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1. Introduction

Abstract. In nested simulation literature, a common assumption is that the experi-
menter can choose the number of outer scenarios to sample. This paper considers the
case when the experimenter is given a fixed set of outer scenarios from an external
entity. We propose a nested simulation experiment design that pools inner replications
from one scenario to estimate another scenario’s conditional mean via the likelihood
ratio method. Given the outer scenarios, we decide how many inner replications to
run at each outer scenario as well as how to pool the inner replications by solving a
bi-level optimization problem that minimizes the total simulation effort. We provide
asymptotic analyses on the convergence rates of the performance measure estima-
tors computed from the optimized experiment design. Under some assumptions, the
optimized design achieves O(I' ') mean squared error of the estimators given sim-
ulation budget I'. Numerical experiments demonstrate that our design outperforms a

state-of-the-art design that pools replications via regression.
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We consider a simulation experiment design problem known as nested simulation (Hong et al. 2017) whose

objective is to estimate some functional of a conditional mean of a stochastic simulation output. Specifically,

we are interested in quantities of the form

p(1u(0)),

1(8) = Eo[9(X)] = E[g(X)|6],
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where 6 is a simulation input vector referred to as the outer scenario, X is a random vector whose distribu-
tion is parameterized by 6, and g(X) is the stochastic simulation output. Each simulation run that generates
g(X) given 0 is referred to as an inner replication. Thus, 11(0) represents the conditional mean of the sim-
ulation output given the outer scenario, 6. Finally, p is a functional that maps the distribution of () to a
real number. Two classes of p are considered in this study:

(i) p(u(@))=E[((1(0))] for some real-valued function .

(i) p(u(@)) =inf{z € R:P(u(0) < z) > a} for some user-specified 0 < « < 1, i.e., the a-quantile or the

a-level Value-at-Risk (VaR) of ().

We refer to a generic p(u(8)) as the nested statistic in this paper.

Nested simulation is a common tool for quantifying uncertainty of a stochastic simulation model. There
is rich literature on simulation model risk analysis (Barton et al. 2022) that adopts the prediction interval of
1(0) (i.e., quantiles) to quantify the variability in the simulation output caused by uncertain input parameter
6. The enterprise risk management (ERM) literature (Broadie et al. 2015, Hong et al. 2017, Dang et al.
2022, Wang et al. 2022) also applies nested simulation to manage risk exposures of portfolios of complex
financial instruments. In this case, 1(0) is typically a financial portfolio’s profit/loss at a future time which
depends on underlying risk factors such as equity prices and interest rates represented by 8. Popular choices
for p include exceedance probability, variance, quantile (Value-at-Risk), and Conditional Value-at-Risk
(CVaR) (Rockafellar and Uryasev 2002).

Standard nested simulation (SNS) is a classical experiment design that samples M outer scenarios, runs
N inner replications at each sampled outer scenario € to estimate ;(8), and computes a nested statistic
from them. Estimating a nested statistic with small bias and variance requires both M and N to be large.
Thus, designing an efficient nested simulation experiment has attracted much attention from researchers
and practitioners.

Our objective is to propose an experiment design from which various nested statistics can be computed
with estimation errors comparable to SNS while spending significantly fewer replications. We propose an
experiment design that has different numbers of inner replications at different outer scenario. Furthermore,
we focus on the case where the experimenter has no control over outer scenario generation and must work
with a given set of outer scenarios. Indeed, such a case arises frequently in practice. For instance, Song
et al. (2020) describe the nested simulation experiment conducted at General Motors (GM) to quantify
uncertainty in their market simulator. In their context, @ is a consumer utility parameter vector for vehicle
features whose distribution is estimated from a conjoint analysis. Specifically, 8 has a few thousand dimen-
sions, where each represents a survey respondent’s preference for a vehicle feature (e.g., color-black). They
impose a Bayesian prior on @ and updates it to the posterior by incorporating the conjoint data assuming

that the respondents make their choices following a discrete choice model. Since there is no conjugacy to
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exploit in this model, a Markov chain Monte Carlo algorithm is applied to generate an approximately inde-
pendent and identically distributed (i.i.d.) sample from the posterior, which discards many realized 0s to
avoid high positive correlations among them. This procedure takes significantly longer than inner replica-
tions (market simulation). Thus, it is more natural to consider the computational budget for generating 0s
separately from the cost of inner replications. Moreover, because GM runs several other market analyses
using a common set of @s across different business divisions, it is required to work with the same given set
of Os for uncertainty quantification for consistency.

In practical ERM applications, the underlying risk factors (outer scenarios) may be provided by regula-
tors or by a separate modeling team in a firm, so the experimenter has little control over them. Risk and
Ludkovski (2018) point out that “the outer scenarios are usually treated by practitioners as a fixed object
(namely coming from an exogenous economic scenario generator (ESG))...one cannot add (or subtract) fur-
ther scenarios” Li and Feng (2021) also mention that “(in nested simulation) it is often necessary to run
a pre-determined set of economic scenarios to project the institution’s cash flows.” Ha and Bauer (2022)
mention that “the same firm-wide scenarios are typically used for evaluating the company’s asset and lia-
bility portfolios.” Therefore, it has an important practical impact to study the design where the number of
outer scenarios is fixed.

A long-studied experiment design question for nested simulation is how to allocate given simulation
budget (the number of inner replications) I' to minimize estimation error. For SNS, we have I' = NM
and the question boils down to choosing M and N so that the nested statistic estimator’s mean squared
error (MSE) is minimized. Lee (1998) shows that for an exceedance probability estimator, its bias and
variance respectively diminish in O(N 1) and O(M ~!).! This analysis leads to the asymptotically optimal
allocation, N = O(I'*/?) and M = O(T'*/3). Gordy and Juneja (2010) establish the same result for a quantile
estimator and analyze the bias of CVaR. Sun et al. (2011) study estimating the variance of 1(6) using
analysis of variance and shows that as M increases, the choice of N minimizing the asymptotic variance of
the variance estimator converges to a constant.

Recent studies depart from the M -outer- N -inner experiment design to enhance efficiency. Broadie et al.
(2011) propose a sequential experiment design to estimate an exceedance probability, which selects outer
scenarios adaptively and allocates inner replications to the scenarios more critical for reducing the MSE of
the estimator; they achieve asymptotic MSE of O(I'=%/>%¢) for any positive e. Giles and Haji-Ali (2019)
extend their idea to propose a multi-level Monte Carlo estimator. Another line of research considers pool-
ing inner replications from some or all outer scenarios to estimate 1(8@) for each outer scenario 8. These
approaches fit a metamodel for (€) by running an initial experiment design, then use the fitted model to

estimate a nested statistic with no additional inner replications. Liu and Staum (2010) adopts a stochastic

! See Section 2 for the definition of O(-) and other asymptotic notation used throughout the paper.
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kriging model to estimate CVaR. Broadie et al. (2015) applies a regression model to estimate Type-(i) nested
statistic. With the optimal choice of M =T1" and N =1 for the initial experiment, they show that the MSE
of the nested statistic estimator converges in O(I'"1*°) for any § > 0 until it reaches an asymptotic bias
level. Hong et al. (2017) adopts nonparametric kernel regression and the k-nearest-neighbor estimator to
pool inner replications from nearby outer scenarios to estimate each 1.(8). For Type-(i) nested statistic, their
optimal parameter choice leads to MSE convergence rate of O(I'~™in{1:4/(4+2)}) "\here d is the dimen-
sion of 8. Wang et al. (2022) considers kernel ridge regression, which results in the MSE convergence rate
between O(I'~!) and O(I'~2/3), depending on the smoothness of y(-).

A common assumption in aforementioned studies is that given budget I, the experimenter can choose
the values of M and N. Hence, it is sensible to seek for estimation-error-minimizing M (and N) as a
function of I'. However, the same assumption does not apply to when the M outer scenarios are fixed.
Another common feature of the reviewed studies is that an equal number of inner replications are spent at
all outer scenarios; Broadie et al. (2011) and Giles and Haji-Ali (2019) are exceptions, however, they study
sequential experiment designs whereas we propose a single-stage experiment design. By single stage, we
mean that no initial experiment is required to fit a metamodel as in other work.

We identify two key experiment design decisions for our pooling scheme: (1) At which outer scenarios to
run inner simulation and how many replications to run? (2) How to pool these replications when estimating
the conditional mean at each outer scenario? The former is referred to as the sampling decision and the
latter as the pooling decision.

We propose a new single-stage experiment design that makes both optimal sampling and pooling deci-
sions via the likelihood ratio (LR) method by solving a bi-level optimization problem. We estimate each
1(0) by taking a weighted average of the LR estimators defined between € and all M outer scenarios.
However, some pairwise LR estimators may have infinite variances. We adopt an LR estimator variant that
allows us to (approximately) assess its variance and hence evaluate the efficiency of pooling each pair of
the outer scenarios prior to running any inner replications.

Utilizing this feature, our bi-level optimization problem has a constraint that requires the pooled estimator
of 1(@) for each @ to have variance (approximately) no larger than that of a standard Monte Carlo (MC)
estimator with N i.i.d. samples. The upper-level problem makes the sampling decision that minimizes
the total simulation budget. The lower-level problem makes the pooling decision by finding the variance-
minimizing weights for each 8 given any sampling decision. Unlike other pooled nested simulation designs,
ours may result in running no replication at some outer scenarios. We reformulate the bi-level problem into
a linear program (LP) with guaranteed feasibility. The total simulation budget for our design is the optimal
objective value of the LP.

While our method works for any NV that the experimenter provides, a question arises on how to choose

N. When M is fixed, even if N is infinity, the nested statistic estimator has nonzero MSE. Hence, we argue
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that it is sensible to increase N just enough so that the MSE convergence rate is not slowed down by N.
The functional relationship between N and M is difficult to derive for finite M in general. However, by
analyzing the convergence rate of the estimator as M, N — oo, we obtain a guidance on how to choose NV
relative to M. We show that the MSE convergence rate of the Type-(i) nested statistic estimator computed
from our experiment design is O(N ') + O(M ~1). Similarly, the Type-(ii) statistic (quantile) converges to
the true quantile in O, (M ~/2) + O,(N~/2). Both results suggest N = O(M).

Caution must be taken when interpreting our asymptotic analysis results to avoid the misconception that
it is less efficient than SNS, which has an MSE convergence rate of O(N~2) + O(M ). Recall that in
our design, N is merely a parameter in the bi-level program. This parameter ensures that the pooled LR
estimator’s approximate variance is no larger than the variance of the standard MC estimator with N i.i.d.
replications. Our design does not actually run NV replications at the M scenarios, and its simulation budget
tends to be much less than M N. Indeed, under some mild conditions, we show that the optimized simulation
budget grows in O(M) when N = M is adopted. This result combined with the MSE convergence rate
analyses suggests that the MSE of a type-(i) statistic estimated from our design converges in O(I'"!) given
a simulation budget I

Lastly, to place our contribution in the literature, we provide a brief review on two closely related meth-
ods: importance sampling (IS) and the LR method. These are mathematically identical but differ in their
goals. IS concerns finding a variance-minimizing sampling distribution for a single estimator prior to run-
ning simulations. While we also consider sampling decisions, our study differ from classical IS (Hesterberg
1988, Owen 2013, Glasserman 2003) because we consider multiple estimators at the same time. The LR
method aims to save computation by reusing outputs affer the simulations are run. This method has been
applied to improve efficiency of metamodeling (Dong et al. 2018), gradient estimation (L"Ecuyer 1990,
1993, Glasserman and Xu 2014), and sensitivity analysis and optimization (Rubinstein and Shapiro 1993,
Kleijnen and Rubinstein 1996, Fu 2015, Maggiar et al. 2018). The LR method is also applied in the “green
simulation” experiment design (Feng and Staum 2015, 2017), which recycles and reuses simulation out-
puts previously made to save computations and improve precision. Similar to these approaches, our pooling
decision is also guided by the LR method once the sampling decision is made.

In recent development of simulation model risk quantification literature, Zhou and Liu (2019) apply the
LR method to pool inner replications of the nested simulation with equal weights and demonstrate signifi-
cant computational savings. Zhang et al. (2022) also propose an LR-based approach that pools inner repli-
cations simulated from one common sampling distribution. Neither of these studies optimizes the sampling
decision. Moreover, both designs have a risk of making some outer scenarios’ conditional mean estimators
have large or even unbounded variances. Our optimal experiment design avoids such a case by assigning
a small (or zero) pooling weight to an outer scenario pair, if their LR estimator is deemed to have a large

variance.



Feng and Song: Efficient Nested Simulation via the Likelihood Ratio Method
6 Article submitted to INFORMS Journal on Computing

Our preliminary work (Feng and Song 2019) explores application of various kinds of LR estimators to
make the simulation risk analysis more efficient. However, we have not considered optimizing the sampling
and pooling decisions in the earlier work. Moreover, the theoretical convergence analyses on different types
of nested statistics are new and we focus exclusively on the self-normalized LR estimator in the current
paper.

The remainder of the paper is organized as follows. Section 2 provides a mathematical framework for
the nested simulation problem. Section 3 defines our pooled LR estimator and discusses its properties.
In Section 4, we propose the experiment design framework to optimize sampling and pooling decisions.
Asymptotic properties of the nested simulation statistics computed from the experiment design are ana-
lyzed in Section 5 followed by the analysis on the simulation budget growth rate in Section 6. Empirical

evaluations and conclusions are provided in Sections 7 and 8, respectively.

2. Problem Statement

Consider a nested simulation experiment, where the outer scenarios are M i.i.d. multidimensional random
vectors, 81, ... ,0,;, whose support is @ C RP. With slight abuse of notation, we treat 81, . . ., 8, as realized
outer scenarios rather than random vectors until Section 5. For any 6 € ©, let h(x;8), 11(0), and Vg[g(X)]
represent the conditional density function, mean, and variance of the input vector X given 6, respectively.
When no ambiguity arises, we also use the shorthand notation u; = u(0;) for convenience. The following

assumption facilitates our discussion.

ASSUMPTION 1. For all 6 € ©, h(x;0) is a well-defined probability distribution function and has a
common support X C R? for a fixed dimension d. Furthermore, the simulation output function g does not

depend on 0 and supg.g Volg(X)] < 0.

The common support, X, ensures that the LR between any two outer scenarios is well-defined. The common
g allows us to reuse X generated from 0 # 6, to estimate y; via the LR method. The fixed input dimension,
d, is a limitation of our method. We refer the readers to Feng and Song (2019) on applying the LR method to
improve nested simulation efficiency when the dimension of X is random. Lastly, supy.q Velg(X)] < 00
ensures that the standard Monte Carlo (MC) estimator for y(6) for all @ € © has finite variance.

Recall that we consider two types of nested statistics. For Type-(i) statistic, we consider three choices for
¢: (1) The indicator function, ¢(u;) = I(p; < &) for some fixed £ € R; the indicator function can be used
to estimate the exceedance probability that a portfolio’s loss beyond &, that is, Pr(u; > £). (2) The hockey
stick function, ¢ (u;) = max{u; —&,0} = (u; — &)1 (1; > &), which is commonly used in ERM applications
to price derivatives or compound options (Glasserman 2003). (3) Smooth function ¢ with a bounded second
derivative. An example of such ( is the squared loss function given target &, ¢(p;) = (u; — &)>.

In SNS with N inner replications for each outer scenario, the MC estimator of ;, fi; = Z,ivzl 9(X4)/N,

is computed for each i, where X, "< h(x; 6;) is the input vector generated within the kth inner replication
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made at 8;. Under Assumption 1, Vo, [fi;] = Vo,[9(X)]/N for any 0, € ©. From fi1,. .., fins, E[C(1:)]
can be estimated by Eﬁl C(j1;)/M. Also, the a-quantile of y; can be estimated by the empirical quantile
fi([Ma])> Where [i(;) is the ith order statistic of fi1, ..., fia.

Throughout the paper, for positive sequences {a,, } and {b, }, a,, = O(b,,) means that there exists constant
¢ > 0 such that a,, < &b, for all n € Z" and a,, = o(b,,) implies a,, /b, — 0 as n — oco. Moreover, a,, =
©(b,,) means that there exist constants ¢,c > 0 such that ¢b,, < a,, < b, for all n € Z*. For sequence
of random variables {X,,}, we say X,, = O,(b,), if for any £ > 0 there exist ¢ > 0 and 7 > 0 such that
Pr{|X,,/b,| > ¢} < e forall n > n.

3. Conditional Mean Estimator via Likelihood Ratio Method

In this section, we continue to treat 8y, ...,8,, as realized outer scenarios. We apply the LR method to

pool inner replications from several scenarios to estimate the conditional mean at each scenario. Consider

two scenarios 8, and 8, where 0, is the target scenario whose conditional mean ju; is desired and ; is the

sampling scenario at which inner replications are generated. Then, from the change of measure, we have
h(X;6;)

412 = Eo, [9(X)] = Eo, [g<x>,M] — By, [g(X)W,,(X)]. 0

where W,;(X) = ;Lgfgf % is the LR of the input vector, X, between 6, and 6;. Under Assumption 1, W;;(X)
: 1(X:6; 4 :

is well-defined and Ee, [W;;(X)] =1 for any 6,,0; € ©. From (1), one can define an unbiased LR estimator
of w;, 1 = ZkNi1 9(X)W;;(X)/N;, where N; is the number of inner replications made at ;. We refer
to j1;; as the nominal LR estimator.

A diagnostic measure for assessing efficiency of an LR estimator is the effective sample size (ESS),
which is defined as the number of replications required for the MC estimator to achieve the same vari-
ance as the LR estimator. So, the larger the ESS, the more precise the LR estimator is. Because V/[ji;;] =
Vo, [9(X)Wi;(X)]/Nj, the ESS of the nominal LR estimator is %Nr Due to its dependence
on g(X), this ESS cannot be evaluated analytically in general and must be estimated via simulation.

In this study, we adopt the self-normalized LR estimator:

Nj = ii.d.
ﬁz‘j:Njil ’ g(Xk)Wij,ka Xk ! h(X;oj)7Vk:17~~7Nj7 ()

Wi (Xg)
N .
L ZZ:JIAW/G;‘(X@)/NJ'
of Wij1, Wija, ..., Wij v, becomes 1. Lemma 1 states asymptotic properties of /i;;. Note that X is dropped

where /WJ” k= is the self-normalized LR from the kth replication so that the sample average

from W,;;(X) henceforth for notational convenience.

LEMMA 1. Consider any given target and sampling scenarios 6;,0; € ©. Under Assumption 1, (i) [i;;
converges almost surely to p; as N; increases, and (ii) with additional regularity conditions in Assump-
tion OS.1 of the Online Supplement,

~Bg W7 (9(X) ;)]

Eo, [f1i] — pi = N

J

_ ~ Eq  [W2(9(X)—p:)?] _
+0(N7- 1>;V9]~[Mij]: 1 JN +0(N» 1). 3)

j J
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Part (i) of Lemma 1 is proved in Theorem 9.2 of Owen (2013). Results similar to Part (ii) can be found
in Hesterberg (1988) and Owen (2013).

As shown in Lemma 1, the self-normalized LR estimator is biased but consistent. We adopt the self-
normalized LR estimator in our study because it has a convenient ESS approximation. Kong (1992) shows
that the variance of ji;; can be approximated as
Eg, [W7] .

N,

J

Vej [ﬂzg] ~ Vi, [9(X)] 4)

Then, the approximate ESS of i is nf; = N;/E, [W7], which is free of g(X) and can be computed
analytically in some cases. In Lemma 3 (Section 6), we derive a closed-form expression for Eq, [IW2] when
h(x; @) belongs to the exponential family.

In a more detailed derivation, Liu (1996) shows the approximation error of (4) is
Vo, [1ii;] = (Vo, [9(X)|Ee, W3] + Eo, [(Wi; — Be, [W;;]) (9(X) — u)*]) N; '+ o(N;), (5)

which holds under Assumption OS.1 and comments that Eg, [(W;; — Ee, [W;;])(9(X) — ;)] N; ! omitted
from (4) may be small when g(X) is relatively flat, however, when it is large, the approximation error
of (4) can be significant. Nevertheless, Liu (1996) recommends using (4) as a rule of thumb. We adopt this
recommendation and evaluate efficiency of 1i;; using nj; for each (6;,0;) pair prior to running any inner
simulations. In Section 7.1, we empirically demonstrate that Approximation (4) performs well with an ERM
example.

Remark 1. Some studies (Martino et al. 2017, Elvira et al. 2018) define the ESS as the number of replica-

tions such that the LR estimator’s MSE matches V[fi;]. As seen in Lemma 1, the squared bias diminishes

faster than the variance asymptotically, thus we consider matching the variances.

4. Optimal Nested Simulation Experiment Design
Suppose M realized outer scenarios, 64, ...,0,,, are given. We estimate the conditional means at all M
scenarios by pooling the self-normalized LR estimators. We require that, for each 6;, the pooled estimator’s
variance is no larger than V[z;]/N, which is the variance of the SNS estimator with N inner replications
in each scenario; we refer to this requirement as the precision requirement. Our goal is to minimize the
total number of inner replications run at the M scenarios, that is, the simulation budget. In this section, we
assume that the experimenter chooses an appropriate N.

Suppose NV, i.i.d. inner replications are run at each 8,. Some outer scenarios may have zero replications,
i.e., N; = 0. Then, ji,; is well-defined for any (6;,0;),1 <4,j < M, if N; > 0. For each 4, consider the
following pooled LR estimator of y;:

M M

Hi = Zj:l,Nj>0 Vijligs ZJ:LNpO Yi; =1, (6)
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where v,;,7 =1,..., M, are the pooling weights. In SNS, fi; only uses the inner replications simulated at
6;. In contrast, the pooled LR estimator 1i; pools all inner replications from all sampling scenarios with

weights {v;; : j =1,..., M}. As all inner replications are run independently, the variance of the pooled LR
estimator is given by V[u;] = ij 1N, >0 V2 Ve, [Hij]-

Recall that our precision requirement for each 6, is V[z;] < V[f;,]. From (4), we have

M 2 7.1 =VIiT. 7 (4) ’Y”EB [WQ] l
Zj:LNj>O P)/ijVOj [/’LZ]] _V[/'L7:| S V[/’LZ] Z] 1, N >0 N S N

J

(N

For given sampling decisions {V, }, there may be infinitely many feasible weights {~;; } that satisfy the con-
straints. Among them, it is sensible to choose {7, } that minimizes V[z;]. From this insight, we formulate

the following bi-level optimization problem:

) M N .
NjHZl(l)gg Jj=1 J (®)
) M ViEe, W2 1 ,
—— <= =1,...
subject to ijl N0 N, Sy Vi=1,...,.M
. M ViEe, Wi M B .
{%j} © arg%I;nn {Zj—l,Npo T ' ijl,Nj>0 vig =1, Vi=l....M )

A brief overview of bi-level optimization is provided in Section OS.4. The upper-level problem (8) makes
the sampling decision by finding the optimal { N, }. The sampling decision determines not only at which 6;s
to run replications at, but also how many replications to run at each. The lower-level problem (9) defined for
each target scenario ¢ makes the pooling decision to find {~;;} that minimizes the (approximate) variance
of j; given the sampling decision {IV;}. We ignore integrality constraints for {/V;} here. In numerical
experiments, we assign [V | inner replications to 6.

Given the sampling decision {N;}, for each i the lower-level problem (9) is a simple quadratic program

that can be solved analytically via the Karush-Kuhn-Tucker (KKT) conditions: The Lagrangian function of

the ith lower-level problemis £(;;, A) = Z;VI LN, >0 M +A(1 Zi\il N;>0 7i;)- The corresponding
ij B w . . . :
KKT condition is & A=0forall j=1,..., M such that N; > 0, which implies ~;; = %.
Nj jr

Hence, the optimal pooling decision, 7}, is proportional to .. Considering Ejvil N;>0 i = 1, we

) EB]- [WZ]]
N;/Eq, W3]

since the same expression produces 7;; = 0 when N; = 0, as desired. Notice that 7;; = 0 when Eq, W2l =

have v/, = ,forall j=1,..., M such that N; > 0. Note that we drop the condition, N; > 0

oo even if N; > 0. This is the case when 6, does not pool from the inner replications at 6; because V/fi;;]

is large. Plugging in 7} into (9), the ith lower-level problem’s optimal objective value is

i ()Ee W2 (e N, 7
ijlN_<Zj=1m> . (10)

J
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Plugging (10) into the first constraint of the bi-level program, we have:

M ) M N; )
i ; _— > =1,... .
1{[1]1121%) . N, subject to ijl By, [WZ] >N, Vi=1,...,M (11

Note that this linear program (LP) is always feasible because Eq, [ij] =1,s0 {N;=N,Vj=1,...,.M}
satisfies all constraints. Also note that the constraints can be written as Zfil ng; > Nforalli=1,..., M.
Namely, these constraints require the total ESS of the pooled estimator to be at least N for each target

scenario. Provided that Eq [W7,

| can be computed a priori, e.g., exponential family, (11) can be solved
prior to running any inner replications. Numerical studies in Section 7 show that the optimal objective
value of (11) is orders of magnitude smaller than M N, which demonstrates that our experiment design
significantly reduces the simulation budget compared to SNS.

Let {c}} be an optimal solution of (11) when N = 1. Proposition 1 shows that, for fixed outer scenarios,
one can solve (11) for N = 1 and obtain the optimal solution for arbitrary IV by simply scaling the solution
from the former by V. Therefore, even if the target precision, N, is changed post hoc, there is no need to

resolve (11). Such proportionality is also useful for showing asymptotic properties of the pooled estimator

in Section 5.

PROPOSITION 1. Given 0,,...,0y, let {c;} and {c}} be a feasible solution and an optimal solution
of (11), respectively, for N = 1. Then, {N; = N - c;} and {N; = N - c}} are a feasible solution and an

optimal solution of (11), respectively, for arbitrary N > (.

Proof. As {c;} is feasible for (11) when N = 1, multiplying both sides of the inequality constraint
of (11) by arbitrary N shows that {N; = N - ¢;} is a feasible solution of the revised problem. By means of
contradiction, suppose that there exists a feasible solution { N;} of the revised problem such that ZJMZI Ni<
Z;\il N7. Dividing both sides of the constraints by N, it is clear that {c; = Nj/N} is a feasible solution

. M M M s Mo
of (11) when N = 1. However, by construction »._, ¢ = (3_,_, Nj)/N < (3, N;)/N =3 ., ¢},
which contradicts the premise that {c}} is an optimal solution of (11) when N =1. n

In light of Proposition 1, the optimal pooling weights corresponding to { N} satisfy

= ¢ /Eo, (W]
i T =M, )
T Y /B, W

which implies {~};} does not depend on N.

Vi=1,...,M, (12)

We note that both the optimal pooling decision (12) and the objective value (10) have meaningful inter-
pretations: Recall that the ESS of [u; is approximated by n§; = N,/ E,, [W7]. For any outer scenario 6;, (12)
can be written as ;; = n; (224:1 ng,). So, given any sampling decision {/N;}, the optimal way to pool

the estimators fi;;, j = 1,..., M, is to weight them proportionally to their ESS. Moreover, plugging v;; =
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ng; (3o ng,) into the first equality of (7), we have V|[ii;] ~ Vi, [9(X)]/ (Z;vil ng;). This suggests that
the ESS of the optimally pooled estimator i; is equal to the total ESS of the estimators 11;;,7 =1,..., M.
Once {N;} and {~;;} are found, we run inner replications at {6, } as prescribed by { N }. For each (3, j)
pair such that ;; > 0, we compute fi;; defined in (2). The optimally pooled conditional mean estimators
are computed as 1 = Zj\il Vg, fori=1,..., M. Then, the Type-(i) nested statistic can be estimated by
(= Zﬁl ¢(17)/M. The a-quantile of y; is estimated by the empirical quantile, /i},,,,), computed from

Bty oo s B

5. Asymptotic Analysis
In this section, we treat 61, ..., 0,, as random vectors, not realizations, and establish asymptotic properties
of the estimated nested statistics, Z and ﬂ’([ Ma1)> computed from the optimized design. These analyses
provide a guidance for selecting /V as a function of M. Prior to presenting the main results, we first establish
convergence results for ;.

Since feasibility of (11) is always guaranteed, s} is well-defined for any N and M. The following theorem

states a strong consistency result for j¥.
THEOREM 1. Suppose Assumption 1 holds. Given 0., ...,0y, fi* == y;as N — oo fori=1,..., M.

Proof. Recall that from Proposition 1, {*yfj} do not depend on N and are constants once 01, ..., 0, are

given. From the definition of 1,

M M s, Mo Mo
lim if= lim Y oGl = A Jm g S Ahm=pe Y =

N —o0 N—o0 J i

where the second equality holds because N7 oc¢ N from Proposition 1 and +;; = 0 whenever N7 = 0. The
almost sure convergence holds from Lemma 1. O

Next, we examine the MSE convergence rate of 7. Recall that Lemma 1 shows both bias and variance
of f;; are O(N; ') under Assumption OS.1. Because N} oc N, to show MSE[] = O(N ), it suffices to
have the result of Lemma 1 hold for each (3, j) pair such that ;; > 0. Assumption 2 below formally states

the sufficient condition.

ASSUMPTION 2. For each 6; € ©, let ©; = {0; € O|Eq [W7] < co}. Then, (i) there exists C' >
0 such that for any N; > C,0; € © and 0; € ©,, N;|Eq,[ti;;] — | < [Eo,[W7(9(X) — p)]| + 1
and N;Vo, [1i;] < g, [W(9(X) — p:)?] + 1; and (i) supg,ce SUPs, co, Eo, W5 (9(X) — pi)] < 0o and
SUPg,co SUPg; co, }Egj (W72 (9(X) = )?]| < 0.

Assumption 2.(i) ensures the conclusions of Lemma 1 hold for any 6,,0; € ©, while (ii) assures the

moments in the constants to be uniformly bounded in ©®.
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Additionally, we make a minor modification to the definition of { N}

(13)

i =

N ON, if0<cj <,
¢;N, otherwise,

where 0 is a small positive constant. In words, (13) guarantees that if any replications are made at 8, then
N7 is to be at least § fraction of V. The number of outer scenarios we sample at does not increase because
N} =0if ¢; = 0. We emphasize that (13) has no practical impact as ¢ can be chosen to be arbitrarily
small in the experiments. The following theorem establishes that for any sample of M outer scenarios,

MSE[z;] = O(N "),

THEOREM 2. Suppose Assumptions 1 and 2 hold. Then, for any finite M

SUD(g,  oy1ce B0, ..., 00] — pi| = O(N™') and

SuPyg, ..., oM}c@)V[ ’01"“’9”[]:0(]\[71)

as N — 0o. Moreover, the same statement holds when M — oo.

Proof. By construction, fi only pools replications at 8, € ©,. For sufficiently large IV,

M M
—_ . ~ (%) Vi
B[ 101, ., Our] — | <D A% Bo, i) — i) < N]* (IEo, [W75(9(X) — )] +1)
j=1 j:l,Nj*>0 J

(%)

M /7:] 2 (** 1 9
<2 S0 (Bo, W5(0X) =l | +1) =" 5 sup ([Ba, W5 (9(X) = polll +1),

where (%), (x%), and (% % %) follow from Assumption 2, (13), and Z] LN >0 7;; =1 respectively.
Because supg,ce SuPg;co, (|Eo, [W;(9(X) — 1:)]| +1) is bounded from Assumption 2, we conclude
_____ oy yco [E[i7101, ..., 0y] — pi| = O(N 1) for finite M as well as when M — oo. For the variance,

as all inner replications are independently simulated,

VI8 80 = 3 (952, ) O (B, (3 (9(%) = 1+ 1)

— * *
J=1,N¥>0 Nj

< Zi;}@;gg Eo, W2 (g(X) — 1)?] +1) = 5}\70822 (Eo, W2 (9(X) — us)?] +1)
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for sufficiently large NN, where () follows from Assumption 2 and (13) and (%) holds since
0 <735 < 1. Because supg, c@ SuPe, co, (Eo; W7 (9(X) — 1:)?] + 1) < oo from Assumption 2, we conclude
_____ oyyco VIEi[01,...,0y] =O(N™1) for finite M and when M — oo. O

In Sections 5.1-5.4, we analyze asymptotic properties of Type-(i) and Type-(ii) nested statistics. For
(= SM C(ir) /M, we show that its bias and variance converge in O(N~') and O(N~') + O(M ),
respectively, when ( is an indicator, hockey stick, or smooth function with bounded second derivative.
Sections 5.1-5.3 present different assumptions and proofs for each choice of (. In Section 5.4, we show that

the empirical quantile /i;,,,,;, converges to the true a-quantile of () in O,(M~'/?) + O, (N~'/?).

5.1. Indicator function of the conditional mean

Suppose ((u;) = I(p; < &) for some € € R. Let ® be the cumulative distribution function (cdf) of ;. By
definition, E[((x;)] = ®(§). Thus, we denote the corresponding estimator (=M1 Z?; I(r <€) by
s n (), where @y () is the empirical cdf (ecdf) constructed from f, . .., i},

For ease of exposition, let ¢; = v/ N (ji} — j1;), which is the scaled estimation error of /z* so that its limiting
distribution is not degenerate as N — oo. From Theorem 2, E[¢;|0;] = E[E[;|01, ..., 0./]|0;] = O(N~1/2)
uniformly for all 8, € ©. Similarly, V[e;|0;] = O(1) uniformly for all §; € ©. In the following, we denote
the joint distribution of p; and €; by fi(u,€), where 0; is an arbitrary scenario in {6, ...,0,,}. Similarly,
fii (i, pj, €5, €5) refers to the joint distribution of yu,, 115, €;, and ¢; for some arbitrary 6, and 6; among
{64,...,0,,}. We make Assumption 3 below to facilitate Theorem 3 that stipulates the MSE convergence
rate of @y v (§).

ASSUMPTION 3. The cdf of ji;, @, is absolutely continuous with continuous probability density function
(pdf) ¢. Forany 0; € {04,...,0.}, fi(u,€), is differentiable with respect to y for each M and N. Moreover,
there exist ps y.n(€),s = 0,1, such that f;(p,€) < poy.n(€) and < p1.mn(€) for all p and for
each M and N, and sup ), supy [~ |€[*ps a1, v (€)de < 0o for s =0,1and 0 < k < 2. Also, for any 0; # 6,

Ofi(p.€)
ou

fij(#i, My, €y ej), is differentiable with respect to ; and ji; for each M and N. There exist ps v v (€, ej), s=
Of; (s 1,645,654 . .
% < P1,M,N(€z‘a€j)f0r all pui, pj, i # J
and for each M and N, and sup, supy [~ [ |e;|File;[¥ips vn (€, €5)deide; < oo for s =0,1, and

0,1, such that f; ;(p;, 1, €i,€;) < pom,n(€is€5) and

Assumption 3 is likely to hold when M and N are large and p(u(0)) = E[¢(u(0))] is well-estimated
via SNS. Indeed, Assumption 3 is identical to Assumption 1 in Gordy and Juneja (2010) made to show the
MSE convergence rate for the SNS estimator of p(u(8)) except that i) we define ¢; as the scaled estimation
error of the pooled LR estimator, i, not the standard MC estimator, ji;; and ii) we impose the boundedness
and moment conditions for the joint distribution of (1;, 115, €;, €;), not just for that of (u;,€;). The latter
is because fi7 pools simulation outputs from 8, # 6,. Recall that /7 is the weighted average of all fi;;’s

such that N > 0 and ~;; > 0, where each i;; is a sample average of N i.i.d. observations of W;;g(X).
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Therefore, for sufficiently large N, ¢, = /N (jiX — p;) behaves like a normal random variable as in SNS.
Note that if i is replaced by a generic pooled LR estimator i, in (6) (e.g., constructed with suboptimal
weights 7;;), then ¢; does not converge to a normal random variable in general since some fi;; may have
unbounded variance. For optimized (i}, the variance result in Theorem 2 guarantees that a central limit
theorem can be applied to ¢;. On the other hand, if SNS does not estimate p(1(6)) well, then there is little

hope that Assumption 3 holds.

THEOREM 3. Under Assumptions 1-3, E[®y n(€)] — ®(§) = O(N™1) and V[@y n(§)] = O(N™) +
O(M™1).

Proof. Let us define ®,, as the ecdf constructed from 1, ...,y given the same outer scenarios as
)/ n. Because @), is an unbiased estimator of @, E[®y, v(§)] — (&) = E[Py n(§) — Par(§)]. From
definitions, @, v (§) — P () = Z V(<€) —1(p; <€)). For each i,

oo §—LN oo I3
BlI( <€)~ I(u <€) = / / () dpude — / / £, ) dpude
o 13
[ [ hmdue (14)
—co JE—¢/VN

The first-order Taylor series expansion of f;(u, €) at p € [€ — ¢/V/N, €] is

filme) = fi(&,€) + 2D (—¢), (15)

where i € (i, €). From Assumption 3, for all M and N,

62 2

¢ €
R RO LY N e O R O N

Thus, from (14), integrating all three sides of (16) with respect to € € (—o0,00) gives upper and lower
bounds to E[I(x; < &) — I(u; < )] Note that f;(€,€) = fi(e|€)p(), where f;(e]€) is the conditional
pdf of € given i = & Thus, [, fi(€, &) e = BE)E | 2| =] = SOEI — pilus = €], where
E[z; — wilp] = O(N™!) uniformly for all p; from Theorem 2. Also, Assumption 3 guarantees that
[72 €pia,n(€)de is bounded. Therefore, E[I(f; < &) — I(p; < €)] = O(N~') for each 4, which in
turn implies E[®@;,n () — ®ar(§)] = O(NT'). Next, noticing ®arn (&) = Parn(§) — Par(§) + Par(8),
VI[®, ()] can be written as
V[@ar,n (€)] = VI[®ar,n (§) = Par(§)] + V[Par(§)] 4+ 2Cov[Par,n (§) — Par(§), Par(€)]
<2V[@pn(§) — Par(§)] +2V[@ar(8)]

a7
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Clearly, V[®,,(£)] = O(M ). In the following, we show V[®; x (&) — @3, (£)] = O(M 1)+ O(N~1) by

first expanding it as

M M M
T S OVIIGEE <€)~ Tn <O+ 5 D0 CovlI(ii <€)~ Iw <€), 1G5 <€) ~ (1, <] (18)
=1 =1 g;}b

and showing that the leading order of (18) is O(N~1). First, V[I(ir < &) — I(p; < &) =E[(I(p; <§) —
I(p: <) —E[(nr <€) —I(p; <&))?, where the latter term is O(N ~?2) from the bias derivation above.
Because (I(p; <&)—1I(p; <&))*=1,if and only if, 17 <& and pu; > &, or if > € and p; <&,

0 f-G/\/N e8] 13
Bl <€) - I <¢)) = | /E Al dude-+ [ /g i cyiue

Following the same logic in (16), both inner integrals are bounded from above by —= f; (& e)+ % PN (€).

Hence,

Bl <9~ <071 < [ {6+ fuman(o f de=0 ).

This concludes that the first summation of (18) is O((NM)™1).

The covariance term of (18) can be rewritten as
E[(I(r; <€) =1 <€) (15 <€) —I(n; <€) —E (1} <€) —I(ps <OIB[I(i; <€) —I(u; <6)]. (19)

The first expectation of (19) is equal to

s poo ¢
Z/ / / / fij (s 1, €, €5)dpdpidede;.
— 0o — 00 —Ei/\/ﬁ —ej/\/ﬁ

Applying the first-order Taylor series expansion to f;; (f, 5, €;,€;) gives

afij(p‘h.ajaehej)

0 i Via Vjv 2R
SPee0) (- )+ 2 o0& ) o)

O

fij(p“inujvei?ej) = fz'j(f’ﬁ,%ﬁj) +

for some fi; € (p;,€) and fi; € (p5,€). Under Assumption 3, the integral of (20) with respect to p; €
[€ —e/VN,€] and p; € [€ —¢;/v/N, €] is lower/upper-bounded by

2 2
€i€j ‘Q‘ej‘i‘ejfi’
N fij(gagaeiaej)q: 2N3/2

pl,M,N(6i7 ej)a 21
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Integrating  (21) once  again  with respect to €,6; € (—o00,00), we  have
E[(I(r <& —I1(i <€) ({15 <€) —I(p; <€))] = O(N1). Since it is already shown that E[I (i} <
€) — I( < €)] = O(N), we conclude Cov[I(jit <€) — I(jus <€), It < &) — I(; <€)] = O(NY)
from (19), which in turn implies V[®y; v (§) — Par ()] = O(M 1) + O(N 1) from (17). O

5.2. Hockey stick function of the conditional mean
Next, we analyze the case when ( is a hockey stick function, i.e., {(x;) = max{u—&,0} = (u— &)1 (p; > €)

for some £ € R, which requires the following additional moment conditions.

ASSUMPTION 4. For py n,a(€) in Assumption 3, sup,, supy [~ |e[*piar,n (€)de < co. Similarly, for

Ds.n.v (€, €5) defined in Assumption 3,
oo o0
Sup SUPN/ / €% |€51%9 s nr v (€4, €5 ) desde; < 00
—oo0 J —o0

for s = 0,1, 0 < k;,k; <3 and k; + k; < 5. Also, for each M and N, there exist func-
Ofij (kiskji€ires) <

tions qs N (i €i,€5),5 = 0,1, such that fi;(pi, pj,€i,€5) < qon,n(His €55 €;) and o, <

¢1,m.N (Wi, €, €5) for all pu;, i, €;, and €;. Lastly, for s =0, 1,

o) o0 o0
sup SUP/ / / |,ui|kmlei‘kikj‘qu&M,N(:uiaEiaej)dﬂidfidej <0
—o0 J —o0 JE

M N

forany £ €R,0<k,, <1,and 0 <k;, k; <3 such that k; + k; <4.

Similar to Assumption 3, Assumption 4 is an extension of Assumption 1 in Gordy and Juneja (2010) to
analyze the hockey stick function, ¢, and is likely to hold when SNS estimates E[((u(#))] well. Theorem 4
below shows that the hockey stick function results in the same bias and variance convergence rates as the

those of the indicator function. Due to the space limit, we present the proof of Theorem 4 in Section OS.5.

THEOREM 4. Suppose ((11;) = (i — €)I(; > €) for some constant € € R and ¢ = Y"1 ¢(i7) /M.
Under Assumptions 1-4, B[C — ¢ ()] = O(N~1) and V[(] = O(M~1) + O(N ).

5.3. Smooth function of the conditional mean

To analyze the case when ( is a smooth function of 1;, we make the following assumption.

ASSUMPTION 5. The continuous function, ¢ : R — R, is twice differentiable everywhere with bounded
second derivative (". Also, E[(C(1:))?], E[(¢'(14:)€:)?] and Ele}] are bounded.

Similar to the indicator and the hockey stick functions, the following theorem shows that the MSE con-

vergence rate of Z is O(M~1) 4+ O(N~1) for ¢ that satisfies Assumption 5.
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THEOREM 5. Suppose ( satisfies Assumption 5 and E: Zﬁl C(ur)/M. Under Assumptions 1 and 2,
E[¢ = ¢(u:)] =O(N") and V[(] = O(M~") + O(N).
The proof of Theorem 5 can be found in Section OS.6.

5.4. Quantile of the conditional mean
Let g, = ﬁa Ma7)- In this section, we prove weak consistency of (o @8 M and N increase. Recall that in
SNS, ¢, is estimated by the [ M «|th order statistic of M independent conditional mean estimators. In our
design, g, is an order statistic of the correlated estimators, (7, .. ., 1t},. Consistency of an empirical quantile
estimator constructed from dependent outputs has been studied (Sen 1972, Heidelberger and Lewis 1984)
under the assumption that the output sequence has a strong mixing property, which ensures that pairwise
correlation between distant outputs in the sequence vanishes. Our pooled LR estimators do not have this
property. Instead, their pairwise correlation decreases as N increases.

To show weak consistency of g,, we need the following intermediate result. Lemma 2 states that &, v (-)
is uniformly weakly consistent to ®(-); see Section OS.3 for its proof. Theorem 6 is the main result of this

section.
LEMMA 2. Under Assumptions 1-3, supcp |®arn (§) — ®(€)| = O (M /2) + O, (N~1/2).

THEOREM 6. Suppose Assumptions 1-3 hold and ¢(q.)
Op (M%) + O, (N712).

4 Ezva_Qa‘:

Proof. For each M, |®y n(qn) — | < 1/M. Also, Lemma 2 implies [Py n(Gn) — P(qn)] <
SPees [Bar.v (€) — B(E)| = Oy (M~2) 4 O, (N-1/2). Therefore, [9(7) — | = 0, (M~1/2) +- O, (N /2.
Then, for sufficiently large M and N, there exists U* € (®(q,),«) such that ¢(®~(U*)) > 0 and
O 1(P(gn)) = 2 Ha) + m(é(%) — «) with probability arbitrarily close to 1. Because ¢ is
bounded in a neighborhood of g,, |271(®(q,)) — 27 H(a)| =G0 — G| = Op(M~Y2) + O,(N~Y?). O

6. Growth Rate of Simulation Budget in the Optimal Design
Section 5 suggests that selecting N = © (M) leads to the most efficient experiment design. In general, it is
difficult to derive an analytical expression for the minimized simulation budget as a function of M and N.
In this section, we study how quickly the optimal budget grows in M asymptotically when we set N = M
and the input distribution of the inner simulation belongs to an exponential family.

DEFINITION 1. A probability distribution function, h(x; @), is said to belong to an exponential family in

the canonical form, if it can be written as
h(x;0) = B(x)exp(0' T(x) — A(9)), (22)

where B(x), T'(x), 0, and A(8) =In ([, B(x) exp(8"T'(x))dx) are referred to as the base measure, suf-

ficient statistic, natural parameter, and log—partltlon function, respectively. The natural parameter space is
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defined as © = {0: [, B(x)exp(6"T'(x))dx < co}. An exponential family is called regular if © is a

non-empty open set in R?.

LEMMA 3. Suppose h(x; ) belongs to an exponential family with natural parameter space ©. Then, for
any 0;,0; € ©, Eo [W72] = exp(A(0;) — 2A(6;) + A(20; — 0;)) if 20, — 6, € © or oo otherwise.

Proof.  Substituting (22) into the definition of likelihood ratio W;; we have

o, W3- | (,’jgz;) B, = exp(A(8,) ~ 24(6.)) [ Bx)exp((26, ~6,) T(x))dx

=exp(A(6;) —2A(6,) + A(20,—06,)) / B(z)exp((20, — 6,) "T(x) — A(26, — 0,)) dx.

=h(x;20;—6;)

Note that [, h(x;26; — 0;)dx equals one, if 26, — 8, € ©, and diverges, otherwise. O

Lemma 3 implies that (Ee, [W72])~" =0, if 26, — 8, ¢ ©. In this case, the optimal design does not pool

replications from h(x; ;) to estimate y; as ng; = 0.

ASSUMPTION 6. The following holds for ® and h(x;0):
(i) h(x;0) belongs to a regular exponential family with natural parameter space ©.

(ii) @ is a closed and bounded (or, equivalently, compact) subset of ©.

Assumption 6.(i) includes many common choices of input models such as exponential, normal, and log-
normal distributions. Assumption 6.(ii) is not restrictive as the bounds for ® can be chosen arbitrarily large.

Under Assumption 6, we first show the following lemma before stating the main theorem of this section.

LEMMA 4. Suppose Assumption 6 holds. Then, there exists finite set © y;« = {01, ..., 0y~ } such that for
each 0; € ©, ng; > 1/2 for some 0; € O .

Proof.  From (22), the moment generating function of the sufficient statistic, 7'(x), of h(x; @) can be
derived as My (u) = E[e*' 7] = ¢A(0+w)=A(®) for 44 € RP. Because © is a non-empty open set, My (u)
is finite for any @ € © and sufficiently small w. This implies that Eg[T(x)] < oo for any 8 € ©. From
Definition 1, we have

Vo ([, B(x)exp(8TT'(x))dx)

VoA(6) = [ B(x) exp(0TT(x))dx

= /X T(x)B(x)exp(8"T(x) — A(0))dx = Eg[T(x)] < .

Therefore, A(0) is continuous in @ € O as its gradient exists everywhere in ©.

Consider any 6;,0; € ©. By Lemma 3 we have Ey [W7] = 1 and that Eg, [W7] is continuous in 6;
because A(-) is continuous. Then, there exists open neighborhood N (6;) of 8; such that Eg [W72] < 2
for all 0; € N(0;). Equivalently, n; = 1/Eg [W?] > 1/2 for all §; € N'(8;). We can construct /(8;) for

each 6; € © and the collection of them is an open cover of ©. Then, there exists finite subcover © ;- =
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{64,...,0,+} of the open cover by the compactness of @. Consequently, for any 6, € ©, there exists
6, € © s+ such that 8; € N/(6;) and thus, the conclusion follows. O

Lemma 4 implies that by simulating 2 inner replications at all outer scenarios in ® ,+, we can guaran-
tee that all 8; € ® have ESS no less than M. Building upon this insight, Theorem 7 shows the main result

of this section.

THEOREM 7. Suppose Assumption 6 holds. Furthermore, for M > M*, suppose we choose the first M *

outer scenarios to be those in © y;« and let N = M. Let "y, be the optimal objective function value of (11)

with M = N. Then, I'y; = O(M).

Proof. As discussed, by Lemma 4, N; = 2M, 5 =1,...,M~, is a feasible solution to (11) with the
resulting objective function value of 2AM M*. Therefore, I'y; < 2M M* for all M > M*, which implies
Ly =0(M). g

Recall that the MSE convergence rates of the nested statistic estimators studied in Sections 5.1-5.3 are
O(M~'). Therefore, Theorem 7 stipulates that the MSEs converge in O(I'™!) given simulation budget I’
when Assumption 6 holds.

The effect of fixing the first M * outer scenarios as described in Theorem 7 is negligible as M increases.
In Section 7.3, we empirically observe that the minimized simulation budget indeed grows linearly in M
when N = M even if all outer scenarios are chosen at random.

In the proof for Theorem 7, we postulate the existence of ® y;«. In Section OS.7, we provide two examples

to illustrate how ®,,« can be constructed.

7. Numerical Studies

In this section, we present three numerical examples to demonstrate the performance of the proposed opti-

mal design. The following experiment designs are compared:

e Optimal design: Given the outer scenarios, the optimal sampling and pooling decisions are obtained by
solving (11) with N = M. Let I" denote the minimized simulation budget in our optimal design. We
emphasize again that IV is only a benchmark number of inner replications for setting the ESS constraints
in (11). The optimal design does not run /N inner replications in each scenario.

e SNS': Standard nested simulation design with the same M outer scenarios as the optimal design and
N = M, which results in the total budget of M N = M?. SNST sets a benchmark for the precision
requirement for the optimal design as the latter shows the same MSE convergence rate as the standard
nested simulation when NV is set to M.

e SNS: Standard nested simulation design that consumes the same simulation budget I" as the optimal
design. Following the recommendations in Gordy and Juneja (2010), we set M = [T'2/3] and N = [T''/3],
respectively. The SNS design’s simulation budget may be slightly higher than the optimal design’s due

to the ceiling function.
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e Regression: Pooling based on a linear regression model; as recommended by Broadie et al. (2015), we
sample I initial design points and run one replication at each to fit the model. We chose different basis
functions to suit each example. The fitted model is evaluated at the same M outer scenarios used in the
optimal design to compute the performance measures.

The first two examples are ERM problems whose objectives are to evaluate the risk of the future portfolio
values due to the price fluctuation of the underlying assets. The first example has two options written on
one underlying asset while the second example considers a portfolio with 300 options written on 10 assets.
The third example demonstrates Bayesian input model uncertainty quantification applied to a multi-product
newsvendor problem. The experiment designs are evaluated by the coverage probabilities and widths of the
credible intervals (Crls) of the expected profit.

The expression for ;(@) is known in all three examples, which facilitates performance evaluation
of the experiment designs in comparison. All source codes are available at https://github.com/

INFORMSJoC/2022.0392/ (Feng and Song 2024).

7.1. Single-Asset Enterprise Risk Management (ERM) Problem

In this section, we consider a straddle option portfolio that consists of a call option and a put option with
the same underlying stock, strike, and maturity. Let the underlying stock price at ¢ = 0 be Sy, = $100. We
assume that the stock is non-dividend-paying and follows the Black-Scholes model with 1y = 5% annualized
expected rate of return and o = 30% annualized volatility. The annualized risk-free rate is r = 2%. The
common maturity of both options is 7' = 2 years and the common strike price is K = $110.

We are interested in the value of the portfolio in 7 = 1/4 year from now. The future portfolio value
can be evaluated via nested simulation by first simulating the stock price at 7, S, then computing the
expected payoff of the stock at the maturity given S, by running inner replications. Here, the outer scenario
is one-dimensional 6 = S, and p(6) corresponds to the conditional expected payoff given S,. From the
Black-Scholes model, the outer scenarios are simulated under the real-world measure, i.e., S, |S, = Spe?,
where the rate of return Z.., is distributed as N'((n — 302)7, 07). Thus, § = S, has a log-normal distribution
whose density function is shown in Figure 1a. In this example, we choose M equally-spaced quantiles of
the log-normal distribution as the outer scenarios.

Given any scenario 6 = S, the input random variable for the inner replication is the stock price at
maturity, X = Sp. From the Black-Scholes model, the inner simulation is conducted under the risk-neutral
measure, i.e., Sr|S, = S,e“T, where Zy ~ N((r — 30%)(T — 7),0*(T — 7)). The simulation model g
computes the discounted payoff of the straddle option from X; g(X) =e " T I[(K — X)), + (X — K),],
where (x), = max{z,0}. Thus, x(0) = Ey[g(X)] = E[g(X)|S;]. The analytical expression for x(6) can
be derived from the Black-Scholes model without simulation. Figure 1b depicts (), which shows that

the portfolio value is high when S, takes extreme values. We consider a financial institution that offers the
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Figure 1 Problem settings 1D ERM example: (a) shows the pdf of 4 and (b) plots ..(6) against 6.

straddle strategies to investors, i.e., a short position. So the company suffers large losses when 1.(6) is large,
or when S takes extreme values. For the regression approach, the weighted Laguerre polynomials up to
order 2 are adopted as the basis functions, which is a common choice in pricing American options (Longstaff
and Schwartz 2001).

Firstly, we consider a fixed number of outer scenarios, i.e., M = 1,000 equally-spaced quantiles from
the outer scenario’s log-normal distribution, and compare the estimation accuracies for different nested
simulation designs. We set N = M = 1,000 when solving (11) for the optimal design. The resulting simula-
tion budget in the optimal design is I = 2,148 replications. The optimal sampling decision, {cj }, allocates
29%, 21%, 21%, and 29% of the simulation budget I" to only 4 scenarios, i.e., # = 70.63,71.01,141.18,
and 141.94. These points are near the two tail ends of distribution of ¢, which can be explained by the
ESS formula. In this example, the inner simulation random variable X = Sr|S, for any outer scenario
0 = S, follows a log-normal distribution with the common variance o%(T — 7) with mean my =1In6 + (r —

(lnX—mgj )2—(In X—mgi)2

162)(T — 7). Thus, for any 6; and 6;, the LR is W;;(X) = exp < 52T =7 > and its second

2

no;—Ino; 2 . .
M). Consequently, the ESS of using one sample from 6, to estimate

moment is Ey, [W7] = exp ( ~
the conditional mean for scenario 6; is inversely proportional to exp((In6; — In6;)?), which indicates that
the ESS falls off quickly when 6; # 0,. Therefore, the fs on the tails benefit the most by pooling from
nearby s, whereas the 6s in the middle can achieve the desired ESS by pooling from both tails.

For each of the 1,000 €’s, we run 10,000 macro replications for all three simulation designs to estimate
the corresponding 1i(6). For each simulation design, the 2.5% and 97.5% quantiles of the estimated (6)
from these 10,000 macro runs at all f’s are connected to form a 95% confidence band. Three resulting
confidence bands, one for each simulation design, are depicted in Figure 2. Note that SNS is omitted from
Figure 2 as its confidence band is too wide to be compared in the same plot. Figure 2b is a zoomed in version
of Figure 2a near the mode of the outer scenario distribution. The black curve in these figures shows the

true option portfolio value 1(#) calculated from closed-form option pricing formulas in the Black-Scholes
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model. We see in Figure 2a that the optimal design’s confidence band is almost indistinguishable from that
of the SNS™ design. This demonstrates that the precision requirement (7) in our optimization formulation is
effective despite approximation (4). The small approximation error (5) shows up in the zoomed Figure 2b,
where we see the optimal design’s confidence band is slightly wider than the SNS* design’s. We note
that the optimal design achieves similar precision as the SNS* design with significant smaller simulation
budget: The optimal design’s simulation budget 2,148 is 465 times smaller than that of the SNS* design
(M N = 10°). We also see in Figure 2a that the regression-based design’s confidence band is significantly
wider than the optimal design’s and the SNS™ design’s when 6 = S, takes extreme values. In general, users
do not know the relationship between 1(6) and @ prior to simulation. So, particularly low precision in any

region could significantly impact tail risk measure estimation thus is undesirable.
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Figure 2  (a) shows the 95% confidence bands for different experiment designs based on 10,000 macro runs;
(b) is a zoomed-in version of (a) around the median of 6.

Next, we consider different numbers of outer scenarios M and compare the MSEs of the portfolio risk
measures computed from all four designs. We set confidence level o = 0.99 to emulate tail risk estimation.
The four nested statistics we consider are: (i) the a-quantile of (), (ii) indicator risk measure E[I(1(6) >
49)], (iii) hockey stick risk measure E[(1(6) —49).], and (iv) squared tail risk measure E[(1(6) —49)? |. The
latter three measures emulate probability of large losses, expected excess loss, and expected squared excess
loss (similar to semivariance, but measures variability in the tail), respectively. All are common in practical
ERM problems. These statistics cannot be calculated analytically, thus were estimated via MC simulation
by sampling 10® #s and computing p() at each 0 from its analytical expression, which are then used to
compute the four nested statistics of interest. Based on these 10® conditional means, the 99%-quantile is
le = 48.916, which is why 49 is chosen as the threshold in the other nested statistics.

Table 1 presents the MSE of the nested statistics computed from the four experiment designs by running

10,000 macro runs. Excluding when M = 128, the optimal design’s MSEs for all nested statistics are lower
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Table 1 Single-asset ERM example: MSEs of the nested simulation statistics computed from 1,000 macro
runs of the four experiment designs. All methods use the same simulation budget except for SNS™.

M Quantile Indicator Function ((-)
Opt. Design =~ SNS SNS*  Regression | Opt. Design ~ SNS SNS*  Regression
128 23 259 6.52 102 8.38E-04 8.77E-03 4.43E-05 5.66E-04
512 5.45 146 1.31 37.6 1.21E-04 3.58E-03 4.84E-06 1.27E-04
1024 2.52 109 0.503 20 2.54E-05 2.06E-03 1.71E-06 6.72E-05
2048 1.16 81.2 0.195 10.2 9.01E-06 1.29E-03 6.38E-07 3.64E-05
4096 0.517 52.9 0.059 4.93 2.40E-06 6.66E-04 2.46E-07 1.88E-05
M Hockey Stick Function ¢(-) Square Function ¢(+)
Opt. Design ~ SNS SNS*  Regression | Opt. Design ~ SNS SNS*  Regression
128 | 5.34E-02 8.89E-01 1.38E-03 9.01E-02 22 541 0.229 126
512 | 2.29E-03 2.28E-01 2.80E-04 1.53E-02 0.185 81 0.108 10.6
1024 | 4.81E-04 1.09E-01 1.06E-04 6.64E-03 0.0875 30.3 0.0585 3.29
2048 | 2.26E-04 5.97E-02 3.87E-05 3.15E-03 0.0456 14.1 0.0281 1.25
4096 | 8.51E-05 2.73E-02 1.41E-05 1.58E-03 0.0216 5.5 0.0125 0.543

than those of SNS and the regression approach. Moreover, the optimal design’s MSEs are within the same
orders of magnitude as those of SNS+ even though the latter requires a much larger simulation budget; the
optimal design’s simulation budget is about 247 and 1,760 times smaller than that of SNS* when M =
512 and M = 4,096, respectively. Further, for M > 512, the MSE of each risk measure computed from
the optimal design also shrinks by approximately a half when M increases by a factor of two, which is
consistent with our asymptotic results in Section 5.

However, when M = 128, we observe small-sample performance degradation of the optimal design; the
MSE of the probability (indicator () is larger for the optimal design than the regression method. Also,
when M shrinks to 128 from 512, the MSE of the estimated nested statistics increase by more than 4
times; notably, 119 times in the square function case. Since the performance guarantee for the optimal
design (and all other benchmarks) is shown asymptotically, such degradation for small M is not surprising.
Nevertheless, because the optimal design is formulated to minimize the simulation budget, when M is small
and thus the support of the outer scenario is not covered well by the size-M sample, then the optimal design

may not be as effective as when M is large.

7.2. Multi-Assets Enterprise Risk Management (ERM) Problem

In this section, we consider a more realistic ERM problem for an option portfolio consists of 10 underlying
assets and 300 options. The underlying assets are 10 non-dividend-paying stocks that follow the multidi-
mensional Black-Scholes model and their respective expected annualized returns are 5%, 6%, . . ., 14%, and
the respective expected annualized volatilities are 30%, 32%, . .., 48%. The correlations among stock prices
are randomly generated using the R library, randcorr. All stocks have an initial price Sy = $100 at time 0
and the risk-free rate is 2%. The following 30 options are written on each of the 10 stocks:

e 10 European options: 5 puts with strike prices {85,90,95,100,105} and 5 calls with strike prices

{110, 115,120, 125,130}.
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e 10 fixed-strike geometric Asian options: 5 puts with strike prices {85, 90, 95,100,105} and 5 calls with
strike prices {110,115,120,125,130}.

e 10 down-and-out put barrier options with strike prices {85,90,...,130} and lower barriers
{75,80,...,120}. The same type of barrier options are studied in Broadie et al. (2015) to showcase the
performances of the regression-based experiment design.

All options have maturity 7' = 2; all time units are in years. Stock prices are simulated at discrete time steps,

i.e., h =1/52 (approx. weekly), and are used to calculate the average prices in Asian options’ payoffs. Also,

conditioning on the stock prices at two consecutive times, the minimum price between the two times is

simulated via the Brownian bridge (Glasserman 2003, Chapter 6.4). Nested simulation is applied to estimate
the portfolio’s values at time 7 = 4 /52 (approx. one month) under different scenarios. The Asian and barrier
options are partial-time options, i.e., the Asian options’ average prices are calculated between 7 and T" and
the barrier options can be knocked out only between 7 and T'. These settings are similar to those in the

numerical examples in Broadie et al. (2015).

The portfolio value can be decomposed into 10 groups of 3 options written on the same stock. Then,
one can estimate the value of each group using only the simulated prices of the corresponding underlying
stock. This decomposition scheme is inspired by Section 5 in Hong et al. (2017) and is implemented for all
experiment designs we compare.

Compared to the single-asset example in Section 7.1, this multi-asset example has more stocks, options,
and time steps in both outer- and inner-level simulations. The proposed optimal nested simulation design
can be adapted to these additional complexities:

1. Exploiting the decomposition of the portfolio, the optimal design can be applied for each underlying

stock separately, allowing different simulation budget for each.

2. As shown in Section OS.8, the LRs are calculated using the one-step transition densities S, |5, for
different scenarios .S,. The ESS is also calculated from them.

3. The asymptotic properties shown in Section 5 are not affected by the portfolio decomposition. That is, if
they apply to each group of options written on the same stock, they apply to the portfolio value.

We run K = 1,000 macro runs to assess the performances of different experiment designs. For SNS*,
we simulate M = 1,000 outer scenarios and /N = 1,000 inner replications at each scenario. Unlike in Sec-
tion 7.1, the outer scenarios in different macro runs vary, but the same scenarios are used in the optimal
design and SNS* design in each macro run. For SNS, we set M and N to be [T'?/3] and [T''/3], respec-
tively, where I' is the average optimal simulation budget for the 10 stocks. For the regression-based design,
for each stock, we set the number of outer scenarios to be the average of the optimal design’s simulation
budgets for the 10 stocks, then simulate one inner replication per scenario. We fit the portfolio value to the
weighted Laguerre polynomials up to degree 3 of the 10 underlying stocks’ prices, which has 31 explana-
tory variables including the intercept. The fitted regression model is used to estimate p(6) for the same

1,000 outer scenarios as those in the optimal design and SNS™ design.
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Table 2  Multi-asset ERM example: Average number of outer scenarios, simulation budgets, and CPU time
(in seconds) per macro run. The third row shows the number of outer scenarios at which inner replications
are made. Speedup factors relative to SNS™ are shown in parentheses.

SNS* Optimal Design SNS Regression

Simulation Budget 10°  8200.8 (122x]) 8525.7 (117x]) 8200.8 (122x])
CPU time (seconds) 997 25.5(39.16x]) 28.2(35.42x])) 296 (3.37x])
# Outer Scenarios  10° 21.9 (46x]) 407.3 (2.5x)) 8200.8 (8.2x7)

Table 3  Multi-asset ERM example: MSEs of nested simulation statistics computed from 1,000 macro runs of
the four experiment designs. Numbers in parentheses are the MSE inflation factors compared to the SNS™

design.
SNS* Opt. Design SNS Regression
AMSE (p) 763 740 (0.97x) 36628 (48x) 3052 (4.1x)
MSE.Quantile 622 764 (1.2x) 100637 (162x) 11298 (18x)
MSE .Indicator ¢(-) 7.23E-06 8.51E-06 (1.18x) 9.22E-03(1275x) 1.44E-04 (20x)
MSE.Hockey Stick ((-) 4.81E-02 5.36E-02 (1.12x) 144 (3004x) 2.4 (50x)
MSE.Square ¢(+) 1933 1993 (1.03x) 7845487 (4060x) 231,413 (120x)

Experiments were run on Intel Xeon Gold 6334 8-core 3.6 GHz (Ice Lake) CPUs. Table 2 shows the aver-
age numbers of outer scenarios, simulation budgets, CPU time, and the corresponding speedup relative to
SNS™. Notice that the optimal design’s simulation budget is over 120 times smaller than SNS*’s. The SNS
has slightly larger simulation budget due to rounding. The CPU time for the optimal design is nearly 1/40
of the SNS’s, which includes the time for solving the LP, LR calculation, and simulation. For this example,
the optimal design’s CPU time is evenly split between solving the LP (13.5 seconds), and simulation and
LR calculation (12 seconds). The SNS’s CPU time is exclusively for simulation and more than double the
simulation and LR calculation time for the optimal design.

To compare the estimation error of all experiment designs, we compute the average MSE (AMSE) of the

conditional means in addition to the MSEs of the nested statistics.

1 K 1 Mo 9
AMSE(u) =22 52D (s = i)

where [i,,  is the estimated conditional mean in the mth scenario of the kth macro run and g, 5, is the
corresponding true conditional mean.

Table 3 summarizes the AMSE and MSEs for different experiment designs. Notice that the optimal
design’s AMSE and MSEs closely match those of SNS*. This demonstrates that the ESS constraints
in (7) work as intended. Considering the computational cost comparison in Table 2, the optimal design is
extremely efficient. While SNS has a similar CPU time as the optimal design, its AMSE and MSEs are
orders of magnitudes larger than those of the optimal design. The regression has higher AMSE and MSEs
than both SNS* and the optimal design; although the AMSE is only mildly (4.1x) higher, the MSEs of the
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nested statistics are orders of magnitude higher. This implies that the regression-based method has reason-
able precision within the central region of the outer scenarios but performs poorly at outer scenarios with
extreme conditional means. This observation is consistent with that made in Section 7.1.

In summary, the multi-asset ERM example demonstrates the applicability of the optimal design in prac-

tice and that it outperforms not only SNS but also the regression approach.

7.3. Input Uncertainty Quantification for Multi-Product Newsvendor Problem

In this section, we consider a single-stage newsvendor problem with ten products. We assume that the
fth product’s demand, X,, follows a Poisson distribution. All product demands are independent. For the
(th product, let ¢, and p, be the unit cost and sale price, respectively. The stocking policy, {k1,...,k10},
is a vector representing the stocking levels of the ten products. We chose p, =7 + 3¢, ¢, = 2, and k, =
9 + ¢ for all ¢ for the experiment. Given these inputs, the simulator computes the total profit, g(X) =
221 {pemin(X,, k;) — cok,}.

Unknown to us, the mean demand of the fth product is ¥ = 5 + ¢. We have 50 + 5¢ i.i.d. realiza-
tions from Poisson(J5) to estimate 9§ for the simulation study. Taking the Bayesian view, we model the
unknown parameter ¢/, as a random variable with a prior distribution and update it with the observations
from Poisson(¥§). To exploit conjugacy, the Gamma prior with rate 0.001 and shape 0.001 is adopted for
each ;. Then, the posterior distribution of ¥, is still Gamma with rate 0.001 + 50 + 5¢ and shape 0.001
plus the sum of observed demands of the ¢th product. Let @ = {¢}4,...,7,0} be a parameter vector sampled
from the joint posterior distribution. The expected profit given 0, 1(0) = Eg[g(X )], is a random variable
whose distribution is induced by the posterior of 6.

To measure uncertainty in the model, we construct a 1 — « credible interval (CrI) for 1(0) via nested
simulation. The analytical expression for ;(0) can be derived easily using the Poisson distribution function.
Thus, a CrlI can be constructed by sampling 64, .. ., 8, from the posterior of 8 and computing the empirical
a/2 and 1 — a/2 quantiles from 14(61), 1(62), . .., 1(6y); this interval is referred to as the oracle Crl in the
following and used as a benchmark to compare the performances of the algorithms.

Table 4 compares the Crls constructed by the four experiment designs as well as the oracle Crl from
1,000 macro-runs. Three different target coverage probabilities, 1 —a =0.9,0.95, and 0.99, are tested. For
each macro-run, a new set of real-world demands are sampled from the true demand distributions and the
joint posterior of € is updated conditional on the data. The oracle Crl is constructed from M = 1,000 8s
sampled from its posterior. The optimal design and the regression use the same 1,000 8s as outer scenarios
to construct Crls. The average of the simulation budget used by the optimal design across 1,000 macro-
runs is 1,471 (with standard error 1.1), which is significantly less than M N = 10° for SNS*. For the
regression, polynomial basis functions up to order 2 were adopted without cross-terms reflecting that all

product demands are independent.
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The empirical coverage probabilities and the widths of Crls in Table 4 are averaged over 1,000 macro
runs. The former is computed via Monte Carlo simulation: a million 8s were drawn from the posterior dis-
tribution of @ and 1(0)s were computed using the analytical expression from which the coverage probability

is estimated. For all algorithms, the same Monte Carlo sample was used.

Table 4  The estimated coverage probabilities and the widths of Crls constructed by the oracle, optimal
design, SNS, SNS™, and regression from 1,000 macro-runs. All methods use the same simulation budget
except for SNS™. The standard errors are in parentheses.

Empirical coverage Width
Target 1 — 0.9 0.95 0.99 0.9 0.95 0.99
Oracle 0.898(3E-04) 0.948(2E-04) 0.988(1E-04) 81.20(2E-03) 96.55(3E-03) 125.71(5E-03)
Opt. Design  0.886(7E-04) 0.940(5E-04) 0.985(3E-04) 81.01(4E-03) 96.37(5E-03) 125.40(7E-03)
SNS 1.000(2E-06) 1.000(3E-07) 1.000(1E-08) 235.38(2E-02) 277.18(2E-02) 348.41(3E-02)
SNS* 0.912(3E-04) 0.958(2E-04) 0.991(8E-05) 84.80(2E-03) 100.87(3E-03) 131.37(5E-03)
Regression  0.972(8E-04) 0.991(4E-04) 0.999(1E-04) 120.28(2E-02) 146.35(2E-02) 200.55(3E-02)

Table 4 shows that the Crls constructed by the oracle and the optimal design are very close in both
coverage and width across for all choices for «, although the latter shows a slight undercoverage compared
to the former. The undercoverage is caused by that the optimal design interpolates the simulation outputs
run at the sampling outer scenarios, however, it is alleviated as M grows. SNS clearly exhibits overcoverage
and wide Crls. This is because the small inner sample size, N, makes V(] large, which inflates the Crl.
Notice that SNS™ still overcovers and slightly wider Crls than the oracle indicating that the inflation of
Crl from MC error of fi; persists even with N = 1,000. The optimal design and SNS* show comparable
performances across all as, however, the former costs only 1/670 of the simulation replications of the latter
on average. The regression method shows clear overcoverage across all as compared to the optimal design.
In particular, the difference between the Crl widths from the two methods is wider for smaller «, which
coincides with the observations from the ERM examples; the regression tends to work poorly at predicting
(@) for extreme @s. On the other hand, the optimal nested simulation design does not suffer from this by
allocating more replications to the extreme outer scenarios so that they achieve the same target ESS.

We also examine how well our optimal design achieves the target variance of the conditional means, as
required by the constraint (7), which illustrates effectiveness of the ESS expression in approximating the
variance. Figure 3a shows the histogram of the ratios between the variance of the MC estimator, V[f(0;)],
and the variance of the pooled self-normalized LR estimator, V[z(8;)], of the conditional means for a fixed
set of 1,000 scenarios. Each MC estimator has N = 1,000 inner replications and the optimal design has the
same target N = 1,000. The variance estimates are obtained from 1,000 macro runs of both designs given
the same outer scenarios. Figure 3a shows that the variance ratios are close to 1, with average 1.21 and

maximum 1.38. This shows the ESS expression slightly underestimates the variance of the self-normalized
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Figure 3  (a) is a histogram of ratios between the variances of the (0) estimates by the optimal designh and
by SNS. (b) plots the number of outer scenarios M against minimized simulation budget, assuming
a constant target inner simulation N = 1000.

LR estimator, which is a price we pay to approximate the variances without having to simulate the model at
all.

Lastly, Figure 3b shows the growth of optimal simulation budget as M increases. In all designs, N =
M 1is chosen for M ranging from 1,000 to 10,000 and the plotted budgets are averaged over 100 macro
runs. Figure 3b depicts that the minimized simulation budget increases approximately linearly in M. In
comparison, the standard nested simulation’s budget would be M N, so it would increase with M? when

N = M. This comparison once again demonstrates efficiency of our experiment design.

8. Conclusions
We study an efficient nested simulation experiment design when the set of outer scenarios is given to the
experimenter. Using the LR method, our design makes both sampling and pooling decision for the nested
simulation. We minimize the total simulation budget while ensuring the (approximate) variance of the con-
ditional mean estimator at each outer scenario is of the same level as the MC estimator’s from the SNS
design with user-provided N. Our asymptotic analysis shows that the estimation errors of the studied nested
statistics achieve the fastest convergence rate when M = ©(/N). When the inner simulation’s input distri-
bution belongs in an exponential family, we show that the simulation budget of the optimal design grows
in O(M) by setting N = M. Compared to a state-of-the-art regression approach with the same simulation
budget, the empirical analyses show that our optimal design delivers significantly smaller estimation error.
In this paper, we focused on the setting where the vector of all inputs generated within each inner replica-
tion has a known and fixed dimension across outer scenarios. In future research, we will extend the proposed
scheme to a more general class of stochastic simulation models. One example is when the dimension is

unknown and random, which is a typical characteristic of a queuing-type simulation model. For these cases,
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computing the second moment of the LR without running the simulation model is a challenge, since the joint

density of the inputs is unknown a priori. A two-stage, or sequential experiment design may be considered.
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