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Abstract. In nested simulation literature, a common assumption is that the experi-

menter can choose the number of outer scenarios to sample. This paper considers the

case when the experimenter is given a fixed set of outer scenarios from an external

entity. We propose a nested simulation experiment design that pools inner replications

from one scenario to estimate another scenario’s conditional mean via the likelihood

ratio method. Given the outer scenarios, we decide how many inner replications to

run at each outer scenario as well as how to pool the inner replications by solving a

bi-level optimization problem that minimizes the total simulation effort. We provide

asymptotic analyses on the convergence rates of the performance measure estima-

tors computed from the optimized experiment design. Under some assumptions, the

optimized design achieves O(Γ−1) mean squared error of the estimators given sim-

ulation budget Γ. Numerical experiments demonstrate that our design outperforms a

state-of-the-art design that pools replications via regression.
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1. Introduction
We consider a simulation experiment design problem known as nested simulation (Hong et al. 2017) whose

objective is to estimate some functional of a conditional mean of a stochastic simulation output. Specifically,

we are interested in quantities of the form

ρ (μ(θ)) , μ(θ) = Eθ[g(X)]≡E[g(X)|θ] ,
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where θ is a simulation input vector referred to as the outer scenario, X is a random vector whose distribu-

tion is parameterized by θ, and g(X) is the stochastic simulation output. Each simulation run that generates

g(X) given θ is referred to as an inner replication. Thus, μ(θ) represents the conditional mean of the sim-

ulation output given the outer scenario, θ. Finally, ρ is a functional that maps the distribution of μ(θ) to a

real number. Two classes of ρ are considered in this study:

(i) ρ (μ(θ)) = E[ζ(μ(θ))] for some real-valued function ζ.

(ii) ρ (μ(θ)) = inf {z ∈R : P(μ(θ)≤ z)≥ α} for some user-specified 0<α< 1, i.e., the α-quantile or the

α-level Value-at-Risk (VaR) of μ(θ).

We refer to a generic ρ(μ(θ)) as the nested statistic in this paper.

Nested simulation is a common tool for quantifying uncertainty of a stochastic simulation model. There

is rich literature on simulation model risk analysis (Barton et al. 2022) that adopts the prediction interval of

μ(θ) (i.e., quantiles) to quantify the variability in the simulation output caused by uncertain input parameter

θ. The enterprise risk management (ERM) literature (Broadie et al. 2015, Hong et al. 2017, Dang et al.

2022, Wang et al. 2022) also applies nested simulation to manage risk exposures of portfolios of complex

financial instruments. In this case, μ(θ) is typically a financial portfolio’s profit/loss at a future time which

depends on underlying risk factors such as equity prices and interest rates represented by θ. Popular choices

for ρ include exceedance probability, variance, quantile (Value-at-Risk), and Conditional Value-at-Risk

(CVaR) (Rockafellar and Uryasev 2002).

Standard nested simulation (SNS) is a classical experiment design that samples M outer scenarios, runs

N inner replications at each sampled outer scenario θ to estimate μ(θ), and computes a nested statistic

from them. Estimating a nested statistic with small bias and variance requires both M and N to be large.

Thus, designing an efficient nested simulation experiment has attracted much attention from researchers

and practitioners.

Our objective is to propose an experiment design from which various nested statistics can be computed

with estimation errors comparable to SNS while spending significantly fewer replications. We propose an

experiment design that has different numbers of inner replications at different outer scenario. Furthermore,

we focus on the case where the experimenter has no control over outer scenario generation and must work

with a given set of outer scenarios. Indeed, such a case arises frequently in practice. For instance, Song

et al. (2020) describe the nested simulation experiment conducted at General Motors (GM) to quantify

uncertainty in their market simulator. In their context, θ is a consumer utility parameter vector for vehicle

features whose distribution is estimated from a conjoint analysis. Specifically, θ has a few thousand dimen-

sions, where each represents a survey respondent’s preference for a vehicle feature (e.g., color-black). They

impose a Bayesian prior on θ and updates it to the posterior by incorporating the conjoint data assuming

that the respondents make their choices following a discrete choice model. Since there is no conjugacy to
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exploit in this model, a Markov chain Monte Carlo algorithm is applied to generate an approximately inde-

pendent and identically distributed (i.i.d.) sample from the posterior, which discards many realized θs to

avoid high positive correlations among them. This procedure takes significantly longer than inner replica-

tions (market simulation). Thus, it is more natural to consider the computational budget for generating θs

separately from the cost of inner replications. Moreover, because GM runs several other market analyses

using a common set of θs across different business divisions, it is required to work with the same given set

of θs for uncertainty quantification for consistency.

In practical ERM applications, the underlying risk factors (outer scenarios) may be provided by regula-

tors or by a separate modeling team in a firm, so the experimenter has little control over them. Risk and

Ludkovski (2018) point out that “the outer scenarios are usually treated by practitioners as a fixed object

(namely coming from an exogenous economic scenario generator (ESG))...one cannot add (or subtract) fur-

ther scenarios” Li and Feng (2021) also mention that “(in nested simulation) it is often necessary to run

a pre-determined set of economic scenarios to project the institution’s cash flows.” Ha and Bauer (2022)

mention that “the same firm-wide scenarios are typically used for evaluating the company’s asset and lia-

bility portfolios.” Therefore, it has an important practical impact to study the design where the number of

outer scenarios is fixed.

A long-studied experiment design question for nested simulation is how to allocate given simulation

budget (the number of inner replications) Γ to minimize estimation error. For SNS, we have Γ = NM

and the question boils down to choosing M and N so that the nested statistic estimator’s mean squared

error (MSE) is minimized. Lee (1998) shows that for an exceedance probability estimator, its bias and

variance respectively diminish in O(N−1) and O(M−1).1 This analysis leads to the asymptotically optimal

allocation, N =O(Γ1/3) and M =O(Γ2/3). Gordy and Juneja (2010) establish the same result for a quantile

estimator and analyze the bias of CVaR. Sun et al. (2011) study estimating the variance of μ(θ) using

analysis of variance and shows that as M increases, the choice of N minimizing the asymptotic variance of

the variance estimator converges to a constant.

Recent studies depart from the M -outer-N -inner experiment design to enhance efficiency. Broadie et al.

(2011) propose a sequential experiment design to estimate an exceedance probability, which selects outer

scenarios adaptively and allocates inner replications to the scenarios more critical for reducing the MSE of

the estimator; they achieve asymptotic MSE of O(Γ−4/5+ε) for any positive ε. Giles and Haji-Ali (2019)

extend their idea to propose a multi-level Monte Carlo estimator. Another line of research considers pool-

ing inner replications from some or all outer scenarios to estimate μ(θ) for each outer scenario θ. These

approaches fit a metamodel for μ(θ) by running an initial experiment design, then use the fitted model to

estimate a nested statistic with no additional inner replications. Liu and Staum (2010) adopts a stochastic

1 See Section 2 for the definition of O(·) and other asymptotic notation used throughout the paper.
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kriging model to estimate CVaR. Broadie et al. (2015) applies a regression model to estimate Type-(i) nested

statistic. With the optimal choice of M = Γ and N = 1 for the initial experiment, they show that the MSE

of the nested statistic estimator converges in O(Γ−1+δ) for any δ > 0 until it reaches an asymptotic bias

level. Hong et al. (2017) adopts nonparametric kernel regression and the k-nearest-neighbor estimator to

pool inner replications from nearby outer scenarios to estimate each μ(θ). For Type-(i) nested statistic, their

optimal parameter choice leads to MSE convergence rate of O(Γ−min{1,4/(d+2)}), where d is the dimen-

sion of θ. Wang et al. (2022) considers kernel ridge regression, which results in the MSE convergence rate

between O(Γ−1) and O(Γ−2/3), depending on the smoothness of μ(·).
A common assumption in aforementioned studies is that given budget Γ, the experimenter can choose

the values of M and N . Hence, it is sensible to seek for estimation-error-minimizing M (and N ) as a

function of Γ. However, the same assumption does not apply to when the M outer scenarios are fixed.

Another common feature of the reviewed studies is that an equal number of inner replications are spent at

all outer scenarios; Broadie et al. (2011) and Giles and Haji-Ali (2019) are exceptions, however, they study

sequential experiment designs whereas we propose a single-stage experiment design. By single stage, we

mean that no initial experiment is required to fit a metamodel as in other work.

We identify two key experiment design decisions for our pooling scheme: (1) At which outer scenarios to

run inner simulation and how many replications to run? (2) How to pool these replications when estimating

the conditional mean at each outer scenario? The former is referred to as the sampling decision and the

latter as the pooling decision.

We propose a new single-stage experiment design that makes both optimal sampling and pooling deci-

sions via the likelihood ratio (LR) method by solving a bi-level optimization problem. We estimate each

μ(θ) by taking a weighted average of the LR estimators defined between θ and all M outer scenarios.

However, some pairwise LR estimators may have infinite variances. We adopt an LR estimator variant that

allows us to (approximately) assess its variance and hence evaluate the efficiency of pooling each pair of

the outer scenarios prior to running any inner replications.

Utilizing this feature, our bi-level optimization problem has a constraint that requires the pooled estimator

of μ(θ) for each θ to have variance (approximately) no larger than that of a standard Monte Carlo (MC)

estimator with N i.i.d. samples. The upper-level problem makes the sampling decision that minimizes

the total simulation budget. The lower-level problem makes the pooling decision by finding the variance-

minimizing weights for each θ given any sampling decision. Unlike other pooled nested simulation designs,

ours may result in running no replication at some outer scenarios. We reformulate the bi-level problem into

a linear program (LP) with guaranteed feasibility. The total simulation budget for our design is the optimal

objective value of the LP.

While our method works for any N that the experimenter provides, a question arises on how to choose

N . When M is fixed, even if N is infinity, the nested statistic estimator has nonzero MSE. Hence, we argue
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that it is sensible to increase N just enough so that the MSE convergence rate is not slowed down by N .

The functional relationship between N and M is difficult to derive for finite M in general. However, by

analyzing the convergence rate of the estimator as M,N →∞, we obtain a guidance on how to choose N

relative to M . We show that the MSE convergence rate of the Type-(i) nested statistic estimator computed

from our experiment design is O(N−1)+O(M−1). Similarly, the Type-(ii) statistic (quantile) converges to

the true quantile in Op(M
−1/2)+Op(N

−1/2). Both results suggest N =Θ(M).

Caution must be taken when interpreting our asymptotic analysis results to avoid the misconception that

it is less efficient than SNS, which has an MSE convergence rate of O(N−2) +O(M−1). Recall that in

our design, N is merely a parameter in the bi-level program. This parameter ensures that the pooled LR

estimator’s approximate variance is no larger than the variance of the standard MC estimator with N i.i.d.

replications. Our design does not actually run N replications at the M scenarios, and its simulation budget

tends to be much less than MN . Indeed, under some mild conditions, we show that the optimized simulation

budget grows in O(M) when N = M is adopted. This result combined with the MSE convergence rate

analyses suggests that the MSE of a type-(i) statistic estimated from our design converges in O(Γ−1) given

a simulation budget Γ.

Lastly, to place our contribution in the literature, we provide a brief review on two closely related meth-

ods: importance sampling (IS) and the LR method. These are mathematically identical but differ in their

goals. IS concerns finding a variance-minimizing sampling distribution for a single estimator prior to run-

ning simulations. While we also consider sampling decisions, our study differ from classical IS (Hesterberg

1988, Owen 2013, Glasserman 2003) because we consider multiple estimators at the same time. The LR

method aims to save computation by reusing outputs after the simulations are run. This method has been

applied to improve efficiency of metamodeling (Dong et al. 2018), gradient estimation (L’Ecuyer 1990,

1993, Glasserman and Xu 2014), and sensitivity analysis and optimization (Rubinstein and Shapiro 1993,

Kleijnen and Rubinstein 1996, Fu 2015, Maggiar et al. 2018). The LR method is also applied in the “green

simulation” experiment design (Feng and Staum 2015, 2017), which recycles and reuses simulation out-

puts previously made to save computations and improve precision. Similar to these approaches, our pooling

decision is also guided by the LR method once the sampling decision is made.

In recent development of simulation model risk quantification literature, Zhou and Liu (2019) apply the

LR method to pool inner replications of the nested simulation with equal weights and demonstrate signifi-

cant computational savings. Zhang et al. (2022) also propose an LR-based approach that pools inner repli-

cations simulated from one common sampling distribution. Neither of these studies optimizes the sampling

decision. Moreover, both designs have a risk of making some outer scenarios’ conditional mean estimators

have large or even unbounded variances. Our optimal experiment design avoids such a case by assigning

a small (or zero) pooling weight to an outer scenario pair, if their LR estimator is deemed to have a large

variance.
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Our preliminary work (Feng and Song 2019) explores application of various kinds of LR estimators to

make the simulation risk analysis more efficient. However, we have not considered optimizing the sampling

and pooling decisions in the earlier work. Moreover, the theoretical convergence analyses on different types

of nested statistics are new and we focus exclusively on the self-normalized LR estimator in the current

paper.

The remainder of the paper is organized as follows. Section 2 provides a mathematical framework for

the nested simulation problem. Section 3 defines our pooled LR estimator and discusses its properties.

In Section 4, we propose the experiment design framework to optimize sampling and pooling decisions.

Asymptotic properties of the nested simulation statistics computed from the experiment design are ana-

lyzed in Section 5 followed by the analysis on the simulation budget growth rate in Section 6. Empirical

evaluations and conclusions are provided in Sections 7 and 8, respectively.

2. Problem Statement
Consider a nested simulation experiment, where the outer scenarios are M i.i.d. multidimensional random

vectors, θ1, . . . ,θM , whose support is Θ⊆R
p. With slight abuse of notation, we treat θ1, . . . ,θM as realized

outer scenarios rather than random vectors until Section 5. For any θ ∈Θ, let h(x;θ), μ(θ), and Vθ[g(X)]

represent the conditional density function, mean, and variance of the input vector X given θ, respectively.

When no ambiguity arises, we also use the shorthand notation μi = μ(θi) for convenience. The following

assumption facilitates our discussion.

ASSUMPTION 1. For all θ ∈ Θ, h(x;θ) is a well-defined probability distribution function and has a

common support X ⊆ R
d for a fixed dimension d. Furthermore, the simulation output function g does not

depend on θ and supθ∈ΘVθ[g(X)]<∞.

The common support, X , ensures that the LR between any two outer scenarios is well-defined. The common

g allows us to reuse X generated from θj 	= θi to estimate μi via the LR method. The fixed input dimension,

d, is a limitation of our method. We refer the readers to Feng and Song (2019) on applying the LR method to

improve nested simulation efficiency when the dimension of X is random. Lastly, supθ∈ΘVθ[g(X)]<∞
ensures that the standard Monte Carlo (MC) estimator for μ(θ) for all θ ∈Θ has finite variance.

Recall that we consider two types of nested statistics. For Type-(i) statistic, we consider three choices for

ζ: (1) The indicator function, ζ(μi) = I(μi ≤ ξ) for some fixed ξ ∈ R; the indicator function can be used

to estimate the exceedance probability that a portfolio’s loss beyond ξ, that is, Pr(μi > ξ). (2) The hockey

stick function, ζ(μi) =max{μi− ξ,0}= (μi− ξ)I(μi > ξ), which is commonly used in ERM applications

to price derivatives or compound options (Glasserman 2003). (3) Smooth function ζ with a bounded second

derivative. An example of such ζ is the squared loss function given target ξ, ζ(μi) = (μi − ξ)2.

In SNS with N inner replications for each outer scenario, the MC estimator of μi, μ̄i ≡
∑N

k=1 g(Xk)/N ,

is computed for each i, where Xk
i.i.d.∼ h(x;θi) is the input vector generated within the kth inner replication



Feng and Song: Efficient Nested Simulation via the Likelihood Ratio Method
Article submitted to INFORMS Journal on Computing 7

made at θi. Under Assumption 1, Vθi [μ̄i] = Vθi [g(X)]/N for any θi ∈ Θ. From μ̄1, . . . , μ̄M , E[ζ(μi)]

can be estimated by
∑M

i=1 ζ(μ̄i)/M . Also, the α-quantile of μi can be estimated by the empirical quantile

μ̄(�Mα�), where μ̄(i) is the ith order statistic of μ̄1, . . . , μ̄M .

Throughout the paper, for positive sequences {an} and {bn}, an =O(bn) means that there exists constant

c̄ > 0 such that an ≤ c̄bn for all n ∈ Z
+ and an = o(bn) implies an/bn → 0 as n → ∞. Moreover, an =

Θ(bn) means that there exist constants c̄, c > 0 such that cbn ≤ an ≤ c̄bn for all n ∈ Z
+. For sequence

of random variables {Xn}, we say Xn = Op(bn), if for any ε > 0 there exist c > 0 and n̄ > 0 such that

Pr{|Xn/bn|> c}< ε for all n> n̄.

3. Conditional Mean Estimator via Likelihood Ratio Method
In this section, we continue to treat θ1, . . . ,θM as realized outer scenarios. We apply the LR method to

pool inner replications from several scenarios to estimate the conditional mean at each scenario. Consider

two scenarios θi and θj , where θi is the target scenario whose conditional mean μi is desired and θj is the

sampling scenario at which inner replications are generated. Then, from the change of measure, we have

μi =Eθi [g(X)] = Eθj

[
g(X)

h(X;θi)

h(X;θj)

]
=Eθj [g(X)Wij(X)] , (1)

where Wij(X)≡ h(X;θi)

h(X;θj)
is the LR of the input vector, X, between θi and θj . Under Assumption 1, Wij(X)

is well-defined and Eθj [Wij(X)] = 1 for any θi,θj ∈Θ. From (1), one can define an unbiased LR estimator

of μi, μ̂ij ≡
∑Nj

k=1 g(Xk)Wij(Xk)/Nj , where Nj is the number of inner replications made at θj . We refer

to μ̂ij as the nominal LR estimator.

A diagnostic measure for assessing efficiency of an LR estimator is the effective sample size (ESS),

which is defined as the number of replications required for the MC estimator to achieve the same vari-

ance as the LR estimator. So, the larger the ESS, the more precise the LR estimator is. Because V[μ̂ij] =

Vθj [g(X)Wij(X)]/Nj , the ESS of the nominal LR estimator is
Vθi

[g(X)]

Vθj
[g(X)Wij(X)]

Nj . Due to its dependence

on g(X), this ESS cannot be evaluated analytically in general and must be estimated via simulation.

In this study, we adopt the self-normalized LR estimator:

μ̃ij =Nj
−1

∑Nj

k=1
g(Xk)W̃ij,k, Xk

i.i.d.∼ h(x;θj), ∀k= 1, . . . ,Nj, (2)

where W̃ij,k =
Wij(Xk)

∑Nj
�=1

Wij(X�)/Nj

is the self-normalized LR from the kth replication so that the sample average

of W̃ij,1, W̃ij,2, . . . , W̃ij,Nj
becomes 1. Lemma 1 states asymptotic properties of μ̃ij . Note that X is dropped

from Wij(X) henceforth for notational convenience.

LEMMA 1. Consider any given target and sampling scenarios θi,θj ∈Θ. Under Assumption 1, (i) μ̃ij

converges almost surely to μi as Nj increases; and (ii) with additional regularity conditions in Assump-

tion OS.1 of the Online Supplement,

Eθj [μ̃ij ]−μi =
−Eθj

[W2
ij(g(X)−μi)]

Nj
+ o(N−1

j );Vθj [μ̃ij] =
Eθj

[W2
ij(g(X)−μi)

2]

Nj
+ o(N−1

j ). (3)
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Part (i) of Lemma 1 is proved in Theorem 9.2 of Owen (2013). Results similar to Part (ii) can be found

in Hesterberg (1988) and Owen (2013).

As shown in Lemma 1, the self-normalized LR estimator is biased but consistent. We adopt the self-

normalized LR estimator in our study because it has a convenient ESS approximation. Kong (1992) shows

that the variance of μ̃ij can be approximated as

Vθj [μ̃ij]≈Vθi [g(X)]
Eθj [W

2
ij]

Nj

. (4)

Then, the approximate ESS of μ̃ij is ne
ij ≡ Nj/Eθj [W

2
ij ], which is free of g(X) and can be computed

analytically in some cases. In Lemma 3 (Section 6), we derive a closed-form expression for Eθj [W
2
ij] when

h(x;θ) belongs to the exponential family.

In a more detailed derivation, Liu (1996) shows the approximation error of (4) is

Vθj [μ̃ij] =
(
Vθi [g(X)]Eθj [W

2
ij ] +Eθi [(Wij −Eθi [Wij])(g(X)−μi)

2]
)
N−1

j + o(N−1
j ), (5)

which holds under Assumption OS.1 and comments that Eθi [(Wij −Eθi [Wij])(g(X)− μi)
2]N−1

j omitted

from (4) may be small when g(X) is relatively flat, however, when it is large, the approximation error

of (4) can be significant. Nevertheless, Liu (1996) recommends using (4) as a rule of thumb. We adopt this

recommendation and evaluate efficiency of μ̃ij using ne
ij for each (θi,θj) pair prior to running any inner

simulations. In Section 7.1, we empirically demonstrate that Approximation (4) performs well with an ERM

example.

Remark 1. Some studies (Martino et al. 2017, Elvira et al. 2018) define the ESS as the number of replica-

tions such that the LR estimator’s MSE matches V[μ̄i]. As seen in Lemma 1, the squared bias diminishes

faster than the variance asymptotically, thus we consider matching the variances.

4. Optimal Nested Simulation Experiment Design
Suppose M realized outer scenarios, θ1, . . . ,θM , are given. We estimate the conditional means at all M

scenarios by pooling the self-normalized LR estimators. We require that, for each θi, the pooled estimator’s

variance is no larger than V[μ̄i]/N , which is the variance of the SNS estimator with N inner replications

in each scenario; we refer to this requirement as the precision requirement. Our goal is to minimize the

total number of inner replications run at the M scenarios, that is, the simulation budget. In this section, we

assume that the experimenter chooses an appropriate N .

Suppose Nj i.i.d. inner replications are run at each θj . Some outer scenarios may have zero replications,

i.e., Nj = 0. Then, μ̃ij is well-defined for any (θi,θj),1 ≤ i, j ≤ M , if Nj > 0. For each i, consider the

following pooled LR estimator of μi:

μ̃i ≡
∑M

j=1,Nj>0
γijμ̃ij,

∑M

j=1,Nj>0
γij = 1, (6)
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where γij , j = 1, . . . ,M , are the pooling weights. In SNS, μ̄i only uses the inner replications simulated at

θi. In contrast, the pooled LR estimator μ̃i pools all inner replications from all sampling scenarios with

weights {γij : j = 1, . . . ,M}. As all inner replications are run independently, the variance of the pooled LR

estimator is given by V[μ̃i] =
∑M

j=1,Nj>0 γ
2
ijVθj [μ̃ij].

Recall that our precision requirement for each θi is V[μ̃i]≤V[μ̄i]. From (4), we have∑M

j=1,Nj>0
γ2
ijVθj [μ̃ij] = V[μ̃i]≤V[μ̄i] =

Vθi [g(X)]

N

(4)⇒
∑M

j=1,Nj>0

γ2
ijEθj [W

2
ij]

Nj

≤ 1

N
. (7)

For given sampling decisions {Nj}, there may be infinitely many feasible weights {γij} that satisfy the con-

straints. Among them, it is sensible to choose {γij} that minimizes V[μ̃i]. From this insight, we formulate

the following bi-level optimization problem:

min
Nj≥0,γij

∑M

j=1
Nj (8)

subject to
∑M

j=1,Nj>0

γ2
ijEθj [W

2
ij]

Nj

≤ 1

N
, ∀i= 1, . . . ,M

{γij} ∈ argmin
γij

{∑M

j=1,Nj>0

γ2
ijEθj [W

2
ij]

Nj

:
∑M

j=1,Nj>0
γij = 1

}
, ∀i= 1, . . . ,M (9)

A brief overview of bi-level optimization is provided in Section OS.4. The upper-level problem (8) makes

the sampling decision by finding the optimal {Nj}. The sampling decision determines not only at which θjs

to run replications at, but also how many replications to run at each. The lower-level problem (9) defined for

each target scenario i makes the pooling decision to find {γij} that minimizes the (approximate) variance

of μ̃i given the sampling decision {Nj}. We ignore integrality constraints for {Nj} here. In numerical

experiments, we assign �Nj� inner replications to θj .

Given the sampling decision {Nj}, for each i the lower-level problem (9) is a simple quadratic program

that can be solved analytically via the Karush-Kuhn-Tucker (KKT) conditions: The Lagrangian function of

the ith lower-level problem is L(γij, λ) =
∑M

j=1,Nj>0

γ2
ijEθj

[W2
ij ]

Nj
+λ(1−∑M

j=1,Nj>0 γij). The corresponding

KKT condition is
2γijEθj

[W2
ij ]

Nj
−λ= 0 for all j = 1, . . . ,M such that Nj > 0, which implies γij =

λNj

2Eθj
[W2

ij ]
.

Hence, the optimal pooling decision, γ�
ij , is proportional to

Nj

Eθj
[W2

ij ]
. Considering

∑M

j=1,Nj>0 γij = 1, we

have γ�
ij =

Nj/Eθj
[W2

ij ]
∑M

k=1 Nk/Eθk
[W2

ik
]
, for all j = 1, . . . ,M such that Nj > 0. Note that we drop the condition, Nj > 0

since the same expression produces γ�
ij = 0 when Nj = 0, as desired. Notice that γ�

ij = 0 when Eθj [W
2
ij] =

∞ even if Nj > 0. This is the case when θi does not pool from the inner replications at θj because V[μ̃ij ]

is large. Plugging in γ�
ij into (9), the ith lower-level problem’s optimal objective value is

∑M

j=1

(γ�
ij)

2Eθj [W
2
ij]

Nj

=

(∑M

j=1

Nj

Eθj [W
2
ij]

)−1

. (10)



Feng and Song: Efficient Nested Simulation via the Likelihood Ratio Method
10 Article submitted to INFORMS Journal on Computing

Plugging (10) into the first constraint of the bi-level program, we have:

min
Nj≥0

∑M

j=1
Nj subject to

∑M

j=1

Nj

Eθj [W
2
ij]

≥N, ∀i= 1, . . . ,M. (11)

Note that this linear program (LP) is always feasible because Eθj [W
2
jj] = 1, so {Nj =N,∀j = 1, . . . ,M}

satisfies all constraints. Also note that the constraints can be written as
∑M

j=1 n
e
ij ≥N for all i= 1, . . . ,M .

Namely, these constraints require the total ESS of the pooled estimator to be at least N for each target

scenario. Provided that Eθj [W
2
ij] can be computed a priori, e.g., exponential family, (11) can be solved

prior to running any inner replications. Numerical studies in Section 7 show that the optimal objective

value of (11) is orders of magnitude smaller than MN , which demonstrates that our experiment design

significantly reduces the simulation budget compared to SNS.

Let {c�j} be an optimal solution of (11) when N = 1. Proposition 1 shows that, for fixed outer scenarios,

one can solve (11) for N = 1 and obtain the optimal solution for arbitrary N by simply scaling the solution

from the former by N . Therefore, even if the target precision, N , is changed post hoc, there is no need to

resolve (11). Such proportionality is also useful for showing asymptotic properties of the pooled estimator

in Section 5.

PROPOSITION 1. Given θ1, . . . ,θM , let {cj} and {c�j} be a feasible solution and an optimal solution

of (11), respectively, for N = 1. Then, {Nj = N · cj} and {N�
j = N · c�j} are a feasible solution and an

optimal solution of (11), respectively, for arbitrary N > 0.

Proof. As {cj} is feasible for (11) when N = 1, multiplying both sides of the inequality constraint

of (11) by arbitrary N shows that {Nj =N · cj} is a feasible solution of the revised problem. By means of

contradiction, suppose that there exists a feasible solution {N ′
j} of the revised problem such that

∑M

j=1N
′
j <∑M

j=1N
�
j . Dividing both sides of the constraints by N , it is clear that {c′j =N ′

j/N} is a feasible solution

of (11) when N = 1. However, by construction
∑M

j=1 c
′
j = (

∑M

j=1N
′
j)/N < (

∑M

j=1N
�
j )/N =

∑M

j=1 c
�
j ,

which contradicts the premise that {c�j} is an optimal solution of (11) when N = 1. �
In light of Proposition 1, the optimal pooling weights corresponding to {N�

j } satisfy

γ�
ij =

c�j/Eθj [W
2
ij]∑M

k=1 c
�
k/Eθk [W

2
ik]

, ∀j = 1, . . . ,M, (12)

which implies {γ�
ij} does not depend on N .

We note that both the optimal pooling decision (12) and the objective value (10) have meaningful inter-

pretations: Recall that the ESS of μ̃i is approximated by ne
ij =Nj/Eθj [W

2
ij]. For any outer scenario θi, (12)

can be written as γ�
ij = ne

ij/(
∑M

k=1 n
e
ik). So, given any sampling decision {Nj}, the optimal way to pool

the estimators μ̃ij , j = 1, . . . ,M , is to weight them proportionally to their ESS. Moreover, plugging γ�
ij =
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ne
ij/(

∑M

k=1 n
e
ik) into the first equality of (7), we have V[μ̃i] ≈ Vθi [g(X)]/(

∑M

j=1 n
e
ij). This suggests that

the ESS of the optimally pooled estimator μ̃i is equal to the total ESS of the estimators μ̃ij, j = 1, . . . ,M .

Once {N�
j } and {γ�

ij} are found, we run inner replications at {θj} as prescribed by {N�
j }. For each (i, j)

pair such that γ�
ij > 0, we compute μ̃ij defined in (2). The optimally pooled conditional mean estimators

are computed as μ̃�
i =

∑M

j=1 γ
�
ijμ̃ij , for i= 1, . . . ,M . Then, the Type-(i) nested statistic can be estimated by

ζ̃ =
∑M

i=1 ζ(μ̃
�
i )/M . The α-quantile of μi is estimated by the empirical quantile, μ̃�

(�Mα�), computed from

μ̃1, . . . , μ̃M .

5. Asymptotic Analysis
In this section, we treat θ1, . . . ,θM as random vectors, not realizations, and establish asymptotic properties

of the estimated nested statistics, ζ̃ and μ̃�
(�Mα�), computed from the optimized design. These analyses

provide a guidance for selecting N as a function of M . Prior to presenting the main results, we first establish

convergence results for μ̃∗
i .

Since feasibility of (11) is always guaranteed, μ̃�
i is well-defined for any N and M . The following theorem

states a strong consistency result for μ̃�
i .

THEOREM 1. Suppose Assumption 1 holds. Given θ1, . . . ,θM , μ̃�
i

a.s.−−→ μi as N →∞ for i= 1, . . . ,M .

Proof. Recall that from Proposition 1, {γ�
ij} do not depend on N and are constants once θ1, . . . ,θM are

given. From the definition of μ̃�
i ,

lim
N→∞

μ̃�
i = lim

N→∞

∑M

j=1
γ�
ijμ̃ij =

∑M

j=1
γ�
ij lim

Nj→∞
μ̃ij

a.s.−−→
∑M

j=1
γ�
ijμi = μi

∑M

j=1
γ�
ij = μi,

where the second equality holds because N�
j ∝N from Proposition 1 and γ�

ij = 0 whenever N�
j = 0. The

almost sure convergence holds from Lemma 1. �
Next, we examine the MSE convergence rate of μ̃�

i . Recall that Lemma 1 shows both bias and variance

of μ̃ij are O(N−1
j ) under Assumption OS.1. Because N�

j ∝N , to show MSE[μ̃�
i ] =O(N−1), it suffices to

have the result of Lemma 1 hold for each (i, j) pair such that γ�
ij > 0. Assumption 2 below formally states

the sufficient condition.

ASSUMPTION 2. For each θi ∈ Θ, let Θi ≡ {θj ∈ Θ|Eθj [W
2
ij ] < ∞}. Then, (i) there exists C >

0 such that for any Nj > C,θi ∈ Θ and θj ∈ Θi, Nj|Eθj [μ̃ij] − μi| < |Eθj [W
2
ij(g(X) − μi)]| + 1

and NjVθj [μ̃ij] < Eθj [W
2
ij(g(X) − μi)

2] + 1; and (ii) supθi∈Θ supθj∈Θi
Eθj [W

2
ij(g(X) − μi)] < ∞ and

supθi∈Θ supθj∈Θi

∣∣Eθj [W
2
ij(g(X)−μi)

2]
∣∣<∞.

Assumption 2.(i) ensures the conclusions of Lemma 1 hold for any θi,θj ∈ Θ, while (ii) assures the

moments in the constants to be uniformly bounded in Θ.
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Additionally, we make a minor modification to the definition of {N�
j }:

N�
j =

{
δN, if 0< c�j < δ,

c�jN, otherwise,
(13)

where δ is a small positive constant. In words, (13) guarantees that if any replications are made at θj , then

N�
j is to be at least δ fraction of N . The number of outer scenarios we sample at does not increase because

N�
j = 0 if c�j = 0. We emphasize that (13) has no practical impact as δ can be chosen to be arbitrarily

small in the experiments. The following theorem establishes that for any sample of M outer scenarios,

MSE[μ̃�
i ] =O(N−1).

THEOREM 2. Suppose Assumptions 1 and 2 hold. Then, for any finite M

sup{θ1,...,θM}⊂Θ |E[μ̃�
i |θ1, . . . ,θM ]−μi|=O(N−1) and

sup{θ1,...,θM}⊂ΘV[μ̃�
i |θ1, . . . ,θM ] =O(N−1)

as N →∞. Moreover, the same statement holds when M →∞.

Proof. By construction, μ̃�
i only pools replications at θj ∈Θi. For sufficiently large N ,

|E[μ̃�
i |θ1, . . . ,θM ]−μi| ≤

M∑
j=1

γ�
ij

∣∣Eθj [μ̃ij]−μi

∣∣ (∗)
<

M∑
j=1,N�

j >0

γ�
ij

N�
j

(|Eθj [W
2
ij(g(X)−μi)]|+1

)
(∗∗)
≤

∑M

j=1

γ�
ij

δN
sup

θj∈Θi

(|Eθj [W
2
ij(g(X)−μi)]|+1

) (∗∗∗)
=

1

δN
sup

θj∈Θi

(|Eθj [W
2
ij(g(X)−μi)]|+1

)
,

where (∗), (∗∗), and (∗ ∗ ∗) follow from Assumption 2, (13), and
∑M

j=1,N�
j >0 γ

�
ij = 1 respectively.

Because supθi∈Θ supθj∈Θi

(|Eθj [W
2
ij(g(X)−μi)]|+1

)
is bounded from Assumption 2, we conclude

sup{θ1,...,θM}∈Θ |E[μ̃�
i |θ1, . . . ,θM ]−μi|=O(N−1) for finite M as well as when M →∞. For the variance,

as all inner replications are independently simulated,

V[μ̃�
i |θ1, . . . ,θM ] =

∑M

j=1
(γ�

ij)
2Vθj [μ̃ij]

(∗)
<

∑M

j=1,N�
j >0

(γ�
ij)

2

N�
j

(
Eθj [W

2
ij(g(X)−μi)

2] + 1
)

(∗∗)
≤

∑M

j=1

γ�
ij

δN
sup

θj∈Θi

(
Eθj [W

2
ij(g(X)−μi)

2] + 1
)
=

1

δN
sup

θj∈Θi

(
Eθj [W

2
ij(g(X)−μi)

2] + 1
)
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for sufficiently large N , where (∗) follows from Assumption 2 and (13) and (∗∗) holds since

0≤ γ�
ij ≤ 1. Because supθi∈Θ supθj∈Θi

(
Eθj [W

2
ij(g(X)−μi)

2] + 1
)
<∞ from Assumption 2, we conclude

sup{θ1,...,θM}∈ΘV[μ̃�
i |θ1, . . . ,θM ] =O(N−1) for finite M and when M →∞. �

In Sections 5.1–5.4, we analyze asymptotic properties of Type-(i) and Type-(ii) nested statistics. For

ζ̃ =
∑M

i=1 ζ(μ̃
�
i )/M , we show that its bias and variance converge in O(N−1) and O(N−1) + O(M−1),

respectively, when ζ is an indicator, hockey stick, or smooth function with bounded second derivative.

Sections 5.1–5.3 present different assumptions and proofs for each choice of ζ. In Section 5.4, we show that

the empirical quantile μ̃�
(�Mα�) converges to the true α-quantile of μ(θ) in Op(M

−1/2)+Op(N
−1/2).

5.1. Indicator function of the conditional mean

Suppose ζ(μi) = I(μi ≤ ξ) for some ξ ∈ R. Let Φ be the cumulative distribution function (cdf) of μi. By

definition, E[ζ(μi)] = Φ(ξ). Thus, we denote the corresponding estimator ζ̃ ≡ M−1
∑M

i=1 I(μ̃
�
i ≤ ξ) by

ΦM,N(ξ), where ΦM,N(·) is the empirical cdf (ecdf) constructed from μ̃�
1, . . . , μ̃

�
M .

For ease of exposition, let εi ≡
√
N(μ̃�

i −μi), which is the scaled estimation error of μ̃�
i so that its limiting

distribution is not degenerate as N →∞. From Theorem 2, E[εi|θi] = E[E[εi|θ1, . . . ,θM ]|θi] =O(N−1/2)

uniformly for all θi ∈Θ. Similarly, V[εi|θi] =O(1) uniformly for all θi ∈Θ. In the following, we denote

the joint distribution of μi and εi by fi(μ, ε), where θi is an arbitrary scenario in {θ1, . . . ,θM}. Similarly,

fij(μi, μj, εi, εj) refers to the joint distribution of μi, μj, εi, and εj for some arbitrary θi and θj among

{θ1, . . . ,θM}. We make Assumption 3 below to facilitate Theorem 3 that stipulates the MSE convergence

rate of ΦM,N(ξ).

ASSUMPTION 3. The cdf of μi, Φ, is absolutely continuous with continuous probability density function

(pdf) φ. For any θi ∈ {θ1, . . . ,θM}, fi(μ, ε), is differentiable with respect to μ for each M and N . Moreover,

there exist ps,M,N(ε), s = 0,1, such that fi(μ, ε) ≤ p0,M,N(ε) and
∣∣∣∂fi(μ,ε)∂μ

∣∣∣ ≤ p1,M,N(ε) for all μ and for

each M and N , and supM supN

∫∞
−∞ |ε|kps,M,N(ε)dε <∞ for s= 0,1 and 0≤ k≤ 2. Also, for any θi 	= θj ,

fij(μi, μj, εi, εj), is differentiable with respect to μi and μj for each M and N . There exist ps,M,N(εi, εj), s=

0,1, such that fi,j(μi, μj, εi, εj) ≤ p0,M,N(εi, εj) and
∣∣∣∂fi,j(μi,μj ,εi,εj)

∂μ

∣∣∣ ≤ p1,M,N(εi, εj) for all μi, μj, i 	= j

and for each M and N , and supM supN

∫∞
−∞

∫∞
−∞ |εi|ki |εj|kjps,M,N(εi, εj)dεidεj < ∞ for s = 0,1, and

0≤ ki, kj ≤ 2 such that ki + kj ≤ 3.

Assumption 3 is likely to hold when M and N are large and ρ(μ(θ)) = E[ζ(μ(θ))] is well-estimated

via SNS. Indeed, Assumption 3 is identical to Assumption 1 in Gordy and Juneja (2010) made to show the

MSE convergence rate for the SNS estimator of ρ(μ(θ)) except that i) we define εi as the scaled estimation

error of the pooled LR estimator, μ̃�
i , not the standard MC estimator, μ̄i; and ii) we impose the boundedness

and moment conditions for the joint distribution of (μi, μj, εi, εj), not just for that of (μi, εi). The latter

is because μ̃�
i pools simulation outputs from θj 	= θi. Recall that μ̃�

i is the weighted average of all μ̃ij’s

such that N�
j > 0 and γ�

ij > 0, where each μ̃ij is a sample average of N�
j i.i.d. observations of Wijg(X).
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Therefore, for sufficiently large N , εi =
√
N(μ̃�

i − μi) behaves like a normal random variable as in SNS.

Note that if μ̃�
i is replaced by a generic pooled LR estimator μ̃i in (6) (e.g., constructed with suboptimal

weights γij), then εi does not converge to a normal random variable in general since some μ̃ij may have

unbounded variance. For optimized μ̃�
i , the variance result in Theorem 2 guarantees that a central limit

theorem can be applied to εi. On the other hand, if SNS does not estimate ρ(μ(θ)) well, then there is little

hope that Assumption 3 holds.

THEOREM 3. Under Assumptions 1–3, E[ΦM,N(ξ)]−Φ(ξ) =O(N−1) and V[ΦM,N(ξ)] =O(N−1) +

O(M−1).

Proof. Let us define ΦM as the ecdf constructed from μ1, . . . , μM given the same outer scenarios as

ΦM,N . Because ΦM is an unbiased estimator of Φ, E[ΦM,N(ξ)] − Φ(ξ) = E[ΦM,N(ξ) − ΦM(ξ)]. From

definitions, ΦM,N(ξ)−ΦM(ξ) =M−1
∑M

i=1 (I(μ̃
�
i ≤ ξ)− I(μi ≤ ξ)). For each i,

E[I(μ̃�
i ≤ ξ)− I(μi ≤ ξ)] =

∫ ∞

−∞

∫ ξ− ε√
N

−∞
fi(μ, ε)dμdε−

∫ ∞

−∞

∫ ξ

−∞
fi(μ, ε)dμdε

=−
∫ ∞

−∞

∫ ξ

ξ−ε/
√
N

fi(μ, ε)dμdε. (14)

The first-order Taylor series expansion of fi(μ, ε) at μ∈ [ξ− ε/
√
N,ξ] is

fi(μ, ε) = fi(ξ, ε)+
∂fi(μ̌,ε)

∂μ
(μ− ξ), (15)

where μ̌∈ (μ, ξ). From Assumption 3, for all M and N ,

ε√
N

fi(ξ, ε)− ε2

2N
p1,M,N(ε)≤

∫ ξ

ξ−ε/
√
N

fi(μ, ε)dμ≤ ε√
N

fi(ξ, ε)+
ε2

2N
p1,M,N(ε). (16)

Thus, from (14), integrating all three sides of (16) with respect to ε ∈ (−∞,∞) gives upper and lower

bounds to E[I(μ̃�
i ≤ ξ) − I(μi ≤ ξ)]. Note that fi(ξ, ε) = fi(ε|ξ)φ(ξ), where fi(ε|ξ) is the conditional

pdf of εi given μi = ξ. Thus,
∫∞
−∞ fi(ξ, ε)

ε√
N
dε = φ(ξ)E

[
εi√
N

∣∣∣μi = ξ
]
= φ(ξ)E[μ̃�

i − μi|μi = ξ], where

E[μ̃�
i − μi|μi] = O(N−1) uniformly for all μi from Theorem 2. Also, Assumption 3 guarantees that∫∞

−∞ ε2p1,M,N(ε)dε is bounded. Therefore, E[I(μ̃�
i ≤ ξ) − I(μi ≤ ξ)] = O(N−1) for each i, which in

turn implies E[ΦM,N(ξ) − ΦM(ξ)] = O(N−1). Next, noticing ΦM,N(ξ) = ΦM,N(ξ) − ΦM(ξ) + ΦM(ξ),

V[ΦM,N(ξ)] can be written as

V[ΦM,N(ξ)] = V[ΦM,N(ξ)−ΦM(ξ)] +V[ΦM(ξ)] + 2Cov[ΦM,N(ξ)−ΦM(ξ),ΦM(ξ)]

≤ 2V[ΦM,N(ξ)−ΦM(ξ)] + 2V[ΦM(ξ)]
(17)
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Clearly, V[ΦM(ξ)] =O(M−1). In the following, we show V[ΦM,N(ξ)−ΦM(ξ)] =O(M−1)+O(N−1) by

first expanding it as

1

M2

M∑
i=1

V[I(μ̃�
i ≤ ξ)− I(μi ≤ ξ)] +

1

M2

M∑
i=1

M∑
j=1
j �=i

Cov[I(μ̃�
i ≤ ξ)− I(μi ≤ ξ), I(μ̃�

j ≤ ξ)− I(μj ≤ ξ)] (18)

and showing that the leading order of (18) is O(N−1). First, V[I(μ̃�
i ≤ ξ)− I(μi ≤ ξ)] = E[(I(μ̃�

i ≤ ξ)−
I(μi ≤ ξ))2]−E[I(μ̃�

i ≤ ξ)− I(μi ≤ ξ)]2, where the latter term is O(N−2) from the bias derivation above.

Because (I(μ̃�
i ≤ ξ)− I(μi ≤ ξ))2 = 1, if and only if, μ̃�

i ≤ ξ and μi > ξ, or μ̃�
i > ξ and μi ≤ ξ,

E[(I(μ̃�
i ≤ ξ)− I(μi ≤ ξ))2] =

∫ 0

−∞

∫ ξ−ε/
√
N

ξ

fi(μ, ε)dμdε+

∫ ∞

0

∫ ξ

ξ−ε/
√
N

fi(μ, ε)dμdε.

Following the same logic in (16), both inner integrals are bounded from above by ε√
N
fi(ξ, ε)+

ε2

2N
p1,M,N(ε).

Hence,

E[(I(μ̃�
i ≤ ξ)− I(μi ≤ ξ))2]≤

∫ ∞

−∞

{
ε√
N

fi(ξ, ε)+
ε2

2N
p1,M,N(ε)

}
dε=O(N−1).

This concludes that the first summation of (18) is O((NM)−1).

The covariance term of (18) can be rewritten as

E[(I(μ̃�
i ≤ ξ)− I(μi ≤ ξ))

(
I(μ̃�

j ≤ ξ)− I(μj ≤ ξ)
)]−E[I(μ̃�

i ≤ ξ)− I(μi ≤ ξ)]E
[
I(μ̃�

j ≤ ξ)− I(μj ≤ ξ)
]
. (19)

The first expectation of (19) is equal to

Pr{μ̃�
i ≤ ξ, μ̃�

j ≤ ξ}−Pr{μi ≤ ξ, μ̃�
j ≤ ξ}+Pr{μi ≤ ξ,μj ≤ ξ}−Pr{μ̃�

i ≤ ξ,μj ≤ ξ}

=

∫ ∞

−∞

∫ ∞

−∞

∫ ξ

ξ−εi/
√
N

∫ ξ

ξ−εj/
√
N

fij(μi, μj, εi, εj)dμjdμidεjdεi.

Applying the first-order Taylor series expansion to fij(μi, μj, εi, εj) gives

fij(μi, μj , εi, εj) = fij(ξ, ξ, εi, εj)+
∂fij(μ̌i, μ̌j , εi, εj)

∂μi

(μi − ξ)+
∂fij(μ̌i, μ̌j , εi, εj)

∂μj

(μj − ξ) (20)

for some μ̌i ∈ (μi, ξ) and μ̌j ∈ (μj, ξ). Under Assumption 3, the integral of (20) with respect to μi ∈
[ξ− εi/

√
N,ξ] and μj ∈ [ξ− εj/

√
N,ξ] is lower/upper-bounded by

εiεj
N

fij(ξ, ξ, εi, εj)∓
|ε2i εj + ε2jεi|

2N 3/2
p1,M,N(εi, εj), (21)
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Integrating (21) once again with respect to εi, εj ∈ (−∞,∞), we have

E[(I(μ̃�
i ≤ ξ)− I(μi ≤ ξ))

(
I(μ̃�

j ≤ ξ)− I(μj ≤ ξ)
)
] = O(N−1). Since it is already shown that E

[
I(μ̃�

i ≤
ξ)− I(μi ≤ ξ)

]
=O(N−1), we conclude Cov[I(μ̃�

i ≤ ξ)− I(μi ≤ ξ), I(μ̃�
j ≤ ξ)− I(μj ≤ ξ)] =O(N−1)

from (19), which in turn implies V[ΦM,N(ξ)−ΦM(ξ)] =O(M−1)+O(N−1) from (17). �

5.2. Hockey stick function of the conditional mean

Next, we analyze the case when ζ is a hockey stick function, i.e., ζ(μi) =max{μ−ξ,0}= (μ−ξ)I(μi > ξ)

for some ξ ∈R, which requires the following additional moment conditions.

ASSUMPTION 4. For p1,N,M(ε) in Assumption 3, supM supN

∫∞
−∞ |ε|3p1,M,N(ε)dε <∞. Similarly, for

ps,N,M(εi, εj) defined in Assumption 3,

supM supN

∫ ∞

−∞

∫ ∞

−∞
|εi|ki |εj|kjps,M,N(εi, εj)dεidεj <∞

for s = 0,1, 0 ≤ ki, kj ≤ 3 and ki + kj ≤ 5. Also, for each M and N , there exist func-

tions qs,M,N(μi, εi, εj), s = 0,1, such that fij(μi, μj, εi, εj) ≤ q0,M,N(μi, εi, εj) and
∣∣∣∂fij(μi,μj ,εi,εj)

∂μj

∣∣∣ ≤
q1,M,N(μi, εi, εj) for all μi, μj, εi, and εj . Lastly, for s= 0,1,

sup
M

sup
N

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

ξ

|μi|km |εi|ki |εj|kjqs,M,N(μi, εi, εj)dμidεidεj <∞

for any ξ ∈R,0≤ km ≤ 1, and 0≤ ki, kj ≤ 3 such that ki + kj ≤ 4.

Similar to Assumption 3, Assumption 4 is an extension of Assumption 1 in Gordy and Juneja (2010) to

analyze the hockey stick function, ζ, and is likely to hold when SNS estimates E[ζ(μ(θ))] well. Theorem 4

below shows that the hockey stick function results in the same bias and variance convergence rates as the

those of the indicator function. Due to the space limit, we present the proof of Theorem 4 in Section OS.5.

THEOREM 4. Suppose ζ(μi) = (μi − ξ)I(μi > ξ) for some constant ξ ∈ R and ζ̃ =
∑M

i=1 ζ(μ̃
�
i )/M .

Under Assumptions 1–4, E[ζ̃ − ζ(μi)] =O(N−1) and V[ζ̃] =O(M−1)+O(N−1).

5.3. Smooth function of the conditional mean

To analyze the case when ζ is a smooth function of μi, we make the following assumption.

ASSUMPTION 5. The continuous function, ζ :R→R, is twice differentiable everywhere with bounded

second derivative ζ ′′. Also, E[(ζ(μi))
2],E[(ζ ′(μi)εi)

2] and E[ε4i ] are bounded.

Similar to the indicator and the hockey stick functions, the following theorem shows that the MSE con-

vergence rate of ζ̃ is O(M−1)+O(N−1) for ζ that satisfies Assumption 5.
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THEOREM 5. Suppose ζ satisfies Assumption 5 and ζ̃ =
∑M

i=1 ζ(μ̃
�
i )/M . Under Assumptions 1 and 2,

E[ζ̃ − ζ(μi)] =O(N−1) and V[ζ̃] =O(M−1)+O(N−1).

The proof of Theorem 5 can be found in Section OS.6.

5.4. Quantile of the conditional mean

Let q̃α = μ̃�
(�Mα�). In this section, we prove weak consistency of q̃α as M and N increase. Recall that in

SNS, qα is estimated by the �Mα�th order statistic of M independent conditional mean estimators. In our

design, q̃α is an order statistic of the correlated estimators, μ̃�
1, . . . , μ̃

�
M . Consistency of an empirical quantile

estimator constructed from dependent outputs has been studied (Sen 1972, Heidelberger and Lewis 1984)

under the assumption that the output sequence has a strong mixing property, which ensures that pairwise

correlation between distant outputs in the sequence vanishes. Our pooled LR estimators do not have this

property. Instead, their pairwise correlation decreases as N increases.

To show weak consistency of q̃α, we need the following intermediate result. Lemma 2 states that ΦM,N(·)
is uniformly weakly consistent to Φ(·); see Section OS.3 for its proof. Theorem 6 is the main result of this

section.

LEMMA 2. Under Assumptions 1–3, supξ∈R
|ΦM,N(ξ)−Φ(ξ)|=Op(M

−1/2)+Op(N
−1/2).

THEOREM 6. Suppose Assumptions 1–3 hold and φ(qα) > 0 for given 0 < α < 1. Then, |q̃α − qα| =
Op(M

−1/2)+Op(N
−1/2).

Proof. For each M , |ΦM,N(q̃α) − α| ≤ 1/M . Also, Lemma 2 implies |ΦM,N(q̃α) − Φ(q̃α)| ≤
supξ∈R

|ΦM,N(ξ)−Φ(ξ)|=Op(M
−1/2)+Op(N

−1/2). Therefore, |Φ(q̃α)−α|=Op(M
−1/2)+Op(N

−1/2).

Then, for sufficiently large M and N , there exists U� ∈ (Φ(q̃α), α) such that φ(Φ−1(U�)) > 0 and

Φ−1(Φ(q̃α)) = Φ−1(α) + 1
φ(Φ−1(U�))

(Φ(q̃α) − α) with probability arbitrarily close to 1. Because φ is

bounded in a neighborhood of qα, |Φ−1(Φ(q̃α))−Φ−1(α)|= |q̃α − qα|=Op(M
−1/2)+Op(N

−1/2). �

6. Growth Rate of Simulation Budget in the Optimal Design
Section 5 suggests that selecting N =Θ(M) leads to the most efficient experiment design. In general, it is

difficult to derive an analytical expression for the minimized simulation budget as a function of M and N .

In this section, we study how quickly the optimal budget grows in M asymptotically when we set N =M

and the input distribution of the inner simulation belongs to an exponential family.

DEFINITION 1. A probability distribution function, h(x;θ), is said to belong to an exponential family in

the canonical form, if it can be written as

h(x;θ) =B(x) exp(θ�T (x)−A(θ)), (22)

where B(x), T (x), θ, and A(θ)≡ ln
(∫

X B(x) exp(θ�T (x))dx
)

are referred to as the base measure, suf-

ficient statistic, natural parameter, and log-partition function, respectively. The natural parameter space is
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defined as Θ̄ ≡ {
θ :

∫
X B(x) exp(θ�T (x))dx<∞}

. An exponential family is called regular if Θ̄ is a

non-empty open set in R
p.

LEMMA 3. Suppose h(x;θ) belongs to an exponential family with natural parameter space Θ̄. Then, for

any θi,θj ∈ Θ̄, Eθj [W
2
ij] = exp(A(θj)− 2A(θi)+A(2θi −θj)) if 2θi −θj ∈ Θ̄ or ∞ otherwise.

Proof. Substituting (22) into the definition of likelihood ratio Wij we have

Eθj
[W 2

ij ] =

∫
X

(
h(x;θi)

h(x;θj)

)2

h(x;θj)dx= exp(A(θj)− 2A(θi))

∫
X
B(x) exp((2θi −θj)

�T (x))dx

= exp(A(θj)− 2A(θi)+A(2θi −θj))

∫
X
B(x) exp((2θi −θj)

�T (x)−A(2θi −θj))︸ ︷︷ ︸
=h(x;2θi−θj)

dx.

Note that
∫
X h(x; 2θi −θj)dx equals one, if 2θi −θj ∈ Θ̄, and diverges, otherwise. �

Lemma 3 implies that (Eθj [W
2
ij])

−1 = 0, if 2θi − θj 	∈ Θ̄. In this case, the optimal design does not pool

replications from h(x;θj) to estimate μi as ne
ij = 0.

ASSUMPTION 6. The following holds for Θ and h(x;θ):

(i) h(x;θ) belongs to a regular exponential family with natural parameter space Θ̄.

(ii) Θ is a closed and bounded (or, equivalently, compact) subset of Θ̄.

Assumption 6.(i) includes many common choices of input models such as exponential, normal, and log-

normal distributions. Assumption 6.(ii) is not restrictive as the bounds for Θ can be chosen arbitrarily large.

Under Assumption 6, we first show the following lemma before stating the main theorem of this section.

LEMMA 4. Suppose Assumption 6 holds. Then, there exists finite set ΘM∗ = {θ1, . . . ,θM∗} such that for

each θi ∈Θ, ne
ij > 1/2 for some θj ∈ΘM∗ .

Proof. From (22), the moment generating function of the sufficient statistic, T (x), of h(x;θ) can be

derived as MT (u) = E[eu
�T (x)] = eA(θ+u)−A(θ) for u ∈ R

p. Because Θ̄ is a non-empty open set, MT (u)

is finite for any θ ∈ Θ̄ and sufficiently small u. This implies that Eθ[T (x)] < ∞ for any θ ∈ Θ̄. From

Definition 1, we have

∇θA(θ) =
∇θ

(∫
X B(x) exp(θ�T (x))dx

)∫
X B(x) exp(θ�T (x))dx

=

∫
X
T (x)B(x) exp(θ�T (x)−A(θ))dx=Eθ[T (x)]<∞.

Therefore, A(θ) is continuous in θ ∈ Θ̄ as its gradient exists everywhere in Θ̄.

Consider any θi,θj ∈ Θ. By Lemma 3 we have Eθj [W
2
jj] = 1 and that Eθj [W

2
ij] is continuous in θi

because A(·) is continuous. Then, there exists open neighborhood N (θj) of θj such that Eθj [W
2
ij] < 2

for all θi ∈N (θj). Equivalently, ne
ij = 1/Eθj [W

2
ij]> 1/2 for all θi ∈N (θj). We can construct N (θj) for

each θj ∈Θ and the collection of them is an open cover of Θ. Then, there exists finite subcover ΘM∗ =
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{θ1, . . . ,θM∗} of the open cover by the compactness of Θ. Consequently, for any θi ∈ Θ, there exists

θj ∈ΘM∗ such that θi ∈N (θj) and thus, the conclusion follows. �
Lemma 4 implies that by simulating 2M inner replications at all outer scenarios in ΘM∗ , we can guaran-

tee that all θi ∈Θ have ESS no less than M . Building upon this insight, Theorem 7 shows the main result

of this section.

THEOREM 7. Suppose Assumption 6 holds. Furthermore, for M >M∗, suppose we choose the first M∗

outer scenarios to be those in ΘM∗ and let N =M . Let ΓM be the optimal objective function value of (11)

with M =N . Then, ΓM =O(M).

Proof. As discussed, by Lemma 4, Nj = 2M , j = 1, . . . ,M∗, is a feasible solution to (11) with the

resulting objective function value of 2MM∗. Therefore, ΓM ≤ 2MM∗ for all M > M∗, which implies

ΓM =O(M). �
Recall that the MSE convergence rates of the nested statistic estimators studied in Sections 5.1–5.3 are

O(M−1). Therefore, Theorem 7 stipulates that the MSEs converge in O(Γ−1) given simulation budget Γ

when Assumption 6 holds.

The effect of fixing the first M∗ outer scenarios as described in Theorem 7 is negligible as M increases.

In Section 7.3, we empirically observe that the minimized simulation budget indeed grows linearly in M

when N =M even if all outer scenarios are chosen at random.

In the proof for Theorem 7, we postulate the existence of ΘM∗ . In Section OS.7, we provide two examples

to illustrate how ΘM∗ can be constructed.

7. Numerical Studies
In this section, we present three numerical examples to demonstrate the performance of the proposed opti-

mal design. The following experiment designs are compared:

• Optimal design: Given the outer scenarios, the optimal sampling and pooling decisions are obtained by

solving (11) with N = M . Let Γ denote the minimized simulation budget in our optimal design. We

emphasize again that N is only a benchmark number of inner replications for setting the ESS constraints

in (11). The optimal design does not run N inner replications in each scenario.

• SNS+: Standard nested simulation design with the same M outer scenarios as the optimal design and

N = M , which results in the total budget of MN = M 2. SNS+ sets a benchmark for the precision

requirement for the optimal design as the latter shows the same MSE convergence rate as the standard

nested simulation when N is set to M .

• SNS: Standard nested simulation design that consumes the same simulation budget Γ as the optimal

design. Following the recommendations in Gordy and Juneja (2010), we set M = �Γ2/3� and N = �Γ1/3�,

respectively. The SNS design’s simulation budget may be slightly higher than the optimal design’s due

to the ceiling function.
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• Regression: Pooling based on a linear regression model; as recommended by Broadie et al. (2015), we

sample Γ initial design points and run one replication at each to fit the model. We chose different basis

functions to suit each example. The fitted model is evaluated at the same M outer scenarios used in the

optimal design to compute the performance measures.

The first two examples are ERM problems whose objectives are to evaluate the risk of the future portfolio

values due to the price fluctuation of the underlying assets. The first example has two options written on

one underlying asset while the second example considers a portfolio with 300 options written on 10 assets.

The third example demonstrates Bayesian input model uncertainty quantification applied to a multi-product

newsvendor problem. The experiment designs are evaluated by the coverage probabilities and widths of the

credible intervals (CrIs) of the expected profit.

The expression for μ(θ) is known in all three examples, which facilitates performance evaluation

of the experiment designs in comparison. All source codes are available at https://github.com/

INFORMSJoC/2022.0392/ (Feng and Song 2024).

7.1. Single-Asset Enterprise Risk Management (ERM) Problem

In this section, we consider a straddle option portfolio that consists of a call option and a put option with

the same underlying stock, strike, and maturity. Let the underlying stock price at t= 0 be S0 = $100. We

assume that the stock is non-dividend-paying and follows the Black-Scholes model with η= 5% annualized

expected rate of return and σ = 30% annualized volatility. The annualized risk-free rate is r = 2%. The

common maturity of both options is T = 2 years and the common strike price is K = $110.

We are interested in the value of the portfolio in τ = 1/4 year from now. The future portfolio value

can be evaluated via nested simulation by first simulating the stock price at τ , Sτ , then computing the

expected payoff of the stock at the maturity given Sτ by running inner replications. Here, the outer scenario

is one-dimensional θ = Sτ , and μ(θ) corresponds to the conditional expected payoff given Sτ . From the

Black-Scholes model, the outer scenarios are simulated under the real-world measure, i.e., Sτ |S0 = S0e
Zτ ,

where the rate of return Zτ , is distributed as N ((η− 1
2
σ2)τ,σ2τ). Thus, θ= Sτ has a log-normal distribution

whose density function is shown in Figure 1a. In this example, we choose M equally-spaced quantiles of

the log-normal distribution as the outer scenarios.

Given any scenario θ = Sτ , the input random variable for the inner replication is the stock price at

maturity, X = ST . From the Black-Scholes model, the inner simulation is conducted under the risk-neutral

measure, i.e., ST |Sτ = Sτe
ZT , where ZT ∼ N ((r − 1

2
σ2)(T − τ), σ2(T − τ)). The simulation model g

computes the discounted payoff of the straddle option from X; g(X) = e−r(T−t)[(K −X)+ +(X −K)+],

where (x)+ = max{x,0}. Thus, μ(θ) = Eθ[g(X)] = E[g(X)|Sτ ]. The analytical expression for μ(θ) can

be derived from the Black-Scholes model without simulation. Figure 1b depicts μ(θ), which shows that

the portfolio value is high when Sτ takes extreme values. We consider a financial institution that offers the
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Figure 1 Problem settings 1D ERM example: (a) shows the pdf of θ and (b) plots μ(θ) against θ.

straddle strategies to investors, i.e., a short position. So the company suffers large losses when μ(θ) is large,

or when Sτ takes extreme values. For the regression approach, the weighted Laguerre polynomials up to

order 2 are adopted as the basis functions, which is a common choice in pricing American options (Longstaff

and Schwartz 2001).

Firstly, we consider a fixed number of outer scenarios, i.e., M = 1,000 equally-spaced quantiles from

the outer scenario’s log-normal distribution, and compare the estimation accuracies for different nested

simulation designs. We set N =M = 1,000 when solving (11) for the optimal design. The resulting simula-

tion budget in the optimal design is Γ= 2,148 replications. The optimal sampling decision, {c�j}, allocates

29%, 21%, 21%, and 29% of the simulation budget Γ to only 4 scenarios, i.e., θ = 70.63,71.01,141.18,

and 141.94. These points are near the two tail ends of distribution of θ, which can be explained by the

ESS formula. In this example, the inner simulation random variable X = ST |Sτ for any outer scenario

θ= Sτ follows a log-normal distribution with the common variance σ2(T − τ) with mean mθ = lnθ+(r−
1
2
σ2)(T − τ). Thus, for any θi and θj , the LR is Wij(X) = exp

(
(lnX−mθj

)2−(lnX−mθi
)2

2σ2(T−τ)

)
and its second

moment is Eθj [W
2
ij ] = exp

(
(ln θi−ln θj)

2

σ2

)
. Consequently, the ESS of using one sample from θj to estimate

the conditional mean for scenario θi is inversely proportional to exp((lnθi − lnθj)
2), which indicates that

the ESS falls off quickly when θi 	= θj . Therefore, the θs on the tails benefit the most by pooling from

nearby θs, whereas the θs in the middle can achieve the desired ESS by pooling from both tails.

For each of the 1,000 θ’s, we run 10,000 macro replications for all three simulation designs to estimate

the corresponding μ(θ). For each simulation design, the 2.5% and 97.5% quantiles of the estimated μ(θ)

from these 10,000 macro runs at all θ’s are connected to form a 95% confidence band. Three resulting

confidence bands, one for each simulation design, are depicted in Figure 2. Note that SNS is omitted from

Figure 2 as its confidence band is too wide to be compared in the same plot. Figure 2b is a zoomed in version

of Figure 2a near the mode of the outer scenario distribution. The black curve in these figures shows the

true option portfolio value μ(θ) calculated from closed-form option pricing formulas in the Black-Scholes
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model. We see in Figure 2a that the optimal design’s confidence band is almost indistinguishable from that

of the SNS+ design. This demonstrates that the precision requirement (7) in our optimization formulation is

effective despite approximation (4). The small approximation error (5) shows up in the zoomed Figure 2b,

where we see the optimal design’s confidence band is slightly wider than the SNS+ design’s. We note

that the optimal design achieves similar precision as the SNS+ design with significant smaller simulation

budget: The optimal design’s simulation budget 2,148 is 465 times smaller than that of the SNS+ design

(MN = 106). We also see in Figure 2a that the regression-based design’s confidence band is significantly

wider than the optimal design’s and the SNS+ design’s when θ= Sτ takes extreme values. In general, users

do not know the relationship between μ(θ) and θ prior to simulation. So, particularly low precision in any

region could significantly impact tail risk measure estimation thus is undesirable.
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Figure 2 (a) shows the 95% confidence bands for different experiment designs based on 10,000 macro runs;

(b) is a zoomed-in version of (a) around the median of θ.

Next, we consider different numbers of outer scenarios M and compare the MSEs of the portfolio risk

measures computed from all four designs. We set confidence level α= 0.99 to emulate tail risk estimation.

The four nested statistics we consider are: (i) the α-quantile of μ(θ), (ii) indicator risk measure E[I(μ(θ)>

49)], (iii) hockey stick risk measure E[(μ(θ)−49)+], and (iv) squared tail risk measure E[(μ(θ)−49)2+]. The

latter three measures emulate probability of large losses, expected excess loss, and expected squared excess

loss (similar to semivariance, but measures variability in the tail), respectively. All are common in practical

ERM problems. These statistics cannot be calculated analytically, thus were estimated via MC simulation

by sampling 108 θs and computing μ(θ) at each θ from its analytical expression, which are then used to

compute the four nested statistics of interest. Based on these 108 conditional means, the 99%-quantile is

μα ≈ 48.916, which is why 49 is chosen as the threshold in the other nested statistics.

Table 1 presents the MSE of the nested statistics computed from the four experiment designs by running

10,000 macro runs. Excluding when M = 128, the optimal design’s MSEs for all nested statistics are lower
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Table 1 Single-asset ERM example: MSEs of the nested simulation statistics computed from 1,000 macro

runs of the four experiment designs. All methods use the same simulation budget except for SNS+.

M
Quantile Indicator Function ζ(·)

Opt. Design SNS SNS+ Regression Opt. Design SNS SNS+ Regression
128 23 259 6.52 102 8.38E-04 8.77E-03 4.43E-05 5.66E-04
512 5.45 146 1.31 37.6 1.21E-04 3.58E-03 4.84E-06 1.27E-04
1024 2.52 109 0.503 20 2.54E-05 2.06E-03 1.71E-06 6.72E-05
2048 1.16 81.2 0.195 10.2 9.01E-06 1.29E-03 6.38E-07 3.64E-05
4096 0.517 52.9 0.059 4.93 2.40E-06 6.66E-04 2.46E-07 1.88E-05

M
Hockey Stick Function ζ(·) Square Function ζ(·)

Opt. Design SNS SNS+ Regression Opt. Design SNS SNS+ Regression
128 5.34E-02 8.89E-01 1.38E-03 9.01E-02 22 541 0.229 126
512 2.29E-03 2.28E-01 2.80E-04 1.53E-02 0.185 81 0.108 10.6

1024 4.81E-04 1.09E-01 1.06E-04 6.64E-03 0.0875 30.3 0.0585 3.29
2048 2.26E-04 5.97E-02 3.87E-05 3.15E-03 0.0456 14.1 0.0281 1.25
4096 8.51E-05 2.73E-02 1.41E-05 1.58E-03 0.0216 5.5 0.0125 0.543

than those of SNS and the regression approach. Moreover, the optimal design’s MSEs are within the same

orders of magnitude as those of SNS+ even though the latter requires a much larger simulation budget; the

optimal design’s simulation budget is about 247 and 1,760 times smaller than that of SNS+ when M =

512 and M = 4,096, respectively. Further, for M ≥ 512, the MSE of each risk measure computed from

the optimal design also shrinks by approximately a half when M increases by a factor of two, which is

consistent with our asymptotic results in Section 5.

However, when M = 128, we observe small-sample performance degradation of the optimal design; the

MSE of the probability (indicator ζ) is larger for the optimal design than the regression method. Also,

when M shrinks to 128 from 512, the MSE of the estimated nested statistics increase by more than 4

times; notably, 119 times in the square function case. Since the performance guarantee for the optimal

design (and all other benchmarks) is shown asymptotically, such degradation for small M is not surprising.

Nevertheless, because the optimal design is formulated to minimize the simulation budget, when M is small

and thus the support of the outer scenario is not covered well by the size-M sample, then the optimal design

may not be as effective as when M is large.

7.2. Multi-Assets Enterprise Risk Management (ERM) Problem

In this section, we consider a more realistic ERM problem for an option portfolio consists of 10 underlying

assets and 300 options. The underlying assets are 10 non-dividend-paying stocks that follow the multidi-

mensional Black-Scholes model and their respective expected annualized returns are 5%,6%, . . . ,14%, and

the respective expected annualized volatilities are 30%,32%, . . . ,48%. The correlations among stock prices

are randomly generated using the R library, randcorr. All stocks have an initial price S0 = $100 at time 0

and the risk-free rate is 2%. The following 30 options are written on each of the 10 stocks:

• 10 European options: 5 puts with strike prices {85,90,95,100,105} and 5 calls with strike prices

{110,115,120,125,130}.
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• 10 fixed-strike geometric Asian options: 5 puts with strike prices {85,90,95,100,105} and 5 calls with

strike prices {110,115,120,125,130}.

• 10 down-and-out put barrier options with strike prices {85,90, . . . ,130} and lower barriers

{75,80, . . . ,120}. The same type of barrier options are studied in Broadie et al. (2015) to showcase the

performances of the regression-based experiment design.

All options have maturity T = 2; all time units are in years. Stock prices are simulated at discrete time steps,

i.e., h= 1/52 (approx. weekly), and are used to calculate the average prices in Asian options’ payoffs. Also,

conditioning on the stock prices at two consecutive times, the minimum price between the two times is

simulated via the Brownian bridge (Glasserman 2003, Chapter 6.4). Nested simulation is applied to estimate

the portfolio’s values at time τ = 4/52 (approx. one month) under different scenarios. The Asian and barrier

options are partial-time options, i.e., the Asian options’ average prices are calculated between τ and T and

the barrier options can be knocked out only between τ and T . These settings are similar to those in the

numerical examples in Broadie et al. (2015).

The portfolio value can be decomposed into 10 groups of 3 options written on the same stock. Then,

one can estimate the value of each group using only the simulated prices of the corresponding underlying

stock. This decomposition scheme is inspired by Section 5 in Hong et al. (2017) and is implemented for all

experiment designs we compare.

Compared to the single-asset example in Section 7.1, this multi-asset example has more stocks, options,

and time steps in both outer- and inner-level simulations. The proposed optimal nested simulation design

can be adapted to these additional complexities:

1. Exploiting the decomposition of the portfolio, the optimal design can be applied for each underlying

stock separately, allowing different simulation budget for each.

2. As shown in Section OS.8, the LRs are calculated using the one-step transition densities Sτ+h|Sτ for

different scenarios Sτ . The ESS is also calculated from them.

3. The asymptotic properties shown in Section 5 are not affected by the portfolio decomposition. That is, if

they apply to each group of options written on the same stock, they apply to the portfolio value.

We run K = 1,000 macro runs to assess the performances of different experiment designs. For SNS+,

we simulate M = 1,000 outer scenarios and N = 1,000 inner replications at each scenario. Unlike in Sec-

tion 7.1, the outer scenarios in different macro runs vary, but the same scenarios are used in the optimal

design and SNS+ design in each macro run. For SNS, we set M and N to be �Γ2/3� and �Γ1/3�, respec-

tively, where Γ is the average optimal simulation budget for the 10 stocks. For the regression-based design,

for each stock, we set the number of outer scenarios to be the average of the optimal design’s simulation

budgets for the 10 stocks, then simulate one inner replication per scenario. We fit the portfolio value to the

weighted Laguerre polynomials up to degree 3 of the 10 underlying stocks’ prices, which has 31 explana-

tory variables including the intercept. The fitted regression model is used to estimate μ(θ) for the same

1,000 outer scenarios as those in the optimal design and SNS+ design.
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Table 2 Multi-asset ERM example: Average number of outer scenarios, simulation budgets, and CPU time

(in seconds) per macro run. The third row shows the number of outer scenarios at which inner replications

are made. Speedup factors relative to SNS+ are shown in parentheses.

SNS+ Optimal Design SNS Regression

Simulation Budget 106 8200.8 (122x↓) 8525.7 (117x↓) 8200.8 (122x↓)
CPU time (seconds) 997 25.5 (39.16x↓) 28.2 (35.42x↓) 296 (3.37x↓)

# Outer Scenarios 103 21.9 (46x↓) 407.3 (2.5x↓) 8200.8 (8.2x↑)

Table 3 Multi-asset ERM example: MSEs of nested simulation statistics computed from 1,000 macro runs of

the four experiment designs. Numbers in parentheses are the MSE inflation factors compared to the SNS+

design.

SNS+ Opt. Design SNS Regression

AMSE(μ) 763 740 (0.97x) 36628 (48x) 3052 (4.1x)
MSE.Quantile 622 764 (1.2x) 100637 (162x) 11298 (18x)
MSE.Indicator ζ(·) 7.23E-06 8.51E-06 (1.18x) 9.22E-03(1275x) 1.44E-04 (20x)
MSE.Hockey Stick ζ(·) 4.81E-02 5.36E-02 (1.12x) 144 (3004x) 2.4 (50x)
MSE.Square ζ(·) 1933 1993 (1.03x) 7845487 (4060x) 231,413 (120x)

Experiments were run on Intel Xeon Gold 6334 8-core 3.6 GHz (Ice Lake) CPUs. Table 2 shows the aver-

age numbers of outer scenarios, simulation budgets, CPU time, and the corresponding speedup relative to

SNS+. Notice that the optimal design’s simulation budget is over 120 times smaller than SNS+’s. The SNS

has slightly larger simulation budget due to rounding. The CPU time for the optimal design is nearly 1/40

of the SNS’s, which includes the time for solving the LP, LR calculation, and simulation. For this example,

the optimal design’s CPU time is evenly split between solving the LP (13.5 seconds), and simulation and

LR calculation (12 seconds). The SNS’s CPU time is exclusively for simulation and more than double the

simulation and LR calculation time for the optimal design.

To compare the estimation error of all experiment designs, we compute the average MSE (AMSE) of the

conditional means in addition to the MSEs of the nested statistics.

AMSE(μ)≡ 1

K

∑K

k=1

1

M

∑M

m=1
(μ̂m,k −μm,k)

2,

where μ̂m,k is the estimated conditional mean in the mth scenario of the kth macro run and μm,k is the

corresponding true conditional mean.

Table 3 summarizes the AMSE and MSEs for different experiment designs. Notice that the optimal

design’s AMSE and MSEs closely match those of SNS+. This demonstrates that the ESS constraints

in (7) work as intended. Considering the computational cost comparison in Table 2, the optimal design is

extremely efficient. While SNS has a similar CPU time as the optimal design, its AMSE and MSEs are

orders of magnitudes larger than those of the optimal design. The regression has higher AMSE and MSEs

than both SNS+ and the optimal design; although the AMSE is only mildly (4.1x) higher, the MSEs of the
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nested statistics are orders of magnitude higher. This implies that the regression-based method has reason-

able precision within the central region of the outer scenarios but performs poorly at outer scenarios with

extreme conditional means. This observation is consistent with that made in Section 7.1.

In summary, the multi-asset ERM example demonstrates the applicability of the optimal design in prac-

tice and that it outperforms not only SNS but also the regression approach.

7.3. Input Uncertainty Quantification for Multi-Product Newsvendor Problem

In this section, we consider a single-stage newsvendor problem with ten products. We assume that the

�th product’s demand, X�, follows a Poisson distribution. All product demands are independent. For the

�th product, let c� and p� be the unit cost and sale price, respectively. The stocking policy, {k1, . . . , k10},

is a vector representing the stocking levels of the ten products. We chose p� = 7 + 3�, c� = 2, and k� =

9 + � for all � for the experiment. Given these inputs, the simulator computes the total profit, g(X) =∑10

�=1 {p�min(X�, k�)− c�k�}.

Unknown to us, the mean demand of the �th product is ϑc
� = 5 + �. We have 50 + 5� i.i.d. realiza-

tions from Poisson(ϑc
�) to estimate ϑc

� for the simulation study. Taking the Bayesian view, we model the

unknown parameter ϑ� as a random variable with a prior distribution and update it with the observations

from Poisson(ϑc
�). To exploit conjugacy, the Gamma prior with rate 0.001 and shape 0.001 is adopted for

each ϑ�. Then, the posterior distribution of ϑ� is still Gamma with rate 0.001 + 50 + 5� and shape 0.001

plus the sum of observed demands of the �th product. Let θ= {ϑ1, . . . , ϑ10} be a parameter vector sampled

from the joint posterior distribution. The expected profit given θ, μ(θ) = Eθ[g(X)], is a random variable

whose distribution is induced by the posterior of θ.

To measure uncertainty in the model, we construct a 1− α credible interval (CrI) for μ(θ) via nested

simulation. The analytical expression for μ(θ) can be derived easily using the Poisson distribution function.

Thus, a CrI can be constructed by sampling θ1, . . . ,θM from the posterior of θ and computing the empirical

α/2 and 1−α/2 quantiles from μ(θ1), μ(θ2), . . . , μ(θM); this interval is referred to as the oracle CrI in the

following and used as a benchmark to compare the performances of the algorithms.

Table 4 compares the CrIs constructed by the four experiment designs as well as the oracle CrI from

1,000 macro-runs. Three different target coverage probabilities, 1−α= 0.9,0.95, and 0.99, are tested. For

each macro-run, a new set of real-world demands are sampled from the true demand distributions and the

joint posterior of θ is updated conditional on the data. The oracle CrI is constructed from M = 1,000 θs

sampled from its posterior. The optimal design and the regression use the same 1,000 θs as outer scenarios

to construct CrIs. The average of the simulation budget used by the optimal design across 1,000 macro-

runs is 1,471 (with standard error 1.1), which is significantly less than MN = 106 for SNS+. For the

regression, polynomial basis functions up to order 2 were adopted without cross-terms reflecting that all

product demands are independent.
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The empirical coverage probabilities and the widths of CrIs in Table 4 are averaged over 1,000 macro

runs. The former is computed via Monte Carlo simulation: a million θs were drawn from the posterior dis-

tribution of θ and μ(θ)s were computed using the analytical expression from which the coverage probability

is estimated. For all algorithms, the same Monte Carlo sample was used.

Table 4 The estimated coverage probabilities and the widths of CrIs constructed by the oracle, optimal

design, SNS, SNS+, and regression from 1,000 macro-runs. All methods use the same simulation budget

except for SNS+. The standard errors are in parentheses.

Empirical coverage Width

Target 1−α 0.9 0.95 0.99 0.9 0.95 0.99

Oracle 0.898(3E-04) 0.948(2E-04) 0.988(1E-04) 81.20(2E-03) 96.55(3E-03) 125.71(5E-03)
Opt. Design 0.886(7E-04) 0.940(5E-04) 0.985(3E-04) 81.01(4E-03) 96.37(5E-03) 125.40(7E-03)
SNS 1.000(2E-06) 1.000(3E-07) 1.000(1E-08) 235.38(2E-02) 277.18(2E-02) 348.41(3E-02)
SNS+ 0.912(3E-04) 0.958(2E-04) 0.991(8E-05) 84.80(2E-03) 100.87(3E-03) 131.37(5E-03)
Regression 0.972(8E-04) 0.991(4E-04) 0.999(1E-04) 120.28(2E-02) 146.35(2E-02) 200.55(3E-02)

Table 4 shows that the CrIs constructed by the oracle and the optimal design are very close in both

coverage and width across for all choices for α, although the latter shows a slight undercoverage compared

to the former. The undercoverage is caused by that the optimal design interpolates the simulation outputs

run at the sampling outer scenarios, however, it is alleviated as M grows. SNS clearly exhibits overcoverage

and wide CrIs. This is because the small inner sample size, N , makes V[μ̄i] large, which inflates the CrI.

Notice that SNS+ still overcovers and slightly wider CrIs than the oracle indicating that the inflation of

CrI from MC error of μ̄i persists even with N = 1,000. The optimal design and SNS+ show comparable

performances across all αs, however, the former costs only 1/670 of the simulation replications of the latter

on average. The regression method shows clear overcoverage across all αs compared to the optimal design.

In particular, the difference between the CrI widths from the two methods is wider for smaller α, which

coincides with the observations from the ERM examples; the regression tends to work poorly at predicting

μ(θ) for extreme θs. On the other hand, the optimal nested simulation design does not suffer from this by

allocating more replications to the extreme outer scenarios so that they achieve the same target ESS.

We also examine how well our optimal design achieves the target variance of the conditional means, as

required by the constraint (7), which illustrates effectiveness of the ESS expression in approximating the

variance. Figure 3a shows the histogram of the ratios between the variance of the MC estimator, V[μ̄(θi)],

and the variance of the pooled self-normalized LR estimator, V[μ̃(θi)], of the conditional means for a fixed

set of 1,000 scenarios. Each MC estimator has N = 1,000 inner replications and the optimal design has the

same target N = 1,000. The variance estimates are obtained from 1,000 macro runs of both designs given

the same outer scenarios. Figure 3a shows that the variance ratios are close to 1, with average 1.21 and

maximum 1.38. This shows the ESS expression slightly underestimates the variance of the self-normalized
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Figure 3 (a) is a histogram of ratios between the variances of the μ(θ) estimates by the optimal design and

by SNS. (b) plots the number of outer scenarios M against minimized simulation budget, assuming

a constant target inner simulation N = 1000.

LR estimator, which is a price we pay to approximate the variances without having to simulate the model at

all.

Lastly, Figure 3b shows the growth of optimal simulation budget as M increases. In all designs, N =

M is chosen for M ranging from 1,000 to 10,000 and the plotted budgets are averaged over 100 macro

runs. Figure 3b depicts that the minimized simulation budget increases approximately linearly in M . In

comparison, the standard nested simulation’s budget would be MN , so it would increase with M 2 when

N =M . This comparison once again demonstrates efficiency of our experiment design.

8. Conclusions
We study an efficient nested simulation experiment design when the set of outer scenarios is given to the

experimenter. Using the LR method, our design makes both sampling and pooling decision for the nested

simulation. We minimize the total simulation budget while ensuring the (approximate) variance of the con-

ditional mean estimator at each outer scenario is of the same level as the MC estimator’s from the SNS

design with user-provided N . Our asymptotic analysis shows that the estimation errors of the studied nested

statistics achieve the fastest convergence rate when M =Θ(N). When the inner simulation’s input distri-

bution belongs in an exponential family, we show that the simulation budget of the optimal design grows

in O(M) by setting N =M . Compared to a state-of-the-art regression approach with the same simulation

budget, the empirical analyses show that our optimal design delivers significantly smaller estimation error.

In this paper, we focused on the setting where the vector of all inputs generated within each inner replica-

tion has a known and fixed dimension across outer scenarios. In future research, we will extend the proposed

scheme to a more general class of stochastic simulation models. One example is when the dimension is

unknown and random, which is a typical characteristic of a queuing-type simulation model. For these cases,
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computing the second moment of the LR without running the simulation model is a challenge, since the joint

density of the inputs is unknown a priori. A two-stage, or sequential experiment design may be considered.
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