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ABSTRACT
Rotator cuff pathology is a common musculoskeletal condition that disproportionately affects
older adults, as well as patients with diabetes mellitus and chronic kidney disease. It is known that
increased age and kidney dysfunction have been correlated to acidotic states, which may be
related to the increased incidence of rotator cuff injury. In order to investigate the potential

10 relationship between acidosis and rotator cuff composition and mechanics, this study utilizes
a 14-day murine model of metabolic acidosis and examines the effects on the supraspinatus
tendon-humeral head attachment complex. The elastic matrix in the enthesis exhibited significant
changes beginning at day 3 of acidosis exposure. At day 3 and day 7 timepoints, there was
a decrease in collagen content seen in both mineralized and unmineralized tissue as well as

15 a decrease in mineral:matrix ratio. There is also evidence of both mineral dissolution and
reprecipitation as buffering ions continually promote pH homeostasis. Mechanical properties of
the tendon-to-bone attachment were studied; however, no significant changes were elicited in
this 14-day model of acidosis. These findings suggest that acidosis can result in significant
changes in enthesis composition over the course of 14 days; however, enthesis mechanics may

20 be more structurally mediated rather than affected by compositional changes.Q5
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1 Introduction

Rotator cuff injuries affect over 20% of the population over
50 and over 50% of the population over 801. These injuries
cause pain, difficulty with work and everyday tasks, and

25 disturbed sleep. This may lead to significant physical, emo-
tional and financial burdens2. Rotator cuff tears are also
difficult to repair, with post-surgical failure rates ranging
from 20–90% depending on severity of the tear3,4. Despite
this correlation between age and tear rate, it remains

30 unclear what physiological factors may be responsible for
this increased risk of rotator cuff tears. Significant evidence
has shown that in addition to increased age, comorbidities
like diabetes and chronic kidney disease (CKD) increase
the risk of shoulder pain, frozen shoulder, spontaneous

35 tendon ruptures, and inferior outcomes after rotator cuff
arthroplasty5–12. Interestingly, all of these conditions are
highly likely to exhibit acidosis as a comorbidity13–15. This
suggests that acidosis may play a role in increasing the risk
of tendon tears and ruptures.

40 Acidosis is defined as a condition in which the
serum pH and bicarbonate (HCO3

−) drops below nor-
mal physiological levels. It generally presents as
a secondary condition to CKD and diabetes, affecting

over 1.3 million people every year16,17. Acidosis has
45been shown to induce significant change in the compo-

sition and structure of bone, cartilage and tendon18.
However, it is unknown how acidosis will affect the
bone, fibrocartilage, and tendon present at the supras-
pinatus enthesis. Clinically, acidosis is associated with

50bone dissolution, leading to decreases in bone mineral
density19 and bone volume. There is additionally an
increased rate of fracture20 and functional
limitations21. These bone defects are caused by bone
dissolution and resorption22–25. With respect to tendon

55tissue, acidosis is associated with spontaneous tears and
ruptures in clinical patients26–28. Studies have measured
softening of tendons with acidosis29 which may be
related to acidosis-induced elastosis26. Despite this
knowledge, it is unclear what mechanism causes

60changes to tendons with acidosis. Finally, a drop in
pH has been associated with increased radiological
joint destruction and the formation of granulocytes in
hyaline cartilage in a clinical setting26. Although the
effect on fibrocartilage has not been studied, decreased

65pH has been shown to cause a decrease in cartilage
matrix synthesis, an increase in chondrocyte apoptosis,
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and reduced turnover of hypertrophic chondrocytes in
the growth plate30–32. Although there is evidence that
acidosis affects each of these tissues independently, how

70 it affects the complex combination of these tissues
found at the Supraspinatus-humeral head enthesis
remains unknown.

In this study we use an established model of murine
metabolic acidosis23,33 to examine the compositional,

75 structural, and mechanical changes induced by in vivo
acid exposure in the supraspinatus-humeral head
enthesis.

2 Methods

2.1 Induction of metabolic acidosis

80 All animal experimental procedures were approved by
the Institutional Animal Care and Use Committee at
UConn Health Center. 4–6-month-old male CD-1 mice
(Charles River Laboratories, MA, n = 75) were ran-
domly distributed 5 to a cage (as per UConn Health

85 policy), racked by an independent veterinary assistant,
and allowed to acclimate for 7 days. Then, five groups
were each assigned three cages (n = 15): control, 1 day
acidosis, 3 days acidosis, 7 days acidosis or 14 days
acidosis based on their location on the racks. The four

90 acidosis groups were administered ammonium chloride
(NH4Cl) and 5% sucrose in the drinking water starting
at 0.2 M NH4Cl on day 0 with a 0.1 M increase every 3
days up to 14 days as per our previously established
model22,23,33. The mice in each acidosis subgroup (n =

95 15) were sacrificed on the appropriate day: day 1, 3, 7,
and 14. Control mice (n = 15) were housed alongside
the acidosis groups and were maintained on normal
drinking water. The control mice were sacrificed

throughout the study as previous data showed that 14
100days of normal diet had no effect on the mice23. Blood

pH and bicarbonate levels were measured via subman-
dibular bleed immediately before sacrifice. These are
reported in Figure 1. After sacrifice, the supraspinatus
tendon-humeral head complexes were collected.

105Complexes from the right side of the animal were
split into©two groups and examined via (1) Raman
Spectroscopy (n = 5 per group) and (2) Histology (n =
5 per group). Complexes from the left side were exam-
ined via (1) mechanics (n = 10–13 per group) followed

110by (2) microcomputed tomography (same samples as
the mechanics). Group sizes were established based on
results from previous work34–37 assuming a power of
0.8 and a significance level of 0.05.

2.2 Raman spectroscopy

115The mineral composition of the supraspinatus tendon-
humeral head complex was determined using Raman
spectroscopy (n = 5 per group) as has been previously
done35,36,38–40. Supraspinatus tendon-humeral head
complexes were dissected from thawed, freshly-frozen

120mice, embedded into Optimal Cutting Temperature
(OCT), and frozen at −80 °C. Sagittal sections were
cut via cryostat using the tape method41, placed onto
glass slides, and stored at −80 °C. Raman spectra were
obtained using Witec α300 Raman spectrometer

125equipped with a 785 nm laser. Approximately 10–15
Raman measurements were obtained spaced at ~ 4–8
µm across the visualized tendon-to-bone attachment.
Spectra were acquired with a 50X objective and an
acquisition time of 45 × 2 sec. Each Raman spectra

130underwent cosmic-ray removal and background-
correction using the Witec Program 5.1 software. The

Figure 1. Blood gas results showing the changes in blood pH, HCO3
−, and calcium content as a function of days of NH4Cl

administration. Bars represent p<0.05.
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same software was used to fit the peaks of interest with
Lorentzian curves to obtain the peak area, peak center
location, and peak width of the peaks of interest. The

135 peaks of interest were the 960 cm−1 ν1 phosphate peak,
the 1070 cm−1 carbonate peak, the 1450 cm−1 CH2

bending peak, and the 1660 cm−1 amide I peak. The
1450 peak is associated with CH2 vibrations in nearly
all bone proteins and the 1660 peak is associated with

140 amide I in the collagen environment; therefore, the
1660/1450 peak area ratio is used as a relative indicator
of collagen content. The ratio of the 960/1450 peak
areas was used to calculate the mineral:matrix ratio.
Since phosphate is present in the apatite and CH2 is

145 present in nearly all bone matrix proteins, this provides
information as to the relative bone mineral density. The
1070/960 peak area ratio is used to obtain the carbo-
nate:phosphate ratio within mineralized tissue. Both the
phosphate and carbonate that create these peaks are

150 associated with the mineral; therefore, this ratio is
representative of the relative amount of carbonate in
the bone mineral. The peak center locations calculated
from the fits of the peaks of interest were used to
elucidate the molecular environment of those moieties.

155 The full width of the peaks at half the maximum height

(FWHM) were used as inverse indicators of the homo-
geneity of the molecular environment or the crystal-
linity of the mineral. These data are shown in Figures 2
and 3. Data acquisition was not blinded, but samples

160were randomized before collecting data to avoid varia-
tions in Raman acquisition between groups.

2.3 Histology

Following sacrifice, 5 supraspinatus tendon-humeral
head complexes were dissected from each of the groups

165(control, day 1, day 3, day 7 and day 14). Samples were
fixed in 4% paraformaldehyde (PFA), demineralized in
14% ethylenediaminetetraacetic acid (EDTA) for 12
days, and stored in 70% ethanol. Sections were then
fixed in paraffin and sectioned. Blinded paraffin sec-

170tions were stained using Trichrome to identify struc-
tural differences across the enthesis. The thickness of
the mineralized fibrocartilage was measured from the
subchondral bone to the mineralization tidemark. The
thickness of the unmineralized fibrocartilage was mea-

175sured from the tidemark to the beginning of the fibrous
tendon. Six measurements were made for each tissue in
each sample using ImageJ software. Structural

Figure 2. Raman outputs relative to the organic matrix of both mineralized and unmineralized tissues. The top row presents data
associated with the mineralized tissues of the enthesis while the bottom row presents data for the unmineralized tissues. (A+B)
representative Raman spectra of the 1240, 1450, and 1660 cm−1 peaks representing the amide III, CH2 bending, and amide
I moieties, respectively. (C+D) plots of the 1660/1450 ratio, which is representative of collagen content, as a function of time. (E+F)
plots of the 1450 peak FWHM, which is inversely proportional to the atomic order of the organic matrix, as a function of time. (G+H)
plots of the 1660 peak location, which is known to shift with collagen denaturation, as a function of time. * represents p<0.05 and †
represents p<0.1.
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variations were determined visually by a blinded and
trained observer. Sections were also stained with

180 Verhoeff—Van Gieson (VVG) stain for elastic fibers
and collagen42–46. For VVG staining, the area of the
tendon was manually selected on randomized images
by an experienced user. This area was then color thre-
sholded in ImageJ to separate the pink collagen stain

185 and the black elastic fiber stain. The black stained area
was then calculated in ImageJ and normalized by the
total selected tendon area to obtain the percentage
Verhoeff -stained area of the tendon. This is an indi-
cator of the amount of elastic fibers present in the

190 sample. This data is shown in Figure 4.

2.4 Mechanics

Uniaxial tensile testing was conducted on thawed sam-
ples to determine the mechanical properties of the
supraspinatus tendon-humeral head complex (n = 10–

195 13 per group) according to established protocols34,47–50.
Supraspinatus-humeral head complexes were dissected,
and the supraspinatus muscle was removed from the
supraspinatus tendon with blunt dissection. The
humerus was placed into a custom 3D-printed cast to

200stabilize the diaphysis and the supraspinatus tendon
was then placed into a custom aluminum clamp50.
Testing was performed in a 37 °C phosphate-buffered
saline bath installed on the Mach-1 mechanical tester
with a 25 kg load cell.

205Samples were loaded at a rate of 0.01 mm per second
until failure. Locations of failure (enthesis, tendon bulk,
or bony avulsion) were recorded for each sample. The
force-displacement curve was used to calculate struc-
tural mechanical properties: maximum force, yield

210force, stiffness, and work. Gage length and tendon
cross-sectional area, calculated from the micro-
computed tomography, were utilized to produce stress-
strain curves and calculate maximum stress, yield
stress, modulus, resilience, and toughness. Values of

215stiffness and modulus were calculated by cyclic fitting
of the linear-appearing region of the relevant curve
with 10 points. The location of the 10 points was
shifted with every cycle to maximize the R2 value. The
stiffness/modulus were calculated from the slope of the

220region with the greatest R2 value ensuring that we are
in the linear elastic region. Measures of yield were
defined as the location at which the slope diverged
from that determined for modulus/stiffness by more

Figure 3. Raman outputs relative to the mineralized enthesis tissue. (A) representative Raman spectra of the 960 and 1070 cm−1

peaks associated with phosphate and carbonate in apatite, respectively. (B) plot of the mineral:Matrix ratio as a function of time. (C)
plot of the carbonate to phosphate ratio (CO3:PO4) as a function of time. (D) plot of the 960 peak FWHM which is inversely
proportional to the mineral crystallinity as a function of time. * represents p<0.05 and † represents p<0.1.
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than 5%. Resilience and toughness were calculated from
225 the area under the curve of the elastic and complete

stress-strain curve, respectively. Data acquisition was
not blinded, but samples were randomized before col-
lecting data to avoid variations in mechanical testing
parameters between groups.

230 2.5 Microcomputed-tomography

After mechanical testing, the bones and tendons were
imaged via microcomputed tomography (μCT) (n
= 10–13 per group). The tendons were stained with
an iodine stain (10X dilution of 1% iodine metal (I2)

235 and 2% potassium iodide (KI) in water) for

approximately 18 hrs to increase contrast. All sam-
ples were scanned in a Scanco 50 μCT with
a resolution of 16 μm. Bone characteristics were mea-
sured within the medial epiphysis of the humerus

240using CTAn (Bruker) to obtain bone volume, tissue
volume, cortical thickness and trabecular parameters.
The relative bone volume was calculated from the
ratio of bone volume to total volume (BV/TV).
Trabecular parameters include trabecular thickness

245(Tb.Th.), trabecular number (Tb.N.), and trabecular
separation (Tr. Sp.) according to Dempster et al. and
Parfitt et al51,52. This data is shown in Figure 5.
Tendon cross-sectional area was measured along the
entire length of the tendon to obtain mean and

Figure 4. Representative images of the VVG staining for each time point accompanied by quantification of the unmineralized
tissue percent area exhibiting Verhoeff staining. * represents p<0.05. Scale bars are 1 mm.
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250 maximum cross-sectional values. Data acquisition
was done blinded as was the analysis.

2.6 Statistics

All quantitative data was analyzed for normality and
equal variance using the Shapiro-Wilk and Levene

255 tests, respectively. Data which fulfilled both the
requirements of normality and equal variance were
analyzed using 1-way ANOVA with Tukey tests for
means comparison. These datasets included the
FWHM of the 960, 1450, and 1660 cm−1 peaks, the

260 peak center location of the 1450 and 1660 cm−1

peaks, and all of the µCT data sets. Data that did
not meet the requirements were analyzed using non-
parametric Kruskal-Wallis testing with Dunn’s tests
for means comparison. These datasets include the

265 mineral:matrix ratio, the carbonate:phosphate ratio,
the 1660/1450 ratio, the 960 peak center location, all
of the mechanical data, and the histological data.
Testing was done using Origin Pro 2022.
Significance was established at p < 0.05 and trends

270 are reported for p < 0.1. Outliers were identified
using Grubb’s test and eliminated from datasets
before statistical analysis if applicable. Plotted data
is shown as mean ± standard deviation.

3 Results

2753.1 Diet changes successfully induced and
maintained acidosis in the mice

As previously reported for these mice53, the graded
addition of NH4Cl successfully induced acidosis. The
blood pH and HCO3

− were both reduced compared to
280control at all days except day 3 (Figure 1A&B). The

blood calcium was elevated at all days compared to
controls (Figure 1C).

3.2 Acidosis affects the composition of both
mineralized and unmineralized enthesis tissues

285In terms of the organic matrix, we compared the
effects of acidosis on both the composition of miner-
alized and unmineralized tissue (Figure 2A,B). The
ratio of the 1660:1450 peak areas, which represent
the collagen Amide I and protein CH2 vibrations,

290were reduced at days 3 compared to control and day
14 in both mineralized and unmineralized tissues
(Figure 2C,D). This suggests a reduction in collagen
compared to the overall proteinaceous matrix.
Similarly, the width of the 1450 peak generally

295increased in both the unmineralized and mineralized
tissues at days 3 and 7 compared to control and day 14

Figure 5. Structural effects of acidosis on the bone and tendon. (A) representative μCT images of the humeral epiphysis for each
time point. (B) BV/TV as a function of time with acidosis. (C) plot of the trabecular number as a function of time. (D) plot of Median
tendon area as a function of time. (E) plot of cortical thickness at the humeral epiphysis as a function of time. † represents p<0.1.
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(Figure 2E,F). In the mineralized tissue, the peak cen-
ter location of the 1450 peak was significantly reduced
at days 3 and 7 compared to control groups

300 (SFigure 1). The width of the 1660 peak was generally
unaffected by the acid exposure (SFigure 1), although
the peak center location was shifted to higher wave-
number at days 3 and 7 compared to day 14
(Figure 2G,H).

305 The mineral content, as determined from the ratio of
mineral-to-matrix ratio, exhibited a decrease on day 3
compared to day 0 and 14 (Figure 3B). The mineral
carbonate content showed no change with acidosis expo-
sure (Figure 3C). However, the mineral crystallinity, as

310 determined from the inverse of the 960 peak FWHM, was
increased at days 3 and 7 compared to day 14 (Figure 3D).
The location of the 960 peak center also had a trending
increase at day 3 compared to day 14 (SFigure 1E).

3.3 Acidosis affects tendon elastin expression

315 Histologically, there were no significant morphological
differences at the enthesis at varying days of acid expo-
sure (SFigure 2). However, there were statistically sig-
nificant differences between the expression of elastin as
determined by Verhoeff’s staining between day 1

320 and day 14 (Figure 4). At day 14, elastin expression
increased nearly 3-fold compared to elastin expression
in control samples.

3.4 Acidosis has minor effects on bone but not
tendon architecture

325Microcomputed tomography was used to determine the
effects of acidosis on the architecture of the humeral
head (Figure 5A). Acidosis only induced minor changes
to the bone structure. Although there was no significant
change in BV/TV (Figure 5B) there was a trending

330decrease in trabecular number at day 3 compared to
controls (Figure 5C). Cortical thickness of the humeral
epiphysis also remained unchanged (Figure 5E).
Tendon cross-sectional area was not affected by acido-
sis exposure, as there was no significant difference in

335mean or maximum values (Figure 5D). The thickness
of the mineralized and unmineralized fibrocartilage as
well as the total fibrocartilage thickness at the supras-
pinatus-humerus enthesis was unchanged at any acido-
sis timepoint (SFigure 2).

3403.5 Acidosis has no effects on the enthesis
mechanics

Tensile testing of the supraspinatus-humerus complex
indicated that there was no significant change in the
structural or material mechanical properties of the

345enthesis. Neither the maximum force, maximum stress,
stiffness, modulus, yield force, yield stress, work to
fracture, nor toughness exhibited significant differences
between time points (Figure 6 & SFigure 3).

Figure 6. Mechanical responses to acidosis. (A) schematic showing the grip system used to mechanical load the supraspinatus
tendon-humerus complex. (B) representative stress-strain diagrams for each timepoint. (C) plot of stiffness as a function of time. (D)
plate of modulus as a function of time. (E) plot of work as a function of time (F) plot of toughness as a function of time. † represents
p<0.1.
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4 Discussion

350 Clinically, acidosis is associated with reduced bone
mineral density, increased fracture risk, and reduced
functional outcomes19,20,54. As a result, the effects of
acidosis on musculoskeletal tissues have been experi-
mentally investigated for several decades55–59. However,

355 most of these studies have focused on either long bones
or calvarial tissue. This is despite the fact that clinical
acidosis is also associated with increased tendon tears
and ruptures26,60,61. Therefore, this study focused on
the effects of a chronic acidosis state on the supraspi-

360 natus enthesis, with specific attention to the structure,
composition, and mechanics of the enthesis site.

The mice in this study were maintained in acidosis
via administration of NH4Cl in the drinking water as
per our established protocols23. As previously pub-

365 lished, blood gas results show that the mice exhibited
reduced blood pH and HCO3

− at all timepoints
except day 3 when the pH returned to control levels
(Figure 1A, B)22. Blood calcium levels increased at all
timepoints indicating that the acidosis is inducing bone

370 dissolution (Figure 1C). To better understand the
effects of acidosis and its compensatory mechanisms
on the enthesis, its effects on the tissue composition,
structure, and mechanics was investigated.

The biggest acidosis induced changes were composi-
375 tional changes to the bone and tendon extracellular matrix.

The 1660/1450 peak area ratio calculated from the Raman
data, which is used here as a relative indicator of collagen
content, was reduced at day 3 compared to control in both
tendon and bone (Figure 2C,D). This suggests that the

380 reduction in pH is causing a decrease in both tendon and
bone collagen content. This could be due to
a physiochemical response as collagen is known to be pH-
dependent and undergo denaturation in acidic
environments62–64. Collagen denaturation has been

385 shown to reduce the area of the amide I subpeak for
assembled collagen at 1640 cm−1 and increase the area for
the amide I peak of denatured collagen at 1670 cm−1 lead-
ing to an overall shift in the total Amide I peak toward
higher wavenumbers65. The Amide I peak location in the

390 acidosis supraspinatus enthesis exhibits a shift toward
1670 cm−1 at day 3 compared to control (Figure 2G,H),
suggesting that there may be an increase in collagen dena-
turation. Alternatively, there is evidence that acidosis inhi-
bits collagen production by osteoblasts suggesting that

395 there may also be cell-mediated processes affecting the
tissue composition66. Additionally, the 1450 cm−1 peak
width increased at days 3 and 7 compared to control,
especially in the bone (Figure 2E,F). This peak is associated
with bending of CH2 bonds and therefore represents the

400 broader organic extracellular matrix environment. An

increase in the width of the 1450 cm−1 peak suggests that
there is an increase in disorder or in the variety of organic
moieties present in the tissue. As seen in Figure 2A, this
broadening in the 1450 peak seems to be caused in part by

405increased signal between 1400–1440 cm−1. Signal at this
wavelength has been associated with hydrated denatured
collagen67. However, increased signal in the 1420–1450
cm−1 region has also been associated with increased lipid
content68. As acidosis has been shown to modify lipid

410metabolism and increase phospholipid formation, this
broadening could be associated with increased lipid forma-
tion in the bone tissue69. Interestingly, the changes are
significantly stronger in the bone tissue than in the tendon.
This may be a result of increased fluid flow and vascularity

415in the bone tissue as compared to the tendon. Although
there are significant changes in the organic matrix at day 3
and 7, the tissue appears to recover by day 14. It is unclear
how the bone recovers despite the continued reduced
blood pH. Due to the systemic induction of acidosis, it is

420possible that other mechanismsmay be activated with time
to minimize bone loss or protect against bone degradation.

Due to strong similarities in the elastin and collagen
Raman spectra67,70, Verhoeff’s staining was used to
identify the presence of elastic fibers in the tendon.

425Unlike the collagen which appears to undergo modifi-
cations at early time points, elastin levels increased
significantly and rapidly at day 14 compared to day 1
(Figure 4). Chronic acidosis has been shown to increase
elastic fiber staining in humans, known as elastosis, in

430the skin, lungs, cartilage, bone, and aorta as compared
to control groups without chronic acidosis71. The ori-
gin of this increased elastin is not completely clear
although there is some evidence that fibroblast extra-
cellular matrix deposition may be affected by changes

435in pH71. Although the rapid change in ECM composi-
tion seems surprising, these types of rapid changes in
elastic fiber content have been seen in other contexts
such as in the aorta during the immediate perinatal
period72. Here, there is a large increase in elastin con-

440tent within 3 days of birth. Interestingly, this follows
a spike in blood acidity measured at postnatal day 173.
In addition, similar increases in elastin have been
reported clinically in the tendons of patients with
acidosis or with conditions that co-present with acido-

445sis such as chronic kidney disease26,61. These are asso-
ciated with tendons ruptures or tears.

In addition to changes in the organic matrix of bone,
there were also changes in the mineral content and crys-
tallinity. The subchondral bone at the supraspinatus

450enthesis exhibits a decrease in mineral:matrix ratio
at day 3 (Figure 3B), suggesting that there may be a loss
of tissue mineral content at early acidosis timepoints. As
previously mentioned, the mice exhibited reduced pH

8 S. NAG ET AL.



compared to controls at all timepoints except day 3
455 (Figure 1A). This trend toward mineral loss may point

to an explanation for this return to pH homeostasis as
bone dissolution is a known mechanism for the release of
buffering ions to regulate pH22–25. Reduction in mineral
content has also been measured in the femurs of mice

460 exposed to the same acidosis regimen22,23. One of the
buffering ions that is commonly released from bone is
bicarbonate, HCO3

−, which can result in a reduction of
bone carbonate content. However, in this study there was
no change in the relative CO3:PO4 ratio, suggesting that

465 although there is mineral dissolution, there is not prefer-
ential removal of carbonate in the mineralized tissue
(Figure 3C). However, the mineral does exhibit
a decrease in the 960 cm−1 peak width, which is inversely
proportional to the mineral crystallinity, at day 3

470 (Figure 3D). This points to dissolution of the mineral
followed by reprecipitation into more crystalline crystals.
This increase in crystallinity is associated with a decrease
in mineral solubility, thus reducing its ability to continue
supplying buffering ions to the system74. This reduction

475 in solubility in addition to the increase in NH4Cl dosage
may explain the return to acidic blood pH in the following
timepoints.

Structurally, when examining the effects of chronic
acidosis on the supraspinatus tendon-humeral head

480 enthesis via microcomputed tomography, minimal
changes were seen in bone architecture. There was
a trending decrease in trabecular number in the hum-
eral epiphysis at day 3 of acidosis exposure when com-
pared to control (Figure 5C). Similar decreases in

485 femoral trabecular number at day 3 were also seen in
mice exposed to the same acidosis regimen22. This is
likely related to mineral loss measured using Raman
spectroscopy and indicative of bone dissolution.
Otherwise, there were no significant changes to either

490 the trabecular or the cortical parameters
(Figure 5C&E). Additionally, there were no significant
changes to the tendon cross-sectional area (Figure 5D).
In addition, there were no visible changes to the
enthesis structure as determined from trichrome stain-

495 ing. This suggests that although there may be signifi-
cant compositional changes to the enthesis tissue, there
are no significant changes to the tissue structure.

Changes in collagen denaturation, elastin content, as
well as mineral content and crystallinity have all been

500 shown to affect tissue mechanics26,74–77. Therefore, it
was necessary to examine the enthesis mechanics as
a function of acidosis exposure. Despite all of the com-
positional changes, there were no significant changes to
any of the mechanical properties of the enthesis at any

505 time point (Figure 6). This suggests that the composi-
tional changes measured here are either too small to

affect whole tissue mechanics or that the enthesis
mechanics is controlled by other factors. Studies look-
ing at the effect of paralysis on enthesis mechanics

510suggested that it may be primarily controlled by bend-
ing of the cortical bone in the humeral head and its
supporting trabecular architecture35. In this case, the
lack of change in cortical thickness and BV/TV may
maintain the tissue mechanics despite the composi-

515tional changes.

4.1 Limitations

The acidosis model used here maintains acidosis for 14
days. However, it is possible that continued acidosis could
lead to enhanced elastosis and bone loss resulting in com-

520promised bonemechanics. Therefore, it could be of interest
to extend treatment to longer times in order to more fully
replicate the effects of chronic acidosis in the mice.

5 Conclusions

In this study, acidosis was induced in mice using an estab-
525lishedmodel of metabolic acidosis for 14 days. The acidosis

had significant effects on the composition of the enthesis
tissue especially in terms of the elastic matrix. At early time
points (day 3 and 7), there were numerous changes sug-
gesting that the acidosis causes dissolution and denatura-

530tion of collagen in both the bone and tendon
compartments of the enthesis. This was followed by
a rapid increase in elastin content in the tendon at Day
14. In addition to the changes in organic matrix, there was
also a decrease in mineral content at days 3 and 7. This

535evidence of early mineral dissolution is in agreement with
blood gas data. An increase in mineral crystallinity along-
side the measured dissolution points to mineral dissolu-
tion/reprecipitation processes occurring in the mineralized
enthesis. Despite these compositional changes, there are

540almost no significant changes to the enthesis structure or
mechanics with acidosis. This suggests that the enthesis
mechanics are more closely controlled by structural rather
than compositional factors. Overall, these results point to
significant and rapid compositional changes in the enthesis

545as a result of systemic acidosis. Although there were no
mechanical modifications seen in this study, repeat cycles
of acidosis—which are commonly seen with CKD, dia-
betes, and diet-induced acidosis—could lead to chronic
modifications and long-term effects.
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