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ARTICLE INFO ABSTRACT

Keywords: The level of outlays that individuals and communities receive following disasters influences the
Disaster aid rapidity by and the degree to which they recover. While there is no prescribed formula for the
Hurricane level of aggregate federal aid a county receives, one might expect it to be proportional to the
Damage damage sustained. In actuality, the fraction of damages that are covered by disaster aid (which

we call “federal disaster coverage”) is highly variable. In this work, we investigate the county-
level correlates of federal disaster coverage using hurricanes that received Presidential Disaster
Declarations from 2008 to 2017 by asking (1) What county and hazard characteristics are impor-
tant predictors of counties that receive aid but that do not incur damage? and (2) Where damage
is reported, what county and hazard characteristics influence federal disaster coverage? We find
that counties that receive aid but have no reported damage are more likely to experience greater
storm intensity and have more hazard exposure than observations that do not receive aid, sug-
gesting that these counties’ damages are unreported. Concerningly, these counties also exhibit
greater social vulnerability. Among counties that report damage, we find that federal disaster
coverage decreases as hazard intensity and per capita damage increase, suggesting that more se-
vere disasters receive less marginal aid than less severe disasters. Higher local capacity increases
the likelihood of aid and the level of coverage. Overall, our findings suggest disparities in how
disaster damages are reported in major comprehensive disaster datasets and in how federal aid is
disbursed among counties.
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NFIP National Flood Insurance Program
NWS National Weather Service
PA Public Assistance

PDD Presidentially-Declared Disaster

RRR Relative Risk Ratio

SHELDUS Spatial Hazard Events and Losses Database for the United States
TANF  Temporary Assistance for Needy Families

USACE United States Army Corps of Engineers

1. Introduction

As the impacts of hazards have risen in the U.S., so have federal disaster recovery and rebuilding expenditures. The five-year aver-
age of federal appropriations for disaster relief between 2017 and 2021 was $56 billion, a twelve-fold increase from the five-year av-
erage two decades earlier, even when adjusted for inflation [1,2]. Climate change, permissive land-use policies, and economic devel-
opment are often cited as the main drivers of this escalation in disaster spending, but some scholars have also identified the role that
politics, local government capacity, race, and population have in higher outlays per capita and in generating aid inequities [3-7]. The
amount of aid that each state, county, and local government receives following a disaster is variable, in part because of heterogeneity
in community characteristics, the level of damage sustained, the spatial variability of hazards, and the purpose and structure of vari-
ous federal aid programs. In particular, the federal approach to funding disaster recovery is fragmented across over 30 federal entities
and numerous programs [8]. This fragmentation obscures the level of cumulative federal aid a community receives following a disas-
ter, since different agencies operate their programs with a lack of coordination and there is no prescribed formula for appropriating
total federal aid. One might expect it to be relatively proportional to the amount of damage sustained, in part because most recovery
programs are primarily based on sustained damage.' Nonetheless, it is unclear the extent to which local disaster costs are covered by
federal funds and whether such cost redistribution is equitably administered across the nation. Most prior research examines the dis-
tribution of federal aid by program and fails to consider the aggregate aid across multiple disaster programs and the overall benefits
they deliver to localities.

In this work, we are interested in the fraction of damages that later are covered by federal disaster recovery aid (which we refer to
as “federal disaster coverage”) and, in capturing the disaster-triggered redistribution of federal funds, how the generosity of federal
aid correlates with county characteristics (i.e., the county-level correlates of higher rates of federal disaster coverage and thus lower
disaster burden borne by affected localities). We know from the insurance literature that the fraction of damage that is later covered
through private insurance is highly predictive of the strength and speed of recovery [9], and, though public funds operate differently
than private funds, we might presume that similar recovery patterns would emerge should a study investigate public funds. Yet, a sim-
ple investigation demonstrates the federal-aid-to-damage ratio can be highly uneven. For example, when considering the damage re-
ported during Hurricane Harvey in 2017 (Figure A.1a) and the aggregate amounts of federal disaster aid received from the three
largest aid programs (i.e., FEMA's Public Assistance Program, FEMA's Individuals and Households Program, and HUD's Community
Development Block Grant Disaster Recovery Program, all detailed later) at the county level (Figure A.1b), we find that the fraction of
federal coverage ranges from 0.005 to 3,000 - a six-order-of-magnitude difference (Figure A.1c). Many storms produce similar results.

There are multiple possible explanations for the wide range of federal disaster coverages across localities. Some variation is likely
tied to how wealth and social vulnerability influence both damage and subsequent aid. For instance, a county with a higher fraction of
its population living in poverty might be expected to receive more aid than a wealthier county, all else being equal, because of FEMA's
Individuals and Households Program (IHP), a disaster aid program that targets the underinsured and uninsured for financial assis-
tance [10]. Conversely, social vulnerability, such as higher rates of lower-income or minority populations, has been shown to corre-
late with lower capacity to apply for and access aid due to difficulties in navigating the grant application process [11]. Similarly,
poorer regions and communities of color tend to receive less federal assistance to invest in mitigation [12-14]. They also tend to be
more exposed to hazards relative to wealthier and whiter communities due to a combination of exclusionary zoning, discrimination in
housing, lower housing values, and chronic underinvestment in higher-risk areas [15-18]. All combined, this overexposure may lead
to significant damage, but potentially less aid.

A wealthier county, on the other hand, might be expected to receive more aid than a poorer county, because it presumably has
more valuable assets and thus have more opportunity for monetary losses [19], and one purpose of federal post-disaster aid is to re-
place assets people have owned prior to a shock. Amplifying this potential disparity is FEMA's Public Assistance Program (PA), an-
other federal disaster aid program. PA targets public asset and infrastructure recovery and is authorized 5.1-fold more often following
disasters than IHP, the aid program targeting the un- and underinsured [20,21]. However, damage and subsequent aid in wealthier
areas is often moderated by being comparatively underexposed to hazards, by having received more federal monies for mitigation
prior to the disaster, and by having greater access to private insurance products [22]. Thus, we know that wealth and socioeconomic
factors can influence damages and aid, but this relationship is complex.

1 To be declared a disaster, a region must experience more than $4.60 per capita of impact at the county-level and $1.84 per capita impact at the state-level in 2024
[26]. In principle, many disaster programs require that the receiving entities be insured, though many states and local governments “self-insure,” making them eligible
for aid should a federal disaster be declared and they have a qualifying project [98]. Recent work shows the relationship between damage and aid [4,11].
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The variety of purposes, eligibility, availability, accessibility, and program rigidity of federal disaster programs means that the
fraction of damages that are covered by federal disaster aid can be highly spatially variable and greater than one (indicating that the
amount of aid received is greater than damages reported to have incurred). In this work, we investigate factors that influence federal
disaster coverage to understand why some affected areas receive disproportionately more disaster aid based on their damage than
others. More specifically, using hurricanes that received Presidential Disaster Declarations from 2008 to 2017, we answer the ques-
tions.

(1) What county and hazard characteristics are important predictors of counties that receive aid but that do not incur damage?
(2) Where damage is incurred, what county and hazard characteristics influence federal disaster coverage?

While the factors that influence disaster damage and subsequent federal aid have been explored separately in past research (e.g.,
Ref. [23]), the factors that influence receipt of federal aid absent damage and that influence federal aid relative to damage have not.
Answers to these questions provide important insights into the effectiveness of aid programs for recovery and provide additional con-
text for the unevenness of federal assistance, local disaster burden and their recovery patterns. One million dollars in aid may be sub-
stantial if damage is limited, but it is insufficient if damage is orders of magnitude greater. This has serious implications for equity in
disaster recovery [24].

To explore our research questions, we develop multiple regression models over two stages. In the first stage, we answer the first
question by building a multinomial logistic regression model to identify the correlates related to a county being in one of four cate-
gories following a disaster. The categories are: (1) counties that receive aid, but that do not sustain damage; (2) counties that receive
aid and sustain damage; (3) counties that do not receive aid, but that do sustain damage; and (4) finally, counties that neither receive
aid nor sustain damage. In the second stage of the analysis, we address the second question. We consider only observations from coun-
ties that incur damage, and initially fit a probit model to identify the correlates of receiving zero or greater than zero federal disaster
coverage. Then, for observations with a federal disaster coverage greater than zero, we fit a truncated regression model to identify the
correlates of lower or higher coverage. The models are built using records from 14 hurricanes that made landfall on the continental
U.S. between 2008 and 2017. We limit our analysis to the following programs: FEMA's Public Assistance Program (PA), FEMA's Indi-
viduals and Households Program (IHP), and HUD's Community Development Block Grant Disaster Recovery Program (CDBG-DR), be-
cause FEMA and HUD provide the majority of the funds for federally-recognized disasters [25]. Mitigation funds are excluded as they
are designed to reduce future damage rather than respond to current damage, and federal loan programs (e.g., Small Business Admin-
istration disaster loans) are excluded as they must be repaid.

2. Disaster programs, literature, and conceptual model
2.1. Program overview

In the U.S., disasters that surpass a state's ability to adequately respond and recover are designated “Presidentially Declared Disas-
ters” (PDDs) by the President. Affected counties become eligible for emergency management assistance and, often, federal recovery
funds. While a state's ability to adequately respond may be highly subjective and spatially variable, PDD eligibility has been standard-
ized primarily based on sustained damages to support program administration. At the time of writing in 2024, FEMA has set a thresh-
old of $1.84 of per capita damage at the state level and $4.60 of per capita damage at the county level to be eligible for a PDD, al-
though some other factors may be taken into consideration [26,27].

The three largest federal disaster recovery programs in terms of outlays are PA, IHP, and CDBG-DR. A county with a PDD may be
made eligible for either or both PA and IHP. CDBG-DR funds are allocated to affected states for particularly destructive disasters by
Congress. Between 2008 and 2017, more than $153B (2022 USD) were issued through these three programs (see Fig. 1). 81% of these
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Fig. 1. Annual Expenditures for CDBG-DR, IHP, and PA from 2008 to 2017 [20,21,28]. For best viewing, this figure should be printed in color. (For interpretation of
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funds in total and 100% of CDBG-DR funds were ad hoc congressional supplemental appropriations, meaning that the funds were un-
planned during the annual federal budgeting process [2,20,21,28].

PA is awarded to state and local governments, other public entities, and, on occasion, nonprofits to support the rebuilding of dam-
aged public and municipal infrastructure, including buildings, roads, and bridges. It also reimburses these recipients for disaster-
related debris removal and emergency protective services. PA has cost-share requirements for its recipients; recipients are typically
reimbursed at a rate of 75% of expenses, though this rate can be higher in particularly distressed areas or following especially severe
disasters. There are no project cost caps. PA has been made available in 92% of PDDs since 2000 [21].

IHP is awarded to eligible individuals and households impacted by disasters. Recipients of IHP may receive financial assistance up
to $41,000 (in 2023) and other direct services to address immediate household expenses that are un- or underinsured [29]. Direct ser-
vices are not subtracted from this financial assistance cap. Depending on many factors, IHP could support lodging or rental assistance,
home repair assistance, and funeral expenses, among other expenses. The grants are not intended to cover all damages, but rather en-
sure basic needs are met following a disaster. Indeed, Kousky [30] found that the average IHP grants following Hurricanes Irma and
Maria were a mere $2,100 and $3,400, respectively. IHP has been made available in only 18% of PDDs since 2000, meaning it is avail-
able far less frequently than PA [20]. IHP does not have cost-share requirements.

HUD's CDBG-DR grants are large grants awarded after particularly devastating disasters (often disasters with more than $2 billion
in damages). The grants allow significant flexibility for the initial receiving entity (usually state governments) to determine where
and how funds are used, though their spending plan must be approved by HUD. The funds are supposed to prioritize unmet needs in
distressed regions, and, while funds are commonly used toward housing (e.g., new housing, property acquisition, rental housing assis-
tance, etc.), the funds can be used toward public and municipal infrastructure or to fund local obligations of PA cost-share.

2.2. Literature and conceptual approach

2.2.1. Factors influencing damage

While damage to physical assets is only one of many ways to measure the severity of a hazard's impact on a community - others in-
clude mortality, displacement, job loss, etc. - damage is among the most common metrics in the disaster literature [4,31,32]. It is also
the measure that is used by the U.S. federal government to determine whether federal intervention is warranted via a per capita im-
pact threshold to determine PDD eligibility. In the most basic sense, hazard-induced damages are a function of the number of assets
that are exposed to the hazard, the value of those assets, the vulnerability of those assets to the hazard, and the intensity of the hazard.
More assets, higher-valued assets, less protected assets, more fragile assets (e.g., buildings built to lower code), and stronger hazards
all contribute to more damage.

Social, economic, and political factors also influence damage, though indirectly. These factors in an affected community influence
the number and value of assets exposed, the extent to which assets are protected from and able to withstand hazard forcing, and even
the intensity of hazard forcing an asset is likely to experience. The relationships between these factors, however, are complex and in-
terrelated. For example, when factors that typically moderate hazard risk are excluded, affluent regions are expected to experience
more damage and higher losses relative to regions with lower incomes. This is a result of larger and newer homes and, consequently,
higher property improvement values [19]. Local governments may also be incentivized to support development in high hazard areas -
such as high-demand coastlines - that may attract wealthier tax bases and enrich the local economy but also support some develop-
ment outside of high-hazard areas, such as low-income housing [33,34]. Affluent regions also benefit from more local, state, and fed-
eral investment in public infrastructure, including schools and civic buildings [35]. This combination of more assets and higher-
valued assets has the potential to incur greater cost for repair as well as more disaster aid (Howell & Elliot, 2019).

However, affluent communities also have more resources and ability to invest in mitigation, and they tend to benefit from more
federal mitigation assistance. First, because of their greater potential for monetary damage, the U.S. Army Corps of Engineers (US-
ACE) builds more protective infrastructure around and FEMA awards more mitigation grants to affluent areas [13,14,36]. This, in
part, stems from the benefit-to-cost ratio of these protective investments simply being higher in these areas [37]. Moreover, FEMA
mitigation grant cost-share requirements and the USACE requirement that a community pays for asset maintenance mean that many
hazard mitigation options are financially out-of-reach for lower-income areas [38].

We draw from existing literature on social vulnerability, which identifies factors that contribute to certain groups being less able
to plan for, respond to, and recover from natural disasters [39]. Socially vulnerable communities have endured years of political and
social disenfranchisement in the risk management process [40]. In addition to receiving less physical protection from hazards, so-
cially vulnerable communities tend to have infrastructure that is typically older, of lower quality, and built to older engineering stan-
dards, and thus more fragile and physically vulnerable to hazards compared to more affluent regions [41]. This is partially a result of
a lack of sustained investment in maintenance, but also due to diminished political and social will to invest in these communities
[17]. Due to historic discrimination and institutionalized racism, low-income areas are also more likely to have higher percentages of
racial minorities and renters, adding an additional layer of marginalization and reduced social, political, and economic capital
[42-47].

Finally, social, economic, and political factors influence and reinforce the geographic boundaries of race and class. These bound-
aries, in turn, influence the groups of people who are exposed to certain hazards. For example, redlining, where the U.S. government
refused to back the mortgages of individuals purchasing homes in neighborhoods with racial and religious minorities, led to the parti-
tioning of urban areas into spaces for White homeowners and for racial and religious minorities who rent, along with decades of
chronic divestment in red-lined areas [17,42]. The combination of more renters and urban divestment has left these neighborhoods
with buildings built to lower standards and also more exposure to hazards. While many argue that socially vulnerable populations to-
day are overexposed to hazards simply as a result of economics (high threat of hazards depreciates land values, making these areas
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more affordable) [48], exclusionary zoning has been used for more than a century in the U.S., largely in more affluent urban and sub-
urban areas, to ensure neighborhoods maintain their “character” while keeping home values high [49]. Exclusionary zoning ensures
these conditions persist.

2.2.2. Factors influencing aid

The level of federal disaster aid that a county receives strongly depends on the level of damage sustained [11]. This is expected as
federal disaster determinations and the programmatic design of aid programs are primarily based on damage. However, as with dam-
ages, federal disaster aid is also strongly dependent on social, economic, and political factors. While the research in this space is bur-
geoning, it is common for affluent regions to receive a disproportionate level of disaster aid [5]. This is unsurprising because, as men-
tioned earlier, these areas are more likely to have the ability to contribute to cost-share requirements (namely for FEMA's PA), and are
more likely to have the internal capacity to apply for and subsequently administer grants [9]. There is significant evidence that many
wealthier jurisdictions place considerable emphasis on this procurement of federal funds, many with the fiscal resources and staff de-
voted to this task [50,51]. Local capacity could also include the knowledge built through experience applying for and administering
federal grants (i.e., “instrumental learning”) [52]. Conversely, low internal capacity is a widely acknowledged barrier for why low-
resourced communities continue to receive less federal assistance [53]. To address this, in August 2022, FEMA increased its “small
project” maximum for PA from $139,800 to $1 M; small projects have a streamlined application process and fewer reporting require-
ments, making them, in principle, more accessible to lower-resourced jurisdictions, but the issue of the cost-share has not been for-
mally addressed [26].

Recent studies have found mixed effects of other socioeconomic factors on the receipt of aid. Domingue and Emrich [11] model
the influence of a wide range of socioeconomic, demographic, and built environment factors on PA outlays by year and find that aid
disparity is tied with specific PDDs that occurred in specific regions.” The work demonstrates how inequities can manifest in unique
ways and that these inequities may be highly tied with how outlays for specific PDDs are administered in specific regions. For IHP,
there is some evidence that the program does not benefit the populations it is designed to serve. Following Hurricane Katrina, lower-
income and minority populations received less aid while experiencing more destruction and disruption [54]. This is likely tied to the
lack of ease in which potential applicants were able to apply for these funds [55]. More recently, several trends pertaining to the chal-
lenges that communities of color have in obtaining IHP assistance, housing repair and replacement assistance, and other needs assis-
tance, have been found to persist [5].

Additional social and political factors have also been found to influence outlays. For instance, Eisensee and Strémberg [56] find
that increased media coverage, which likely places more pressure on federal administrators to effectively respond to a crisis, influ-
ences federal disaster decisions. Conversely, they find that media coverage on disasters can be crowded out by other newsworthy ma-
terial, and that subsequent relief decisions are impacted. Further, federal disaster aid has been leveraged to gain political advantage.
Electorally-competitive states have been found to be more likely to receive a PDD and receive federal disaster assistance following a
disaster than less electorally-competitive states, and PDDs are more likely to be declared during election years [6,57]. Federal disaster
expenditures in states with congressional representation on FEMA oversight committees are also found to have greater disaster expen-
ditures [58]. Finally, political ideology and leanings within communities may influence local receptiveness to federal assistance and
preferences over which level of authority should oversee risk management and disaster recovery [59]. More conservative areas report
preferring self- or locally-derived risk management strategies, with lack of trust in government being cited as a main driver for this
preference. Further, conservative-leaning individuals are less likely to report that they believe federal assistance will be made avail-
able to them following a disaster, which, in turn, can influence how they prepare for hazards [60].

2.2.3. Factors influencing federal disaster coverage (conceptual model)

Our two primary research questions aim to identify county and hazard characteristics of counties that receive aid but report no
damage (Stage 1) and factors that influence the degree of county-level federal disaster coverage (Stage 2).° These questions are inves-
tigated separately to absolve issues related to having a zero in the denominator for federal disaster coverage (i.e., aid divided by dam-
age). While, as we have outlined, existing literature has investigated hazard, social, economic, and political factors that contribute to
disaster damage and federal disaster aid separately, we explicitly explore how these factors influence the fraction of losses that the
federal government covers (Fig. 2). While it is clear that federal aid generally increases as damages increase [11], it is unclear
whether this relationship has increasing, decreasing, or constant returns-to-scale. More specifically, it is not clear whether these rates
match on the margins.

As illustrated in our conceptual framework (Fig. 2), we posit that federal disaster coverage will be influenced by a complex combi-
nation of hazard intensity, asset exposure, damages, and social, economic, and political factors. In terms of hazard intensity, it is well
established that more powerful storms lead to greater outlays ceteris paribus [61]. Areas that experience greater storm intensity - such
as those that are subjected to higher wind speeds, increased precipitation, deeper flooding depths, and larger storms - sustain greater
damages [61-66]. However, as storm intensity increases, the rates at which damage and aid increase relative to each other are un-
known (Fig. 2, Arrow 1). With increased storm intensity, if damage were to increase at a greater rate than aid, federal disaster cover-
age would decrease. Conversely, with increased storm intensity, if aid were to increase at a greater rate than damage, federal disaster
coverage would increase.

2 While they found many factors that extend beyond damage are significant, suggesting that some level of procedural (or process) inequities exist, relevant factors
vary significantly among years. For example, while a lower fraction of the population who are renters or who live in mobile homes is associated with significantly more PA
per capita, this is found to be true only in 2015; in 2013, lower per capita income is associated with significantly more PA per capita.

3 Stage 2 includes observations with a federal disaster coverage of zero, meaning a county that received no aid yet sustained damage.
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Fig. 2. Conceptual model of influencing factors of federal disaster coverage.

We similarly anticipate that the effects of social, political, and economic factors on federal coverage will be mixed (Fig. 2, Arrow
2). Regardless of hazard intensity, wealthier and whiter counties and counties with higher capacity will be more effective at navigat-
ing the processes to receive federal aid [9]. At the same time, areas with lower capacity and higher rates of socially vulnerable popula-
tions are often underserved by disaster assistance. The reasons for this include difficulty navigating the aid application process, pro-
gram ineligibility (e.g., programs exclusive to homeowners), reduced fiscal capacity to meet cost-share requirements, and reduced
motivation of local, state, and federal officials to serve communities with weaker political strength [3,4,54,55,61]. For these reasons,
we therefore expect federal disaster coverage to be lower for counties with less capacity and more socially vulnerable populations, as-
suming damage is held constant. However, we know the relationship between social vulnerability, local capacity, and damage is com-
plex, as previously discussed. Thus, even though increased social vulnerability and reduced local capacity decrease the likelihood of
receiving federal aid, its impacts on damage are ambiguous.

Finally, as asset exposure increases - due to less mitigation, more assets, or higher-valued assets in total, damage is expected to in-
crease, along with aid (Fig. 2, Arrow 3). Disaster aid programs are primarily predicated on damage. However, the rate at which aid in-
creases as damage increases is unclear.

3. Data

This research focuses on federal disaster coverage for 14 hurricanes that made landfall in the Southeast and Mid-Atlantic U.S. be-
tween 2008 and 2017. This represents 61 PDDs, as each state affected by a disaster receives its own PDD (i.e., one hurricane can result
in multiple PDDs). The geographic unit of analysis is the county level and the temporal unit of analysis is the year of the PDD. Any
county included in any of the 61 PDDs is included in our analysis, even if they did not sustain damage nor receive aid. FEMA data for
IHP and PA are collected from FEMA's Open Source database [20,21], and then are aggregated to the county level. Note that some PA
projects are issued to state agencies, so it is not obvious where these funds are ultimately distributed. These records are excluded from
our analysis. Furthermore, there is a possibility for mutual aid to occur where one entity effectively “donates” goods or services and
then seeks reimbursement for this donation through PA. Out of the 112,510 PA projects in the dataset representing hurricane PDDs
between 2008 and 2017, mutual aid is known to have occurred 1,212 times based upon project titles. These projects were excluded
when aggregating PA awarded at the county level.

CDBG-DR data are scraped from portable document files (PDFs) of CDBG-DR action plans. A CDBG-DR action plan exists for each
funded project and reports, among a host of categories, the CDBG-DR contribution toward the project, and the county(ies) in which
the receiving entity (e.g., non-profit, local government) is located. Some CDBG-DR projects are awarded to state agencies and there is
no ability to track in which county the funds were spent via the action plan. These records were excluded from our analysis. After the
data are scraped, we aggregate the CDBG-DR contribution to the county-level for each hurricane. It is possible that the project or the
receiving entity spans multiple counties. In these instances, having no better information, we divide project funding evenly among the
listed counties. Also, CDBG-DR action plans were not available for Hurricane Irma funds for Florida, Hurricane Irene funds for New
Jersey, and Hurricane Sandy funds for New Jersey. Additionally, project spending plans were not available for 1.1% of CDBG-DR
funds designated for Texas following Hurricane Harvey. In these instances, we assumed that the CDBG-DR funds that were allocated
by Congress for that state are distributed evenly among the eligible counties (i.e., counties included within the state PDD). Because
the CDBG-DR grant data are approximate due this missing data, as a robustness check, we model federal disaster coverage both with
and without CDBG-DR data included (see Tables A.1 and A.2 in the Appendix). There is little appreciable difference in the results.

Counties included within a PDD but that do not receive aid are assigned $0 in aid. We highlight the fact that disaster aid from all
three programs are aggregated at the county-level, despite all three programs operating under different rules and purposes. Our ratio-
nale is that there are many different federal programs administering disaster relief aid to state and local governments as well as af-
fected individuals, households, and businesses. Given the diversity and fragmentation of these programs [8], there is a nebulous up-
per limit of federal relief funding a locality can receive in total after experiencing a disaster. It is possible that a county with more re-
sources and strong administrative capacity may acquire significantly more federal funds in aggregate from various programs which
are disproportionate to its sustained damage. We also aggregate outlays because CDBG-DR funds are for unmet needs, usually in ex-
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cess of what FEMA, other federal programs, and insurers cover. For example, if entities in a county received an unusually high amount
of PA, we would expect them to receive less HUD funding. (We note that this comment reflects programmatic design and not an em-
pirical investigation.) For these reasons, aid is aggregated, though results using only PA aid at the county-level as the response vari-
able are presented in the Appendix (Tables A.3 and A.4). The final dataset consists of 1,943 county-PDD observations.

We collect damage data from the Spatial Hazard Events and Losses Database for the United States (SHELDUS), a hazard loss dataset
maintained by the Arizona State University Center for Emergency Management and Homeland Security [67]. From this dataset, we
collected property damages and fatalities for each county-PDD pairing. We do not include crop damages because these losses are fre-
quently restituted by other federal aid and insurance programs, such as the US Department of Agriculture's Emergency Conservation
Program or the USDA's Federal Crop Insurance Program. SHELDUS data are imperfect. First, the bulk of SHELDUS records are derived
from the National Weather Service (NWS) Storm Events Database [68], which means local stations must record an event for it to be
flagged in the SHELDUS database. The spatial scale used by this database is a mix of counties and NWS Public Zones. When an NWS
zone is used, and when this zone intersects multiple counties, SHELDUS must evenly distribute losses among these counties. Further,
past research has found that SHELDUS tends to underestimate losses [69]. Counties included within a PDD but with no reported dam-
age are assigned $0 in damage. All damage and aid data are Consumer Price Index (CPI) adjusted to 2019 dollars.

Table 1 provides a list of the variables used in the modeling process along with their summary statistics. Independent vari-
able selection is informed by our conceptual models and literature on the determinants of disaster damage and disaster aid. We
performed a multicollinearity analysis for all independent variables, ensuring that all variance inflation factors were less than
five [70]. Hurricane intensity data is primarily collected using Anderson et al.’s [71,72] open-source R packages ‘hurricaneexpo-
sure’ and ‘hurricaneexposuredata.’ For each county-PDD pair, we collect the maximum 10-m 1-min sustained wind speed at the
county's population centroid. The package leverages the Willoughby hurricane wind speed model to interpolate these figures
[73,74]. Also from this package, we collect the minimum distance between the storm track and the population centroid for each
county. Precipitation data, specifically cumulative rainfall starting two days prior and ending on the day the storm dissipated, is

Table 1
Summary statistics of variables used in Stage 1 and 2 models.

Variable N Mean Standard Deviation Minimum Maximum

Disaster variables

Federal disaster coverage 1100 27.74 288.06 0 7552.15
Fatalities (persons) 1943 0.30 2.39 0 72.00
Precipitation (inches) 1943 5.26 4.56 0 49.31
Property damage (2019 USD) 1943 1.12e+8 1.25e+9 0 2.65e+10
Property damage per capita (2019 USD) 1943 623.77 4228.27 0 8.27e+4
Storm distance (kilometers) 1943 199.46 161.21 0.14 1164.61
Total aid (2019 USD) 1943 2.46e+7 3.97e+8 0 1.70e+10
Wind velocity (meters per second) 1943 15.17 7.77 0.53 53.07
County variables

Coastal (binary)* 1943 0.24 0.42 0 1.00
FEMA Region 1 (binary)* 1943 0.05 0.22 0 1.00
FEMA Region 2 (binary)* 1943 0.07 0.26 0 1.00
FEMA Region 3 (binary)* 1943 0.20 0.40 0 1.00
FEMA Region 4 (binary)* 1943 0.45 0.50 0 1.00
FEMA Region 6 (binary)* 1943 0.23 0.42 0 1.00
Land area (square miles)* 1943 616.77 351.26 2 3361.48
Median house age (years) 1943 34.12 9.59 12 73.00
Median household income, log (2019 USD) 1943 10.81 0.28 10.01 11.80
Number of previous PDDs with aid 1943 4.14 3.06 0 17.00
Percentage of Democrat votes (%) 1943 41.93 16.21 8.43 92.46
Percentage of land in floodplain (%)* 1943 22.61 21.14 0 100.00
Percentage of mobile homes (%) 1943 16.39 11.24 0 57.99
Percentage of racial minorities (%) 1943 27.55 18.34 0.18 86.27
Percentage of renters (%) 1943 29.14 9.05 10.01 80.89
Percentage of population 65+ (%) 1943 16.27 4.43 3.20 56.71
Percentage receiving PA (%) (e.g., TANF) 1943 2.15 1.26 0 13.72
Swing county (binary) 1943 0.09 0.28 0 1.00
Tax revenue per capita (thousands 2019 USD) 1943 1.40 1.81 0 37.16
Total population, log 1943 10.87 1.38 5.48 15.35
Unemployment rate (%) 1943 8.28 3.14 0 24.70
Urban (binary)* 1943 0.53 0.50 0 1.00
Year 2008 (binary) 1943 0.21 0.41 0 1.00
Year 2009/2010 (binary) 1943 0.04 0.20 0 1.00
Year 2011 (binary) 1943 0.12 0.33 0 1.00
Year 2012 (binary) 1943 0.27 0.44 0 1.00
Year 2016 (binary) 1943 0.11 0.31 0 1.00
Year 2017 (binary) 1943 0.25 0.43 0 1.00

Note: Variables with * are time-invariant by county.
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collected at the county level using the Applied Climate Information System data-querying tool xmACIS2 developed by the Na-
tional Oceanic and Atmospheric Administration Northeast Regional Climate Center [75].

To control for a county's baseline time-invariant hazard risk, we include the percentage of the county's area within FEMA's Special
Flood Hazard Area [76]. The Special Flood Hazard Area are areas mapped by FEMA, ultimately for flood insurance purposes, and are
deemed to have a 1% or greater probability of being flooded in a given year. This time-invariant metric proxies county flood risk. We
also include a binary indicator for whether the county is coastal, which has been found to be a significant factor in determining public
disaster assistance allocation [23]. Finally, we include the total land area of a county to control for its size [77].

We include three variables to capture the local administrative capacity of a county. FEMA divides the U.S. into ten administrative
regions. Schmidtlein et al. [78] demonstrate how these administrative regions are important for determining the outlays, likely due to
differences in how policies and rules are administered. The PDDs under consideration in this work span six FEMA regions, and thus
we constructed time-invariant binary variables to indicate to which FEMA region a county belongs. As there are only two county-PDD
observations in FEMA Region 5, these observations and, consequently, this FEMA region, are omitted from the analysis to prevent sin-
gularity issues when fitting the model, resulting in five total time-invariant binary variables [79]. Figure A.2 provides a map of these
FEMA regions. We also construct a variable for each county-PDD pairing that is a count of the number of PDDs for which the county re-
ceived PA funds between 1995 and the PDD of interest. PDD-county pairings in which the county received only IHP and/or CDBG-DR
were excluded from this count, as IHP is granted to individuals and CDBG-DR is first issued to the state. Only 85 PDD-county pairings
received IHP or CDBG-DR but not PA. The rationale is that a county with more PDDs with aid prior to a disaster are expected to have
more experience applying for and subsequently administering grants. Finally, we collect each county's per capita own-source tax rey-
enue in the year prior to the PDD [80].

We capture the condition of the built environment using four indicators. These indicators include the percentage of houses that are
mobile (or manufactured) homes, the median age of county homes, and the percentage of the population who are renters [81]. To indicate
whether the county is rural or urban, we use the U.S. Department of Agriculture 2013 Rural-urban Continuum Codes [82]. Counties
with metropolitan codes (i.e., codes 1-3) are assigned a binary variable indicating their urban status, and the remaining counties are
designated as rural. County-level socioeconomic and demographic characteristics are measured using total county population (logged),
the percentage of the population that is nonwhite, the percentage of the population that is 65 years of age and older, median household income
(logged), the percentage of households receiving public assistance through at least one social welfare program (e.g., Temporary Assistance
for Needy Families (TANF)), and the unemployment rate of the county [81]. These data are collected from the 5-year American Commu-
nity Survey, and we use the five-year range in which the year of the PDD is the middle value. These socioeconomic and demographic
characteristics were selected to account for important, known dimensions of social vulnerability, especially race, age, and income
[39]; [41,83].

To capture the political influence on these processes, we include two political indicators that correspond to the presidential elec-
tion most recent to the PDD: the percentage of the county's population that voted for the Democratic presidential candidate and whether the
county was a swing county [84]. A swing county is defined as one in which the difference between the percentage of the county that
voted for a Democratic candidate and the percentage of the county that voted for a Republican candidate was less than or equal to five
percent. The idea of this variable is to capture counties that are potentially more politically-important to elected officials [58].

Finally, we include year dummies to account for yearly national shocks. There are only two PDD-county observations for 2009,
which causes convergence problems during parameter estimation. To address this, we combine year dummies for 2009 and 2010.

4. Methodology
4.1. Stage 1

In the first stage, we answer the question “What county and hazard characteristics are important predictors of counties that re-
ceive aid but that do not incur damage?” We do this by examining the correlates related to a county being in one of four categories:
(1) counties that receive aid, but that do not sustain damage (No Damage, Aid) (i.e., the category in question, which also later becomes
the reference category); (2) counties that receive aid and sustain damage (Damage, Aid); (3) counties that do not receive aid, but that
do sustain damage (Damage, No Aid); and (4) finally, counties that neither receive aid nor sustain damage (No Damage, No Aid). Fig.
3a is a scatterplot of total damage versus total aid for all county-PDD observations divided into the four categories. Of the 1,943
county-PDDs observations, 422 are No Damage, Aid observations in which the county reported no damage yet still received aid, rang-
ing from $1,021 to $1.03B (CPI adjusted to 2019 dollars). We use this category as our omitted “reference category” to which the other
three categories are compared. The rationale is that this combination of not sustaining damage while still receiving aid is unexpected
as it runs counter to the intentions of federal aid programs. There are 193 county-PDDs that received no aid, but that sustain damage
ranging from $208 to $4.15 M (CPI adjusted to 2019 dollars). This is also an unexpected outcome (the federal coverage ratio here is
0), and is investigated further in Stage 2.

Fig. 3b shows the spatial distribution of the categories from Fig. 3a. For counties with more than one observation, the mode over
all categories is shown. Interestingly, observations that received aid but that sustain no damage (most often) are mainly clustered
along the Eastern coastline. Additional data discovery related to the four categories in Stage 1, including the density of observations
in the categories No Damage, Aid and Damage, No Aid (Figure A.3) and boxplots of select variables by category (Figure A.4) is in the
Appendix.

To address the research question, we fit the categorical data using a multinomial logistic regression model (Eq. (1)). By using a
multinomial logistic regression model, we are able to treat observations as discrete categories and examine the systematic differences
among them falling under different categories. The dependent variables are county-PDD observations that have been binned into the
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Fig. 3. a. A scatterplot of sustained damage versus total aid for each county-PDD observation; b. The spatial distribution of the scatterplot. For counties with more than
one observation, the mode is reported. For best viewing, this figure should be printed in color. The base map in Fig. 3b is from 2022 TIGER/Line Shapefiles, prepared by
the U.S. Census Bureau. It is in the public domain and is not copyrighted [85]. (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)

four categories, Y, for county c and PDD p. The reference category, Y, = ko, is the No Damage, Aid category - i.e., the category that
runs counter to the intent of disaster aid. Using maximum likelihood estimation, the model estimates parameters that maximize the

multinomial log-odds, In (%), for the dependent variable's three alternative categories, Y, = k; i =1,2,3. The model is a linear

function of county-level time-variant hazard variables, H,,; county-level time-invariant risk variables, F,; county-level time-invariant
urbanization variable, U,; and county-level time-variant socioeconomic, demographic, infrastructure, and political variables, Dctp, for
county c in year t, the year in which PDD p occurred. Model error is represented by &,.
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The model is estimated using the ‘mlogit’ package in R [86]. Model coefficients are exponentiated to produce the variables' relative
risk ratios (RRR), which indicates the variable's marginal impact on the likelihood of the dependent variable, ceteris paribus. An RRR
greater than 1 indicates that a unit increase in the independent variable increases the probability of the dependent variable's category.

4.2. Stage 2

In the second stage of our analysis, we find the correlates related to receiving higher or lower federal disaster coverage in counties
that sustained damage. That is, observations with no reported damage are omitted. Fig. 4a shows the distribution of federal disaster
coverage. Because of its heavy skew, Fig. 4b shows this same distribution, except with federal disaster coverage logged. The majority
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Fig. 4. a. Histogram of the distribution of federal disaster coverage for observations with sustained damage; b. Histogram of the distribution of federal disaster cover-
age, logged, for observations with sustained damage. Note that observations with federal disaster coverage of zero (n = 193) are undefined when logged and omitted;
c. The spatial distribution of the observations in the histogram. For counties with more than one observation, the highest federal disaster coverage over all PDDs is
shown. For best viewing, this figure should be printed in color. The base map in Fig. 4c is from 2022 TIGER/Line Shapefiles, prepared by the U.S. Census Bureau. It is in
the public domain and is not copyrighted [85]. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this arti-

cle.)
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of observations (71%) are less than or equal to one, and 62% have a federal disaster coverage less than 0.5. Ten percent (10%) of ob-
servations have a federal disaster coverage value greater than 10, meaning they received at least 10 times more aid than reported
damage. Fig. 4c displays the spatial distribution of federal disaster coverage. For counties with more than one observation (i.e., coun-
ties with more than one PDD), the highest federal disaster coverage over all PDDs is displayed. Again, spatial clustering is present,
with inland areas receiving less federal disaster coverage and counties closest to the coastline receiving higher federal disaster cover-
age.

To determine the correlates of higher and lower levels of federal disaster coverage, we fit all nonzero damage data using a two-tier
model [87]. Zero damage leads to an undefined federal coverage ratio, so these observations are excluded from this analysis. The fed-
eral disaster coverage can take on only a zero value or a positive value, meaning that the dependent variable is limited by a corner so-
lution at zero and a two-tier model is required. The first tier uses a probit model (Eq. (2)) to estimate the probability of a positive fed-
eral disaster coverage. The response variable of the probit model is the probability that the binary latent variable Y, (for county ¢ and
PDD p) is equal to 1. Y, takes the value of Y, = 0 when the county-PDD federal disaster coverage value (y,,) is equal to 0, and
Y, =1 when Yo > 0 (Eq. (3)). The second tier uses a truncated normal regression model (Eq. (4)) to predict the outcomes of all posi-
tive federal disaster coverage observations. The dependent variable is the inverse hyperbolic sine of the percentage value of the vari-
able y;,, the nonzero county-PDD federal disaster coverage values, y,, > 0 (Eq. (5)). The transformation controls for the skew of fed-
eral disaster coverage observations. Both models are linear functions of county-level, time-variant hazard variables, H,,; county-level
time-invariant risk variables, F,; county-level time-invariant urbanization variable, U ; and county-level time-variant socioeconomic,
demographic, infrastructure, and political variables, Dctp, for county c in year t, the year in which PDD p occurred. Model error is rep-
resented by .

P (Hcp, FoiDyy, ) - ((x + BH,, + YF, + 5D, + CUC) @
1, vy, >0

Y, = v 3)
0,5, =0

asinh (y;p) = @+ pH, +7F, + 3D, +CU + 2, )

Yoy =Yep|Yep > 0 ®)

The probit model is estimated using the ‘stats’ package in R [88], and the truncated normal regression model is estimated using
the ‘truncreg’ package in R [89]. Estimates in both tiers are obtained using maximum likelihood estimation.

5. Results and Interpretation

5.1. Stage 1

The RRRs, standard errors, and statistical significance of the multinomial logistic regression model for Stage 1 of our approach are
shown in Table 2. The reference category is No Damage, Aid for the aforementioned reasons. This allows us to compare this category
to all alternate categories simultaneously. Specifically, we assess the marginal impact of the independent variables on the likelihood
of being in an alternate category relative to the omitted reference category.

The model has several statistically significant hazard intensity indicators. First, we find that, as precipitation increases by 1 inch,
an observation is 0.698 times as likely (i.e., less likely) to be categorized in the No Damage, No Aid category, and 1.148 times as likely
(i.e., more likely) to be categorized in the Damage, Aid category relative to the reference category, No Damage, Aid. As wind speed in-
creases, an observation is 0.870 and 0.824 times as likely (i.e., less likely) to be in the categories No Damage, No Aid and Damage, No
Aid, respectively, and 1.036 times as likely (i.e., more likely) to be in the category Damage, Aid relative to our reference category No
Damage, Aid. Finally, as the minimum distance between county geo-centroid and the hurricane eye increases by 1 km, an observation
is 0.998 times as likely (i.e., less likely) to be in the categories No Damage, No Aid, though this finding is weakly significant.

These results suggest greater storm intensity, as measured by precipitation and wind velocity, increases the likelihood of falling
into the Damage, Aid category, relative to the No Damage, Aid category. This is expected as greater storm intensity is likely to lead to
damage. Second, greater storm intensity, as measured by wind velocity in particular, reduces the likelihood of falling into the No
Damage, No Aid and Damage, No Aid categories, relative to the No Damage, Aid category. The former suggests that as storm intensity
increases, recipients are more likely to receive aid even when no damage is sustained. The latter, surprisingly, suggests that as storm
intensity increases, a county is more likely to sustain no damage and receive aid than to sustain damage and receive no aid. On one
hand, we would expect greater hazard intensity to result in greater aid [61]; on the other hand, we would not expect greater hazard
intensity to result in less damage [62,65].

Variables representing hazard exposure - namely the coastal county indicator and the percentage of land in the floodplain - are
also statistically significant in our model. Specifically, observations that are coastal counties are less likely (0.370 times as likely) to
be categorized in the No Damage, No Aid category than our reference category of No Damage, Aid. That is, coastal counties are far
more likely to sustain no damage and receive aid than to sustain no damage and receive no aid. Similarly, with every 1% increase in
county land within the floodplain, observations are 0.987 times as likely (i.e., less likely) to be categorized in the Damage, Aid cate-
gory than the reference category, No Damage, Aid. Despite the weak effect, this finding, also counterintuitive, indicates that observa-
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Table 2
Results of Stage 1 multinomial logistic regression for predicting damage and aid classification. The baseline category is No Damage, Aid. This allows us to compare
this category to all alternate categories simultaneously. Parameters are reported as RRRs."”.

No Damage, No Aid n = 421 Damage, No Aidn = 193 Damage, Aidn = 907

Intercept

Disaster variables

Fatalities (persons)

Precipitation (inches)

Storm distance (kilometers)

Wind velocity (meters per second)
County variables

Coastal (binary)

FEMA Region 2 (binary):’

FEMA Region 3 (binary)5

FEMA Region 4 (binary)5

FEMA Region 6 (binary)5

Land area (square miles)

Median house age (years)

Median household income, log (2019 USD)
Number of previous PDDs with aid
Percentage of Democrat votes (%)
Percentage of land in a floodplain (%)
Percentage of mobile homes (%)
Percentage of racial minorities (%)
Percentage of renters (%)

Percentage of population 65+ (%)
Percentage receiving PA (%) (e.g., TANF)
Swing county (binary)

Tax revenue per capita (thousands 2019 USD)

Total population, log
Unemployment rate (%)
Urban (binary)

Year 2009/2010

Year 2011 (binary)
Year 2012 (binary)
Year 2016 (binary)
Year 2017 (binary)

1.7e+04 (9.019)

0.501 (0.602)

0.698 (0.041) ***
0.998 (8.6e-04) *
0.870 (0.027) ***

0.370 (0.345) **
3.596 (0.932)
91.04 (0.884) ***
34.52 (1.014) ***
10.01 (1.003) *
1.000 (3.1e-04)
1.026 (0.016)
0.638 (0.759)
0.795 (0.045) ***
1.039 (0.011) ***
0.993 (6.2e-03)
0.980 (0.015)
0.973 (9.8e-03) **
0.950 (0.016) **
0.943 (0.031)
0.981 (0.081)
1.018 (0.323)
1.096 (0.062)
0.803 (0.118)
1.009 (0.040)
1.090 (0.233)
0.228 (0.418) ***
0.017 (0.904) ***
1.154 (0.452)
2.656 (0.464) *
0.335 (0.382) **

65.24 (11.02)

0.464 (0.568)
0.953 (0.045)
0.998 (1.2e-03)
0.824 (0.034) ***

0.716 (0.367)
3.117 (0.707)
31.78 (0.723) ***
30.29 (0.938) ***
9.009 (0.980) *
0.999 (4.2e-04) **
1.049 (0.017) **
0.660 (0.923)
0.862 (0.050) **
1.048 (0.014) ***
1.002 (7.9e-03)
0.981 (0.019)
0.967 (0.012) **
0.946 (0.020) **
0.983 (0.034)
1.123 (0.094)
0.699 (0.385)
0.699 (0.161) *
1.122 (0.145)
0.896 (0.055) *
1.192 (0.281)
0.146 (0.837) *
0.045 (1.163) **
7.276 (0.521) ***
2.672 (0.599)
0.318 (0.548) *

1.9e+06 (6.687) *

1.089 (0.050)
1.148 (0.022) ***
1.000 (7.3e-04)
1.036 (0.015) *

1.069 (0.180)
0.219 (0.373) ***
0.774 (0.394)
1.370 (0.532)
1.006 (0.520)
0.999 (2.3e-04)
0.985 (0.011)
0.338 (0.575)
1.161 (0.028) ***
1.017 (8.5e-03) *
0.987 (3.8e-03) ***
0.980 (0.010)
1.001 (7.6e-03)
0.956 (0.012) ***
0.993 (0.020)
0.929 (0.061)
1.062 (0.235)
1.023 (0.044)
0.967 (0.085)
0.946 (0.032)
1.077 (0.182)
0.201 (0.368)
0.647 (0.347)
0.864 (0.293)
0.176 (0.334) ***
0.514 (0.279) *

P-value of model 1.58e-275

*p < 0.5, **p < 0.01, ***p < 0.001

tions in the No Damage, Aid category are more exposed to flooding, and supplements the previous finding that observations in the No
Damage, Aid category also experience more severe storm conditions (as measured by wind velocity, in particular) than counties that
do not receive aid. One possible explanation is that counties in the No Damage, Aid category are aware that they are more exposed to
hazards and have taken steps to reduce their vulnerability, though the aid is still dispersed because of their high exposure. This is
plausible given that under Section 406 of the Stafford Act (the law that dictates most federal disaster response), PA can be used for
mitigation and not recovery. A related explanation is that these counties are simply receiving aid despite their post-hazard condition
and past actions. Anecdotally, this was seen in Coryell County, TX which received millions of dollars in CDBG-DR funding following
Hurricane Harvey in 2017 despite sustaining no damage in the county [24]. Another plausible explanation is that, in reality, the coun-
ties are experiencing storm damage and receiving aid for that damage, but the damage is unreported by SHELDUS. For instance,
Chatham County, GA sustained over $30 million in damage following Hurricane Matthew in 2016, as reported by the Savannah Morn-
ing News, yet had no reported damage in the SHELDUS dataset [67,90]. When we investigate IHP data with more depth, of the 422
county-PDD observations in the No Damage, Aid category, 106 observations were from counties that received IHP. Part of the IHP re-
porting includes residential damage of IHP recipients. The reported cumulative county-level residential damage across these 106 ob-
servations ranges from roughly $40K to $233 M (standard deviation of $26.1 M). Ultimately, if a lack of reporting of damage is in fact
occurring, the observations in the No Damage, Aid category potentially have actual cumulative damages less than those in the Damage,
Aid category. We conclude this because observations in the No Damage, Aid category experience, on average, lower storm intensity
than observations that receive aid and incur damage (see Figure A.4). Lower levels of damage may be a potential driver for this re-
porting error, but this should be investigated further.

Regarding the social vulnerability and capacity variables, we find that the percentage of renters has significant RRRs across all
three alternative categories: No Damage, No Aid; Damage, No Aid; and Damage, Aid. The percentage of racial minorities and unemploy-
ment rate also have significant RRRs for the Damage, No Aid category and the percentage of racial minorities is also significant for the

4 Results with CDBG-DR outlays omitted are presented in Table A.1. The results are highly similar to our baseline estimates.
5 The baseline FEMA region in the model is FEMA Region 1. The states within each FEMA region are: FEMA Region 1 (CT, MA, ME, NH, RI, VT); FEMA Region 2 (NJ,
NY); FEMA Region 3 (DC, DE, MD, PA, VA, WV); FEMA Region 4 (AL, FL, GA, MS, NC, SC); FEMA Region 6 (AR, LA, TX).
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No Damage, No Aid category. Interestingly, all of these variables have RRRs less than 1, indicating that as the region becomes more so-
cially-vulnerable as measured by more renters, more racial minorities, and greater unemployments rates, there is a decreased likeli-
hood of being categorized in the alternative categories relative to our reference category of No Damage, Aid. In other words, as social
vulnerability increases, a county is more likely to be in the reference category, No Damage, Aid. This is another surprising result. Areas
with higher social vulnerability are often disproportionately exposed to disaster damage and have fewer internal resources to recover.
We would expect, therefore, these locations to receive aid but also sustain significant damage. If this is the case, and damage is in-
curred in these areas, this provides evidence of underreporting damage in loss datasets. Gallagher [91] documented this underreport-
ing issue, demonstrating a pervasive non-random missing data problem in SHELDUS. Disaster loss datasets are used to guide research
and subsequent disaster recovery policy and planning; the omission of particularly vulnerable areas from loss datasets can have seri-
ous equity repercussions by potentially obscuring the severity of the risk to disasters that these areas face.

Variables related to county wealth and capacity, specifically tax revenue and the number of PDDs for which the county received
PA funds, suggest the opposite. As tax revenue increases by $1,000 per capita, an observation is 0.699 times as likely (i.e., less likely)
to be categorized as Damage, No Aid, than the reference category No Damage, Aid, albeit weakly significant. One possible explanation
is that wealthier communities have more administrative capacity to navigate the processes to receive federal aid, even if damage is
minimal or in the absence of accurate damage data [9]. This finding, however, complicates our other finding that observations in the
No Damage, Aid category are disproportionately vulnerable. Thus, we identify mixed effects of social vulnerability on the probability
of an observation falling in the No Damage, Aid category.

When the variable capturing county experience receiving PA funds following PDDs increases, the likelihood of falling into the No
Aid categories decreases and the likelihood of falling into the Damage, Aid category increases. This finding is not surprising given that
many of these grants have significant administrative burden and require high personnel, fiscal, and knowledge capacity. Applying for
these grants in the past builds knowledge capacity.

Another relevant finding is that median house age increases the likelihood of an observation being categorized in the Damage, No
Aid category relative to the reference category. One explanation is that infrastructure age may be a proxy for physical vulnerability,
with older structures often sustaining greater damage. As mentioned, socially vulnerable communities often have infrastructure that
is older and more prone to damage due to underinvestment in these communities [41]. In this way, our finding related to median
house age could indicate that socially vulnerable counties with more physically vulnerable infrastructure are sustaining damages but
not receiving federal aid.

Finally, our results indicate that damage and aid categorization are significantly impacted by FEMA region, disaster year, and po-
litical leaning. All FEMA region variables contain statistically significant RRRs for at least one of the alternative categories. (The hold-
out FEMA Region is Region 1.) Of the variables with significant RRRs, most are well above 1. Observations in FEMA Regions 3 and 4
(DC, DE, MD, PA, VA, WV and AL, FL, GA, MS, NC, SC, respectively) are far more likely to be in the categories No Damage, No Aid and
Damage, No Aid, than the reference category of No Damage, Aid. Similarly, FEMA Region 6 (AR, LA, TX) is more likely to be in the cat-
egories No Damage, No Aid and Damage, No Aid than the reference category of No Damage, Aid. This suggests, all else being equal,
counties in FEMA Regions 3, 4, and 6 are far more likely to incur damage yet receive no aid relative to Region 1, pointing to adminis-
trative differences among the regions - consistent with the findings in Schmidtlein et al. [78]. Finally, an observation in FEMA Region
2 (NY, NJ) is 0.219 times as likely (i.e., less likely) to fall in the Damage, Aid category as the No Damage, Aid category, all else equal,
perhaps pointing to more underreporting of damages in this region, or more coastal defenses that protect property - thus reducing
damage - while still having an internally high capacity to apply for aid.

Our statistically significant percentage of Democrat votes RRRs indicate that a 1% increase in Democrat votes in the previous pres-
idential election renders an observation 1.039, 1.048, and 1.017 times as likely (i.e., more likely) to fall in the No Damage, No Aid,
Damage, No Aid, and Damage, Aid categories, respectively, compared to our reference category, No Damage, Aid. Thus, observations in
the reference No Damage, Aid category have a populace more inclined to vote for the conservative candidate.

5.2. Stage 2

The results of the two-tier model for Stage 2 are presented in Table 3. The second column shows the coefficients, standard errors,
and their statistical significance for the probit model. The last column shows the same for the truncated normal regression model.

First, results of the probit model suggest that the likelihood of a county receiving any aid increases as property damage per capita
increases, though the result is weakly significant. Several of the hazard intensity and exposure variables are also statistically signifi-
cant and positive in the probit model. The statistically significant positive coefficients for fatalities, precipitation, and maximum wind
velocity indicate that greater fatalities, precipitation, and wind speeds increase a county's likelihood of receiving aid when damage is
sustained. Similarly, the positive coefficient of the binary coastal variable indicates that coastal counties - and therefore counties with
greater hazard exposure - are more likely to receive nonzero federal disaster coverage. At odds with these findings is that, as the frac-
tion of the county area in the floodplain increases, the likelihood of receiving aid when damage is sustained decreases. The trend of
higher exposure and hazard intensity leading to a greater likelihood of receiving aid when damage is sustained demonstrates the im-
portance of the strength of the hazard when making aid determinations. Administrators may be biased by reports of high hazard in-
tensity, and thus more inclined to award aid. It is also plausible that areas with frequent exposure to intense hazards are more pre-
pared to apply for and navigate federal disaster aid grants.

In regards to social vulnerability, the findings from the probit model indicate that counties with a greater percentage of the popu-
lation receiving public welfare assistance (e.g., TANF) are less likely to receive federal disaster aid despite sustaining damage, though
the statistical significance of this result is low. This finding is further supported by the result that the likelihood of non-zero federal
disaster coverage decreases as the median home age (a proxy for physical vulnerability) increases. These findings could reflect chal-
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Table 3
Results of Stage 2 Two-Tier Model for predicting (1) the probability of an observation receiving nonzero coverage, and (2) the level of coverage with positive val-

6,7

ues

Tier 1 Probit Model Tier 2 Truncated Normal Regression Model
Intercept 8.787 (6.609) 0.090 (7.746)
Disaster variables
Fatalities (persons) 0.672 (0.342) * 0.016 (0.025)
Precipitation (inches) 0.113 (0.030) ke —0.081 (0.020) bl
Property damage per capita (thousands 2019 USD) 2.919 (1.133) * -0.235 (0.034) FAAE
Storm distance (kilometers) 0.001 (0.001) 0.004 (0.001) ok
Wind velocity (meters per second) 0.118 (0.024) FAA 0.029 (0.017)
County variables
Coastal (binary) 0.649 (0.232) ok 0.444 (0.220) *
FEMA Region 2 (binary) -1.388 (0.477) o 2.245 (0.487) il
FEMA Region 3 (binary) —2.052 (0.425) k- (0.888 (0.463)
FEMA Region 4 (binary) -1.630 (0.580) o 0.780 (0.627)
FEMA Region 6 (binary) -0.714 (0.612) 1.922 (0.644) ok
Land area (square miles) 3.8E-04 (2.9E-04) —1.4E-04 (2.9E-04)
Median house age (years) —0.040 (0.012) FAE 0.020 (0.015)
Median household income, log (2019 USD) -0.854 (0.549) -0.139 (0.664)
Number of previous PDDs with aid 0.146 (0.032) FAAE —-0.004 (0.036)
Percentage of Democrat votes (%) -0.015 (0.009) -0.010 (0.010)
Percentage of land in a floodplain (%) -0.018 (0.005) FAE 0.005 (0.005)
Percentage of mobile homes (%) 0.011 (0.012) 0.029 (0.014) *
Percentage of racial minorities (%) 0.011 (0.008) 0.011 (0.009)
Percentage of renters (%) 0.006 (0.012) -0.018 (0.015)
Percentage of population 65+ (%) 1.3E-04 (0.020) -0.022 (0.024)
Percentage receiving PA (%) (e.g., TANF) -0.129 (0.061) * 0.187 (0.083) *
Swing county (binary) -0.038 (0.250) -0.229 (0.283)
Tax revenue per capita (thousands 2019 USD) 0.468 (0.127) x5k 0.147 (0.070) *
Total population, log 0.044 (0.092) 0.240 (0.110) *
Unemployment rate (%) 0.038 (0.036) —-0.005 (0.041)
Urban (binary) -0.125 (0.179) 0.291 (0.227)
Year 2009/2010 —-0.036 (0.542) 0.643 (0.669)
Year 2011 (binary) 2.186 (0.581) k1,239 (0.400) ok
Year 2012 (binary) -0.537 (0.293) 0.815 (0.341) *
Year 2016 (binary) -0.690 (0.350) * 0.428 (0.440)
Year 2017 (binary) 1.039 (0.348) o 1.679 (0.367) ok

*p < 0.5, **p < 0.01, ***p < 0.001

lenges experienced by lower-income localities with lower capacities to apply for and navigate the federal disaster aid process. The
positive coefficient of the local tax revenue and previous PDDs with aid variables also support this, indicating that counties with
greater local own-source tax revenue (i.e., fiscal capacity) and more experience with disaster (i.e., knowledge capacity) are more
likely to receive nonzero federal disaster coverage.

Finally, the probit model results indicate that whether a county receives positive federal disaster coverage is greatly influenced by
its FEMA region and the year of the storm. FEMA Regions 2 (NY, NJ), 3 (DC, DE, MD, PA, VA, WV), and 4 (AL, FL, GA, MS, NC, SC) are
less likely than FEMA Region 1 (CT, MA, ME, NH, RI, VT) to receive disaster aid despite sustaining damage. Storms in 2011 and 2017
(in our dataset, the following storms are included in 2011 and 2017 data: Irene-2011, Harvey-2017, Irma-2017, and Nate-2017) are
also more likely to have received aid when damage was sustained, and storms in 2016 (in our dataset, the following storms are in-
cluded in 2016: Hermine-2016 and Matthew-2016) are less likely to have received aid when damage was sustained.

The findings of the truncated normal regression model indicate the marginal impact of variables on receiving higher or lower lev-
els of federal disaster coverage when federal disaster coverage is positive. Although the Tier 1 results indicate that greater per capita
damage increases the likelihood of receiving aid (relative to no aid), the Tier 2 model indicates that marginal effect of per capita dam-
age on federal disaster coverage is negative. Similarly, as precipitation increases, federal disaster coverage decreases. Federal disaster
coverage increases as the minimum distance between a county's geo-centroid and the storm's eye increases, which is also consistent
with generally lower federal disaster coverage for higher intensity observations. These findings may be indicative of the costliest dis-
asters being difficult to reimburse in the same proportion as the less expensive, smaller-scale disasters. In contrast with this finding,
however, the positive coefficient for the binary coastal variable value indicates that federal disaster coverage increases for coastal
counties. This again may be explained by potential administrator bias toward counties with greater exposure.

When considering socioeconomic factors, we find that as the percentage of mobile home owners and the percentage of public wel-
fare recipients increase, federal disaster coverage increases. This suggests socially vulnerable communities may receive additional

6 Results with CDBG-DR outlays omitted are presented in Table A.2. The results are similar to the baseline estimates presented here.
7 There are 32 observations in our sample with very high federal disaster coverage (>10,000%). We conducted a sensitivity test by estimating the two-tier model
without these 32 outliers (results reported in Table A.5). The results are highly similar to our baseline estimates.
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benefits from the federal disaster assistance, possibly due to the federal aid programs’ focus on underinsured and underprivileged
communities [10]. However, when considering local capacity, we find that federal disaster coverage also increases as per capita tax
revenue increases. This again reflects that counties with greater local capacity may have more administrative assets to successfully
navigate the federal aid process, are more likely to meet cost-share requirements, and obtain higher rates of aid [22]. Taken with the
results of the probit model, this suggests that higher capacity jurisdictions are both more likely to receive any aid following a damag-
ing disaster and more likely to receive aid that compensates a greater proportion of damage incurred.

As the county population increases, federal disaster coverage increases. These results may represent a political dimension of fed-
eral disaster coverage, where politicians are motivated to allocate greater federal relief aid to highly populous areas, even in the ab-
sence of severe damage. It could also reflect more press coverage of disasters in populous areas.

The truncated normal regression model results again indicate that FEMA region and the year of the hurricane affect the level of
federal disaster coverage. FEMA Regions 2 (NY, NJ) and 6 (AR, LA, TX) are found to receive greater federal disaster coverage than
FEMA Region 1. Additionally, storms in years 2011, 2012, and 2017 (in our dataset, the following storms are included in 2011, 2012,
and 2017: Irene-2011, Isaac-2012, Sandy-2012, Harvey-2017, Irma-2017, and Nate-2017) also receive greater federal disaster cover-
age. These results suggest that the year of a disaster has a significant effect on how funding is allocated. Possible explanations for this
variation are differing levels of media presence surrounding these disasters, differing levels of political will to support recovery, and
finally, differences in how aid is administered. Notably, CDBG-DR is not a standing program, and is authorized by Congress on a case-
by-case basis through supplemental appropriation. While, presumably, the core tenants of the authorization bills remain similar, each
authorization could have procedural differences. Similarly, much of the fund disbursements for CDBG-DR are dictated by state deci-
sions, and different states likely have different funding prioritization.

6. Conclusion

While much research has examined the determinants of disaster damage or federal disaster grants in the past ([39]; [3,5,92]), lit-
tle is known about the extent to which the proportion of locally incurred damages are covered by federal aid after a disaster. In this
paper, we present the first study that examines federal disaster coverage in relation to various county and disaster characteristics.
Considering the fragmentation of federal disaster grants, we focus on the outlays from the three largest federal disaster recovery pro-
grams to gauge the overall transfers a county receives following a major hurricane shock. Studying the aggregated outlays as a pro-
portion of disaster damage provides necessary context to understand how much of the burden of recovery is actually borne by locali-
ties. It is also more reflective of the pragmatic effect of federal aid at the county level and could ultimately help explain differential re-
covery trajectories.

Results from Stage 1 of our analysis show, as expected, that as hazard intensity increases, counties are more likely to experience
damage and receive aid, and this is consistent with past findings [11,92]. Interestingly, however, as the area of the county in the
floodplain increases, the county is less likely to incur damage and receive aid than to incur no damage yet still receive aid, though the
effect is small (yet significant). This could point to greater intentional adaptation in flood-prone areas, and more knowledge capacity
in these areas to apply for aid. County observations that are more likely to incur no damage yet still receive aid exhibit both higher so-
cial vulnerability and higher fiscal and knowledge local capacity (as measured by own-source tax revenue and experience receiving
PA funds in the past) compared to the other categories of observations. It is possible that these areas are, in fact, experiencing damage
and are consequently receiving federal disaster aid, but that these damages are underreported in the storm damage dataset. This may
suggest that areas of high social vulnerability are disproportionately underreported in the NWS Storm Events Database and in SHEL-
DUS. This pattern would introduce difficulties and pose equity concerns when attempting to evaluate the trends and correlates of dis-
aster damage and federal disaster coverage. This is additionally problematic given that prior literature consistently demonstrated how
socially vulnerable populations are over exposed to hazards and unserved by disaster aid [4,92,93]. There is also anecdotal evidence
of higher capacity counties receiving aid despite little to no damage [24], so both underreporting of damage and disproportionate tar-
geting of resources to higher capacity counties may be occurring.

Stage 2 of our analysis demonstrates that, for those observations where damage is greater than zero, the probability of receiving
any coverage increases with increasing storm severity, damages, and hazard exposure. In terms of social vulnerability metrics, obser-
vations with higher percentages of the population receiving public assistance (e.g., TANF) were less likely to receive aid, perhaps indi-
cating challenges related to local capacity to navigate the bureaucratic processes to access any aid. In line with local capacity influ-
encing the receipt of any aid, results indicate that the probability of a county receiving aid increases as county tax revenue increases
and experience receiving PA funds following PDDs increases. This supports past findings that demonstrate the importance of local ca-
pacity (i.e., resource, personnel, and knowledge capacity) in applying for and administering disaster aid and federal grants more
broadly [11,94].

For those counties that do receive aid, federal disaster coverage decreases as precipitation and per capita damage increases, sug-
gesting the costliest disasters are most difficult to reimburse. Our findings regarding social vulnerability indicators suggested that
more socially vulnerable areas (in terms of more mobile home owners and higher percentages of residents receiving public assistance)
received higher coverage. We find that local capacity is again important, with higher tax revenues corresponding to higher federal
disaster coverage. We also find that FEMA region and event year are consistently important, which could point to administrative dif-
ferences between regions and prior experience with disasters and subsequent aid application.

Our findings show that local capacity is important across all stages of our analysis. First, we find that higher local capacity in-
creases the likelihood of an observation being in the No Damage, Aid category as compared to the Damage, No Aid category. This sug-
gests that higher capacity counties are more likely to be able to access federal aid, even in the absence of reliable damage reporting. In
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Stage 2, we provide more evidence for this, showing that greater local capacity increased the likelihood of a county with damage re-
ceiving any aid. We then demonstrate that local capacity is not just important for accessing aid, but also for the level of aid coverage.
Counties with higher local capacity corresponded to significantly higher rates of coverage. These results suggest that areas that al-
ready have access to greater resources and greater ability to respond to disasters are more likely to receive aid and more likely to re-
ceive more aid relative to damages. This result aligns with past observations and findings (e.g., Ref. [9,95]). In this way, the federal
disaster aid process may perpetuate and even exacerbate inequalities among jurisdictions by contributing to a process where capacity
begets capacity, and areas that are already more resourced have an additional leg up in the recovery process.

While an important first step in assessing federal disaster coverage, there are several limitations. Firstly, as mentioned, there are
known issues in the data quality of SHELDUS damage data used, including significant data not missing at random [91]. In light of
these data challenges, it is not clear how trends in federal disaster coverage would look in our analysis if we did have perfect damage
data. This points to an important area of future work in which additional damage data can be collected to either supplement or re-
place current SHELDUS damage estimates. For example, damage estimates from internal FEMA damage assessments that help aid
PDD determinations (if available), IHP damage assessments, and National Flood Insurance Program (NFIP) damage assessments could
augment the models' current damage estimates. Note that IHP and NFIP recipients reflect only a portion of a region's population. An
additional option could be to impute missing damage data, as suggested by Gallagher [91]. Multiple imputations of missing data
could be used to validate the robustness of results. Because areas that received aid but had no reported damage (and were suspected
to be missing data) were predominantly socially vulnerable, additional damage estimates or imputations for these areas may alter
some Stage 2 findings.

Another limitation is that this work investigates only three of over 30 federal disaster aid programs. We also elected to combine
the funds from these three programs in our analysis, which could obscure differences between the programs, though we do this be-
cause we are curious about cumulative aid received locally. This research could be expanded by evaluating federal disaster coverage
with different or additional disaster aid programs, which could again reveal new patterns and potential inequities in federal disaster
coverage. In line with this limitation related to variables included, we were also selective in the socioeconomic variables that we in-
cluded, focusing on race, age, and income as key measures of social vulnerability. We know, however, that there are other variables
that may be salient for social vulnerability including disability status, gender, and housing tenure [39,43,96]. In the future, inclusion
of additional variables could reveal new dimensions of social vulnerability that may be relevant to federal disaster coverage.

This work provides several other opportunities for future work. While we presume that federal funding is critical for community
disaster recovery, this work does not begin to provide evidence to this effect. In the future, an investigation could be conducted link-
ing federal disaster coverage to recovery pathways to quantify how federal disaster coverage lends itself to recovery speed and levels.
For example, there is existing work that has assessed the effectiveness of CDBG-DR funds in housing recovery after Hurricane Katrina
[971, but such a study of federal disaster coverage overall does not exist. Future work could also consider how the speed of federal dis-
aster coverage interacts with the recovery process over time.

Overall, our findings suggest disparities in disaster damages reporting in a popular disaster loss database (SHELDUS) and in fed-
eral aid disbursement among counties. In particular, areas with higher social vulnerability and lower local capacities are more likely
to receive less federal disaster coverage and, potentially, have unreported losses in damage datasets. Federal agencies (such as FEMA
and HUD) should ensure these communities have sufficient access to and support during the federal aid application process to im-
prove recovery outcomes.
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