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Glass formation and dynamics of model polymer films with one 
versus two active interfaces 

Asieh Ghanekaradea and David S. Simmons*a 

Polymers and other glass-forming liquids can exhibit profound alterations in dynamics in the nanoscale vicinity of interfaces, 

over a range appreciably exceeding that of typical interfacial thermodynamic gradients. The understanding of these 

dynamical gradients is particularly complicated in systems with internal or external nanoscale dimensions, where a gradient 

nucleated at one interface can impinge on a second, potentially distinct, interface. To better understand the interactions 

that govern system dynamics and glass formation in these cases, here we simulate the baseline case of a glass-forming 

polymer film, over a wide range of thickness, supported on a dynamically neutral substrate that has little effect on nearby 

dynamics. We compare these results to our prior simulations of freestanding films. Results indicate that dynamical gradients 

in our simulated systems, as measured based upon translational relaxation, are simply truncated when they impinge on a 

secondary surface that is locally dynamically neutral. Altered film behavior can be described almost entirely by gradient 

effects down to the thinnest films probed, with no evidence for finite-size effects sometimes posited to play a role in these 

systems. Finally, our simulations predict that linear gradient overlap effects in the presence of symmetric dynamically active 

interfaces yield a non-monotonic variation of the whole free standing film stretching exponent (relaxation time distribution 

breadth). The maximum relaxation time distribution breadth in simulation is found at a film thickness of 4-5 times the 

interfacial gradient range. Observation of this maximum in experiment would provide an important validation that the 

gradient behavior observed in simulation persists to experimental timescales. If validated, observation of this maximum 

would potentially also enable determination of the dynamic gradient range from experimental mean-film measurements of 

film dynamics. 

Introduction 

Across a wide range of glass-forming liquids possessing 

structure or dimensions on the sub-100 nm scale, confinement 

and proximity to interfaces can dramatically alter dynamics and 

the glass transition temperature Tg.1–12 The nature of the 

interface(s) in these systems – whether free, soft or rigid, and 

whether attractive or repulsive – plays a central role in 

mediating their magnitude and even direction13–21. Over the last 

decade, a reasonably cohesive picture of the nature of 

equilibrium dynamical gradients at single interfaces of thick 

domains has begun to emerge for many of these systems.8 

However, real nano-dimensioned and nanostructured materials 

and fluids commonly possess domain sizes sufficiently small 

that alterations imposed by distinct interfaces can interact. 

These situations can range from symmetrical cases, such as a 

freestanding film, in which all interfaces involved are of the 

same type, to highly asymmetrical cases such as films supported 

on rigid attractive substrates, to even more complex cases such 

as nanocomposite thin films involving a free surface, a 

substrate, and a particle interface. In cases such as these, 

resolving the extent to which dynamical alterations are 

attributable to each interface, and understanding the interplay 

between alterations emanating from each interface, is a 

durable challenge of both fundamental and practical 

importance. 

The most extensive understanding of shifts in dynamics in the 

thick-domain, single-interface limit is presently available near 

free surfaces8. Here, altered equilibrium dynamics take the 

form of a large interfacial gradient of accelerated dynamics at 

the free surface, which is characterized by an exponential 

recovery of bulk-like activation barriers with increasing distance 

from the surface, over at least the first ~10 segmental diameters 

from the surface22. Consistently with this, bulk-like segmental 

relaxation times are recovered in a double-exponential 

gradient22–28 with increasing distance from the surface over this 

range, with a corresponding exponential Tg gradient25,29–31. 

Beyond about 10 segmental diameters, a likely inverse power 

law gradient tail extends much further into the film32. A recent 

experimental study probing surface diffusion as a function of 

the penetration depth of surface molecules across a range of 

liquids supports the near-surface double-exponential decay27. 

The temperature dependence of this gradient is now fairly well 

understood as well: at low enough temperatures, the fractional 

reduction in activation barrier relative to bulk is nearly 

temperature invariant at any given distance from the surface, 

leading to a fractional power law relation between local, film, 

and bulk relaxation times8,22,33–36. 
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Recently, we probed in simulation the question of how this 

picture is altered in a freestanding film for which the two free 

surfaces are sufficiently close as to allow their corresponding 

dynamical gradients to interact36. We found that for most 

conditions the overall effect could be described to leading order 

based on an assumption of linear additivity of the activation 

barrier gradients emanating from the two interfaces. Some 

second order corrections to this additivity were observed for 

intermediate films and attributed there to potential elasticity-

related finite size effects; more recent work suggests that a 

more precise description may be that these deviations result 

from additivity of a low-magnitude elasticity-driven power law 

gradient tail found beyond the first ~10 nm from the surface32. 

Stronger deviations from gradient additivity were found in 

ultrathin films, where the overall suppression of elastic 

contributions to the activation barrier saturates such that little 

to no more reduction of this barrier contribution is possible as 

thickness is further reduced36.  

Earlier simulation evidence from Hsu et al. suggested that this 

leading-order gradient additivity scenario may extend to a 

broader array of systems involving distinct types of interfaces31. 

There, they argued that simulations of both freestanding films 

(where Tg decreases at both surfaces) and films supported on 

rigid attractive substrates (where Tg increases at the substrate 

but decreases at the free surface) could be described to leading 

order by a simple summation of the Tg gradients emanating 

from the two interfaces. This suggests a simple and 

generalizable scenario for how to infer mean-system Tg shifts in 

systems involving multiple interface types.  

Despite this progress, serious complexities remain in 

understanding altered dynamics in thin films with distinct 

interface types, particularly in the ultra-thin film limit. For 

example, when a dynamical gradient emanating from a free 

surface encounters a substrate, how is it altered? Is it merely 

truncated, or is the effect more complex? Do the second-order 

deviations from exponential gradient additivity we recently 

reported in freestanding films play a role in ultra-thin supported 

films? Is there any evidence in simulation for nontrivial 

interactions between the two interfaces such as recently been 

suggested based on experiments probing these types of 

systems?37,38. How is the breadth of the glass transition and 

relaxation spectrum impacted in these cases? 

To begin answering these questions, we perform simulations of 

the simplest possible asymmetric film: a film supported on a 

dynamically neutral substrate that does not significantly 

perturb local dynamics. We compare the results of these 

simulations to our prior simulations of freestanding films 

employing a similar model. In the simple neutrally-supported 

film case, one can directly assess the outcome when a free-

surface-nucleated dynamical gradient impinges on a substrate, 

in the absence of a confounding second gradient. One can test 

for the presence of non-additive finite size effects readily, since 

no gradient additivity is possible in the absence of a second 

gradient. This system also provides an excellent baseline for 

understanding the effect of gradient additivity on the breadth 

of relaxation processes. 

Our results suggest that the model of gradient additivity (linear 

gradient superposition) is remarkably predictive, to leading 

order. We find that a dynamically neutral substrate has little 

effect on the free surface gradient, serving to leading order 

simply as a truncating plane for the gradient. This implies that 

the ‘steepness’ of the gradient is essentially innately thickness 

independent, although gradient additivity effects can lead to 

flattening in the presence of multiple dynamically active 

gradients for mathematical reasons. As a result of this 

phenomenon, our simulations predict a fascinating non-

monotonic thickness dependence of the breadth of the 

relaxation spectrum in freestanding films but not in neutrally 

supported films. Observation of this behaviour in future 

experiments could provide valuable support validating the 

persistence of this simulated behaviour to experimental 

timescales, while also potentially providing experimental insight 

into the dynamical gradient range in experimental 

nanostructured systems. 

Methodology 

We perform simulations of bead-spring polymer films supported on 

a dynamically neutral substrate, over a broad range of film 

thicknesses. Simulations employ a modified version of the attractive 

bead-spring model based on the work of Kremer and Grest39, with 

each chain comprised of 20 beads. Nonbonded beads of species i and 

j interact via the 12-6 Lennard Jones potential, 

 12 12 6 64ijE r r  − − = −  . (1) 

Interactions between polymer beads employ ε and σ both equal to 1 

and with interactions cut off at a distance of 2.5; substrate 

interactions are discussed below. Bonded beads interact via the 

Finitely Extensible Nonlinear Elastic (FENE) potential combined with 

a binary LJ potential, 

 ( )2 2 2 12 12 6 6

0 00.5 ln 1 4bond bond bond bondE KR r R r r  − − − = − − + −  ,(2) 

with K = 30, εbond = 1.0, R0 = 1.3, and σbond = 0.8; the latter two of 

these are modified from their most common values to yield 

improved crystallization resistance while in contact with a solid 

substrate40. We note that this model differs slightly from the one 

employed in our recent freestanding film simulations, to which we 

compare our new results. However, both models lie within a range 

of bead-spring polymer backbone bond lengths that we have 

previously shown to exhibit essentially invariant response to 

nanoconfinement41, such that their results are expected to be closely 

comparable. 

Simulations of both supported film and bulk reference systems were 

performed in the LAMMPS molecular simulation package42. 

Temperature selection and simulation time selection for bulk 

systems are automated via the Predictive Stepwise Quench (PreSQ) 

algorithm described in our prior work43; supported thin film 
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simulations are then performed at the same set of temperatures as 

bulk to enable isothermal comparison between film and bulk. The 

bulk system is simulated at pressure P = 0 by employing the Nose-

Hoover thermostat and barostat as implemented in LAMMPS, with 

pressure and temperature damping parameters of 2 τLJ (where τLJ is 

the LJ unit of time and is approximately equal to a picosecond in real 

units). Film simulations are nominally performed at constant volume, 

but the presence of a free surface yields an effectively constant 

pressure P = 0 boundary condition for the film itself. 

The substrate consists of LJ beads arranged on an FCC lattice at a 

number density of 1.4, with the [111] face exposed to the fluid. We 

arrive at a dynamically neutral substrate by tuning the polymer-

substrate interaction energy parameter εps until dynamics are 

essential unperturbed near the substrate. As shown in our recent 

paper32, a value of εps = 0.515 yields a negligible dynamical gradient 

at the substrate, and we confirm in the results section that this yields 

a negligible Tg gradient near the substrate. 

We simulate these supported film systems over a range of film 

thickness ranging from 3 σLJ to 49 σLJ thick, where σLJ is the LJ unit of 

length and corresponds to approximately a nanometer in real 

units3,39,44. The film thickness is naturally temperature dependent, 

reflecting the density equation of state of the system; we employ a 

reduced temperature T = 0.5 as our reference temperature for 

designation of a nominal thickness. The cross-sectional area of the 

simulation is 23 σLJ x 20 σLJ in all cases except the 49 σLJ thick film, for 

which the cross-sectional area is 41.7 σLJ x 40 σLJ. 

In quantifying the dynamics of these systems, we focus on 

translational dynamics as computed from the self-intermediate 

scattering function: 

 ( ) ( ) ( )( )
1

, exp 0
N

s j j

j

F t i t
N

 = −  −
 q q r r . (3) 

Here q is the wavevector, ri is the position of bead i, and t is 

time. We compute the value of this function at a wavenumber 

q = 7.07 (comparable to the first peak of the structure factor) by 

averaging in a radially symmetric manner over multiple 

wavevectors with magnitudes in a narrow band around this 

wavenumber, as is standard for many studies probing dynamics 

near various interfaces including free surfaces and rigid 

substrates and particles20,21,29,32,45,46. A relaxation time and 

stretching exponent are extracted by fitting Fs(q,t) to the 

Kohlraush-Williams-Watt (KWW) stretched exponential 

function,47,48  

 ( ) ( ), exps KWWF q t A t


 = −
     (4) 

and then defining the alpha relaxation time τ to be the time at 

which this function is equal to 0.2, a commonly used convention 

in the simulation literature29,31,46,49,50. We perform this fit only 

over the domain for which Fs(q,t) ≤ 0.6 in order to optimize the 

fit to the alpha relaxation process specifically and exclude 

earlier features of the relaxation process.  

We then extract glass transition temperatures Tg from data of 

this kind obtained over multiple temperatures. To do so, we fit 

these data to the Vogel-Fulcher-Tammann relation51,52, and we 

define Tg on a computational timescale as the temperature at 

which the relaxation time first exceeds 105 τlj. We perform all of 

the analysis above at a spatially resolved level by first binning 

the particles based upon their distance (in LJ distance units of 

σLJ, approximately equal to nm) from the substrate or free 

surface and then computing local dynamical properties of 

particles within each bin. 

Results and Discussion 

Dynamical gradients 

We begin by confirming that the polymer-substrate interaction 

we employ indeed yields an approximately dynamically neutral 

substrate. In Figure 1, we report the gradient of Tg as a function 

of distance from the substrate for the neutral value employed 

in the study (εps = 0.515) and for two other bracketing values of 

the substrate-polymer interaction. As can be seen here, 

alterations in Tg at the substrate are weak, at most, for εps = 

0.515, with a slight near-substrate suppression observable. This 

outcome makes use of the concept of a ‘compensation point’ of 

Figure 1 - Glass transition temperatures versus z at Ɛpolymer-substrate values of 

0.4 (red circles), 0.515 (purple squares), and 0.6 (blue stars).
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Figure 2 - Segmental relaxation time versus bulk relaxation time for a film of 

thickness 17 σLJ, for layers of segments at distances z from the surface of 0.4375 

σ (blue circles), 1.3125 σLJ (red squares), 2.1875 σLJ (green diamonds), 3.0625 σLJ 

(purple triangles), 3.9375 σLJ (blue pluses), and 4.8125 σLJ (gray stars). Lines are 

fits of the long-time data to equation (5). 
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interfacial interaction at which alterations in dynamics are 

absent; notably, this condition is quite distinct from that of 

thermodynamic neutrality16,20,53. We note that in arriving at this 

value we found that it is not possible to achieve perfect 

neutrality at all temperatures because the dynamic neutrality 

condition is slightly temperature dependent, but the substrate 

effect here is sufficiently weak as to require only minor 

corrections in the data analysis, as discussed below. It is also 

probable that this neutrality condition averages over a degree 

of anisotropic dynamics near the substrate, but prior studies 

have indicated that any near-substrate anisotropy in dynamics 

is extremely short ranged – much shorter than the range of the 

dynamical gradient itself29. We emphasize that, as described in 

the methods, we compute a radially averaged measure of 

translational relaxation such that this neutrality condition 

averages over the in- and out-of-plane components of any such 

short-ranged anisotropy. 

In analysing more deeply the local dynamics in these systems, 

we make use of a fractional power law decoupling relation 

between local and bulk dynamics that was discovered in our 

prior work22 and has since been observed in a number of 

additional systems33,35,36,54 and predicted theoretically33,36,55. As 

a consequence of this relation, which is predicted and observed 

to hold at low temperature, local dynamics near a surface are 

related to the bulk dynamics via the relation 

 
( )

( )

( )
( )

*

,
z

bulk

bulk

T z T

T


 

 

−

 
=  
 

 (5) 

where τ* specifies an onset condition for this behaviour on 

cooling and ε is called the “decoupling parameter”. Combining 

this observation with a generalized activation rule possessing a 

temperature-dependent activation barrier leads to the 

conclusion that the decoupling exponent reports on the local 

fractional reduction in the local activation barrier ΔF(T,z) 

relative to the bulk activation barrier ΔFbulk(T):8,22,55  

 ( )
( )

( )

,
1

bulk

F T z
z

F T



= −


 (6) 

As shown in Figure 2, equation (5) and thus equation (6) indeed 

hold locally when temperatures are sufficiently low for a 

representative film of thickness 17 σLJ.  

Figure 3. (a) Effective barrier reduction ratio ε and (b) glass transition 

temperature near the film surface as a function of distance from the surface, 

for films of total thickness 49σLJ (black triangles), 40 σLJ (filled blue squares), 

27σLJ (red circles), 21.7σLJ (brown x’s), 17.2σLJ (black diamonds), 12.9σLJ (green 

pluses), 8.45σLJ (purple squares), 6.7σLJ (orange triangles), 5.45σLJ (blue stars), 

4.45σLJ  (red x’s), 3.2σLJ (brown pluses) 
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Figure 4 - (a) Effective barrier reduction ratio ε and (b) glass transition 

temperature, as a function of distance from the substrate, for films of 

thickness 49σLJ (black triangles), 40σLJ (filled blue squares), 27σLJ (red 

circles), 21.7σLJ (brown x’s), 17.2σLJ (black diamonds), 12.9σLJ (green pluses), 

8.45σLJ (purple squares), 6.7σLJ (orange triangles), 5.45σLJ (blue stars), 

4.45σLJ  (red x’s), 3.2σLJ (brown pluses). The solid lines in part (a) report on 

the behaviour predicted based on a scenario wherein the thick-film free 

surface gradient (equation (7) with A = 0.75 and ξ = 4.3 σ) is simply truncated 

at the substrate. The dashed lines represent the combination of the thick 

film surface and (much weaker) substrate gradients as per equation (9). In 

both cases predictions are made for h consistent with the data set in 

matching color. 
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On this basis, we employ equation (5) to extract the relative 

reduction in activation barrier within the film as a function of 

distance from the free surface. As shown in Figure 2, we 

perform this fit including temperatures for which τbulk > 102 τLJ. 

This temperature range is chosen to be below the approximate 

onset timescale of this behaviour (i.e. we fit the long-timescale 

range of behaviour for which the data are actually linear in this 

plot). As shown in Figure 3a, the activation barrier truncation 

gradient near the free surface closely obeys an exponential 

decay form with increasing depth in the film, consistent with 

prior work22,35,36: 

 ( ) ( )0, ,expsurf surf surf F surfz z  = − .  (7) 

Here zsurf is the distance from the free surface, and we find a 

good fit to thick film surface gradient data with prefactor ε0,surf 

= 0.75 and exponential decay range ξΔF,surf = 4.3 σLJ. In our prior 

work in freestanding films, substantial deviations from this form 

were observed for films of thickness h ≤ 15 σLJ, as a consequence 

of large gradient overlap effects. Here, however, the single-

exponential gradient form remains quantitative down to a film 

of only 8σLJ in thickness, and deviations from this form remain 

mild even for the thinnest films. A similar trend is seen in Figure 

3b for Tg gradients: the exponential Tg gradient behaviour 

observed for thick films remains reasonably descriptive of the 

gradient even for quite thin films. 

In Figure 4, we consider the implications of this behaviour for 

dynamics near the substrate. As can be seen here, for thick films 

the activation barrier and Tg near the substrate are only weakly 

perturbed from bulk.  Indeed, as seen in  Figure 4a, in the thick 

film limit ε is only slightly enhanced near the substrate, and we 

find that this can again be fit with an exponential gradient near 

the substrate,  

 ( ) ( )0, ,expsub sub sub F subz z  = −  , (8) 

where zsub is the distance from the substrate, and where we find 

that the substrate gradient is of much smaller magnitude, with 

ε0,sub = 0.10 and ξΔF,sub = 3.1 σLJ.  

With decreasing film thickness, the near-substrate dynamics 

become quite accelerated, but this trend is driven by the surface 

effect impinging on the substrate rather than by an emergent 

substrate effect. Indeed, we can confirm this origin by 

comparing this enhancement to expectations from the thick-

film interfacial gradient measurements. The solid lines in Figure 

4a report on the behaviour that would be expected if only the 

exponential free surface gradient (i.e. equation (7)) were 

present and were simply truncated at the substrate, obtained 

by combining equation (7)  with the identity that zsub = h – zsurf. 

As can be seen, this provides a good description of the data 

down to h = 8.5 except very near the substrate, but somewhat 

underpredicts the barrier truncation for thinner films. A better 

prediction of the thin film data can be obtained by simply 

summing the two barrier gradients, as 

 

 

 

Figure 5 - (a) Mean film relaxation time versus bulk relaxation time for films of 

thickness 49σLJ (black triangles), 40 σLJ (filled blue squares), 27σLJ (red circles), 21.7σLJ 

(brown x’s), 17.2 σLJ (black diamonds), 12.9σLJ (green pluses), 8.45σLJ (purple squares), 

6.7σLJ (orange triangles), 5.45σLJ (blue stars), 4.45σLJ (red x’s), 3.2σLJ (brown pluses). 

Solid lines are linear fits to the low-temperature data indicating the low-temperature 

fit to the fractional power law decoupling relation at a whole-film level. (b) Fraction 

of bulk barrier remaining (i.e. 1-ε(h)) vs film thickness. Black circles and red diamonds 

are simulation data for freestanding and neutrally supported films, respectively. The 

black curve is the prediction of linear gradient additivity for the freestanding film. The 

red dashed curve is the prediction of an idealized surface gradient truncation effect 

at the dynamically neutral substrate. The solid red curve is the prediction of gradient 

additivity for the neutrally-supported film, taking into account the near-negligible 

substrate gradient. (c) Film Tg normalized by the corresponding bulk value, plotted vs 

film thickness, for the neutrally supported film (red squares) and the freestanding film 

(black circles). 
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( ) ( )

( )( )
0, ,

0, , ,

exp

exp

sub sub sub F sub

surf F surf F surf

z z

h z

  

 



 

= −

+ − −
 (9) 

As shown by the dashed lines in Figure 4a, this model of simple 

superposition of the two exponential barrier suppression 

gradients provides good predictions over the first 6-7 σLJ near 

the substrate for films over the entire range of thickness. This 

indicates that the near-dynamically-neutral substrate 

behaviour designed in the thick-film limit remains near-neutral 

down to very thin films. The accelerated near-substrate 

dynamics seen in very thin films is thus the consequence of the 

free-surface-nucleated dynamical gradient extending to the 

substrate to an appreciable degree once h < 2ξΔF,surf.  

 Combined with Figure 3, this indicates that the dynamically 

neutral substrate simply truncates the surface-induced gradient 

to leading order (to within the weak residual substrate effect) 

rather than altering it. Unlike in freestanding films, where 

additivity of two strong surface gradients leads to flattening of 

the combined gradient in very thin films36, here this effect is 

absent. The gradient remains essentially equivalently steep for 

all film thicknesses. This indicates that a dynamically neutral 

substrate does not serve to ‘pin’ the local dynamics to their bulk 

rate, but simply has no impact upon near-substrate dynamics at 

all, to leading order. 

Thickness-dependence of mean-film activation barrier and Tg 

We now turn to the question of the mean behaviour of our 

simulated film and its dependence on film thickness in the ultra-

thin-film limit. This type of data is more typically the subject of 

experimental studies. Experimental data of this kind have been 

shown to be accessible for both mean film Tg and mean film 

effective activation barriers37,38, and we thus aim to understand 

the thickness-variation of both. 

As can be seen in Figure 5a, whole-film dynamics for the 

systems simulated here also obey the fractional power law 

decoupling relation, with film dynamics progressively 

accelerating as thickness is reduced. As with the analysis of local 

dynamics, we can extract the value of ε(h) by fitting the data to 

equation (5), with z replaced by the film thickness h, for data for 

which τb > 102. As shown in Figure 5b, ε(h) exhibits a progressive 

reduction with decreasing film thickness. How does this whole-

film behaviour compare to that observed in a freestanding film? 

As shown in Figure 5b, the drop in activation barrier with 

reducing film thickness for the neutrally-supported film is 

considerably weaker than for the freestanding film. This is a 

consequence of the lack of a strong second additive dynamical 

gradient in the supported film, which was present in the 

freestanding film. 

In order to quantitatively model the mean behaviour of this 

film, we describe the surface activation barrier gradient as 

exponential as indicated by equation (7). We then average over 

the film, truncating the gradient at the substrate, and 

employing the correct weighting function for averaging of the 

local activation barrier gradient established in our prior work36. 

As can be seen in Figure 5b, the resulting dependence of the 

predicted mean-film qualitatively captures the variation of the 

data with film thickness, but slightly underpredicts the 

reduction in activation barrier. This underprediction is a 

consequence of a slight residual gradient at the substrate, as is 

described above can be seen in Figure 1. Accounting for this 

weak substrate gradient within the film average leads to a 

nearly exact quantitative prediction of the thickness-variation 

of the mean-film activation barrier from the thick-film 

gradients, as can be seen in Figure 5b. 

Indeed, the quality of prediction obtained by simply averaging 

over the exponential gradient is appreciably better for the 

supported film than for a freestanding film. As discussed in our 

prior work, there are appreciable downward deviations (for 

intermediate thickness films) and upward deviations (for ultra-

thin films) from the two-exponential-gradient superposition 

model in the case of freestanding films. This is a consequence 

of the overlap of long-range elastic power-law tails in the 

intermediate film32, and of a saturation of elastic effects from 

two interfaces in ultra-thin films36. 

Evidently, these two-interface effects are relatively weak when 

one of the two interfaces is dynamically neutral. There is 

perhaps a suggestion in Figure 5b of a slight underprediction of 

the amount of barrier truncation in intermediate-thickness 

supported films: for nearly all of our thicker films the red curve 

is slightly above the datapoints. This underprediction is likely a 

consequence of omitting the recently-discovered power-law 

gradient tail32. from our mean-film average. However, the effect 

is relatively weak as compared to the freestanding film, which 

involves two additive power law tails in intermediate thickness 

films. We emphasize that this power-law tail is not a finite size 

effect; rather it is simply a long-ranged component of the 

gradient. At the same time, there is no indication of an 

overprediction of barrier truncation in the thinnest supported 

films, in contrast to the freestanding film. In the freestanding 

film, this was a consequence of a saturation of truncated elastic 

barriers. The elastic barrier to activation is essentially already 

zeroed out for some finite thickness freestanding films, such 

that a naïve gradient additivity model overpredicts the barrier 

truncation in the thinnest films. This again is not best 

understood as a true finite size effect, but merely a saturation 

of the gradient effect. This effect is absent in supported films, 

because the amount of elastic activation barrier reduction is 

effectively halved in the thinnest films in the absence of a 

second interface.  This suggests that there are no true finite size 

effects present in this system at a level detectable in mean-film 

dynamics, since any such effect should be present as a result of 

length-scale truncation even in the presence of a dynamically 

neutral interface.  

Moving now to mean-film Tg behavior, as shown by Figure 5c, Tg 

exhibits a progressive suppression with decreasing film 

thickness, in a manner qualitatively consistent with 

experiment38,56. Notably, there is no clear signature in these 

data of the underlying gradient length scale. For example, there 

is no sigmoidal turnover to a low-h regime and thus no clear 
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feature indicating the ‘range’ of the effect. These results 

indicate that it is likely to be challenging to infer deep physics of 

the surface gradient by studying Tg(h) data. This is consistent 

with a previously analytic analysis by Schweizer and Simmons 

suggesting that it may be functionally implausible to extract 

detailed information on the form of the gradient, and perhaps 

even on its range, from mean-film Tg measurements8. 

Implications for breadth of the relaxation time distribution 

While Tg(h) curves thus evidently tend to lack a clear signature 

of the range of dynamical gradients, our prior work hints36 that 

superposition of two gradients can have a profound effect on 

the distribution of local relaxation times and Tgs in the ultra-

thin-film limit. Specifically, gradient superposition effects tend 

to suppress gradients in very thin freestanding films. This would 

naturally be expected to alter the breadth of the distribution of 

relaxation times within the film. Is there some signature of this 

effect at a whole film level that might provide a promising target 

for experiment?  

The most commonly employed metric for the ‘breadth’ of the 

relaxation time spectrum in bulk and thin films is the relaxation 

stretching exponent β (although there are some complexities 

with this interpretation57). This quantity can be obtained from a 

stretched exponential fit to real-time relaxation data (typically 

in simulation) or from (for example) a Havrilak-Nagami fit to 

relaxation spectrum data obtained from frequency-domain 

methods such as dielectric spectroscopy58. How should we 

expect β to vary with thickness? Could β provide a signature of 

gradient overlap effects and of the gradient range in whole-film 

dynamics? 

We employ the linear superposition model, together with data 

for the thick film gradient and the bulk stretching exponent 

βbulk, to make a prediction for how the stretching exponent 

should vary with film thickness in films with two (symmetric) 

dynamically active interfaces. To do so, we describe a layer of 

material at any distance z from the interface via a stretched 

exponential relaxation process with a position-dependent 

relaxation time τKWW, consistent with the data for relaxation in 

our films. We employ several simplifying approximations to 

obtain a tractable calculation. First, we approximate the local 

stretching exponent as being equal to the bulk value 

everywhere in the film. This neglects any spatial variation of β, 

which we expect to be present near the film surface. Indeed, 

prior work has suggested alterations in dynamic heterogeneity 

at film surfaces59. However, spatial trends in β are extremely 

difficult to characterize, even in simulation, because any degree 

of spatial averaging over the gradient in a finite-thickness bin of 

particles can lead to contamination and erroneous suppression 

of the measured β value. The assumption of a uniform β thus 

provides a simple leading-order approximation. Second, we 

neglect the difference between the KWW fit parameter τKWW 

and the relaxation time τ, the latter of which is defined in our 

study as the time at which Fs(q,t) drops to 0.2. These two 

timescales are generally similar, but not quite identical, within 

the range of β values observed in our simulations – we ignore 

this difference here. Within these approximations, this leads to 

a prediction for the mean relaxation function Fs(q,t) of a film of 

thickness h given by 

 ( ) ( )
max

min

, exp
Bulk

s

t
F q t P d





 


  
= −  

   
  (10) 

where P(τ) is the probability distribution of local mean τ values 

for layers within the film and τmin and τmax are the lowest and 

highest values of τ within the film. P(τ) for a freestanding film 

can be obtained from  

 

( ) ( ) ( )( )0, , 0, , ,exp expsurf F surf surf F surf F surfz z h z      = − + − −

(11) 

which specifies the barrier gradient as reflecting a linear 

superposition of two symmetric decaying exponentials. 

Combination of equation (11) with equation (5) yields an 

equation for the relaxation time gradient at a given bulk 

relaxation time, 
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  (12) 

This equation can be analytically inverted to yield the function 

z(τ). We then transform this quantity into a probability 

distribution function (i.e. the equation for the fraction of the 

film with a given value of τ) via a change of variables: 

 

( )
max

min

( )
dz d

P
dz d d








 
=


  (13) 

The resulting function from equation (13) is then substituted 

into equation (10) to yield a predicted mean-film relaxation 

function. Both equations (13) and (10) are evaluated 

numerically. The bounds of the integrals in these equations are 

given by symmetry for a freestanding film as τmin = τ(z=0) and 

Figure 6. One minus the stretching exponent (measured at low simulation 

temperatures) vs film thickness for simulated freestanding film (orange circle) and 

neutrally-supported thin film (open blue circle).  The dashed lines are guides to the 

eye. The black solid line is the prediction of 1-β for a freestanding film based on 

linear gradient superposition as reflected in equations (10) through (13) and 

associated discussion in the text. The dot-dashed line is a similar calculation for a 

supported film with only a single dynamically active interface, as per equation (14). 
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τmax = τ(z=h/2).  In making this calculation, as noted above, we 

employ values of ξ and ε0 measured in the 47 σLJ film. We then 

fit the resulting predicted Fs(q,t) curve for a film of each 

thickness h to a stretched exponential, using the same protocol 

we describe above for the simulation data.  

The same approach as that described above is applied for the 

dynamically neutrally supported film, but in this case equation 

(11) (for the freestanding film) is replaced with equation (7), 

which leads to  

 

( ) ( )0 ,exp

*

( )
( , ) ( )

F surfh z

B
B

T
T z T

 


 



 − −
  

=  
 

  (14) 

In place of equation (12). The upper bound of the integrals in 

equations (13) and (10) then becomes τmax = τ(z=h) rather than 

τmax = τ(z=h/2) to reflect the altered symmetry of the film.   

The resulting predicted curves of β vs log(h) are shown in Figure 

6, where they are compared to simulation data from our prior 

freestanding film simulations and our new dynamically neutrally 

supported film simulations. As can be seen here, the prediction 

of β(h) is in excellent agreement with the data for freestanding 

films down to ~8σLJ. For films thinner than ~8σLJ, the prediction 

deviates from the simulated data, as expected due to the 

elasticity saturation effects previously discussed for ultra-thin 

freestanding films36. We note that in performing this analysis, 

we must contend with the empirical temperature dependence 

of β. We find that β plateaus for low temperatures and is at 

most weakly temperature dependent for temperature for 

which the relaxation time of the film τ > 102 for all of our 

simulations. We thus employ this low-temperature plateau 

value of β in performing this analysis by taking an average of β 

over temperatures for which the relaxation time of each film τ 

> 102. 

The linear superposition model prediction evidently predicts 

and explains a nontrivial observed nonmonotonic behaviour 

observed in freestanding film simulations. This dependence can 

be understood as follows. For thick films where h > 4.6 ξ, 

reduction of the film thickness shrinks the bulk-like center 

region of the film without appreciably impacting the form of the 

gradients. This leads to a broadening of the relaxation time 

distribution as the gradient becomes the major component of 

the film. Once the bulk-like region is gone (around 4.6 ξ), this 

effect saturates, and the relaxation time distribution breadth 

plateaus. For appreciably thinner films where the gradients 

strongly overlap (approximately < 2.3 ξ), the gradient 

superposition effect causes gradient flattening for simple 

mathematical reasons associated with addition of two opposed 

exponential decays. Further reductions in film thickness thus 

suppress the dynamical gradient, homogenize the film, and 

narrow the relaxation time distribution.  

This non-monotonic behaviour is muted and does not occur 

until much lower film thicknesses in the neutrally supported 

film, since no appreciable gradient overlap effects are present 

to cause gradient flattening at low h. Instead, a reduction in 1-β 

only occurs for very thin films such that h is comparable to or 

less than ξ. In these extremely thin films, truncation (rather than 

flattening) of the gradient by the substrate leads to a weak 

reduction in the overall heterogeneity of dynamics in the film. 

If experimentally validated, these findings would indicate that 

the thickness-variation of the stretching exponent (or other 

measures of the breadth of the relaxation time distribution) in 

films with symmetric interfaces could allow for determination 

of the dynamical gradient range from a mean-film 

measurement. Specifically, as indicated above, we find the 

minimum value of β (maximum in 1-β, meaning the most 

heterogeneous dynamics) is found when the film thickness h ≅ 

4-5 ξ. Observation of a maximum in the mean-film β for any 

symmetric film would thus both provide a powerful 

experimental validation of the proposition that these findings 

extend to experimental timescales, and potentially allow for 

extraction of the interfacial dynamic gradient exponential decay 

range.  

Conclusions 

A central issue in the study of altered dynamics in nanoscale and 

nanostructured systems has been the question of whether 

these systems exhibit genuine ‘nanoconfinement’ effects – i.e. 

alterations in dynamics associated with the system’s finite size 

rather than merely with the presence of interfaces. Here we 

probe this question by studying simulated films supported on a 

dynamically neutral substrate, possessing a single dynamically 

active interface, and comparing them to simulated freestanding 

films possessing two symmetric dynamically active interfaces. 

Our results indicate that, at least to leading order, no genuine 

finite size effects are needed to explain and predict the 

behaviour of simulated bead-spring films of finite thickness on 

the timescales accessible to simulation, either in the case of 

freestanding films or a supported film. Crucially, we find that in 

the presence of one dynamically active interface and one 

dynamically neutral interface, the system behaviour can be 

predicted based purely on the single gradient emanating from 

the dynamically active interface, with a truncation plane at the 

neutral interface. This finding holds to an excellent 

approximation down to films as thin as three segmental layers 

thick.  

A key feature of this work is the use of a nearly dynamically 

neutral substrate, which imposes little to no gradient in 

dynamics on nearby material. This state is achieved simply by 

tuning the polymer/substrate interaction to a level yielding 

dynamic neutrality. Crucially, a true finite size effect would by 

definition be insensitive to this type of surface interaction. The 

absence of such an effect in the presence of a dynamically 

neutral substrate thus implies a lack of finite size effects more 

generally, at least in the timescale and molecular weight ranges 

accessible to these simulations. Moreover, because of the 

absence of a dynamical gradient at the substrate, any finite size 

effect would be quite easy to detect within this model if it were 

in fact present. 
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While the present findings obtain within the bead-spring 

polymer system studied here, several prior perspectives 

authored or co-authored by one of us have identified a 

remarkable degree of near-universality of these interfacial 

gradient effects in simulated systems, spanning multiple model 

systems, multiple interfaces, and multiple geometries8,10. We 

believe that this degree of transferability of behaviour across 

numerous simulated systems suggests that the bead-spring 

polymer system studied here likely provides a generalizable 

model for the core physics governing these interfacial effects on 

simulation timescales. We thus expect our conclusions to obtain 

for a wide range of systems studied on these timescales.  

From a physical standpoint, we note that the behaviour of the 

single-interface gradients that evidently dominate these films’ 

properties even down to the 3-4 segmental layer range has 

previously been predicted, without adjustable parameters, by 

the Elastically Cooperative Nonlinear Langevin Equation Theory 

of glass formation55. Within that theory, these gradients are 

driven by a combination of alterations in caging scale, which 

propagate into the film over a medium range, and interfacial 

truncation and alteration of a scale-free elastic activation field, 

which impacts dynamics over a long range from the interface. 

The present findings thus add more weight to growing evidence 

that the ECNLE theory is predictive of the features of 

translational dynamics in low- to moderate-molecular-weight 

polymer thin films on the timescales accessible to simulation.  

Finally, our results s a new potential experimental target that 

could provide additional validating evidence for the proposition 

that the gradient behaviour observed in these and other 

simulations extends to experimental timescale. In particular, we 

find that the breadth of the mean-film relaxation process, as 

measured by the mean-film stretching exponent β, should 

exhibit a maximum in freestanding films for film thickness in the 

range of 4-5 times the surface gradient range. This effect is 

expected to also be present in films supported on highly 

unattractive substrates that induce a local enhancement in 

dynamics. Direct measurement of this maximum would validate 

this simulation prediction, which emerges fundamentally from 

the finding that thin-film behaviour is dominated by exponential 

gradient superposition effects, and that exponential gradient 

superposition in turn leads to gradient flattening and thus a less 

dynamically heterogeneous film. We note that a weaker 

nonmonotonicity is observed even for a film supported on a 

dynamically neutral substrate, but this effect is shifted to much 

thinner films of order the gradient range itself – a consequence 

of mere truncation of the gradient by the substrate. Even here, 

this maximum would provide evidence that gradients do not 

innately grow sharper in thinner films but are rather subject to 

interfacial truncation. 

If this prediction is experimentally validated, such 

measurements could additionally allow extraction of the 

fundamental surface range of dynamical gradients from mean-

film measurements. Since the maximum in β in a freestanding 

film is in the range of 4-5 the exponential decay range, 

observation of this maximum could allow a fairly narrow 

determination of the surface gradient range from freestanding 

film measurements. One possible route to do so would be via 

dielectric spectroscopy measurements of thin films, although 

this would require careful treatment of such nontrivial issues as 

the manner in which the measurements weight with depth 

(which can be highly measurement-dependent41) and the 

treatment of the depth dependence as reflecting parallel60 or 

serial61 capacitors depending on the sample geometry. Such 

measurements, if these complexities could be resolved, could 

complement and broaden insights from recent surface diffusion 

measurements in a series of small molecules, which suggested 

a gradient range consistent with these simulations27. 

Confirmation of this correspondence via experimental 

measurements of relaxation breadth in thinner films could thus 

present the opportunity to more strongly unify computational 

experimental findings on “nanoconfinement” effects on 

dynamics from over 30 years of research. 
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