Check for
updates |

Projected Gaussian Markov Improvement Algorithm for
High-Dimensional Discrete Optimization via Simulation

XINRU LI, General Motors, Warren, USA
EUNHYE SONG, Georgia Institute of Technology, Atlanta, USA

This article considers a discrete optimization via simulation (DOvS) problem defined on a graph embedded
in the high-dimensional integer grid. Several DOvS algorithms that model the responses at the solutions
as a realization of a Gaussian Markov random field (GMRF) have been proposed exploiting its inferential
power and computational benefits. However, the computational cost of inference increases exponentially in
dimension. We propose the projected Gaussian Markov improvement algorithm (pGMIA), which projects the
solution space onto a lower-dimensional space creating the region-layer graph to reduce the cost of inference.
Each node on the region-layer graph can be mapped to a set of solutions projected to the node; these solutions
form a lower-dimensional solution-layer graph. We define the response at each region-layer node to be the
average of the responses within the corresponding solution-layer graph. From this relation, we derive the
region-layer GMRF to model the region-layer responses. The pGMIA alternates between the two layers to
make a sampling decision at each iteration. It first selects a region-layer node based on the lower-resolution
inference provided by the region-layer GMRF, then makes a sampling decision among the solutions within
the solution-layer graph of the node based on the higher-resolution inference from the solution-layer GMRF.
To solve even higher-dimensional problems (e.g., 100 dimensions), we also propose the pPGMIA+: a multi-layer
extension of the pGMIA. We show that both pGMIA and pGMIA+ converge to the optimum almost surely
asymptotically and empirically demonstrate their competitiveness against state-of-the-art high-dimensional
Bayesian optimization algorithms.

CCS Concepts: » Theory of computation — Discrete optimization; Bayesian analysis; « Computing
methodologies — Modeling and simulation;

Additional Key Words and Phrases: Gaussian Markov random field, high-dimensional discrete optimization
via simulation, projection, Bayesian optimization

ACM Reference Format:

Xinru Li and Eunhye Song. 2024. Projected Gaussian Markov Improvement Algorithm for High-Dimensional
Discrete Optimization via Simulation. ACM Trans. Model. Comput. Simul. 34, 3, Article 14 (May 2024), 29 pages.
https://doi.org/10.1145/3649463

1 INTRODUCTION

Optimization via simulation (OvS) refers to the class of methodologies for optimizing a problem
whose objective function and/or constraints at a feasible solution must be estimated via stochastic
simulation. When an OvS problem has a discrete solution space, the problem is further categorized

This research is supported by the National Science Foundation under grants no. DMS-1854659 and no. CMMI-2045400.
Authors’ addresses: X. Li, General Motors, 30500 Mound Rd, Warren, MI, 48092; email: xinru.li@gm.com; E. Song, Georgia
Institute of Technology, 755 Ferst Drive, Atlanta, GA; e-mail: eunhye.song@isye.gatech.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 1558-1195/2024/05-ART14
https://doi.org/10.1145/3649463

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:2 X. Li and E. Song

as a discrete OvS (DOvS) problem. This article focuses on a DOvVS problem whose feasible solution
space is a high-dimensional hyperbox defined on the integer lattice. To motivate our research, we
illustrate two practical applications below.

(i) Cevik et al. [2016] study calibration of the University of Wisconsin breast cancer simula-
tion (UWBCS) model. The input parameters of the UWBCS model include breast cancer natural
history, detection, treatment parameters, and non-breast cancer mortality parameters. Calibration
targets include the cancer incidence and mortality rates. Each combination of parameters is as-
signed a score that measures the difference between the simulation results and the targets. The
UWBCS model has ten natural history parameters that amount to 378,000 feasible combinations
in total.

(ii) Hoffman et al. [2018] study condition-based maintenance scheduling for a manufacturing line.
Each machine’s state is represented by an integer-valued health index, which stochastically de-
grades over time. The vector of decision variables consists of a health index threshold at which
maintenance is to be scheduled for each machine. Maintenance resources are shared across all
machines. The objective is to minimize the expected cost of operation. The problem dimension is
determined by the number of machines, which may be large for a complex manufacturing system.

In both examples, each solution can only be evaluated via stochastic simulation. The stochastic
error variance of simulation output tends to be large and the simulation runtime is nontrivial.
Both examples have high-dimensional discrete solution spaces that can be embedded in the integer
lattice, where the number of feasible solutions increases exponentially in the problem dimension.
As such, it is difficult to apply a DOvVS algorithm that requires all solutions to be simulated (e.g.,
ranking and selection). Meanwhile, it is reasonable to assume that two solutions that are close
in the integer lattice are likely to have similar responses, e.g., the expected operating costs of
two maintenance policies are similar if their health index thresholds are close. Therefore, a DOvVS
method that exploits spatial inference may significantly improve efficiency in solving these types
of problems.

There are several existing inferential DOvS algorithms in which the responses at the feasible
solutions are modeled as a realization of a stochastic process. Taking the Bayesian view, a prior dis-
tribution is assumed for the stochastic process, which is then updated to the posterior as the algo-
rithm simulates solutions. The updated posterior distribution provides inference on the responses
at any feasible solutions—including those that have not yet been simulated—and the algorithm
selects which solution to simulate next by evaluating a sampling criterion. A popular choice for
the prior is a Gaussian process (GP) as its posterior update is convenient; combined with the
assumption that the simulation output has Gaussian noise, the posterior is still a GP. Inferential
OvS is closely related to Bayesian Optimization (BO), which has become popular for global opti-
mization of a black-box function. BO also adopts GP as a workhorse model while mainly focusing
on continuous-domain problems with deterministic objective functions.

Compared with the continuous counterpart, the literature on inferential DOVS (or discrete BO)
is rather slim. Baptista and Poloczek [2018] focus on the binary variables while Oh et al. [2019] and
Roustant et al. [2020] consider a combinatorial solution space with categorical variables. Mes et al.
[2011] also study categorical solutions and have commonality with this work in that they build
hierarchical Bayesian models to represent the solution space with decreasing resolution. However,
they do not model spatial correlation among solutions and their target problem is much smaller
scale (thousands of solutions) than what is considered here. Closer to our work are Sun et al.
[2014] and Xie et al. [2016], which study integer solution spaces embedded in the Euclidean space
and adopt a continuous GP covariance kernel to model the spatial correlation among the discrete
solutions. In the same setting, Garrido-Merchan and Hernandez-Lobato [2020] discuss a way to
improve the covariance kernel’s inference on the discrete solution space via rounding.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:3

Salemi et al. [2019] empirically demonstrate that some popular choices of the covariance kernel
may result in poor inference when applied to solutions on the integer lattice. Instead, they model
the responses at the solutions on the d-dimensional integer lattice as a realization of a Gaussian
Markov random field (GMRF) and propose the Gaussian Markov improvement algorithm
(GMIA). A GMREF is a GP defined on a graph of nodes, in which the connectivity between nodes
on the graph determines the correlation structure of the GMRF. Its precision matrix (inverse of the
covariance matrix) has nonzero elements if the corresponding nodes are connected by an edge on
the graph. Thus, the precision matrix tends to be sparse when the graph is sparse and updating the
precision matrix is extremely cheap. However, to evaluate a sampling criterion at solutions, the
posterior variances of the solutions are needed. Even if the precision matrix is sparse, computing
its inverse is expensive for a large-scale DOvVS problem; the cost of matrix operations involved in
sampling criterion evaluation increases at least quadratically in the number of feasible solutions.

To reduce the computational complexity of GMIA, improvements have been proposed. Semel-
hago et al. [2017] adopt sparse linear algebra techniques to significantly reduce the cost of preci-
sion matrix inversion. For further speed-up, Semelhago et al. [2021] restrict the sampling decisions
within a promising subset of solutions for several rapid-search iterations. In contrast, Li and Song
[2020] achieve the same order of computational cost as in Semelhago et al. [2021] while making
global inference by exploiting the linear algebraic techniques tailored for sparse matrices. However,
all of these approaches require inverting a precision matrix at least intermittently. As the problem
dimension increases, the GMIA eventually hits the limit on the size of the precision matrix that
can be stored and inverted.

Reducing the computational overhead of a high-dimensional BO problem has been actively re-
searched in recent years. These approaches can be categorized into two groups as summarized
below. For a more comprehensive review on high-dimensional BO, see Binois and Wycoft [2022].

The first direction is batching the dimensions into groups and constructing an additive GP model
from the batches. Kandasamy et al. [2015] decompose the solution space into disjoint groups of
dimensions and represent the objective function as the sum of independent GPs defined for each
group. They apply the sampling criterion in each group separately, then aggregate them to decide
the next solution to sample. Wang et al. [2017] propose an adaptive decomposition of dimensions
using a multinomial distribution whose posterior is updated throughout the algorithm. Rolland
et al. [2018] and Mutny and Krause [2018] extend the idea to overlapping dimension groups. Wang
et al. [2018] partition the solution space using a Mondrian process and learn a local GP for each
subspace and the additive structure.

The second approach is to reduce the problem dimension by projection, assuming that the black-
box function has a lower-dimensional active subspace. Wang et al. [2013] first apply the projection
idea to high-dimensional BO using a random projection matrix. On the other hand, Djolonga et al.
[2013] apply a low-rank recovery algorithm to compute the projection matrix from an initial design.
However, when the feasible solution space is bounded, the projection-based method does not per-
form well when a substantial chunk of the embedded subspace is projected to outside of the feasible
solution space of the original problem. Letham et al. [2020] and Binois et al. [2020] each discuss
lower-dimensional embedding approaches that avoid this phenomenon. Eriksson and Jankowiak
[2021] only consider a sparse axis-aligned subspace, arguing that inferring a non-axis-aligned sub-
space is substantially more expensive and leads to overfitting. Lu et al. [2018] and Moriconi et al.
[2020] consider nonlinear embedding through variational autoencoders (VAEs).

Both batching and projection approaches have limitations. In batching, the objective function
is assumed to be a sum of functions of the batched dimensions. Therefore, unless two dimensions
are in the same batch, their interaction effects cannot be modeled. Moreover, the additive model’s
covariance can be constructed easily from the batch GPs. However, for a GMREF, spatial correlation

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:4 X. Li and E. Song

is implicitly determined by the precision matrix and it is not straightforward to construct the
precision matrix of the additive model from the batch GMRFs. For the projection methods, it is
typically assumed that an upper bound of the active subspace’s dimension is known, but without
prior knowledge on the objective function, such an upper bound is difficult to obtain. Mathesen
et al. [2019] point out that projection-based BO algorithms may perform poorly when a lower-
dimensional active subspace does not exist for the given problem; the same can be observed in our
numerical experiments.

In this article, we propose the projected Gaussian Markov Improvement Algorithm (pG-
MIA) and pGMIA+. The former establishes a framework for the GMIA to scale up in the problem
dimension, whereas the latter extends the framework to solve significantly higher-dimensional
problems than the former. The pGMIA and pGMIA+ reap the benefits of both batching and projec-
tion approaches while tackling their limitations.

The pGMIA partitions the dimensions into two batches, solution-layer and region-layer dimen-
sions, then projects the solution space onto the latter. Since this is an axis-aligned projection, the
integer lattice (graph) structure of the solution space is preserved after projection. The name region-
layer comes from the fact that a node in the projected graph can be mapped to a region of solutions
in the original solution space. We refer to the projected graph and its node as region-layer graph
and region-layer node, respectively. Inversely, each region-layer node corresponds to a solution-
layer graph that contains all solutions projected to the node. Note that only the solution-layer
dimensions are represented in the solution-layer graph, which makes it lower dimensional than
the original solution space.

There are two major differences between the pGMIA and other projection methods. First, the
pGMIA does not assume an active lower-dimensional subspace. Instead, it regards the response
at each region-layer node to be the average of the responses at all solutions in the correspond-
ing solution-layer graph. Second, unlike other methods that make sampling decisions only in the
projected space, the pGMIA makes hierarchical sampling decisions in both region and solution
layers. The pGMIA first selects a region-layer node, then zooms into its solution-layer graph to
select a solution to sample. Essentially, the pGMIA treats all dimensions to be active, not just the
region-layer dimensions.

As in the batching approaches, we model both region-layer and solution-layer responses with
GMRFs; however, they do not fit an independent model for each batch of dimensions. Instead, we
derive both region- and solution-layer GMRFs from a single GMRF representing the entire solution
space. We refer to the last as the single-layer GMRF to distinguish it from the other two. One region-
layer GMREF is defined to represent the region-layer graph’s responses, and for each region-layer
node, a solution-layer GMRF is defined for the corresponding solution-layer graph.

Unlike the batching methods, the pGMIA does not assume the objective function to be a sum
of lower-dimensional functions. Rather, our model has a hierarchical structure—the region-layer
GMREF captures the lower-resolution trend in the response, whereas each solution-layer GMRF
provides a local, higher-resolution model. In addition, the pGMIA periodically updates the batches
according to a user-chosen criterion. This allows re-batching of the dimensions and gives the
pGMIA an opportunity to learn all interaction terms in the response as the simulation budget
increases.

The pGMIA+ extends the two-layer scheme of the pGMIA to multi-layers; it partitions the di-
mensions into m > 2 batches and constructs m layers by hierarchically projecting the batches
of dimensions. Starting from the top layer, the pGMIA+ selects a node on each layer’s graph and
zooms into the lower-layer graph to make a sampling decision. As m increases, fewer dimensions
are included in each layer, reducing the computational overhead of the sampling decisions. This
allows the pGMIA+ to tackle much higher—dimensional problems than the pGMIA.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:5

The idea of hierarchical search between the two layers of GMRFs has also been explored by
Salemi et al. [2019] in their algorithm, multi-resolution GMIA (MR-GMIA). However, the MR-
GMIA has several theoretical/practical limitations. First, their region-layer GMRF is fitted inde-
pendently from the solution-layer GMRFs for computational convenience, although there is clear
dependence due to averaging of the responses. Second, it is assumed that the precision matrix of
the region-layer GMRF has the same sparsity pattern as that of the solution-layer GMRF whereas,
in truth, the region-layer precision matrix becomes a dense matrix due to averaging. Moreover, the
batches of dimensions as well as the hyperparameters of the GMRFs remain unchanged after ini-
tialization throughout the algorithm, which significantly slows down the search progress in later
iterations, as our empirical study shows.

Unlike the MR-GMIA, the pGMIA’s region- and solution-layer GMRFs are statistically consis-
tent; the region-layer GMRF is defined by projecting the single-layer GMRF. This makes the region-
layer precision matrix dense; however, we prove that the dense precision matrix can be effectively
approximated with an easy-to-compute sparse matrix. We derive an exact bound on the approxi-
mation error and show that it becomes negligible as the feasible range in each dimension increases.
Moreover, the resulting approximate precision matrix has the same sparsity pattern as the single-
layer GMRF, what MR-GMIA assumes without mathematical justification. As such, efficient linear
algebraic techniques tailored for the single-layer GMRF can still be applied at the region layer.
Moreover, exploiting the Markov property of the single-layer model, we show that each solution-
layer GMREF is independent from the rest of the field conditional on the fact that the responses at
the neighboring solutions of the region are equal to the single-layer prior means. This approxima-
tion significantly reduces the computational overhead of the solution-layer sampling decisions as
we can focus on the solutions included in the selected region-layer node while ignoring the rest
of the solution space.

Another benefit of the pGMIA is that the hyperparameters of the GMRFs can be updated cheaply.
Under our region-layer GMRF approximation, the region-layer hyperparameters can be written as
linear functions of the single-layer GMRF parameters. Thus, instead of computing the maximum
likelihood estimator (MLE) of the single-layer GMRF, the pGMIA first solves the region-layer
MLE problem and then solves the solution-layer problem conditional on the region-layer estimates.
Since each layer contains fewer dimensions than the original space, the computational overhead is
significantly reduced. Thanks to this feature, the pPGMIA can quickly update the hyperparameters
whenever the batch of dimensions is updated.

Under mild assumptions, we prove that both pGMIA and pGMIA+ converge to a global opti-
mum of the DOVS problem almost surely when run without stopping. We compare our algorithms
with MR-GMIA as well as some state-of-the-art high-dimensional BO algorithms. The empirical
results demonstrate competitiveness of the pGMIA and the pGMIA+ in both search progress and
computation time.

The remainder of the article is structured as follows. In Section 2, we provide background on
GMREFs and discuss the projected GMRF model. Section 3 discusses the hyperparameter estimation
at both region and solution layers. Section 4 provides the algorithmic details of the pGMIA and the
pGMIA+. An extensive empirical study is presented in Section 5 to demonstrate the performances
of the pGMIA and the pGMIA+, followed by conclusions in Section 6. Due to the space limit, all
appendices are included in the Supplementary Material.

2 GAUSSIAN MARKOV RANDOM FIELDS FOR DOVS

The DOVS problem of our interest is minye 2~ y(x) = E[Y(x)], where the feasible solution space,
2, is a finite subset of d-dimensional integer lattice and Y(x) is the stochastic simulation output at
feasible solution x. For any x € 27, Y;(x) = y(x)+¢€;(x) can be observed for replications j = 1,2, .. .,

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:6 X. Li and E. Song

where simulation error €;(x) is independent and identically distributed (i.i.d.) with zero mean
and unknown variance o(x).

We further assume 2" to be a hyperbox. The number of feasible solutions, n = | 2|, increases
exponentially in d in this setting. When n is large and simulation runtime is nonnegligible, only
a small fraction of 2" can be simulated. To make inference at the solutions not simulated yet, we
model y(-) as a realization of a GMRF. In Section 2.1, we introduce the single-layer GMRF, then
define the region- and solution-layer GMRFs in Section 2.2.

2.1 Single-layer GMRF

A GMREF is a multivariate Gaussian random vector Y = (Y, Y,,...,Y,)" defined on undirected
labeled graph G = (V, E), where V is the set of n nodes and & is the set of edges connecting
neighboring nodes. In the context of DOVS, V corresponds to 2", and each Y; models the value
of y(-) at the i-th feasible solution. We refer to Y as the single-layer GMRF model. We also adopt
Y(x) to denote the element of Y corresponding to solution x to make the dependence explicit.

The prior imposed on Y is f(Y|u, Q) = (27)""/?|Q|"/? exp(—%(Y —)" Q(Y — u)), where g and
Q are the mean vector and precision matrix, respectively. The covariance matrix of Y is ¥ £ Q1.
Let Q;; be the (i, j)-th element of Q. Then, Q;; = Prec(Y;[Yq (;3) = 1/Var(Y;[Yq\ ;) and

Qi = —Corr(Ys, Y| Y (1) QuiQyj» 1 # . (1)

where Y is the subvector of Y corresponding to the nodes in S ¢ V. Let .#(i) be the set of
the neighbors of Node i in G. Then, for every i € V, we have that Y; LY\ s i)u(in| Y. 4 ;) [Rue
and Held 2005]. Namely, conditional on the responses at its neighbors, the response at each node
is independent of the rest of the field, which makes Y Markovian. Combining this property with
Equation (1), we have that Q;; = 0,if j ¢ .#/(i). Thus, the sparsity of Q is determined by ./(-). As in
Salemi et al. [2019], we define the set of neighbors of x € 2" as A (x) = {x’ € 2" : ||x—-X/||]» = 1},
where || - ||z is the Euclidean norm. This makes Q very sparse, with the fill-in rate (the fraction of
nonzero elements) less than (2d + 1)/n.

We assume that g = f1,,, where f is a hyperparameter and 1,, is the n-dimensional column
vector of ones assuming that there is no prior information about the objective function values
at the solutions. The precision matrix, Q, is parameterized by 6 = (0y, 61, . . ., 04), whose (i, j)-th
entry is

0o, ifi =j,
Qij = 1 —000c, if Ix; — X;lans = ee, (2)
0, otherwise,

where e is the {th standard basis vector and | - |,ps is the element-wise absolute value operator.
From Equations (1) and (2), observe that 0, = Corr(Y;, Y;|Yq, (; j3) if [xi — Xjlabs = e, ie., Op
determines the prior conditional correlation between neighboring solutions in the £th dimension.
The conditional precision of any solution must be positive; thus, 8y = Q;; > 0. We assume that the
prior conditional correlation between two solutions is nonnegative, i.e., 9y > 0 forall 1 < ¢ < d.
Moreover, we impose that Q is diagonally dominant, i.e., Z?zl 0, < 0.5, to make Q positive definite.

Since y(x) cannot be evaluated directly, we do not observe the realization of Y(x). Instead, we
define a new GMRF that models the stochastic simulation output at x. Let 23 C 2 be the set
of simulated solutions and 27 = 2\ Z;. Let Y; and Y, be the subvectors of Y corresponding

to 27 and 25, respectively. For x € 23, we observe that Y(x) = %x) Z;S‘l)

the number of replications made at x. Let M, be the vector of Y(x) at all x € 23; then, M, is a
realization of the GMRF, Y§ = Y, + €, where €[Y, ~ N(0)2;,,Q."), 02, is a | 23|-dimensional

Y;(x), where r(x) is

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:7

column vector of zeros, and Q. is a diagonal matrix whose diagonal element corresponding to x is
r(x)/o%(x). Because 0(x) is unknown, we adopt S?(x) = r(xl)_l er.(le) (Y;(x) - }_’(x))2 as a plug-in
estimate. Salemi et al. [2019] show that

Y|V =Yy~ N (ﬁln +0Q7! (0121) ,Q‘l) , where Q = [Q#l Qe 1 @

Qe(yZ_,Bllﬁtle) 12 Q22+Qe
with Q;; representing the submatrix of Q corresponding to .2; and 2 for 1 < i, j < 2. Updating Q
after simulating a new solution is extremely cheap, as we only need to update the corresponding
diagonal element of Q.. Moreover, the sparsity pattern of Q is preserved in Q.

We adopt the complete expected improvement (CEI) proposed by Salemi et al. [2019] as the
sampling criterion. Let X be the sample-best solution, i.e., X = argmin, . Y(x); at any point in
the algorithm, we refer to X as the current best solution. Then, the CEI of x relative to x is defined
as CEI(x,x) = E[max(Y(x) — Y(x),0)], where the expectation is with respect to the posterior
distribution in (3). Let M(x) and V(x) denote the posterior mean and variance of Y(x), respectively,
and let C(%, x) be the posterior covariance between Y(x) and Y(x). Note that M(x) is an element of
the mean vector of (3) and V(x) and C(x, x) can be obtained from the posterior covariance matrix,
Q7. Then, the posterior variance of Y(x) — Y(x) is V(X,x) = V(X) + V(x) — 2C(%, x). The CEI of x
can be computed as [Jones et al. 1998]

<) = (M(2) — M) | ME=ME) 00 [ME-ME)
CEI(%, x) = (M(X) — M())<1>(o)+\/V(:)¢(o) (4)

where ¢ and ® are the standard normal probability density and cumulative distribution functions,
respectively. Therefore, to compute CEI at all solutions, we need the posterior mean vector and
2n — 1 elements of Q~!: namely, its diagonal and the column corresponding to %. This observation
combined with the sparsity of Q has led to a series of computational improvements of GMIA [Li
and Song 2020; Semelhago et al. 2021, 2017], as reviewed in Section 1. However, they eventually
hit computational limits as n and d increase. The memory space required to store the precision
matrix is another challenge. For instance, MATLAB requires more than 4.46e+12 GB of RAM to
store Q with n = 10%°.

2.2 Projected GMRF

As mentioned in Section 1, the pGMIA batches the dimensions of 2" into two groups, the region-
layer and the solution-layer dimensions, then projects the solution space onto the region-layer
dimensions to create the region-layer graph. We illustrate the projection scheme with a simple
two-dimensional example in Figure 1, where the first dimension has coordinate values from 1
to 4 and the second from 5 to 8. Suppose we chose the second dimension to be the region-layer
dimension. By projecting the solution space onto the second, we create a region-layer graph with
four nodes (solid circles), where each node corresponds to four solutions in each dashed box. Note
that all solutions in each dashed box have the same second coordinate since they are projected
to the same node in the region-layer graph. The corresponding solution-layer graph defined for
each dashed box is therefore one-dimensional, with only the first dimension active. In total, the
projection creates one region-layer graph and four solution-layer graphs.

The pGMIA defines the response at each region-layer node as the average of the responses at
the solutions in the solution-layer graph corresponding to the node. Just as the single-layer GMRF
models the responses at all solutions, the pGMIA defines a region-layer GMRF to model the vector
of region-layer responses and a solution-layer GMRF to model the solutions’ responses included in
each solution-layer graph. For the example in Figure 1, one region-layer GMRF and four solution-

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:8 X. Li and E. Song

Second dimension

=) Single-layer GMRF

uolsuaWwIp 18114

H@I—b Four solution-layer GMRFs

° e ‘ e m==) One region-layer GMRF

Fig. 1. Illustration of the solution-layer and region-layer GMRFs for a simple 2-dimensional example. The
first dimension is included in the solution layer, whereas the second dimension is in the region layer.

layer GMRFs can be defined. In the remainder of this section, we mathematically formalize how
the region- and solution-layer GMRFs are derived from the single-layer GMRF.

Let k; denote the number of feasible values that the i-th coordinate of x can take. Consequently,
we have thatn =]_[;1:1 k;. Let d, represent the number of region-layer dimensions and d; = d — d.
Without loss of generality, we label the dimensions in the region layer asi = d; + 1,d; + 2,....d.
The region layer graph has K, =]—I;j: d,+1 ki nodes and K =]_[?;1 k; solutions are projected to
each region-layer node. Clearly, K, < n. Let Ry, R, ..., Rk, denote the region-layer nodes; then,
Z = Uzl 2 (Re), where 2 (Ry) is the set of solutions in the solution-layer graph of Rp.

The pGMIA allows the projection to be updated throughout the algorithm. Let & denote the
partition of dimensions that determines the projection. Given d;, there are (jl) candidates for
. Each time Z is updated, the dimensions are relabeled so that the first d; dimensions always
belong in the solution layer. Other quantities such as K, and K that depend on % are also updated
accordingly. The pGMIA updates &7 with mild computational overhead. In the remainder of this
section and Section 3, we assume Z to be fixed and defer the discussion on its update to Section 4.

For each region-layer node Ry, its response is defined as z(R;) £ K'Y ca (g, y¥(x). The
pGMIA models (z(R1),2z(Rz),...,z2(Rk,))" as a realization of the region-layer GMRF, Z =
(Z(R1), Z(R2), . . ., Z(Rk,))". To derive the distribution of Z from that of the single-layer GMREF,
Y, let us first define K, X n matrix

P2, (X)1F., (5)

where Ik, is the K, x K, identity matrix and (X) represents the Kronecker product. Then, we
have that Z = K;'PY. We assume that the elements of Y are sorted such that the corresponding
solutions are in ascending order of coordinates from the first to last dimensions. For instance, in
Figure 1, the first five elements of Y correspond to Solutions (1,5),(2,5),(3,5),(4,5), and (1, 6).
Each time & is updated and the dimensions are relabeled, Y is sorted accordingly.

The prior mean vector and covariance matrix for the region layer are E[Z] = K;'PE[Y] =
K;'Pu = Bk, and Var(Z) = K;*PVar(Y)P" = K;?PQ !PT, respectively. Although Z is a GMREF,
it does not have the same sparse neighborhood structure as the single-layer GMRF. The inverse of
Var(Z) turns out to be a dense matrix, implying that all region-layer nodes neighbor each other in
the region-layer graph. To compute the exact region-layer precision matrix, we need Q~'; however,

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:9

for the scale of problems of our interest, inverting Q is computationally infeasible. Moreover, the
computational benefit of GMRF is lost with a dense precision matrix. To tackle this challenge, we
propose approximating the precision matrix of Z with an easy-to-compute sparse matrix, as shown
in Theorem 2.1.

THEOREM 2.1. We have that (ZzPQ™'PT)PQPT = PQPT(5PQ™'PT). Furthermore, ifk; > 2 for
i=1,2,...,d, then '

4ch 2ayc1c 2 di ki—2
2 1¢1€2 1 i
< Ix + +1- — 1 ,
abs Kmin K 1—2¢; \ kmin l_[izl k; Ky

. . .d d d
where < is taken element-wise, kpyi, = min;l {k;}, ay = X;1,0;, ¢i = Xi_0;, ca =
max{2ay, 04,41, ...,0q}, and 1, xk, is the K, X K, matrix of ones.

|(KL§PQ—1PT) POPT Iy,

The proof of Theorem 2.1 is included in Appendix ?? of the Supplementary Material. Theorem 2.1
provides an element-wise absolute value bound on the difference between Ix, and the matrix prod-
uct of Var(Z) and PQPT, and thereby quantifies the error in approximating the precision matrix
of Z with PQPT. From Equation (5), PQPT can be computed easily. Note that a; < ¢; < 0.5 and
¢; < 1from the diagonal dominance constraint. Because ﬁ and 1 — H?;l k;(—tz are monotonically
decreasing in each k;, the error bound decreases in k;. Moreover, when k; — oo fori =1,...,d,

we have that ﬁ — 0and 1 —]—I;.j;l k;{—jz — 0. Thus, each element of (%PQ*PT)PQPT - Ik,

converges to 0. We also empirically observed that PQPT approximates (Var(Z))~" well even for
moderate k;s.

From Theorem 2.1, the prior distribution of Z can be approximated with N(f1k,, T '), where
T £ PQP". Because PQP " has the same sparsity pattern as Q, all sparse linear algebraic operations
tailored for the single-layer GMRF are applicable to the region-layer GMRF. Henceforth, we refer
to the approximate model as the region-layer GMREF.

Similar to the single-layer GMRF, we derive the posterior distribution of the region-layer GMRF
conditional on the simulation history. Any region-layer node is said to be simulated if at least one
of the solutions in its solution-layer graph is simulated. Let %, C Z# be the set of simulated region-
layer nodes and %, £ %\ %, and partition Z to (Z,Z;)", where Z; and Z; correspond to %#; and
K, respectively. Also, let Z3(R¢) € 2 (Re) be the set of simulated solutions in the solution-layer
graph of Ry and Z1(R¢) = Z (Re)\ Z2(Re). For any Ry € X, we cannot observe z(R/) directly
because (i) even if R, is simulated, it is unlikely that all x € Z'(R/) are simulated; and (ii) even if
all x € 2 (R/) are simulated, we do not observe y(x) without stochastic noise. Instead, we define
the stochastic observation of z(R) as

Z(Re) =1 2R). ¥ (). (6)

x€Z(Re)

Z(R¢) is the average of the stochastic observations at the simulated solutions in the solution-layer
graph of R;. Let Z, be the vector of Z(R;) at all R, € %,. To model Z,, we define Zg =7+ &,
where £|Z; ~ N(0)2,), Tgl) and T is the precision matrix of the stochastic noise for the region-

layer GMREF. Since all solutions are simulated independently, Zg(Rg) and Zg (Rp) for Ry # Ry, are
independent given Z(R/) and Z(R},), which makes Ty a diagonal matrix. The diagonal element of
T; corresponding to Ry is 1/Var(Z(R;)), where

> _ 1 1 a(x)
Var(Z(R¢)) = Var| 7z ermm y(x)) +E(%<M|ﬁ er%w) r® | (7)

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:10 X. Li and E. Song

In Equation (7), we treat Z>(R) as a set of uniformly randomly selected solutions without replace-
ment from 2" (R;). This allows Var(Z(R;)) to be estimated by [Salemi et al. 2019]

— _|ZRINZ R, v 7 2 1 S2(x
V(Re) = |(%f2(17g[){i(|%2(7g[)€|_1) ZXE%Z(R(;)(Y(X) —Z(Re))* + EACHIE er%z(ﬂg) Tx) - 3)
Note that | 2Z7(R¢)|/| Z (Re)| corrects for the fact that 2°(R;) is finite [Cochran 1977]; when all
solutions in R, are simulated, the first term of Equation (8) is 0. We adopt 1/V(R¢) as a plug-in

estimate of the diagonal element of T that corresponds to R,. Given Zg = 2, the posterior
distribution of (Z;,Z,)" is

. 0 . Lt T
N 1 + T_l |21 | ,T_l , h T2 [11 12
(ﬁ K, (T (ZZ - p1 I%zl) e T, Ta+Te

Note that T;; represents the submatrix of T corresponding to %; and Z; for 1 < i,j < 2.

The posterior distribution of Z in Equation (9) provides low-resolution inference to find a region-
layer node to sample. This fixes the d, region-layer coordinates. To determine the rest of coordi-
nates for the solution to sample, we rely on high-resolution solution-layer inference. Lemma 2.2
lets us update the posterior distribution of the solution-layer GMRF; see Appendix ?? for its
proof.

: ©)

LEMMA 2.2. Let R, € Z and N (R.) = (Uxea (RN (X)\Z (R.). Suppose that Y* and Y _y(r,)
are the subvectors of Y corresponding to the solutions in Z (R.) and A (R.), respectively. Then,
Y*Y p v = By ry ~ N(BL 2. Qi t), where Q. is the submatrix of Q corresponding to Y*.

Thus, conditional on the fact that the responses at the neighboring solutions of R, are equal
to their prior means, Y* is independent of Y\ Y"*. Known as the mean-field approximation in gen-
eral, this approximation is adopted in various statistical models with a complex spatial correlation
structure to ease computation involved in the analysis. For instance, Hensman et al. [2015] apply
the mean-field approximation for variational inference of a GP.

Based on Lemma 2.2, the posterior distribution of Y* can be derived similarly as in Equation (3).
Let Y] and Y} be the GMRF vectors corresponding to 23(R.) and Z3(R.), respectively. Let Q};
be the submatrix of Q. corresponding to ¥} and Y7 for 1 < i,j < 2, and let Y, be the vector of

sample means of the simulation outputs at 23(R.). We model Y’ as a realization of Y; . = Y} +€”,

where € ~ N(0|2;(%,), Q.¢) and Q. . is the precision matrix of stochastic noise. Proposition 2.3
provides the posterior distribution for Y* given Y 4 (g,) = f1|4(®,) and Y, . = Y,".

PrOPOSITION 2.3. The posterior distribution of Y* | Y5 . = Y, Y y(r,) = By (r,) is

Qp
Qi Q§2+Q*,e]' (10)

01 01 2:(R.)| A1 5 —
N(ﬁII%(Rm +Q, (QoY) = Bly2ym)))),Q*), where Q.

See Appendix ?? for the proof. We exploit Proposition 2.3 in two ways to improve the efficiency
of the pGMIA. First, it lets us estimate the hyperparameters of the GMRF efficiently by separating
the region- and solution-layer estimation problems, as we describe in Section 3. Second, Propo-
sition 2.3 enables us to update the solution-layer GMREF’s posterior distribution locally for R.
without updating the posterior distribution of the entire single-layer GMRF. Recall that updating
the single-layer model is computationally infeasible for large 2 .

The pGMIA makes the sampling decisions utilizing the posterior distributions of the two-layer
models. The CEI is applied in the region layer to select the next node to “sample”. Recall that
sampling a region-layer node means that a solution projected to the node will be selected for

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:11

sampling. The CEI of R € Z is

R — > _ R M(R)-M(R) > M(R)-M(R)
CEI(R, R) = E[max(Z(R) — Z(R),0)] = (M(R) - M(R))® (W) + 4/ V(R, R)p (W) ,
(11)
where R € %, is the node with the smallest observed region-layer output, M(R) and V(R) denote
the posterior mean and variance of Z(R), respectively, C(R, R) is the posterior covariance between
Z(R) and Z(R), and V(R, R) = V(R) + V(R) — 2C(R, R). Note that M(R) and V(R) are the elements
of the mean vector and the diagonal of T~! in Equation (9), respectively, corresponding to R and
C(R,R) is the off-diagonal element in T~! corresponding to R and R.
Once Ry = argmaxges CEI(R, R) is selected, we compute the following conditional CEI at the
solutions in .2 (R/) for solution-layer sampling:

CEI(x(R¢), x; Re) = E[max(Y(x(Re)) — Y(x),0) | Y (=) = P14 (®,)(]s (12)

where x(R/) is the solution in Z3(R/) with the smallest sample mean. The expectation in Equa-
tion (12) can be computed as in Equation (4) from the conditional distribution in Equation (10)
by setting R. = R,. We select xcri(R¢) = arg maxye 2-(%,) CEI(X(R¢), x; R¢) as well as x(R,) for
sampling.

3 HYPERPARAMETER ESTIMATION FOR PROJECTED GMRF

The prior/posterior distribution of the GMRF depends on the hyperparameters, and 6. These
values are typically estimated after simulating an initial design. Song and Dong [2018] consider
generalized method of moments (GMM) estimation and Salemi et al. [2019] and Semelhago
etal. [2021] adopt the MLEs. However, these algorithms estimate the hyperparameters of the single-
layer GMRF, which cannot be done for the scale of the problem considered here.

In this section, we discuss efficient estimation of § and 0 from the region- and solution-layer
models. Section 3.1 reviews the MLE problem for single-layer GMRF. In Section 3.2, we discuss how
the single-layer MLE problem can be separated into lower-dimensional region- and solution-layer
MLE problems by applying our projection scheme.

3.1 MLEs for Single-Layer GMRF

For the single-layer GMRF, Salemi et al. [2019] derive the log-likelihood function given Y5 = Y,
to be

L(B.60|Ys =) o Llog|(Zaz + Q)7 = 2(Mo = B112,) (22 + Q7)Mo — B112,)), (13)

where Xy, = (Qq; — QIT2 Illle)_l. From the optimality condition of Equation (13), the MLE of
can be written as a function of 0:

ﬁ(e) = (1|ng2| (Zo2 + Q;l)_l 1\%2|)_1 1|ng2| (T2 + Qzl)_l Y,. (14)

We define the profile likelihood, £(6 | Y5 = M), by plugging Equation (14) into £(5,0 | Y5 =
Y,). Recall from Section 2.1 that the feasibility constraints for @ are (i) 6, > 0, (ii) 6; > 0 for
i=1,2,...,d,and (iii) 2?21 0; < 0.5. Thus, the MLE of 0 can be obtained by solving
max L(0]Ys =)
0
J (15)
subject to Zi_l 0; <05,6>0and 6; >0, i=1,2,...,d,

where strict inequality < (>) can be replaced with < (>) by subtracting (adding) a small constant
to the right-hand side.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:12 X. Li and E. Song

For high-dimensional problems, estimating 0 by solving Equation (15) is challenging because
Equations (13) and (14) are expensive to compute. Both require X5, to be computed first, for which
the bottleneck is factorizing Qy;. Since | 27| > | 23], factorizing Qy; is just as expensive as factor-
izing Q, which is prohibitively high for the scale of 2" considered here.

3.2 Hierarchical MLEs for Region- and Solution-Layer GMRFs

In this section, we reformulate Equation (15) to lower-dimensional region- and solution-layer MLE
problems by exploiting Theorem 2.1 and Proposition 2.3. We refer to this estimation procedure as
a hierarchical estimation scheme, as the region- and solution-layer MLE problems are solved in
sequence. Below, we first introduce the region-layer MLE problem.

Let 7 = (79, 71, . . ., Tg,) be the hyperparameter vector of the approximate region-layer precision
matrix, T. Since each element of T = PQPT is the sum of the elements of a block matrix of Q,
we can obtain the functional relationship between 7 and 6. That is, 7o = K;0y(1 — 2 Z?;l 0;), and
7; = Ks0004,+i/70 fori = 1,2,...,d,. Or, equivalently,

d T
> =05 (16)
i=1 ZKSQO
ToTi .
0440 = —, =1,2,...,d,. 17
d1+l KSQO l 2 ()

Similar to the single-layer GMRF MLE problem, the region-layer MLEs can be found by maxi-
mizing

-1 -1

L(pr| 2.2, =2) %log| (Koo +T7') 1-3(Zo - Btpn))” (Ko + T3) (Z2 - Blima)
(18)

where Ky, = (To2 — T[,T;} T12)~". Recall that E[Z] = 1, . Thus, the MLE of f can be computed at

the region layer. As in Equation (14), that maximizes Equation (18) can be written as a function

of r:
-1

5 T -1\7! T -1\7!
o) = (11, (Ko + T7) 1| 1, (K +T7) - 22 (19)

Consequently, £L(z | Zg = Z,) is defined by plugging Equation (19) into Equation (18). The MLE
of 7 can be found by solving

max Lz |25 = Z»)
4 (20)
. 2 .
subject to Zi_l 7; < 05,79 >0andr; >0fori=1,2,...,d,.
Once solution 7 to Equation (20) is found, 84,+1, 04, +2, - - - , 04 are identified up to a scaling factor

from Equation (17). Let 8° = (0,0,,...,0,) be the vector of remaining elements of 6. From
Equation (16), 6 can be written as a function of 6° and 7.

We exploit the conditional distribution in Proposition 2.3 to set up a computationally efficient
solution-layer MLE problem for 6°. The solution-layer log-likelihood function at R, computed
from Equation (10) is

L(B6° Y}, =Y, N(R) =Bl ywr))
- A T S - - *]
« Hog| (%, + Q1) 1| & (y; —ﬂh%(%)l) (5 + 047" (Mz —ﬁlmmm),

where 33, = (Q;, — Q}7Q;7'Q7,)~". Recall that 6, is a function of ° given 7, and f is already
computed in the region layer from Equation (19). Therefore, the solution-layer MLE problem can

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:13

be constructed as

max L (ﬁ, 0° | Yoo =Y, V(R = ﬂlwm)
0 | < . . (21)
. 1 .
subject to N < f—os’ KSOQO +2 § i 0i=1 6> 0and0; > 0fori=1,2,....d,.

Reparameterizing 6o = 910, all constraints in Equation (21) become linear. The equality constraint

in Equation (21) can be removed by substituting 0o as a linear function of 6°. Since our goal is to
find the global optimum, we choose R, = Ryin to compute 0°, where R, is the node to which
the current best solution is projected so that the resulting solution-layer GMRF best fits Rpi, and
makes the solution-layer search in R, more effective.

The hierarchical scheme has significant computational advantages over the single-layer MLE
problem. For Equations (20) and (21), the most expensive operations are factorizing Ty; and Q7,,
respectively, which are far smaller than Q.

We can also ensure that the estimate of 6 obtained from the hierarchical scheme satisfies the
feasibility constraint of the single-layer MLE problem. Clearly, 0 is nonnegative. Thus, it remains
to show that the diagonal dominance condition holds. Observe that

d _ di d _ 70 70 d, o 70 ds '
Zi:l 0 = Zi:l 0; + Zi:dlﬂ 0; = (0.5 - 2K$90) t R Zi:l 6= 05 o (0.5 Zi:l rl) <0.5,

where the second equality follows from Equations (16) and (17), and the last inequality holds be-
cause 0 < Z?il 7; < 0.5and 0 < 79/(Ks6p) < 1 from the first constraint of Equation (21).
Although adopting the same ﬁ for both region and solution layers is statistically consistent
with our modeling assumptions, in practice, this tends to make solution-layer GMRFs provide
poor inference when 2" is large. In particular, when there are only a few simulated solutions in
a region-layer node and the sample means of the outputs at these solutions are smaller than 2
then the posterior distribution of the posterior means of the solution-layer GMRF at unsimulated
solutions tend to be large, i.e., reversion to the mean. This causes the algorithm to exploit the
simulated solutions instead of exploring new solutions for several iterations. To avoid this, we
make heuristic adjustments in our experiments in Section 5; when R € %, is selected for sampling,

we recompute the MLE ﬁ(ﬂ) from Equation (14) from the simulation observations made within K.

4 PROJECTED GAUSSIAN MARKOV IMPROVEMENT ALGORITHM

In this section, we propose our DOvS algorithms based on the projected GMRF model. The pG-
MIA is introduced in Section 4.1. Then, it is extended to the pGMIA+ in Section 4.2 to address
even higher-dimensional problems. A complete table of notation is provided in Appendix ?? for
convenience. Both pPGMIA and pGMIA+ update & periodically.

4.1 Algorithmic Details of pGMIA

Algorithm 1 outlines the pGMIA. The pGMIA first randomly selects the initial % and then solves
the region- and solution-layer MLE problems hierarchically. At each iteration, the pGMIA finds
new solutions to sample by performing the hierarchical search in Algorithm 3. When a projection
update criterion is satisfied, it updates &7 according to a projection selection criterion and computes
the GMRF hyperparameters accordingly, as described in Algorithm 4.

There are three criteria that require user inputs in Algorithm 1: stopping (Step 5), projection
update (Step 7), and projection selection (Step 8) criteria. Although any user-defined criteria can
be applied within the pGMIA, we discuss the choices adopted in our experiments in Section 5.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:14 X. Li and E. Song

ALGORITHM 1: pGMIA: Projected Gaussian Markov Improvement Algorithm

Input :dq,n,,ng,r; stopping, projection update & selection criteria
1 Randomly select & for initialization; set iter = 1.

2 Choose n, initial design nodes and ng initial design solutions projected to each design node by space
filling.

3 At each design solution x, simulate r replications and compute Y(x) and S?(x).

4+ Compute two-layer GMRF hyperparameters — Algorithm 4

s while stopping criterion not satisfied do

6 Perform hierarchical search — Algorithm 3

7 if projection update criterion is satisfied then

8 Choose & according to the projection selection criterion (e.g., Algorithm 2).

9 Update the projection and compute two-layer GMRF hyperparameters — Algorithm 4

10 else

11 Update Z(R) and V(R) according to Equations (6) and (8), respectively, for all R € %> with
| Z2(R)| = 2.

12 Update X = argminye g, Y(x) and Rpin = {R € Z : x € Z'(R)}.

13 end

14 Set iter = iter + 1.

15 end

Output:x.

For the stopping criterion, we update & every p iterations for some fixed p. Since the search
progress tends to slow down under the same projection as iterations proceed, large p is not desir-
able. As the MLE of the hyperparameters are recomputed each time & is updated, small p tends
to increase the per-iteration computational cost. In Section 5.1.1, we empirically show that the

performance of the pGMIA is robust for a wide range of p.
For projection selection, we test two approaches in our empirical study in Section 5. The first is

to choose & at random among (jl) candidates with equal probabilities. The second is to apply a

global sensitivity measure to select d, “most important” dimensions. Székely et al. [2007] introduce
the distance correlation, R(X1, X3), to measure dependence between two random vectors X; and

. A VA(X1,Xp) 1/2
X5: R(X1,Xy) = h
2 R, %) (‘/(Vz(Xl,Xl)q/Z(Xz,Xz)) where

VX1, X2) = E[|IX1 = X] 21Xz = X3 ll2] + E[1 X1 = X7 l2JE[1X2 = X3 ll2] - 2E [E[1X1 = X7 [l21X1] = E[IX2 — X3 ||z 1Xz]] .

X and X/ (X, and X)) are independent random vectors following the same marginal distribution.
Note that R(X;, X;) takes a value between 0 and 1, and R(X;,X;) = 0, if and only if X; and X,
are independent. A benefit of R(X;,X;) over the product-moment correlation is that X; and
X, need not have the same dimension. Da Veiga [2015] applies R(X;,X3) in global sensitivity
analysis to measure the sensitivity of GP prediction (X3) to a subset of input dimensions (Xj).
In our notation, they estimate the distance correlation between M(x) and x; by sampling
ng space-filling design points in 2°, 2y = {x, = (¥4, %2,4,---,Xda)s1 < a < ng}, then

computing
1/2

V2 (i, M(x))

R M) = | — :
V2 i) VM), M(x)

; (22)

where

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:15

ALGORITHM 2: Distance Correlation Projection Selection Criterion
Input :2,ng, B, 7,6%, Y(23), S(22), Z(%>) and V(Z%2),

1 Select a set of ng design solutions 2 via Latin hypercube sampling.

2 forx e 2, do

3 FndR={ReZ:xe Z(R)}

4 if R € %, then

5 | Compute the solution-layer posterior mean M(x) within R from (10) at x.

6 else

7 | Compute the region-layer posterior mean M(R) from Equation (9), and set M(x) = M(R).
8 end

9 end

10 Calculate R(x;, M(x)) from Equation (22), foralli = 1,. .., d.
11 Select dy region-layer dimensions with dy largest R(xi, M(x)).

Output: Z.
. 1 ng ng 1 ng ng 1 ng rly
VAt M) == 37 > e = 1.0 2 IMGta) = M)l + | = D7 3 l1xi.a = xip e (,Tz D IM(xa) ~ M(xp)
9 a=1p=1 9 a=1b=1 9 a=1b=1
2 ﬂg 1 ng 1 I‘Lg
o Zl - bz 1.0 =il || 2= ; IM(xa) = MG) 2| |
. 1 n ﬂg 1 rlg ng 2
VHMe), M) == > " IM(xq) = Mxp)1 + (—2 DT IMGxa) - M(Xb)”z)
g a=1b=1 g a=ip=1

and V(x;, x;) is computed similarly as PV2(M(x), M(x)), replacing M(x,) and M(x;) with x; , and
Xi,p, respectively. In general, x; can be replaced with any subvector of x to estimate the distance cor-
relation between a set of dimensions and M(x). In this case, x; 4 is replaced with the corresponding
subvector of x,.

Extending this idea, we apply the distance correlation in Algorithm 2 to decide the d; dimensions
to include in the region layer. Ideally, we would like to choose d, dimensions that jointly have the
largest distance correlation with M(x). However, this requires estimating (jz) distance correlations,
which can be expensive when d is large. Instead, Algorithm 2 greedily selects d, dimensions with
the highest marginal distance correlations.

Another challenge in computing Equation (22) is that the pGMIA does not compute the single-
layer GMRF’s posterior mean, which is prohibitively expensive to compute for our problem scale.
Instead, we use the solution-layer GMRF’s posterior mean at x in Equation (10) for M(x) in Equa-
tion (22) if x belongs to the region-layer node, R, that has been simulated before. Otherwise, we
use the region-layer posterior mean of R, M(R), in place of M(x).

Algorithm 3 presents how the pGMIA selects the next group of solutions to simulate. From the
region-layer posterior distribution, the pGMIA finds three region-layer nodes to explore: (i) the
node that the current best solution is projected to (Ruin); (ii) the current region-layer optimum
(R = arg mingeg, Z(R)); and (iii) the node with the largest region-layer CEI value (Rcg). Sam-
pling R and Ry facilitates pPGMIA’s global convergence guarantee in Theorem 4.1 stated at the
end of this section. We borrow the idea of sampling Ry, from MR-GMIA in Salemi et al. [2019];
although sampling Ry, does not affect the global convergence guarantee, we observed that doing
so can improve the finite-sample performance by sampling more aggressively near the current
best solution. Note that R, may coincide with Rcgy or R. In such cases, we sample only two
region-layer nodes in that iteration.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:16 X. Li and E. Song

ALGORITHM 3: Hierarchical search
Input :ng,r, 2, B, 7,05, Y(23),S*(23), Z(%#2) and V(%5)
1 Find R = argmingeg, Z(R).
2 Compute M(R), V(R), and C(R, R) from Equation (9), VR € Z.
s Compute CEI(R, R) from Equation (11), YR € Z.
4 Find Rcgr = arg maxg e CEI(R, R).
5 for R € {Ruin, R, Rcp1} do
6 if | 23(R)| < ns then

7 Select ng — | Z2(R)| new solutions via space filling.
8 Run r replications and compute Y(x) and S%(x) at each new solution.
9 end

10 Find x(R) = arg minyc 9, (R) Y(x).
11 Compute M(x), V(x), and C(X(R), x) from Equation (10) for all x € Z7(R).
12 Compute CEI(X(R), x; R) from Equation (12), Vx € 2" (R).
13 Find XCEI(R) = arg maxye¢ Z(R) CEI()}('R), X R)
14 Simulate r replications at X(R) and xcgr(R); update Y(X(R)), S2(X(R)), Y (xcg1(R)) and S%(xcgr(R)).
15 Update Z(R) and V(R) from Equations (6) and (8), respectively.
16 end
Output:Y(23), S%(23), Z(#2) and V(%>).

For each of the selected region-layer nodes, the algorithm updates the solution-layer posterior
distribution and finds the current best solution and the solution with the largest CEI to simulate
within the region. These operations can be parallelized, as no information is exchanged among the
nodes. Any of the selected region-layer nodes may be undersampled, in which case the inference
at the solution-layer GMRF may be poor. To prevent this, Steps 6 to 9 first ensure that we sample
at least ns design solutions within each region. If | Z3(R)| > 0, i.e., R has been sampled before,
then we apply the approach proposed in Wang [2003] to obtain ns —|.23(R)| new solutions. Given
ns, their algorithm first defines the Latin Hypercube grid in the domain and shrinks the grid by
leaving out the rows and columns that already contain existing design solutions. Then, it generates
a Latin Hypercube sample of size ng — | Z2(R)| on the shrunk grid and maps it back to the original
domain. We modify their algorithm to sample design solutions on the integer grid; further details
can be found in Appendix ??.

In Steps 2 and 11 of Algorithm 3, in lieu of computing the full posteriors, we only compute the
elements of the posterior mean and covariance matrix necessary for computing CEls in the region
and solution layers, respectively.

When & is updated, the region-layer hyperparameters, 7, must be updated according to the new
2. The new 7 can be computed from the old 7 and 0° estimated under the previous projection,
say, P’, by first computing 04,41, 04,42, - - . , 64 from Equation (17), then solving T = PQPT for each
element of 7. However, we empirically observed that updating the hyperparameters allows pGMIA
to make a faster search progress, particularly in earlier iterations.

Algorithm 4 details the projection and hyperparameter update in the pPGMIA. Updating & tends
to increase | %> | because the solutions projected to the same region-layer node under the previous
projection &?” have the same coordinates in the dimensions included in the region layer under
&', Thus, when the region-layer dimensions change under 2, those solutions are allocated to
different region-layer nodes, possibly generating more sampled nodes. In earlier iterations, this
may result in several nodes with only one sampled solution. For such nodes R, V(R) cannot be
computed. Thus, we do not include those nodes in the set of sampled nodes, %>, in the region-layer

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:17

ALGORITHM 4: Projection and Hyperparameters Update

Input :n,,r, 2,Y(23),5%(25)
1 while [{R € %5 : | 22(R)| = 2}| < n, do

2 if 3R such that | Z3(R)| < 2 then

3 | Select 2 — | Z5(R)| new solutions via space filling.
4 else

5 Randomly select R € {R € Z; : | Z2(R)| = 1}.

6 Select one additional solution not in 2%(R).

7 end

8 Run r replications and compute Y(x) and S?(x) at each.
9 end

10 Compute Z(R) and V(R) from Equations (6) and (8), respectively, for all R € %, with |23(R)| > 2.
11 Solve the region-layer MLE problem in Equation (20) to find 7 and compute ﬁ from Equation (19)
12 Find X = argminyc o, Y(x) and Rppin = {R € Z : x € 2 (R)}.
13 Solve the solution-layer MLE problem in Equation (21) to find 6’ within Rmin-

Output: 8, 7,0°, V(23), S2(23), Z(%5) and V(%>).

MLE calculation. Step 1 of Algorithm 4 checks whether there are at least n, nodes under &7 that
contain two or more simulated solutions. If not, we randomly select region-layer nodes among
those with only one simulated solution and sample an extra solution for each region-layer node
to ensure that V(-) can be computed.

We establish global convergence of pPGMIA under Assumption 1 stated below.

ASSUMPTION 1. Forallx € 2, y(x) > —co and 0 < Var[Y(x)] < +oo. Moreover, the MLEs of the
GMREF hyperparameters are updated only finitely many times for each & throughout the run.

Note that Y(x) need not be normally distributed as long as its variance is finite. The last condi-
tion ensures that the hyperparameters are fixed after a finite number of iterations. Theorem 4.1
guarantees that pPGMIA converges to the global optimum almost surely regardless of the projection
selection criterion. See Appendix ?? for its proof.

THEOREM 4.1. Under Assumption 1, the pPGMIA run without stopping converges to the global opti-
mum almost surely.

4.2 pGMIA+: Multi-layer Extension of pGMIA

As the problem dimension increases, the two-layer model adopted in the pGMIA eventually runs
into the computational limitation as the number of solutions/nodes in each layer becomes too
large. In this section, we propose a multi-layer extension of pGMIA, pGMIA+, which partitions
the dimensions of the solution space into m > 2 batches to achieve computational efficiency for
even-higher-dimensional problems.

Let the number of dimensions included in the jth group of the partition be d; so that 3.7, d; = d.

Without loss of generality, let us label the dimensions in the jth group as Z{;i d; + 1, Z{;i d; +
2., 25:1 d; for j = 1,2,...,m. Each layer of the multi-layer GMRF model is constructed by
hierarchically projecting the dimensions of the solution space onto a lower-dimensional integer
lattice. The mth-layer graph is the top-layer graph where all dimensions are projected to the last
dp, dimensions. Each mth-layer node has unique d,,,-dimensional coordinates. For 2 < j < m, each
jth-layer node can be mapped to the (j — 1)th-layer graph consisting of the (j — 1)th-layer nodes

projected to that jth-layer node.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:18 X. Li and E. Song

Nine first-layer GMRFs

—

Second dimension

Second dimension

Third dimension

Third-layer GMRF @7 @ °

Third dimension

Third dimension

Fig. 2. lllustration of a three-layer GMRF; hierarchical projection (=) and search («).

We illustrate the m-layer projection scheme in Figure 2 using a three-dimensional solution space
consisting of 27 solutions, where the first dimension takes values from 1 to 3, the second from 4
to 6, and the third from 7 to 9. Suppose that the dimensions are partitioned into three batches:
{1}, {2}, and {3}. Therefore, the top (third) layer consists of the third dimension only, resulting
in a one-dimensional graph with three nodes. Note that the third-layer node with coordinate 9 is
mapped to the second-layer graph with three nodes, (4,9), (5, 9), and (6, 9), whose third coordinates
are 9. Similarly, other nodes in the third layer also have corresponding second-layer graphs. Thus,
three second-layer graphs are defined in total. The figure also shows that the second-layer node
(6,9) is mapped to the first-layer graph consisting of (1, 6, 9), (2, 6,9), and (3, 6,9). There are total
9 first-layer graphs.

The pGMIA+ defines the response at each jth-layer node as the average of the responses at all
nodes in the corresponding (j — 1)th-layer graph. For 1 < j < m, the jth-layer GMRF is defined for
each jth-layer graph. As in the pGMIA, the pGMIA+ selects a node to sample starting at the mth
layer and continues its way down to the first layer by selecting a node in the lower-layer graph. For
instance, in Figure 2, suppose that 9 is selected for sampling in the third layer. Then, the pGMIA+
continues to make a sampling decision on the second layer by selecting a node among (4, 9), (5, 9),
and (6, 9). This procedure is repeated in the first layer, until a solution among (1, 6, 9), (2, 6,9), and
(3,6,9) is selected. Hence, while there are 27 feasible solutions in the single-layer GMREF, the pG-
MIA+ only needs to make inference at three nodes on each layer, which is why the computational
cost is significantly reduced in the pGMIA+.

Similar to the two-layer case, the MLEs of GMRF hyperparameters can be computed hierar-
chically from the m-th layer to the first layer, exploiting Theorem 2.1 and Proposition 2.3. The
details of multi-layer GMRF distributions, their MLE problems, and the pGMIA+ are presented in
Appendix ??. Corollary 4.2 states the global convergence of pGMIA+; its proof can be found in
Appendix ??.

COROLLARY 4.2. Under Assumption 1, the pGMIA+ run without stopping converges to the global
optimum almost surely.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:19

In practice, making exact inference on all layers may be too expensive when d is large. One way
to reduce the computational overhead is to make exact inferences on the top m — 1 layers while
randomly sampling a solution to simulate in the first layer. The computational saving can be made
substantial by setting d; large.

5 EMPIRICAL ANALYSIS

In this section, we provide extensive empirical results to demonstrate the performances of the
pGMIA and pGMIA+. Both algorithms are compared with MR-GMIA in Salemi et al. [2019]
and four state-of-the-art high-dimensional BO algorithms: Random EMbedding Bayesian
Optimization (REMBO) in Wang et al. [2016], Sparse Axis-Aligned Subspace Bayesian
Optimization (SAASBO) in Eriksson and Jankowiak [2021], and High-Dimensional Bayesian
Optimization (HDBO) and High-Dimensional Batch Bayesian Optimization (HDBBO) in
Wang et al. [2017]. REMBO and SAASBO are projection-based BO algorithms. While SAASBO
only considers an axis-aligned projection, both adopt the Expected Improvement (EI) as
the sampling criterion. HDBO and HDBBO are batching approaches. Both apply the Upper
Confidence Bound (UCB) as the sampling criterion. However, HDBBO has parameter B, which
controls the number of solutions sampled in each iteration; it selects B solutions with the largest
UCB values. Although their inference is still valid, REMBO, SAASBO, HDBO, and HDBBO are
not designed specifically for the integer solution space. When a fractional solution is chosen from
these algorithms, we round it to the nearest integer solution for simulation.

5.1 Performance of pGMIA

We test two choices of projection selection criteria with the pGMIA, random selection and dis-
tance correlation. To differentiate the two criteria, we denote them as pGMIA-R and pGMIA-DC,
respectively. We demonstrate the performance of pGMIA-R and pGMIA-DC using three popular
optimization test functions (https://www.sfu.ca/~ssurjano/optimization.html): Zakharov (Section
5.1.1), Branin (Section 5.1.2), and Styblinski-Tang (Section 5.1.3) functions. To convert them to
DOVS problems, we add stochastic noise to the function values. All dimensions of Zakharov
function are active and it is non-decomposable. The Branin function has a two-dimensional active
subspace; thus, it is favorable to projection-based methods such as REMBO and SAASBO. The
Styblinski-Tang function is decomposable in each coordinate direction; thus, it is favorable to
batching methods such as HDBO and HDBBO. We also include a slightly modified Styblinski-Tang
function to induce interactions between the dimensions.

All three test problems are 10-dimensional and there are 5 feasible values in each dimension.
We set d; = d; = 5 for pPGMIA-R and pGMIA-DC. We choose the last 5 dimensions to be included
in the region layer for MR-GMIA and set the dimension of the active subspace of REMBO to be
5. Since Wang et al. [2017] do not give specific guidance on the batch size, we choose B = 6 for
HDBBO as pGMIA-R and pGMIA-DC typically sample 6 solutions at each iteration.

To estimate the hyperparameters, all algorithms initially sample 100 design solutions via space
filling for the Zakharov and Styblinski-Tang functions. In pGMIA-R, pGMIA-DC and MR-GMIA,
n, = 10 region-layer nodes and ng = 10 solutions per node are selected via space filling. For the
Branin function, all algorithms initially sample 9 design solutions (n,=3 and n; = 3 for pPGMIA-R,
pGMIA-DC, and MR-GMIA). Note that the Branin function has two active dimensions. Therefore,
we choose a small initial design to avoid finding the optimal solution right after sampling the initial
design. All algorithms run 10 replications each time they sample a solution.

In pGMIA-R and pGMIA-DC, we compute the MLEs from the outputs of 50 most-sampled region-
layer nodes to avoid sampling too many new solutions when the projection scheme is updated and
to save the computational cost.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:20 X. Li and E. Song

—p=5

Optimality gap

0 500 1000 1500 2000
Number of samples

Fig. 3. Sensitivity analysis for pPGMIA-R on the choice of p; 10-dimensional Zakharov function.

5.1.1 Zakharov Function. Given x = (x1,X2,...,X10) , the 10-dimensional Zakharov function
is f(x) = X2, x2 + (X1 O.Sl'x,-)2 + (X1 0.5ixl~)4. The Zakharov function is neither additive
nor has a lower-dimensional subspace; all ten dimensions are active and there is an interaction
term between any two dimensions. These features make all four benchmarking algorithms not
particularly advantageous for the Zakharov function. We choose 2" = {-2,-1,0,1,2}!° as the
feasible solution space, which makes f(x) € [0,9.15 x 10°]. The global optimum of the Zakharov
function is at x = 019 with response 0, where the difference between the responses at the global
minimum and the second best is 1.3. To make the output stochastic, we add normal noise that
follows N(0, 1.82) to the response function.

We first examine the sensitivity of the pGMIA to the choice of p before comparing it with the
benchmarking algorithms. Figure 3 displays the trajectories of optimality gap against the number
of samples pGMIA-R evaluates averaged over 100 macro-runs; recall that each sample consists of
10 simulation replications. The shaded area around each curve shows point-wise +2 standard error
of the average performance computed from 100 macro-runs. Although p = 5 and p = 100 show
slightly less desirable behaviors in the beginning and toward the end, respectively, the choice of p
does not appear to affect the pGMIA’s performance significantly. As more solutions are sampled,
for all five choices of p, pPGMIA-R eventually converges to the global optimum. The same sensitivity
analysis was conducted for pGMIA-DC and showed similar conclusions.

In the remainder of Section 5, we adopt p = 20 for pGMIA-R and pGMIA-DC. To match the pG-
MIA, we also set REMBO to update its parameters every 20 iterations. Additionally, we let SAASBO,
HDBO, and HDBBO update the projection/decomposition and parameters every 20 iterations. The
MR-GMIA only computes the parameters once at the beginning of the algorithm.

Figure 4(a) compares the performance of pGMIA-R and pGMIA-DC with all other algorithms.
Notably, pGMIA-R converges faster than pGMIA-DC, indicating that randomly selecting the
projection is effective. The performance difference between pGMIA-DC and pGMIA-R can
be attributed to the frequency at which each algorithm updates the projection. For the ex-
periments reported in Figure 4(a), pGMIA-R and pGMIA-DC evaluate the projection update
criterion 19 times by the 1,000th sample. While pGMIA-R updates the projection 18.8 times
on average across 100 macro-runs (standard error 0.037), pGMIA-DC updates only 14.2 times
(0.397), indicating that the same projection may be chosen multiple times by the distance
correlation criterion. Early on in the algorithm, there is a benefit of changing the projection
more frequently as it induces more exploration in all dimensions. Moreover, pGMIA-DC
estimates the distance correlations based on the posterior means obtained from the GMRF

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:21

15

151 \ &
N ——pGMIA-R L ——pGMIA-R
R - - - pGMIA-DC N - - - pGMIA-DC
L N - -~ MR-GMIA Th T e - - = MR-GMIA
10t 210
[B R S E ()]
2 =
T | W N e S
g g
B | D, ST T o -~ - —See a
O 5¢ O 5
0 0 g ;
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of samples Number of samples
(a) Noise level N(0,1.8?). (b) Noise level N(0,2.6%).
15 \ 15 y
. B —— pGMIAR "‘*-_._\.':.‘,‘.'\b‘""n“ . [—remiAR
- - = pGMIA-DC S S| -~ pGMIA-DC
- -~ MR-GMIA S |7~ MRGMIA [
----—REMBO
10t 210 —-=-=- SAASBO i
o (o]
2 =
T T
£ £
a o
O 5¢ O 5
0 - - - - ! 0 ' ' ' - :
0 200 400 600 800 1000 0 200 400 600 800 1000

Number of samples Number of samples

(c) Noise level N(0,3.9?). (d) Noise level N(0,5.2%).

Fig. 4. Comparison of the trajectories of optimality gap of the Zakharov function with different stochastic
noises for pPGMIA-R, pGMIA-DC, MR-GMIA, REMBO, SAASBO, HDBO and HDBBO (B = 6) averaged over

100 macro-runs.

model as discussed in Section 4.1, which tends to have large prediction errors in the earlier
iterations.

As expected, REMBO, SAASBO, HDBO, and HDBBO perform poorly on the Zakharov function,
which is not additive and all dimensions are active. We stopped running the SAASBO around
500 samples because it takes more than 2 hours at each iteration at that point, and the trajectory
already demonstrates the efficiency of pGMIA over SAASBO. Additionally, we observe that the
MR-GMIA, which uses a fixed projection scheme, progresses slowly after 200 samples. This shows
that updating the projection scheme is indeed effective in narrowing the optimality gap.

Next, we examine robustness of the pGMIA and benchmarking algorithms to different levels
of stochastic noise. In Figures 4(b) to 4(d), we increase the stochastic noise variance from 1.82
to 2.6%,3.9%, and 5.2%, respectively. Observe that the trajectories of pGMIA-R, pGMIA-DC, and
MR-GMIA are similar across all four cases, suggesting that these algorithms perform consistently
under different noise conditions. On the contrary, REMBO, SAASBO, HDBO and HDBBO show
noticeable performance degradation with increasing noise levels. In particular, the HDBBO
starts outperforming the MR-GMIA around the 300-sample mark when the stochastic noise

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:22 X. Li and E. Song

30
—— pGMIAR
- - - pGMIA-DC
25 - - = MR-GMIA
—---—-REMBO
820 ----=-SAASBO
o weeres HDBO
2 15 HDBBO (B=6)
(]
£
a
o 10§ ——
5 [=~ = — = ——— =~ ol
0 ----------
400 600 800 1000

Time (s)

Fig. 5. Comparison of the trajectories of optimality gap of the Zakharov function versus wall-clock time
for pGMIA-R, pGMIA-DC, MR-GMIA, REMBO, SAASBO, HDBO and HDBBO (B = 6) averaged over 30

macro-runs.

variance is 1.82, but the cross-over point increases to 900 samples when stochastic noise variance
is 5.2%.

To examine the computational overhead of the algorithms, Figure 5 plots the average trajec-
tories of the optimality gap against the wall-clock time computed from 30 macro-runs, where
the stochastic noise variance is 1.8%. All algorithms are run on a single thread of Intel Core i5-
9600K CPU (3.70 GHz) with 16.0 GB RAM to measure the wall-clock time. Observe that pPGMIA-R
shows the fastest progress and clearly dominates the others. The performance difference between
PGMIA-R and pGMIA-DC can be attributed to the cost of computing the distance correlations in
pGMIA-DC. All three variations of the GMIA outperform the others in wall-clock time, reflecting
the computational benefit of GMRF-based algorithms over the GP-based algorithms applied to the
integer solution space. SAASBO shows no improvement over the 1,000-second period due to its
heavy computational overhead.

To summarize, the experiment results in this section demonstrate the robustness of the pGMIA
to different levels of stochastic noise and highlight the superior sample and computational effi-
ciency of the pGMIA on a non-additive objective function for which all dimensions are active
compared with other batching or projection-based BO algorithms.

5.1.2 Branin Function. For x = (x1, %3, ...,x10)", the 10-dimensional Branin function is

51, 5. ? 1 i
f(x)=|x,— —x{+—% —6| +10|1—- —cos(xy)], (23)
T 8

4572

where X; = 10x; — 5, X2 = 10x,. Observe that only the first two dimensions of x are active in
Equation (23), which benefits REMBO and SAASBO. We choose 2" = {0,0.25,0.5,0.75,1.0}'° as
the feasible solution space, which makes f(x) € [2.42,308.13]. The global optimum of the Branin
function is (x1, x2) = (0.75, 0.25) with response 2.4153. The responses at the global minimum and
the second best differ by 0.5. We add N(0, 0.72) stochastic noise to the response function.

Figure 6 shows the trajectories of optimality gap averaged over 100 macro-runs when the
algorithms are terminated after 500 samples. Although both pGMIA-R and pGMIA-DC are
slower in the beginning, they outperform all other algorithms after 120 samples. REMBO makes
reasonably good progress at the beginning since the Branin function has a two-dimensional
active subspace. However, it significantly slows down after about 100 samples. On the other

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:23

——pGMIAR
- - - pGMIA-DC
- - = MR-GMIA
----—REMBO
----—-SAASBO

Optimality gap

T ey

200 300 400 500
Number of samples

Fig. 6. Comparison of the trajectories of optimality gap of the Branin function versus the number of samples
for pPGMIA-R, pGMIA-DC, MR-GMIA, REMBO, SAASBO, HDBO, and HDBBO (B = 6) averaged over 100
macro-runs.

hand, SAASBO converges to the global optimal after 400 samples. For MR-GMIA, the first
five dimensions in the region layer include the two active dimensions of the Branin function.
Therefore, all solutions within a region in MR-GMIA have identical responses, which makes the
solution-layer search meaningless. HDBO shows good initial performance but slows down after
100 samples, exhibiting the worst performance among all. On the other hand, HDBBO is almost
as competitive as pGMIA-R and pGMIA-DC. We conjecture that the batch sampling scheme of
HDBBO increases its chance to explore more along the active dimensions.

We close this section by pointing out that even if the true objective function has a lower-
dimensional active subspace, the pGMIA outperforms the benchmarked active subspace-based BO
algorithms.

5.1.3 Styblinski-Tang Function. Given x = (x1,X2,... ,X10) ', the 10-dimensional (scaled)
Styblinski-Tang function, f(x) = % Z}gl(x? — 16x% + 5x;), is separable in each dimension. The
feasible solution space is set to be 2~ = {-6,-3,0,3,6}!°, which makes f(x) € [-39,375] and
x = (—3)1;9 the global optimum with response —39. The difference between the responses at the
global minimum and the second best is 2. We add N(0, 3?) stochastic noise to the response function.

In the following, we compare the performance of pGMIA-R and pGMIA-DC tested on the
Styblinski-Tang function against MR-GMIA, REMBO, SAASBO, HDBO, and HDBBO. Figure 7(a)
shows the trajectories of the optimality gap against the number of samples averaged over 100
macro-runs. Note that HDBO exhibits the best performance at the beginning of the algorithm.
The pGMIA-R and pGMIA-DC outperform HDBO after the 300-sample mark—this is when the
projection and MLEs are updated for the first time. Until the first projection update, pGMIA-R
and pGMIA-DC are identical, but thereafter, pPGMIA-DC shows slower progress than pGMIA-R.
HDBBO is not competitive at the beginning of the algorithm, but catches up the pGMIA-R and
PGMIA-DC in the long run. REMBO’s and SAASBO’s poor performances are not surprising, as all
dimensions are active in the Styblinski-Tang function. MR-GMIA performs better than REMBO but
not as well as the other four algorithms. In addition, both MR-GMIA and REMBO do not update
the initial projection scheme, which explains their slower convergence.

To examine the effect of interactions across dimensions on the algorithms’ performances, we
modify the Styblinski-Tang function to f(Ax), where A = [a; ;] is a 10X 10 matrix whose elements
are zeroes except that a;; = a;,;4+1 = 0.5for 1 < i < 9and ajo1 = aig10 = 0.5. Given the

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:24 X. Li and E. Song

50 1 307
L —— pGMIA-R \ —— pGMIA-R
"\, |~~~ pGMIA-DC 25 L - - - pGMIA-DC
40 ‘\\— -~ MR-GMIA A - - = MR-GMIA
—---—REMBO & —---—REMBO
e - SAASBO 220 [l L -~ SAASBO
()] 30 ()] | b
2 E
T T 15 'L
£k £
520 a5
O O 10
101 5
0 ' ' - - ! 0 ; ; : - '
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of samples Number of samples
(a) Styblinski-Tang function. (b) Modified Styblinski-Tang function.

Fig. 7. Comparison of the trajectories of optimality gap against the number of samples averaged across 100
macro-runs on the original Styblinski-Tang and modified Styblinski-Tang functions for pGMIA-R, pGMIA-
DC, MR-GMIA, REMBO, HDBO, and HDBBO (B = 6).

same 2, the global optimum is at x = (—3)1y¢ and its response remains the same. Figure 7(b)
shows the results for the modified Styblinski-Tang function. All algorithms except for HDBBO
show smaller optimality gap at a given number of samples compared with the original function
while pGMIA-R and pGMIA-DC still exhibit the best performances among all. The relatively poor
performance of the HDBBO can be attributed to the fact that the function is no longer additive. Its
sample performance is affected more than the HDBO’s, as it selects a batch of solutions assuming
the additive structure. Not surprisingly, the two active-subspace-based algorithms, REMBO and
SAASBO, still show poor performances.

In both Figures 7(a) and 7(b), there are no significant differences between the performances
of pGMIA-DC and pGMIA-R. This can be attributed to the fact that all dimensions in the
Styblinski-Tang function are equally important. As a result, the marginal distance correlations of
all dimensions are identical.

5.2 Performance of pGMIA+

In this section, we test the 100-dimensional Branin (Section 5.2.1) and Zakharov (5.2.2) functions,
and a 30-dimensional Assemble-to-Order DOVS problem (5.2.3) to demonstrate the performance
of pGMIA+. We only test pGMIA+ with random selection as the projection selection criterion
because (i) it shows better performance when combined with pGMIA in Section 5.1 and (ii) to
avoid computing the distance correlations for all dimensions. The MR-GMIA is dropped here as
the problem size is too large for it to be computationally feasible.

In Sections 5.2.1 and 5.2.2, we adopt a three-layer GMRF model for the pGMIA+, where ds; = 3,
dy = 3, and d; = 94. With this setting, the pGMIA+ samples 8 to 19 solutions at each iteration,
which depends on whether the CEI-maximizing or sample-best node at each layer coincides with
the node that the sample-best solution is projected to. See Appendix ?? for the details. We set
the active subspace dimension of REMBO to be d; + d; = 6 and adopt B = 18 for HDBBO, as
pGMIA+ typically samples 18 solutions at each iteration. All algorithms are initialized with the
same number of design solutions selected via Latin hypercube sampling, and simulate r = 10
replications per sampling. As in Section 5.1, we select (at most) 50 most-sampled nodes for MLE
estimation.

In Section 5.2.3, we change the setting for the pGMIA+ to d; = 3, d» = 3, and d; = 24.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:25

KEE
—— pGMIA+
--—--REMBO
———— SAASBO
HDBBO (B=18)

Q

®

(o))

Py

T 1.

£

=4

°C TR T T
600 800 1000

Number of samples

Fig. 8. Comparison of the trajectories of optimality gap of the 100-dimensional Branin function versus the
number of samples for pGMIA+, REMBO, SAASBO, and HDBBO (B = 18) averaged over 100 macro-runs.

5.2.1 Branin Function. The 100-dimensional Branin function is the same as Equation (23) ex-
cept that x = (x1,x,... ,X100) . We choose 2~ = {0,0.1,0.2,...,1}'% which makes f(x) €
[0.64,308.13]. Any solution with (x;,x2) = (0.8,0.2) is a global optimum of the 100-dimensional
Branin function with response 0.6445. The difference between the responses at the global mini-
mum and the second best is 0.2. We add N(0, 0.62) stochastic noise to the response function. All
algorithms initially sample 32 design solutions (n3 = 4, ny = 4, and n; = 2 for pGMIA+) for
hyperparameter estimation.

Figure 8 shows the trajectories of the optimality gap averaged over 100 macro-runs. Note that
pGMIA+ outperforms REMBO and SAASBO. Again, the observation for SAASBO is cut short due to
its prohibitively large computational cost. The pGMIA+ converges to the global optimum after 500
samples while HDBBO converges after 800 samples. Unlike in the 10-dimensional Branin function,
REMBO performs significantly worse than pGMIA+, HDBBO, and SAASBO. This is because the
random projection that REMBO adopts tends to project the solution selected in the 6-dimensional
active subspace to outside of the feasible region of the 100-dimensional solution space. A similar
observation has been reported by Letham et al. [2020].

5.2.2 Zakharov Function. The 100-dimensional Zakharov function is f(x) = }2‘1 xf +

(2}.2? 0.5ix,-)2 + (2}2? 0.5ixi)4 , where x = (x1,%2,...,%100) . All dimensions are active in this
test function. We choose 2~ = {=5,—4,...,5}!%, which makes f(x) € [0, 2.54 x 10'®]. The global
optimum of the Zakharov function is at x = 0199 with response 0, where the difference between the
responses at the global minimum and the second optimal solution is 1.3. We add N(0, 1.8?) stochas-
tic noise to the response function. All algorithms initially sample 200 design solutions (n;3 = 10,
ny = 10 and n; = 2 for pGMIA+) for hyperparameter estimation.

Figure 9 shows the trajectories of true optimality gap averaged over 100 macro-runs when the
algorithms are terminated after 1,000 samples. In the first 400 samples, it is difficult to distinguish
the four algorithms due to large run-to-run variation. We stopped running SAASBO after 300
samples because its iteration takes more than one hour at this point. After 400 iterations, we can ob-
serve that pGMIA+ shows better performance than the other two algorithms. Although it appears
that the pGMIA+’s progress slows down as the algorithm proceeds, we note that the remaining
optimality gap (approximately 1,000) is negligible compared with the range of the function,
2.54 X 106,

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:26 X. Li and E. Song

6000 : ‘
—— pGMIA+
----- REMBO
S000 N | — SAASBO
HDBBO (B = 18)
4000 1
(o]
>
‘S 3000
£
a
O 2000 |
1000
0] . : ,
0 200 400 600 800 1000

Number of samples

Fig. 9. Comparison of the trajectories of optimality gap of the 100-dimensional Zakharov function versus
the number of samples for pPGMIA+, REMBO, SAASBO, and HDBBO (B = 18) averaged over 100 macro-runs.

Table 1. Parameters for the kth Product Group for the ATO System

Component h;p lix oir Cik

I 2/k 015 00225 20 Product A pi(®) Lix Db Iy Ly Iy Iek
' ' Jie 36 16/k 0 1 o0 1 0 1
I2 2/k 040 006 20
/ Jok 30 17/k 0 1 1 1 0 1
I3 2/k 025 00375 20
Jse 24 18k 1 0 0 1 0 1
I4 2/k 015 0.0225 20
Tak 18 19/k 1 0 1 0 1 1
Is 2/k 025 00375 20] 2 20k 11 1 1 1 1
16 2/k 0.08 0.0120 20 ok :

5.2.3 Assemble-to-order (ATO) System. The assemble-to-order (ATO) system [Hong and Nel-
son 2006] is an inventory management example, where the final product is assembled from the
components made to stock whenever an order is received. The components required for each
product vary. We modify the ATO problem to have 5 product groups, 1 < k < 5, where each has 5
product types, Jik, Jok, - - - » Jsk> assembled from 6 components, I1x, Lk, . . ., Isk. The objective is to
determine the expected profit-maximizing inventory levels for Iy, Ik, . .., gk, 1 < k < 5, which
is a 30-dimensional DOVS problem.

The system applies a continuous-review base-stock policy, that is, whenever there is a demand
for a component, the system automatically starts producing the component to fill up to the base-
stock level. For the ith component of the kth product group, the production time follows a trun-
cated normal distribution in (0, +c0) with mean p;; and variance al.zk. For each k, there are only
2 machines producing the components on the first-in-first-out basis. Each component has the in-
ventory capacity, C;, and the holding cost per period, h .

The arrival process of orders of the jth product of the kth product group follows a Poisson
distribution with rate A, for j = 1,2,...,5and k = 1,2,...,5. When a product order is received,
if any of its required components are out of stock, the order is canceled with a fixed penalty r =
$3/k. Otherwise, the order is assembled immediately and generates profit pj. Table 1 displays the
parameters for the ATO system for the kth product group.

In each replication, 20 warm-up periods are adopted, and the per-period average profit is calcu-
lated from the following 50 periods. We set 2~ = {0,2,4, ..., 20}, which results in 11*° feasible
solutions. Because the true objective function values are unknown, they are estimated from 40,000
replications at each solution. With this sample size, the largest relative error (standard error divided

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:27

100 :
— pGMIA+
HDBBO (B = 18)
& 80|]
D
2z
g 60r
a
(]
B 40¢
®
£
G 20} R
o ‘ .
0 500 1000 1500 2000

Number of samples solutions

Fig. 10. Comparison of the trajectories of estimated optimality gap of the ATO function at the current best
for pPGMIA+ and HDBBO (B = 18).

by the mean estimate) is 2.87 X 10~*. The estimated optimum is (x;x)5_, = (3,5,3,5,2,5)" for 1 <
k < 5, with the per-period expected averaged total profit of $276.56. Additionally, the estimated ex-
pected profit of solutions ranges from $276.56 to —$237.47, where the negative value indicates loss.

Unlike other examples, the ATO problem has heteroscedastic stochastic noise across the solu-
tions. Thus, we drop REMBO from comparison in this section as it only allows homoscedastic
noise. We also drop SAASBO due to its heavy computational cost. Figure 10 shows the trajectories
of the estimated optimality gap at the current best solution against the number of samples aver-
aged over 100 macro-runs. Clearly, the pGMIA+ outperforms the HDBBO and the optimality gap
widens as the algorithms continue. This indicates effectiveness of the pGMIA+ when applied to a
more realistic simulation optimization problem.

6 CONCLUSIONS

The pGMIA reduces computational complexity of a high-dimensional DOvS problem by batching
the dimensions into region and solution layers and projecting the solution space onto the region-
layer dimensions. The pGMIA hierarchically optimizes each layer; it first selects a region-layer
node to simulate, then selects a solution to simulate within the solution-layer graph projected
to the region-layer node. Since the dimensions at both region and solution layers are lower than
the solution space, the computational overhead of the algorithm is greatly reduced. However, the
region-layer GMRF’s precision matrix becomes a dense matrix after the projection, which negates
the computational benefit of the GMRF in solving a DOvS problem. We resolve this issue by propos-
ing the approximate sparse precision matrix introduced in Theorem 2.1, which becomes increas-
ingly accurate as the number of values in each dimension increases. Exploiting the approximate
precision matrix, we also propose novel approaches to estimate the hyperparameters of the region-
and solution-layer GMRFs. The pGMIA can be extended to the pGMIA+ to incorporate more layers
to even further exploit the computational benefit of projection.

Across all numerical examples, we have observed that the pGMIA with the random projection
selection criterion outperforms other benchmarks. We attribute its performance to the fact that the
PGMIA simply uses batching and projection as means to reduce the computational burden instead
of assuming that the objective function is additive or has a lower-dimensional active subspace. It
periodically updates the batches of dimensions by randomization, which allows the interaction
effects among dimensions previously included in different batches to be learned. Moreover, the
PGMIA does not regard the projected dimensions to be inactive. Once a region-layer sampling
decision is made based on the projected GMRF model, it applies a sampling criterion to the

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

14:28 X. Li and E. Song

solution-layer model consisting of the projected dimensions in the region layer to complete the
sampling decision.

We have also observed that the pGMIA tends to perform better than the GMIA, even for a lower-
dimensional problem whose computational overhead is cheap enough for the GMIA. The GMIA
fits a single-layer GMRF for the entire solution space and it is harder to obtain an accurate global
fit if the solution space is large. The projected GMREF, on the other hand, models the solution-layer
graph with a solution-layer GMRF that provides better local inference. Meanwhile, the region-layer
GMREF provides a low-resolution inference to quickly find promising regions of the solution space.
Consequently, the pGMIA learns local performance of the objective function more effectively at
regions with good average performances.

Although the pGMIA+ scales well with the dimension when the number of feasible values in
each dimension is relatively small, if the number is large, then it is limited by the size of the
precision matrix that can be factorized by a computer. In the latter case, the pPGMIA+ may only
contain a few dimensions in each batch. This can potentially slow down the algorithm’s progress
as interaction effects among the dimensions in separate batches may not be captured as effectively
until the dimensions are rebatched. Aggregating feasible values in each dimension to obtain a
coarser model may help in this case. Similar ideas have been explored by [Mes et al. 2011].

Exploiting parallel computing to improve efficiency of the pGMIA is another important future
research topic. As mentioned in Section 4, there is no exchange of information among the solutions
projected to different nodes in pGMIA. Thus, the solution-layer search can be run in parallel if mul-
tiple regions are selected for sampling. This will require the sampling criterion to be extended to
evaluate the benefit of jointly sampling a set of regions as well as a stopping criterion to terminate
the parallel search when a region-layer node is deemed not worth exploring anymore.

ACKNOWLEDGMENTS

The authors thank Andreas Wichter for helpful discussions on linear algebraic techniques.

REFERENCES

Ricardo Baptista and Matthias Poloczek. 2018. Bayesian optimization of combinatorial structures. In Proceedings of the 35th
International Conference on Machine Learning.

Mickaél Binois, David Ginsbourger, and Olivier Roustant. 2020. On the choice of the low-dimensional domain for global
optimization via random embeddings. Journal of Global Optimization 76, 1 (2020), 69-90.

Mickaél Binois and Nathan Wycoff. 2022. A survey on high-dimensional Gaussian process modeling with application to
Bayesian optimization. ACM Transactions on Evolutionary Learning and Optimization 2, 2 (2022), 1-26.

Mucahit Cevik, Mehmet Ali Ergun, Natasha K. Stout, Amy Trentham-Dietz, Mark Craven, and Oguzhan Alagoz. 2016. Using
active learning for speeding up calibration in simulation models. Medical Decision Making 36, 5 (2016), 581-593.

William Gemmell Cochran. 1977. Sampling Techniques. New York: Wiley.

Sebastien Da Veiga. 2015. Global sensitivity analysis with dependence measures. Journal of Statistical Computation and
Simulation 85, 7 (2015), 1283-1305.

Josip Djolonga, Andreas Krause, and Volkan Cevher. 2013. High-dimensional Gaussian process bandits. In Advances in
Neural Information Processing Systems. 1025-1033.

David Eriksson and Martin Jankowiak. 2021. High-dimensional Bayesian optimization with sparse axis-aligned subspaces.
In Uncertainty in Artificial Intelligence. PMLR, 493-503.

Eduardo C. Garrido-Merchan and Daniel Hernandez-Lobato. 2020. Dealing with categorical and integer-valued variables
in Bayesian optimization with Gaussian processes. Neurocomput. 380, C (2020), 20-35.

James Hensman, Alexander G. Matthews, and Zoubin Ghahramani. 2015. Scalable variational Gaussian process classifica-
tion. In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, Vol. 38. 351-360.

Michael Hoffman, Eunhye Song, Michael Brundage, and Soundar Kumara. 2018. Condition-based maintenance policy opti-
mization using genetic algorithms and Gaussian Markov improvement algorithm. In Proceedings of the Annual Confer-
ence of the Prognostics and Health Management Society.

L. Jeff Hong and Barry Nelson. 2006. Discrete optimization via simulation using COMPASS. Operations Research 54 (2006),
115-129.

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

Projected Gaussian Markov Improvement Algorithm 14:29

Donald R. Jones, Matthias Schonlau, and William J. Welch. 1998. Efficient global optimization of expensive black-box func-
tions. Journal of Global Optimization 13, 4 (1998), 455-492.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Pdczos. 2015. High dimensional Bayesian optimisation and bandits
via additive models. In International Conference on Machine Learning. 295-304.

Benjamin Letham, Roberto Calandra, Akshara Rai, and Eytan Bakshy. 2020. Re-examining linear embeddings for high-
dimensional Bayesian optimization. In Advances in Neural Information Processing Systems, Vol. 33. 1546-1558.

Xinru Li and Eunhye Song. 2020. Smart linear algebraic operations for efficient Gaussian Markov improvement algorithm.
In Proceedings of the 2020 Winter Simulation Conference. 2887-2898.

Xiaoyu Lu, Javier Gonzalez, Zhenwen Dai, and Neil Lawrence. 2018. Structured variationally auto-encoded optimization.
In Proceedings of the 35th International Conference on Machine Learning, Vol. 80. 3267-3275.

Logan Mathesen, Kaushik Keezhnagar Chandrasekar, Xinsheng Li, Giulia Pedrielli, and K. Selcuk Candan. 2019. Subspace
communication driven search for high dimensional optimization. In Proceedings of the 2019 Winter Simulation Conference.
3528-3539.

Martijn R. K. Mes, Warren B. Powell, and Peter I. Frazier. 2011. Hierarchical knowledge gradient for sequential sampling.
Journal of Machine Learning Research 12, 90 (2011), 2931-2974.

Riccardo Moriconi, Marc P. Deisenroth, and K. S. Sesh Kumar. 2020. High-dimensional Bayesian optimization using low-
dimensional feature spaces. Machine Learning 109 (2020), 1925-1943.

Mojmir Mutny and Andreas Krause. 2018. Efficient high dimensional Bayesian optimization with additivity and quadrature
Fourier features. In Advances in Neural Information Processing Systems 31. 9005-9016.

Changyong Oh, Jakub M. Tomczak, Efstratios Gavves, and Max Welling. 2019. Combinatorial Bayesian optimization using
the graph Cartesian product. In Proceedings of 33rd Conference on Neural Information Processing Systems.

Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. 2018. High-dimensional Bayesian optimization via
additive models with overlapping groups. In International Conference on Artificial Intelligence and Statistics. 298-307.
Olivier Roustant, Espéran Padonou, Yves Deville, Alois Clément, Guillaume Perrin, Jean Giorla, and Henry Wynn. 2020.
Group kernels for Gaussian process metamodels with categorical inputs. SIAM/ASA Journal on Uncertainty Quantifica-

tion 8, 2 (2020), 775-806.

Havard Rue and Leonhard Held. 2005. Gaussian Markov Random Fields: Theory and Applications. New York: Chapman and
Hall/CRC.

Peter Salemi, Eunhye Song, Barry L. Nelson, and Jeremy Staum. 2019. Gaussian Markov random fields for discrete opti-
mization via simulation: Framework and algorithms. Operations Research 67, 1 (2019), 250-266.

Mark Semelhago, Barry L. Nelson, Eunhye Song, and Andreas Wéchter. 2021. Rapid discrete optimization via simulation
with Gaussian Markov random fields. INFORMS Journal on Computing 33, 3 (2021), 915-930.

Mark Semelhago, Barry L. Nelson, Andreas Wichter, and Eunhye Song. 2017. Computational methods for optimization via
simulation using Gaussian Markov random fields. In Proceedings of 2017 Winter Simulation Conference. 2080-2091.

Eunhye Song and Yi Dong. 2018. Generalized method of moments approach to hyperparameter estimation for Gaussian
Markov random fields. In Proceedings of 2018 Winter Simulation Conference. 1790-1801.

Lihua Sun, L. Jeff Hong, and Zhaolin Hu. 2014. Balancing exploitation and exploration in discrete optimization via simula-
tion through a Gaussian process-based search. Operations Research 62, 6 (2014), 1416-1438.

Gabor J. Székely, Maria L. Rizzo, and Nail K. Bakirov. 2007. Measuring and testing dependence by correlation of distances.
The Annals of Statistics 35, 6 (2007), 2769-2794.

G. Gary Wang. 2003. Adaptive response surface method using inherited Latin hypercube design points. J. Mech. Des. 125,
2 (2003), 210-220.

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. 2018. Batched large-scale Bayesian optimization in high-
dimensional spaces. In International Conference on Artificial Intelligence and Statistics. 745~754.

Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli. 2017. Batched high-dimensional Bayesian optimization via
structural kernel learning. In Proceedings of the 34th International Conference on Machine Learning, Vol. 70. 3656—-3664.

Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, and Nando De Freitas. 2013. Bayesian optimization in high
dimensions via random embeddings. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence.
1778-1784.

Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, and Nando de Freitas. 2016. Bayesian optimization in a billion
dimensions via random embeddings. Journal of Artificial Intelligence Research, Vol. 55. 361-387.

Jing Xie, Peter I. Frazier, and Stephen E. Chick. 2016. Bayesian optimization via simulation with pairwise sampling and
correlated prior beliefs. Operations Research 64, 2 (2016), 542-559.

Received 9 August 2022; revised 3 January 2024; accepted 4 February 2024

ACM Trans. Model. Comput. Simul., Vol. 34, No. 3, Article 14. Publication date: May 2024.

