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Glass formation and dynamics of model polymer films with one
versus two active interfaces

Asieh Ghanekarade? and David S. Simmons™

Polymers and other glass-forming liquids can exhibit profound alterations in dynamics in the nanoscale vicinity of interfaces,
over a range appreciably exceeding that of typical interfacial thermodynamic gradients. The understanding of these
dynamical gradients is particularly complicated in systems with internal or external nanoscale dimensions, where a gradient
nucleated at one interface can impinge on a second, potentially distinct, interface. To better understand the interactions
that govern system dynamics and glass formation in these cases, here we simulate the baseline case of a glass-forming
polymer film, over a wide range of thickness, supported on a dynamically neutral substrate that has little effect on nearby
dynamics. We compare these results to our prior simulations of freestanding films. Results indicate that dynamical gradients
in our simulated systems, as measured based upon translational relaxation, are simply truncated when they impinge on a
secondary surface that is locally dynamically neutral. Altered film behavior can be described almost entirely by gradient
effects down to the thinnest films probed, with no evidence for finite-size effects sometimes posited to play a role in these
systems. Finally, our simulations predict that linear gradient overlap effects in the presence of symmetric dynamically active
interfaces yield a non-monotonic variation of the whole free standing film stretching exponent (relaxation time distribution
breadth). The maximum relaxation time distribution breadth in simulation is found at a film thickness of 4-5 times the
interfacial gradient range. Observation of this maximum in experiment would provide an important validation that the
gradient behavior observed in simulation persists to experimental timescales. If validated, observation of this maximum
would potentially also enable determination of the dynamic gradient range from experimental mean-film measurements of

film dynamics.

Introduction

Across a wide range of glass-forming liquids possessing
structure or dimensions on the sub-100 nm scale, confinement
and proximity to interfaces can dramatically alter dynamics and
the glass transition temperature Tg.27'2 The nature of the
interface(s) in these systems — whether free, soft or rigid, and
whether attractive or repulsive — plays a central role in
mediating their magnitude and even direction3-21. Over the last
decade, a reasonably cohesive picture of the nature of
equilibrium dynamical gradients at single interfaces of thick
domains has begun to emerge for many of these systems.8
However, real nano-dimensioned and nanostructured materials
and fluids commonly possess domain sizes sufficiently small
that alterations imposed by distinct interfaces can interact.
These situations can range from symmetrical cases, such as a
freestanding film, in which all interfaces involved are of the
same type, to highly asymmetrical cases such as films supported
on rigid attractive substrates, to even more complex cases such
as nanocomposite thin films involving a free surface, a
substrate, and a particle interface. In cases such as these,
resolving the extent to which dynamical alterations are
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attributable to each interface, and understanding the interplay
between alterations emanating from each interface, is a
durable challenge of both fundamental and practical
importance.

The most extensive understanding of shifts in dynamics in the
thick-domain, single-interface limit is presently available near
free surfaces®. Here, altered equilibrium dynamics take the
form of a large interfacial gradient of accelerated dynamics at
the free surface, which is characterized by an exponential
recovery of bulk-like activation barriers with increasing distance
from the surface, over at least the first ~10 segmental diameters
from the surface??. Consistently with this, bulk-like segmental
relaxation times are recovered in a double-exponential
gradient22-28 with increasing distance from the surface over this
range, with a corresponding exponential T gradient?>2°-31,
Beyond about 10 segmental diameters, a likely inverse power
law gradient tail extends much further into the film32. A recent
experimental study probing surface diffusion as a function of
the penetration depth of surface molecules across a range of
liquids supports the near-surface double-exponential decay?’.
The temperature dependence of this gradient is now fairly well
understood as well: at low enough temperatures, the fractional
reduction in activation barrier relative to bulk is nearly
temperature invariant at any given distance from the surface,
leading to a fractional power law relation between local, film,
and bulk relaxation times822,33-36,



Recently, we probed in simulation the question of how this
picture is altered in a freestanding film for which the two free
surfaces are sufficiently close as to allow their corresponding
dynamical gradients to interact3®. We found that for most
conditions the overall effect could be described to leading order
based on an assumption of linear additivity of the activation
barrier gradients emanating from the two interfaces. Some
second order corrections to this additivity were observed for
intermediate films and attributed there to potential elasticity-
related finite size effects; more recent work suggests that a
more precise description may be that these deviations result
from additivity of a low-magnitude elasticity-driven power law
gradient tail found beyond the first ~10 nm from the surface32.
Stronger deviations from gradient additivity were found in
ultrathin films, where the overall suppression of elastic
contributions to the activation barrier saturates such that little
to no more reduction of this barrier contribution is possible as
thickness is further reduced3é.

Earlier simulation evidence from Hsu et al. suggested that this
leading-order gradient additivity scenario may extend to a
broader array of systems involving distinct types of interfaces31.
There, they argued that simulations of both freestanding films
(where Ty decreases at both surfaces) and films supported on
rigid attractive substrates (where Tg increases at the substrate
but decreases at the free surface) could be described to leading
order by a simple summation of the T; gradients emanating
from the two interfaces. This suggests a simple and
generalizable scenario for how to infer mean-system T shifts in
systems involving multiple interface types.

Despite this progress, serious remain in

understanding altered dynamics in thin films with distinct

complexities

interface types, particularly in the ultra-thin film limit. For
example, when a dynamical gradient emanating from a free
surface encounters a substrate, how is it altered? Is it merely
truncated, or is the effect more complex? Do the second-order
deviations from exponential gradient additivity we recently
reported in freestanding films play a role in ultra-thin supported
films? Is there any evidence in simulation for nontrivial
interactions between the two interfaces such as recently been
suggested based on experiments probing these types of
systems?37.38, How is the breadth of the glass transition and
relaxation spectrum impacted in these cases?

To begin answering these questions, we perform simulations of
the simplest possible asymmetric film: a film supported on a
dynamically neutral substrate that does not significantly
perturb local dynamics. We compare the results of these
simulations to our prior simulations of freestanding films
employing a similar model. In the simple neutrally-supported
film case, one can directly assess the outcome when a free-
surface-nucleated dynamical gradient impinges on a substrate,
in the absence of a confounding second gradient. One can test
for the presence of non-additive finite size effects readily, since
no gradient additivity is possible in the absence of a second
gradient. This system also provides an excellent baseline for
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understanding the effect of gradient additivity on the breadth
of relaxation processes.

Our results suggest that the model of gradient additivity (linear
gradient superposition) is remarkably predictive, to leading
order. We find that a dynamically neutral substrate has little
effect on the free surface gradient, serving to leading order
simply as a truncating plane for the gradient. This implies that
the ‘steepness’ of the gradient is essentially innately thickness
independent, although gradient additivity effects can lead to
flattening in the presence of multiple dynamically active
gradients for mathematical As a result of this
phenomenon, our simulations predict a fascinating non-
monotonic thickness dependence of the breadth of the
relaxation spectrum in freestanding films but not in neutrally
supported films. Observation of this behaviour in future
experiments could provide valuable support validating the
persistence of this simulated behaviour to experimental
timescales, while also potentially providing experimental insight
into the dynamical gradient experimental
nanostructured systems.

reasons.

range in

Methodology

We perform simulations of bead-spring polymer films supported on
a dynamically neutral substrate, over a broad range of film
thicknesses. Simulations employ a modified version of the attractive
bead-spring model based on the work of Kremer and Grest3°, with
each chain comprised of 20 beads. Nonbonded beads of species i and
jinteract via the 12-6 Lennard Jones potential,

E!./.:48[0_12r7127o_6r76:|. )

Interactions between polymer beads employ € and o both equal to 1
and with interactions cut off at a distance of 2.5; substrate
interactions are discussed below. Bonded beads interact via the
Finitely Extensible Nonlinear Elastic (FENE) potential combined with
a binary LJ potential,

E,,,=—0.5KR;In (1 - ”ZRJZ) +48,,,4 [Gba«;dlzrilz - Gbond6r76:| (2)

with K = 30, €pond = 1.0, Ro = 1.3, and opong = 0.8; the latter two of
these are modified from their most common values to vyield
improved crystallization resistance while in contact with a solid
substrate?®. We note that this model differs slightly from the one
employed in our recent freestanding film simulations, to which we
compare our new results. However, both models lie within a range
of bead-spring polymer backbone bond lengths that we have
previously shown to exhibit essentially invariant response to
nanoconfinement?!, such that their results are expected to be closely
comparable.

Simulations of both supported film and bulk reference systems were
performed in the LAMMPS molecular simulation package*2.
Temperature selection and simulation time selection for bulk
systems are automated via the Predictive Stepwise Quench (PreSQ)
algorithm described in our prior work*3; supported thin film
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simulations are then performed at the same set of temperatures as
bulk to enable isothermal comparison between film and bulk. The
bulk system is simulated at pressure P = 0 by employing the Nose-
Hoover thermostat and barostat as implemented in LAMMPS, with
pressure and temperature damping parameters of 2 t,; (where 1 is
the LJ unit of time and is approximately equal to a picosecond in real
units). Film simulations are nominally performed at constant volume,
but the presence of a free surface yields an effectively constant
pressure P = 0 boundary condition for the film itself.

The substrate consists of LJ beads arranged on an FCC lattice at a
number density of 1.4, with the [111] face exposed to the fluid. We
arrive at a dynamically neutral substrate by tuning the polymer-
substrate interaction energy parameter gps until dynamics are
essential unperturbed near the substrate. As shown in our recent
paper3?, a value of gps = 0.515 yields a negligible dynamical gradient
at the substrate, and we confirm in the results section that this yields
a negligible T, gradient near the substrate.

We simulate these supported film systems over a range of film
thickness ranging from 3 oy, to 49 oy, thick, where oy, is the UJ unit of
length and corresponds to approximately a nanometer in real
units33244, The film thickness is naturally temperature dependent,
reflecting the density equation of state of the system; we employ a
reduced temperature T = 0.5 as our reference temperature for
designation of a nominal thickness. The cross-sectional area of the
simulation is 23 oy x 20 oy in all cases except the 49 oy, thick film, for
which the cross-sectional area is 41.7 oy x 40 oy.

In quantifying the dynamics of these systems, we focus on
translational dynamics as computed from the self-intermediate
scattering function:

N

F(q.0)= %Z<exp[—iq (r (0)-r, (0))]> )

J

Here g is the wavevector, r; is the position of bead i, and t is
time. We compute the value of this function at a wavenumber
q =7.07 (comparable to the first peak of the structure factor) by
averaging in a radially symmetric manner over multiple
wavevectors with magnitudes in a narrow band around this
wavenumber, as is standard for many studies probing dynamics
near various interfaces including free surfaces and rigid
substrates and particles20.21,.29.324546 A relaxation time and
stretching exponent are extracted by fitting Fs(q,t) to the
Kohlraush-Williams-Watt  (KWW) stretched exponential
function,47:48

Fs(‘Iat):AeXp[_(t/TKW')q “

and then defining the alpha relaxation time t to be the time at
which this function is equal to 0.2, a commonly used convention
in the simulation literature29.31,46,49,50 We perform this fit only
over the domain for which Fs(qg,t) < 0.6 in order to optimize the
fit to the alpha relaxation process specifically and exclude
earlier features of the relaxation process.

We then extract glass transition temperatures Ty from data of
this kind obtained over multiple temperatures. To do so, we fit
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Figure 1 - Glass transition temperatures versus z at €qgymer-substrate Values of
0.4 (red circles), 0.515 (purple squares), and 0.6 (blue stars).
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Figure 2 - Segmental relaxation time versus bulk relaxation time for a film of
thickness 17 oy, for layers of segments at distances z from the surface of 0.4375
o (blue circles), 1.3125 oy, (red squares), 2.1875 oy, (green diamonds), 3.0625 oy,
(purple triangles), 3.9375 o, (blue pluses), and 4.8125 oy, (gray stars). Lines are
fits of the long-time data to equation (5).

these data to the Vogel-Fulcher-Tammann relation>152, and we
define Tg on a computational timescale as the temperature at
which the relaxation time first exceeds 10> t;. We perform all of
the analysis above at a spatially resolved level by first binning
the particles based upon their distance (in LJ distance units of
oy, approximately equal to nm) from the substrate or free
surface and then computing local dynamical properties of
particles within each bin.

Results and Discussion
Dynamical gradients

We begin by confirming that the polymer-substrate interaction
we employ indeed yields an approximately dynamically neutral
substrate. In Figure 1, we report the gradient of T as a function
of distance from the substrate for the neutral value employed
in the study (gps = 0.515) and for two other bracketing values of
the substrate-polymer interaction. As can be seen here,
alterations in T; at the substrate are weak, at most, for g, =
0.515, with a slight near-substrate suppression observable. This
outcome makes use of the concept of a ‘compensation point’ of
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Figure 3. (a) Effective barrier reduction ratio € and (b) glass transition
temperature near the film surface as a function of distance from the surface,
for films of total thickness 490, (black triangles), 40 oy, (filled blue squares),
270, (red circles), 21.70y, (brown x’s), 17.20, (black diamonds), 12.90, (green
pluses), 8.450, (purple squares), 6.7a,, (orange triangles), 5.450; (blue stars),
4.450, (red x’s), 3.20,, (brown pluses)

interfacial interaction at which alterations in dynamics are
absent; notably, this condition is quite distinct from that of
thermodynamic neutrality®.20.53, We note that in arriving at this
value we found that it is not possible to achieve perfect
neutrality at all temperatures because the dynamic neutrality
condition is slightly temperature dependent, but the substrate
effect here is sufficiently weak as to require only minor
corrections in the data analysis, as discussed below. It is also
probable that this neutrality condition averages over a degree
of anisotropic dynamics near the substrate, but prior studies
have indicated that any near-substrate anisotropy in dynamics
is extremely short ranged — much shorter than the range of the
dynamical gradient itself2°. We emphasize that, as described in
the methods, we compute a radially averaged measure of
translational relaxation such that this neutrality condition
averages over the in- and out-of-plane components of any such
short-ranged anisotropy.

In analysing more deeply the local dynamics in these systems,
we make use of a fractional power law decoupling relation
between local and bulk dynamics that was discovered in our
prior work?2 and has since been observed in a number of
additional systems33:35.3654 gnd predicted theoretically33:3655, As
a consequence of this relation, which is predicted and observed
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Figure 4 - (a) Effective barrier reduction ratio € and (b) glass transition
temperature, as a function of distance from the substrate, for films of
thickness 490y, (black triangles), 400, (filled blue squares), 270y (red
circles), 21.70y, (brown x’s), 17.20y, (black diamonds), 12.90, (green pluses),
8.450, (purple squares), 6.70,, (orange triangles), 5.450,, (blue stars),
4.450,, (red x’s), 3.20,, (brown pluses). The solid lines in part (a) report on
the behaviour predicted based on a scenario wherein the thick-film free
surface gradient (equation (7) with A=0.75 and § =4.3 o) is simply truncated
at the substrate. The dashed lines represent the combination of the thick
film surface and (much weaker) substrate gradients as per equation (9). In
both cases predictions are made for h consistent with the data set in
matching color.

to hold at low temperature, local dynamics near a surface are
related to the bulk dynamics via the relation

7(T.2) (2 (1)) (5)
T (T) 7

where t* specifies an onset condition for this behaviour on
cooling and € is called the “decoupling parameter”. Combining
this observation with a generalized activation rule possessing a
temperature-dependent activation barrier leads to the
conclusion that the decoupling exponent reports on the local
fractional reduction in the local activation barrier AF(T,z)
relative to the bulk activation barrier AFpu(T):82255

g(z) — I_M 6)
AF,, (T)
As shown in Figure 2, equation (5) and thus equation (6) indeed
hold locally when temperatures are sufficiently low for a
representative film of thickness 17 oy,.
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On this basis, we employ equation (5) to extract the relative
reduction in activation barrier within the film as a function of
distance from the free surface. As shown in Figure 2, we
perform this fit including temperatures for which tpux > 102 1.
This temperature range is chosen to be below the approximate
onset timescale of this behaviour (i.e. we fit the long-timescale
range of behaviour for which the data are actually linear in this
plot). As shown in Figure 3a, the activation barrier truncation
gradient near the free surface closely obeys an exponential
decay form with increasing depth in the film, consistent with
prior work?22:35.36;

2 (ZW/‘) = &0, surf exp(_z‘wf / éAF,smj/' ) . 0

Here zsus is the distance from the free surface, and we find a
good fit to thick film surface gradient data with prefactor € surt
=0.75 and exponential decay range &ar, surf = 4.3 ou. In our prior
work in freestanding films, substantial deviations from this form
were observed for films of thickness h <15 oy, as a consequence
of large gradient overlap effects. Here, however, the single-
exponential gradient form remains quantitative down to a film
of only 8cy, in thickness, and deviations from this form remain
mild even for the thinnest films. A similar trend is seen in Figure
3b for Ty gradients: the exponential T gradient behaviour
observed for thick films remains reasonably descriptive of the
gradient even for quite thin films.

In Figure 4, we consider the implications of this behaviour for
dynamics near the substrate. As can be seen here, for thick films
the activation barrier and Tg near the substrate are only weakly
perturbed from bulk. Indeed, as seen in Figure 4a, in the thick
film limit € is only slightly enhanced near the substrate, and we
find that this can again be fit with an exponential gradient near
the substrate,

& (Zsub ) = gO,sub eXp(_Zsub/é:AF,sub ) > (8)

where z, is the distance from the substrate, and where we find
that the substrate gradient is of much smaller magnitude, with
Eo,sub = 0.10 and &\F,sub =3.1 OLp.

With decreasing film thickness, the near-substrate dynamics
become quite accelerated, but this trend is driven by the surface
effect impinging on the substrate rather than by an emergent
substrate effect. Indeed, we can confirm this origin by
comparing this enhancement to expectations from the thick-
film interfacial gradient measurements. The solid lines in Figure
4a report on the behaviour that would be expected if only the
exponential free surface gradient (i.e. equation (7)) were
present and were simply truncated at the substrate, obtained
by combining equation (7) with the identity that zsu, = h — Zsur.
As can be seen, this provides a good description of the data
down to h = 8.5 except very near the substrate, but somewhat
underpredicts the barrier truncation for thinner films. A better
prediction of the thin film data can be obtained by simply
summing the two barrier gradients, as

This journal is © The Royal Society of Chemistry 20xx
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Figure 5 - (a) Mean film relaxation time versus bulk relaxation time for films of
thickness 490, (black triangles), 40 oy, (filled blue squares), 270y, (red circles), 21.70y,
(brown x’s), 17.2 oy, (black diamonds), 12.90y, (green pluses), 8.450, (purple squares),
6.70 (orange triangles), 5.450, (blue stars), 4.450, (red x’s), 3.20y, (brown pluses).
Solid lines are linear fits to the low-temperature data indicating the low-temperature
fit to the fractional power law decoupling relation at a whole-film level. (b) Fraction
of bulk barrier remaining (i.e. 1-g(h)) vs film thickness. Black circles and red diamonds
are simulation data for freestanding and neutrally supported films, respectively. The
black curve is the prediction of linear gradient additivity for the freestanding film. The
red dashed curve is the prediction of an idealized surface gradient truncation effect
at the dynamically neutral substrate. The solid red curve is the prediction of gradient
additivity for the neutrally-supported film, taking into account the near-negligible
substrate gradient. (c) Film T normalized by the corresponding bulk value, plotted vs
film thickness, for the neutrally supported film (red squares) and the freestanding film
(black circles).
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g(zsub ) = &o.5ub exp(*zmh/é:u,.mh)

9

BRI exp(—(h T ZAF suy )/éAF,snr/ ) )
As shown by the dashed lines in Figure 4a, this model of simple
superposition of the two exponential barrier suppression
gradients provides good predictions over the first 6-7 o, near
the substrate for films over the entire range of thickness. This
indicates that the near-dynamically-neutral substrate
behaviour designed in the thick-film limit remains near-neutral
down to very thin films. The accelerated near-substrate
dynamics seen in very thin films is thus the consequence of the
free-surface-nucleated dynamical gradient extending to the
substrate to an appreciable degree once h < 2§ae surf.

Combined with Figure 3, this indicates that the dynamically
neutral substrate simply truncates the surface-induced gradient
to leading order (to within the weak residual substrate effect)
rather than altering it. Unlike in freestanding films, where
additivity of two strong surface gradients leads to flattening of
the combined gradient in very thin films36, here this effect is
absent. The gradient remains essentially equivalently steep for
all film thicknesses. This indicates that a dynamically neutral
substrate does not serve to ‘pin’ the local dynamics to their bulk
rate, but simply has no impact upon near-substrate dynamics at
all, to leading order.

Thickness-dependence of mean-film activation barrier and T,

We now turn to the question of the mean behaviour of our
simulated film and its dependence on film thickness in the ultra-
thin-film limit. This type of data is more typically the subject of
experimental studies. Experimental data of this kind have been
shown to be accessible for both mean film T and mean film
effective activation barriers37:38, and we thus aim to understand
the thickness-variation of both.

As can be seen in Figure 5a, whole-film dynamics for the
systems simulated here also obey the fractional power law
decoupling with progressively
accelerating as thickness is reduced. As with the analysis of local

relation, film dynamics
dynamics, we can extract the value of €(h) by fitting the data to
equation (5), with z replaced by the film thickness h, for data for
which t, > 102. As shown in Figure 5b, g(h) exhibits a progressive
reduction with decreasing film thickness. How does this whole-
film behaviour compare to that observed in a freestanding film?

As shown in Figure 5b, the drop in activation barrier with
reducing film thickness for the neutrally-supported film is
considerably weaker than for the freestanding film. This is a
consequence of the lack of a strong second additive dynamical
gradient in the supported film, which was present in the
freestanding film.

In order to quantitatively model the mean behaviour of this
film, we describe the surface activation barrier gradient as
exponential as indicated by equation (7). We then average over
the film, truncating the gradient at the substrate, and
employing the correct weighting function for averaging of the
local activation barrier gradient established in our prior work36,
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As can be seen in Figure 5b, the resulting dependence of the
predicted mean-film qualitatively captures the variation of the
data with film thickness, but slightly underpredicts the
reduction in activation barrier. This underprediction is a
consequence of a slight residual gradient at the substrate, as is
described above can be seen in Figure 1. Accounting for this
weak substrate gradient within the film average leads to a
nearly exact quantitative prediction of the thickness-variation
of the mean-film activation barrier from the thick-film
gradients, as can be seen in Figure 5b.

Indeed, the quality of prediction obtained by simply averaging
over the exponential gradient is appreciably better for the
supported film than for a freestanding film. As discussed in our
prior work, there are appreciable downward deviations (for
intermediate thickness films) and upward deviations (for ultra-
thin films) from the two-exponential-gradient superposition
model in the case of freestanding films. This is a consequence
of the overlap of long-range elastic power-law tails in the
intermediate film32, and of a saturation of elastic effects from
two interfaces in ultra-thin films36.

Evidently, these two-interface effects are relatively weak when
one of the two interfaces is dynamically neutral. There is
perhaps a suggestion in Figure 5b of a slight underprediction of
the amount of barrier truncation in intermediate-thickness
supported films: for nearly all of our thicker films the red curve
is slightly above the datapoints. This underprediction is likely a
consequence of omitting the recently-discovered power-law
gradient tail32. from our mean-film average. However, the effect
is relatively weak as compared to the freestanding film, which
involves two additive power law tails in intermediate thickness
films. We emphasize that this power-law tail is not a finite size
effect; rather it is simply a long-ranged component of the
gradient. At the same time, there is no indication of an
overprediction of barrier truncation in the thinnest supported
films, in contrast to the freestanding film. In the freestanding
film, this was a consequence of a saturation of truncated elastic
barriers. The elastic barrier to activation is essentially already
zeroed out for some finite thickness freestanding films, such
that a naive gradient additivity model overpredicts the barrier
truncation in the thinnest films. This again is not best
understood as a true finite size effect, but merely a saturation
of the gradient effect. This effect is absent in supported films,
because the amount of elastic activation barrier reduction is
effectively halved in the thinnest films in the absence of a
second interface. This suggests that there are no true finite size
effects present in this system at a level detectable in mean-film
dynamics, since any such effect should be present as a result of
length-scale truncation even in the presence of a dynamically
neutral interface.

Moving now to mean-film Tg behavior, as shown by Figure 5c, T
exhibits a progressive suppression with decreasing film
thickness, in a manner qualitatively consistent with
experiment3856, Notably, there is no clear signature in these
data of the underlying gradient length scale. For example, there
is no sigmoidal turnover to a low-h regime and thus no clear
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feature indicating the ‘range’ of the effect. These results
indicate that it is likely to be challenging to infer deep physics of
the surface gradient by studying Tg(h) data. This is consistent
with a previously analytic analysis by Schweizer and Simmons
suggesting that it may be functionally implausible to extract
detailed information on the form of the gradient, and perhaps
even on its range, from mean-film Ty measurementsé.

Implications for breadth of the relaxation time distribution

While Tg(h) curves thus evidently tend to lack a clear signature
of the range of dynamical gradients, our prior work hints3®¢ that
superposition of two gradients can have a profound effect on
the distribution of local relaxation times and Tgs in the ultra-
thin-film limit. Specifically, gradient superposition effects tend
to suppress gradients in very thin freestanding films. This would
naturally be expected to alter the breadth of the distribution of
relaxation times within the film. Is there some signature of this
effect at a whole film level that might provide a promising target
for experiment?

The most commonly employed metric for the ‘breadth’ of the
relaxation time spectrum in bulk and thin films is the relaxation
stretching exponent B (although there are some complexities
with this interpretation®?). This quantity can be obtained from a
stretched exponential fit to real-time relaxation data (typically
in simulation) or from (for example) a Havrilak-Nagami fit to
relaxation spectrum data obtained from frequency-domain
methods such as dielectric spectroscopy>®. How should we
expect B to vary with thickness? Could B provide a signature of
gradient overlap effects and of the gradient range in whole-film
dynamics?

We employ the linear superposition model, together with data
for the thick film gradient and the bulk stretching exponent
Bouik, to make a prediction for how the stretching exponent
should vary with film thickness in films with two (symmetric)
dynamically active interfaces. To do so, we describe a layer of
material at any distance z from the interface via a stretched
exponential relaxation process with a position-dependent
relaxation time txww, consistent with the data for relaxation in
our films. We employ several simplifying approximations to
obtain a tractable calculation. First, we approximate the local
stretching exponent as being equal to the bulk value
everywhere in the film. This neglects any spatial variation of B,
which we expect to be present near the film surface. Indeed,
prior work has suggested alterations in dynamic heterogeneity
at film surfaces®®. However, spatial trends in B are extremely
difficult to characterize, even in simulation, because any degree
of spatial averaging over the gradient in a finite-thickness bin of
particles can lead to contamination and erroneous suppression
of the measured B value. The assumption of a uniform B thus
provides a simple leading-order approximation. Second, we
neglect the difference between the KWW fit parameter twww
and the relaxation time T, the latter of which is defined in our
study as the time at which F¢(q,t) drops to 0.2. These two
timescales are generally similar, but not quite identical, within
the range of B values observed in our simulations — we ignore
this difference here. Within these approximations, this leads to

This journal is © The Royal Society of Chemistry 20xx
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Figure 6. One minus the stretching exponent (measured at low simulation
temperatures) vs film thickness for simulated freestanding film (orange circle) and
neutrally-supported thin film (open blue circle). The dashed lines are guides to the
eye. The black solid line is the prediction of 1-B for a freestanding film based on
linear gradient superposition as reflected in equations (10) through (13) and
associated discussion in the text. The dot-dashed line is a similar calculation for a
supported film with only a single dynamically active interface, as per equation (14).

a prediction for the mean relaxation function Fy(q,t) of a film of
thickness h given by

7,

(F(0.1))= T*P(,)e,{p{(_;jﬂm}d,

7,

(10)

min

where P(t) is the probability distribution of local mean t values
for layers within the film and tmin and Tmax are the lowest and
highest values of T within the film. P(t) for a freestanding film
can be obtained from

S(Z) = g(),rur/' exp(_z/gAFAsw'/ ) + g(],sw;f exp(—(h - ZAF,SW,‘/ )/§AF.S‘UV/ )
(11

which specifies the barrier gradient as reflecting a linear
superposition of two symmetric decaying exponentials.
Combination of equation (11) with equation (5) yields an
equation for the relaxation time gradient at a given bulk
relaxation time,

7, (T) J’EH (h)[exp(*l/é\,.-v\“,., )+€Xp(—(h—z)/§\r‘w, )] ( 12)

T(T,Z)=TB(T)( :
T

This equation can be analytically inverted to yield the function
z(t). We then transform this quantity into a probability
distribution function (i.e. the equation for the fraction of the
film with a given value of t) via a change of variables:

dz/dr
[ (dz/dr)dz

7,

P(7) = (13)

‘min

The resulting function from equation (13) is then substituted
into equation (10) to yield a predicted mean-film relaxation
function. Both equations (13) and (10) are evaluated
numerically. The bounds of the integrals in these equations are
given by symmetry for a freestanding film as tmin = t(z=0) and
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Tmax = T(z=h/2). In making this calculation, as noted above, we
employ values of £ and €9 measured in the 47 oy, film. We then
fit the resulting predicted Fs(qg,t) curve for a film of each
thickness h to a stretched exponential, using the same protocol
we describe above for the simulation data.

The same approach as that described above is applied for the
dynamically neutrally supported film, but in this case equation
(11) (for the freestanding film) is replaced with equation (7),
which leads to

(14)

¥
T

-& (h)[exp(—:/ﬁ,\r_\,,l., )]
o(T.2) =rB(T)[TB(T)j

In place of equation (12). The upper bound of the integrals in
equations (13) and (10) then becomes Tmax = T(z=h) rather than
Tmax = T(z=h/2) to reflect the altered symmetry of the film.

The resulting predicted curves of B vs log(h) are shown in Figure
6, where they are compared to simulation data from our prior
freestanding film simulations and our new dynamically neutrally
supported film simulations. As can be seen here, the prediction
of B(h) is in excellent agreement with the data for freestanding
films down to ~8ay,. For films thinner than ~8a,, the prediction
deviates from the simulated data, as expected due to the
elasticity saturation effects previously discussed for ultra-thin
freestanding films36. We note that in performing this analysis,
we must contend with the empirical temperature dependence
of B. We find that B plateaus for low temperatures and is at
most weakly temperature dependent for temperature for
which the relaxation time of the film t > 102 for all of our
simulations. We thus employ this low-temperature plateau
value of B in performing this analysis by taking an average of
over temperatures for which the relaxation time of each film t
> 102

The linear superposition model prediction evidently predicts
and explains a nontrivial observed nonmonotonic behaviour
observed in freestanding film simulations. This dependence can
be understood as follows. For thick films where h > 4.6 ¢,
reduction of the film thickness shrinks the bulk-like center
region of the film without appreciably impacting the form of the
gradients. This leads to a broadening of the relaxation time
distribution as the gradient becomes the major component of
the film. Once the bulk-like region is gone (around 4.6 €), this
effect saturates, and the relaxation time distribution breadth
plateaus. For appreciably thinner films where the gradients
strongly overlap (approximately < 2.3 ¢), the gradient
superposition effect causes gradient flattening for simple
mathematical reasons associated with addition of two opposed
exponential decays. Further reductions in film thickness thus
suppress the dynamical gradient, homogenize the film, and
narrow the relaxation time distribution.

This non-monotonic behaviour is muted and does not occur
until much lower film thicknesses in the neutrally supported
film, since no appreciable gradient overlap effects are present
to cause gradient flattening at low h. Instead, a reduction in 1-
only occurs for very thin films such that h is comparable to or
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less than €. In these extremely thin films, truncation (rather than
flattening) of the gradient by the substrate leads to a weak
reduction in the overall heterogeneity of dynamics in the film.

If experimentally validated, these findings would indicate that
the thickness-variation of the stretching exponent (or other
measures of the breadth of the relaxation time distribution) in
films with symmetric interfaces could allow for determination
of the dynamical gradient range from a
measurement. Specifically, as indicated above, we find the
minimum value of B (maximum in 1-B, meaning the most
heterogeneous dynamics) is found when the film thickness h =
4-5 ¢. Observation of a maximum in the mean-film B for any
symmetric film would thus both provide a powerful
experimental validation of the proposition that these findings
extend to experimental timescales, and potentially allow for
extraction of the interfacial dynamic gradient exponential decay
range.

mean-film

Conclusions

A central issue in the study of altered dynamics in nanoscale and
nanostructured systems has been the question of whether
these systems exhibit genuine ‘nanoconfinement’ effects —i.e.
alterations in dynamics associated with the system’s finite size
rather than merely with the presence of interfaces. Here we
probe this question by studying simulated films supported on a
dynamically neutral substrate, possessing a single dynamically
active interface, and comparing them to simulated freestanding
films possessing two symmetric dynamically active interfaces.
Our results indicate that, at least to leading order, no genuine
finite size effects are needed to explain and predict the
behaviour of simulated bead-spring films of finite thickness on
the timescales accessible to simulation, either in the case of
freestanding films or a supported film. Crucially, we find that in
the presence of one dynamically active interface and one
dynamically neutral interface, the system behaviour can be
predicted based purely on the single gradient emanating from
the dynamically active interface, with a truncation plane at the
This finding holds to an
approximation down to films as thin as three segmental layers
thick.

neutral interface. excellent

A key feature of this work is the use of a nearly dynamically
neutral substrate, which imposes little to no gradient in
dynamics on nearby material. This state is achieved simply by
tuning the polymer/substrate interaction to a level yielding
dynamic neutrality. Crucially, a true finite size effect would by
definition be insensitive to this type of surface interaction. The
absence of such an effect in the presence of a dynamically
neutral substrate thus implies a lack of finite size effects more
generally, at least in the timescale and molecular weight ranges
accessible to these simulations. Moreover, because of the
absence of a dynamical gradient at the substrate, any finite size
effect would be quite easy to detect within this model if it were
in fact present.

This journal is © The Royal Society of Chemistry 2023



While the present findings obtain within the bead-spring
polymer system studied here, prior perspectives
authored or co-authored by one of us have identified a
remarkable degree of near-universality of these interfacial
gradient effects in simulated systems, spanning multiple model
systems, multiple interfaces, and multiple geometries®10, We
believe that this degree of transferability of behaviour across
numerous simulated systems suggests that the bead-spring
polymer system studied here likely provides a generalizable
model for the core physics governing these interfacial effects on
simulation timescales. We thus expect our conclusions to obtain
for a wide range of systems studied on these timescales.

several

From a physical standpoint, we note that the behaviour of the
single-interface gradients that evidently dominate these films’
properties even down to the 3-4 segmental layer range has
previously been predicted, without adjustable parameters, by
the Elastically Cooperative Nonlinear Langevin Equation Theory
of glass formation®s. Within that theory, these gradients are
driven by a combination of alterations in caging scale, which
propagate into the film over a medium range, and interfacial
truncation and alteration of a scale-free elastic activation field,
which impacts dynamics over a long range from the interface.
The present findings thus add more weight to growing evidence
that the ECNLE theory is predictive of the features of
translational dynamics in low- to moderate-molecular-weight
polymer thin films on the timescales accessible to simulation.

Finally, our results s a new potential experimental target that
could provide additional validating evidence for the proposition
that the gradient behaviour observed in these and other
simulations extends to experimental timescale. In particular, we
find that the breadth of the mean-film relaxation process, as
measured by the mean-film stretching exponent B, should
exhibit a maximum in freestanding films for film thickness in the
range of 4-5 times the surface gradient range. This effect is
expected to also be present in films supported on highly
unattractive substrates that induce a local enhancement in
dynamics. Direct measurement of this maximum would validate
this simulation prediction, which emerges fundamentally from
the finding that thin-film behaviour is dominated by exponential
gradient superposition effects, and that exponential gradient
superposition in turn leads to gradient flattening and thus a less
dynamically heterogeneous film. We note that a weaker
nonmonotonicity is observed even for a film supported on a
dynamically neutral substrate, but this effect is shifted to much
thinner films of order the gradient range itself —a consequence
of mere truncation of the gradient by the substrate. Even here,
this maximum would provide evidence that gradients do not
innately grow sharper in thinner films but are rather subject to
interfacial truncation.

If this prediction is experimentally validated, such
measurements could additionally allow extraction of the
fundamental surface range of dynamical gradients from mean-
film measurements. Since the maximum in B in a freestanding
film is in the range of 4-5 the exponential decay range,

observation of this maximum could allow a fairly narrow

This journal is © The Royal Society of Chemistry 20xx

determination of the surface gradient range from freestanding
film measurements. One possible route to do so would be via
dielectric spectroscopy measurements of thin films, although
this would require careful treatment of such nontrivial issues as
the manner in which the measurements weight with depth
(which can be highly measurement-dependent*!) and the
treatment of the depth dependence as reflecting parallel®® or
serial®l capacitors depending on the sample geometry. Such
measurements, if these complexities could be resolved, could
complement and broaden insights from recent surface diffusion
measurements in a series of small molecules, which suggested
a gradient range consistent with these simulations?’.
Confirmation of this correspondence via experimental
measurements of relaxation breadth in thinner films could thus
present the opportunity to more strongly unify computational
experimental findings on “nanoconfinement” effects on
dynamics from over 30 years of research.
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