–12026.
- [3] a) Z. Wang, X. Pan, L. Li, M. Fantin, J. Yan, Z. Wang, Z. Wang, H. Xia, K. Matyjaszewski, *Macromolecules* 2017, 50, 7940–7948; b) Z. Wang, Z. Wang, X. Pan, L. Fu, S. Lathwal, M. Olszewski, J. Yan, A. E. Enciso, Z. Wang, H. Xia, K. Matyjaszewski, *ACS Macro Lett.* 2018, 7, 275–280; c) Z. Wang, F. Lorandi, M. Fantin, Z. Wang, J. Yan, Z. Wang, H. Xia, K. Matyjaszewski, *ACS Macro Lett.* 2019, 8, 161–165; d) C. Kütahya, C. Schmitz, V. Strehmel, Y. Yagci, B. Strehmel, *Angew. Chem. Int. Ed.* 2018, 57, 7898–7902; e) R. Whitfield, K. Parkatzidis, M. Rolland, N. P. Truong, A. Anastasaki, *Angew. Chem. Int. Ed.* 2019, 58, 13323–13328.
- [4] a) T. G. McKenzie, E. Colombo, Q. Fu, M. Ashokkumar, G. G. Qiao, Angew. Chem. Int. Ed. 2017, 56, 12302–12306; b) S. Piogé, T. N. Tran, T. G. McKenzie, S. Pascual, M. Ashokkumar, L. Fontaine, G. Qiao, Macromolecules 2018, 51, 8862–8869; c) J. Collins, T. G. McKenzie, M. D. Nothling, S. Allison-Logan, M. Ashokkumar, G. G. Qiao, Macromolecules 2019, 52, 185–195; d) Q. Ma, X. Zhang, Y. Jiang, J. Lin, B. Graff, S. Hu, J. Lalevée, S. Liao, Polym. Chem. 2022, 13, 209–219; e) H. Sun, W. Choi, N. Zang, C. Battistella, M. P. Thompson, W. Cao, X. Zhou, C. Forman, N. C. Gianneschi, Angew. Chem. Int. Ed. 2019, 58, 17359–17364; f) Y. Zhao, M. Ma, X. Lin, M. Chen, Angew. Chem. Int. Ed. 2020, 59, 21470–21474.
- [5] a) A. D. Jenkins, R. G. Jones, G. Moad, Pure Appl. Chem. 2009, 82, 483–491; b) A. Marathianos, E. Liarou, A. Anastasaki, R. Whitfield, M. Laurel, A. M. Wemyss, D. M. Haddleton, Polym. Chem. 2019, 10, 4402–4406; c) N. Corrigan, C. Boyer, Trends Chem. 2020, 2, 689–706.
- [6] a) C. Wang, W. Fan, Z. Li, J. Xiong, W. Zhang, Z. Wang, Polym. Chem. 2022, 13, 4908–4914; b) A. R. S. Santha Kumar, A. Padmakumar, U. Kalita, S. Samanta, A. Baral, N. K. Singha, M. Ashokkumar, G. G. Qiao, Prog. Mater. Sci. 2023, 136, 101113; c) M. Nie, Q. Wang, G. Qiu, Ultrason. Sonochem. 2008, 15, 222–226; d) B. M. Teo, S. W. Prescott, G. J. Price, F.

- Grieser, M. Ashokkumar, J. Phys. Chem. B 2010, 114, 3178–3184; e) B. Ling, J. Lee, D. Maresca, A. Lee-Gosselin, D. Malounda, M. B. Swift, M. G. Shapiro, ACS Nano 2020, 14, 12210–12221; f) H. Mohapatra, J. Ayarza, E. C. Sanders, A. M. Scheuermann, P. J. Griffin, A. P. Esser-Kahn, Angew. Chem. Int. Ed. 2018, 57, 11208–11212; g) J. Ayarza, Z. Wang, J. Wang, C.-W. Huang, A. P. Esser-Kahn, ACS Macro Lett. 2020, 9, 1237–1248.
- [7] a) M. Zhou, Y. Zhang, G. Shi, Y. He, Z. Cui, X. Zhang, P. Fu,
 M. Liu, X. Qiao, X. Pang, ACS Macro Lett. 2023, 12, 26–32;
 b) H. Y. Cho, C. W. Bielawski, Angew. Chem. Int. Ed. 2020, 59, 13929–13935;
 c) L. Xu, L. Xiao, P. Jia, K. Goossens, P. Liu, H. Li, C. Cheng, Y. Huang, C. W. Bielawski, J. Geng, ACS Appl. Mater. Interfaces 2017, 9, 26392–26399.
- [8] K. Kubota, Y. Pang, A. Miura, H. Ito, Science 2019, 366, 1500– 1504.
- [9] J. Ayarza, Z. Wang, J. Wang, A. P. Esser-Kahn, ACS Macro Lett. 2021, 10, 799–804.
- [10] a) X. Pan, M. Fantin, F. Yuan, K. Matyjaszewski, Chem. Soc. Rev. 2018, 47, 5457–5490; b) Y.-N. Zhou, J.-J. Li, D. Ljubic, Z.-H. Luo, S. Zhu, Macromolecules 2018, 51, 6911–6921; c) Y.-N. Zhou, J.-J. Li, Y.-Y. Wu, Z.-H. Luo, Chem. Rev. 2020, 120, 2950–3048; d) F. A. Leibfarth, K. M. Mattson, B. P. Fors, H. A. Collins, C. J. Hawker, Angew. Chem. Int. Ed. 2013, 52, 199–210; e) S. M. Zeitler, P. Chakma, M. R. Golder, Chem. Sci. 2022, 13, 4131–4138; f) M. J. Supej, B. M. Peterson, B. P. Fors, Chem 2020, 6, 1794–1803; g) Y.-N. Zhou, J.-J. Li, T.-T. Wang, Y.-Y. Wu, Z.-H. Luo, Prog. Polym. Sci. 2022, 130, 101555.
- [11] a) S. Lin, X. Chen, Z. L. Wang, Chem. Rev. 2022, 122, 5209–5232; b) Y. Zhao, Y. Liu, Y. Wang, S. Li, Y. Liu, Z. L. Wang, P. Jiang, Nano Energy 2023, 112, 108464.
- [12] a) Y. Zhang, T. Kang, X. Han, W. Yang, W. Gong, K. Li, Y. Guo, Nano Energy 2023, 111, 108433; b) X. Dong, Z. Wang, A. Berbille, X. Zhao, W. Tang, Z. L. Wang, Nano Energy 2022, 99, 107346; c) P. Li, J. Wu, Z. Wu, Y. Jia, J. Ma, W. Chen, L. Zhang, J. Yang, Y. Liu, Nano Energy 2019, 63, 103832; d) Z. Wang, A. Berbille, Y. Feng, S. Li, L. Zhu, W. Tang, Z. L. Wang, Nat. Commun. 2022, 13, 130; e) J. Mo, Y. Liu, Q. Fu, C. Cai, Y. Lu, W. Wu, Z. Zhao, H. Song, S. Wang, S. Nie, Nano Energy 2022, 93, 106842.
- [13] a) J. Zhao, X. Zhang, J. Xu, W. Tang, Z. Lin Wang, F. Ru Fan, Angew. Chem. Int. Ed. 2023, 62, e202300604; b) B. Chen, Y. Xia, R. He, H. Sang, W. Zhang, J. Li, L. Chen, P. Wang, S. Guo, Y. Yin, L. Hu, M. Song, Y. Liang, Y. Wang, G. Jiang, R. N. Zare, Proc. Natl. Acad. Sci. USA 2022, 119, e2209056119.
- [14] X. Yuan, D. Zhang, C. Liang, X. Zhang, J. Am. Chem. Soc. 2023, 145, 2800–2805.
- [15] a) K.-S. Hong, H. Xu, H. Konishi, X. Li, J. Phys. Chem. Lett. 2010, 1, 997–1002; b) J. Zhang, Z. Wu, Y. Jia, J. Kan, G. Cheng, Sensors 2013, 13, 367–374.
- [16] a) X. Zhang, Y. Zheng, D. Wang, Z. U. Rahman, F. Zhou, Nano Energy 2016, 30, 321–329; b) Y. Liu, Y. Zheng, T. Li, D. Wang, F. Zhou, Nano Energy 2019, 61, 454–461; c) Y. Xi, J. Wang, Y. Zi, X. Li, C. Han, X. Cao, C. Hu, Z. Wang, Nano Energy 2017, 38, 101–108.
- [17] a) S. Lin, L. Xu, C. Xu, X. Chen, A. C. Wang, B. Zhang, P. Lin, Y. Yang, H. Zhao, Z. L. Wang, Adv. Mater. 2019, 31, 1808197; b) C. Xu, Y. Zi, A. C. Wang, H. Zou, Y. Dai, X. He, P. Wang, Y.-C. Wang, P. Feng, D. Li, Z. L. Wang, Adv. Mater. 2018, 30, 1706790.

Manuscript received: July 4, 2023 Accepted manuscript online: July 28, 2023 Version of record online: August 7, 2023