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1. Introduction

Discrete-event simulation models provide insight on the operational behavior of real systems and forecasts on
the behaviors of future systems and policies. Such models typically capture stochastic behaviors using probabil-
ity distributions fitted to a real-world data sample. In this case, finiteness of the sample introduces errors in the
estimated input distributions, affecting the fidelity of the analyses. Barton and Schruben (2001) show the actual
coverage of simulation-based confidence intervals (ClIs) for the expected waiting time for simple queues can be
as low as 20% for nominal 90% ClIs with input distributions estimated from samples of size 500. Input uncer-
tainty (IU) analysis characterizes the effect of such input model error on the simulation output variability, in con-
trast to the simulation error caused by the Monte Carlo randomness incurred in finite-run simulation. A
common goal is to develop a CI for mean system performance that reflects both IU and simulation error.

A popular approach to address IU is bootstrapping the input data to approximate the statistical characteristics
of real-world samples (Efron 1987). Barton and Schruben (1993) first apply this idea to a discrete-event simulator
by using resampled input data to drive simulation runs and estimate the output performance measures and then
computing their quantiles to produce a CI. Since then, bootstrapping has been explored in several variants
including metamodel-assisted approaches (Barton et al. 2014, Xie et al. 2016) to improve budget allocation (Yi
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and Xie 2017) and to estimate the contribution of output variance attributed to IU (Cheng and Holland 1997,
Song and Nelson 2015, Lam and Qian 2018).

Quantifying IU via bootstrapping typically involves three steps: (i) resampling (bootstrapping) the input
data, (ii) generating simulation outputs at each bootstrap sample and averaging them to compute the bootstrap
sample means, and (iii) using the sample means to measure IU by computing relevant statistics. In this paper,
we primarily focus on methods where Step (iii) uses the empirical quantiles of the sample means to generate
ClIs, which encompasses most standard bootstrap methods such as basic or percentile bootstrap (Efron and Tib-
shirani 1994). Depending on how Step i is conducted, the methods fall into two categories, nonparameteric ver-
sus parametric bootstrap. The former directly samples from the empirical distribution of the input data. The
latter makes a parametric assumption about the distribution family of the input data, estimates its parameters,
and then draws a bootstrap sample from the fitted distribution. In many cases the nonparametric setting is
arguably more desirable as most real-world stochastic phenomena cannot be characterized by parametric fami-
lies, and parametric assumptions can introduce model errors that can be difficult to characterize. Conversely,
the nonparametric case is considered more difficult to analyze as less model assumptions are available to lever-
age on. For example, in the parametric context, one can readily apply the delta method which involves comput-
ing the gradients of the output with respect to the input parameters to construct the CI (Cheng and Holland
1997, 2004; Lin et al. 2015; Morgan et al. 2019). In the nonparametric delta method, the gradients are replaced
with the influence function (Hampel 1974) that has an effective dimension growing with the data size, thus add-
ing substantial complexity to its estimation. Another popular parametric approach is to fit a metamodel of the
performance measure as a function of input parameters after running replications at some parameter vectors
selected in an experiment design (Barton et al. 2014, Xie et al. 2016). However, these approaches run into com-
putational challenges when the dimension of the input parameter vector is high. Typically, it is recommended
that the number of parameter vectors in the experiment design should be an order of magnitude larger than its
dimension, which may far exceed the number of replications adopted in nonparametric approaches. Moreover,
the metamodel fitting process may require optimization, which can be computationally demanding especially
when the problem is high dimensional.

Our goal is to devise efficient ways to use nonparametric bootstrap samples to generate tight CIs that address
IU. We first elaborate on the methodological challenges that the existing nonparametric bootstrap methods fail
to address. The classical quantile-based CIs such as basic or percentile bootstrap ClIs can exhibit substantial
overcoverage when applied to quantify IU since these techniques are created for a model whose only source of
uncertainty is input data, which is equivalent to running infinite replications in Step ii. When the replication
size at each bootstrap sample is small relative to the input data size, the bootstrap sample mean is corrupted by
simulation error making the empirical quantiles biased and producing a wider CI that overshoots the target
coverage probability. To tackle this issue, one can increase the number of replications at each bootstrap sample
to wash away the simulation error, but this may add large computational overhead. An alternative approach is
to “deconvolute” the simulation and input model errors via density estimation (McIntyre and Stefanski 2011).
However, the goal of estimating a full density function is more demanding than generating CIs and these meth-
ods typically require kernel selection and additional distributional assumptions on the simulation error.

Motivated by these challenges, this paper investigates nonparametric bootstrap methods that are efficient
on two fronts: statistical, namely that our approach generates tight and correct-coverage Cls, and computa-
tional, namely that our approach does not require an insurmountable simulation effort to wash away all simu-
lation error. We propose two new methods based on deflating the variability of bootstrap outputs. The first
is sample shrinkage that systematically down-scales the magnitude of each bootstrap sample mean so that the
variability of the resulting outputs only reflects the effect of input model error to generate valid CIs. The sec-
ond method, quantile shrinkage, directly down-scales the upper and lower empirical quantiles of the bootstrap
sample mean.

To the best of our knowledge, the shrinkage bootstrap technique is first proposed by Davison and Hinkley
(1997) to devise a bootstrap resampling scheme that provides the correct first and second moments for the boot-
strap statistic and measurement error, respectively. Under the assumption the measurement error has homosce-
dastic variance across all bootstrap samples, they derive the expression for the shrinkage factor and its estimator.
Flynn and Peters (2004) apply the same idea to analyze clustered medical cost data, where each cluster is
regarded as a group. Ng et al. (2013) discusses computational implementation of the shrinkage bootstrap method
in Stata. However, none of the reviewed work discusses how the estimation error of the shrinkage factor affects
the error in the population statistic the bootstrap method aims to estimate. Doing so requires carefully choosing
the bootstrap and simulation sample sizes relative to the input data size. Additionally, using the plug-in estima-
tor for the shrinkage factor makes the resulting shrunk simulation outputs dependent with each other. Yet, none
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of the existing work carefully addresses how the dependence affects validity of the bootstrap estimate of the pop-
ulation statistic.

In this paper, we address both sample size requirements and dependence issue in our asymptotic analyses.
Specifically, we make the following theoretical contributions to the shrinkage bootstrap literature. First, we pro-
vide the requirements for the bootstrap and simulation sample sizes as functions of the input data size so that
the resulting shrunk simulation output has the correct marginal distribution that the bootstrap experiment is
designed to estimate asymptotically. Second, given our sample-size choices, we show that the dependence
among the shrunk simulation output fades away asymptotically as the input data size increases and thus, the
proposed shrinkage bootstrap Cls indeed provide the exact asymptotic coverage. Third, our analysis allows the
simulation error to be heteroscedastic across the bootstrap samples. Last, we robustify the shrinkage bootstrap
CI's empirical performance against the estimation error of the shrinkage factor by computing its lower confi-
dence bound via bootstrapping the same simulation runs made to estimate the shrinkage factor (i.e., no addi-
tional simulation cost). Moreover, we provide guidance to determine whether to shrink a bootstrap CI based on
the lower bound.

We also report several computational experiments to demonstrate efficiency of the shrinkage Cls including a
comparison with metamodel-based IU quantification methods for a large-scale problem (with more than 100
input parameters).

We close this section by contrasting our approach with several recently proposed nonparametric IU quantifica-
tion methods. First, Song and Nelson (2015) and Lam and Qian (2018) use the bootstrap to estimate the IU vari-
ance and construct a normality-based CI. We demonstrate that our Cls not only asymptotically achieve the same
half-widths as the normality-based Cls, but also provide tighter empirical CIs for finite sample cases. Second,
Glynn and Lam (2018) devise a sectioning approach to construct Cls based on ¢ statistics, which advantageously
requires low simulation budget, but could lead to long Cls especially under limited data. Our Cls, conversely,
match the normality limit and hence are tighter. Third, Lam and Qian (2016) proposes an optimization approach
to build CIs based on the empirical likelihood, which requires algorithmic configurations that are arguably
harder to set up than our bootstrap approaches. Fourth, Xie et al. (2021) propose a nonparametric Bayesian
approach via Dirichlet mixtures to fit input models, which is different from our frequentist view. Last, Wang et al.
(2020) and Song (2021) study metamodels based on nonparametric kernels to incorporate IU into simulation opti-
mization instead of IU quantification addressed here.

The rest of this paper is organized as follows. Section 2 mathematically formulates the IU problem and pre-
sents the challenges in direct bootstrap resampling. Section 3 introduces our shrinkage approaches, which are
theoretically analyzed in Section 4. We investigate asymptotically efficient simulation sample-size choices for the
proposed Cls to achieve tight coverages. Section 5 discusses robustifying the shrinkage Cls. Section 6 presents
numerical results followed by concluding remarks in Section 7.

A preliminary conference version of this paper, Barton et al. (2018), explores our idea to enhance direct resam-
pling, however, does not provide theoretical analyses or large-scale experiments. Moreover, the considered Cls
are different from those proposed here.

2. Formulation

Suppose the objective of simulation analysis is to estimate a performance measure of the system represented as
an expected value of a simulation output. The input cumulative distribution function (cdf) that drives the simula-
tion is denoted by F, which may be multivariate. The simulation output from the rth replication is Y,(F) =
Y(F)+¢,(F),r=1,2,...,R, where {(F) 2E[Y,(F) | F] and ¢,(F) represents the simulation error with zero mean and
finite variance o%(F) £ V[e,(F) | F]. We take the frequentist view and assume there exists true distribution F° that
generates real-world input data and define 02 £ V[¢,(F°)]. The input distribution fitted to the data are denoted by
F.1U is introduced when we use F in place of F° to run the simulation and obtain

Y(F) = p(F) + &,(F) = Y (F) + ($(F) = p(F)) + (). (1)

Note that F is a random function constructed from the input data, but F is deterministic. Two sources of error
are manifested in (1); the first is referred to as input error reflecting that F® # F in general; the second is simula-
tion error €,(F).

2.1. Direct Bootstrap Resampling for IU Characterization
To motivate our investigation, we first present the case where ¢ can be evaluated exactly without simulation
error and then discuss challenges when simulation error is considered. Suppose from F°, we observe an
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independent and identically distributed (i.i.d.) sample of size n. From the input data, the empirical cdf Fo(-) =
(1/n)> ", I(X; < -) can be defined, where I(-) denotes the indicator function and X; is the ith observation of the
input data. The bootstrap principle stipulates that given F, the quantity F; constructed by resampling 7 values
from the original data with replacement (i.e., F()=(1/ )P (ng) < ), where each th) is sampled from Eo)
satisfies

W(Ey) — p(Eo) R(Eo) — p(FO), @)

when 7 is large, where % denotes approximate equality in distribution, and the left-hand side of (2) is conditional
on Fy. If (2) holds, then we can use the distribution of I,ZJ(P b) — ¢(F 0) given £y to approximate that of
¢(F 0) — Y(F°); notice that the former does not involve F°. Consequently,

Pu(ta/n < Y(Fp) —(Fo) < T1_ajp) ¥ P(Tayy < Y(Fo) = (F) < 11 o) =1—a, 3)

where P.() denotes the probability conditional on Fo, and 7, is the p-quantile of W(Fy) — w(Fo), which approxi-
mates the p-quantile of w(F 0) — U(F°). A (1 — a)-level CI for 1/)(FC) is approximately

[Y(Fo) — T1_as2, P(Fo) — Tapal, 4)

where 7,/ and 7;_,/, are estimated from the sample quantiles of gb(lf" b) — 1/}(15 0),b=1,...,B, computed via Monte
Carlo. We can rewrite (4) as [21,0(150) — 1 /2,21p(ﬁ 0) —qaj2l, where g, and g;_,, are the quantiles of
¢(Fp),b=1,...,B. This construction corresponds to the basic bootstrap (Davison and Hinkley 1997), which we refer
to as BB hereafter. A B

Alternately, one may take [q,/2,q1-a/2] as a (1 — @)-CI for ¢(F¢). This scheme can be justified if {(Fo) — ¢(F") is
symmetrically distributed around zero and (3) holds. Let yp(é) be the p-quantile of a generic random variable &,
so that 7,/, and 71_,/, defined in (4) can be written as )/a/z(gb(Fh) IP(FO)) and y, a/z(lp(Fb) 1/)(130)) conditional
on Fy. Then, the lower bound in (4) is

V(E0) = ¥y op(W(Es) = U(Fo)). (5)

If the distributions of gb(Fo) — I,ZJ(F ) and I,ZJ(F b)) — ¢(F 0) are symmetric around zero, then —y, /Z(I,D(F p) — ¢(Po)) =
ya/z(lp(Fb) - gb(Po)) and (5) becomes ¢(P0) + ya/z(lp(Fb) gb(Po)) ya/z(lp(Fh)) Similarly, the upper bound in (4)
becomes y, af 2(¢(F p))- This procedure is known as the percentile bootstrap (Davison and Hinkley 1997). We refer
to this method as PB. Notice that PB does not require computing (Fy).

The symmetry requirement to justify PB can be relaxed. If there is a monotonically increasing transformation g
such that for some v,

SW(E) — g(Eo) = g (Fo) — gW(F) R N(O, 22, (6)

then the bootstrap quantiles in the transformed domain are asymptotically valid. The monotonicity of the trans-
form g implies that the same probabilities of coverage apply to the bootstrap sample quantiles. Efron and Tibshir-
ani (1994) illustrate this property for lognormally distributed bootstrap means and claim that PB is more
appropriate than BB when ¢(Fo) and ¢(F}) given Fy have asymmetric distributions and g satisfying (6) exists. It
is not necessary to identify g; its existence suffices. We observe this characteristic in our computational study in
Section 6.

Because PB CIs use the empirical bootstrap quantiles directly, they avoid the risk of Cls falling outside the sup-
port of ¥(Fy). For example, if {/(F) > 0 for any F, then the positive skewness of {(F;) can make the lower confi-
dence bound of BB negative, but not for PB.

Unfortunately, Y(-) cannot be computed exactly in a stochastic simulation setting and can only be estimated by
Yr(F)& Zr 1 Y, (F)/R given Y1(F), Y2(F), ..., Yr(F). Therefore, instead of (2), we hope when n is large,

Yr(By) — Yr,(Bo) R Yr, (o) — (F°) 7)

conditional on Fy in the left-hand side. Note that R, is the simulation replication size for the point estimator of
yb(ﬁ 0) in the right-hand side of (7), R is the replication size for each bootstrap sample, and R; is the replication
size for the estimate of 1{1(13 0) in the bootstrap distribution. The choices of Ry, R, and R; can be different, which
are discussed in detail in subsequent sections. If (7) holds, then we can use the bootstrap principle similar to (3).
Namely, we take the /2 and 1— a/2 sample quantiles of Yr(F;) — Y, (Fo),b=1,...,B, denoted by 7, 2 and
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T1_a/2, respectively, and construct a (1 — a)-level BB CI for i (F°) as
[Yro(Fo) — 1 a/2, Yro(F0) — %ol (8)

Similarly, the PB CI can be constructed by taking the /2 and 1 — a/2 sample quantiles of Yr(F1),...,Yr(E5),
denoted by j, , and {; _,, », respectively, and returning

(G2 1-a)2]- )

As observed earlier, we do not need to estimate Y, (Fo) or Y, (Fo) for (9), which can be quite beneficial when R,
and R; turn out to be large.

2.2. Inefficiency of Direct Bootstrap Resampling

The key challenge of direct resampling is to characterize the requirements for R, Ry, and R; such that (7) holds
asymptotically as 71 — co. To tackle this, it is helpful to first understand the asymptotic normality of a point esti-
mator Y, (Fy), which is subject to both input and sunulatlon errors. Using the delta method, it can be shown that
Yr,(Fo) satisfies a central limit theorem (CLT): Yg,(F 0) N(W(F%),V*+0?/Rg) as n and R, get large, where
V22V ((Fy)) (Cheng and Holland 1997). Thus,

- f 2 . f 52
YR, (Fo) = Z1-a)2 V2+R_0’YR°(PO)+21’“/2 V2+R_0] (10)

is a valid (1 — a)-level CI, where z, is the a-quantile of the standard normal distribution. Here, V* typically scales
reciprocally with the input sample size (Song et al. 2014, Lam and Qian 2018). Cheng and Holland (1997) suggest
estimating V* (and 0?) via bootstrap, but they focus on parametric input models.

There are challenges when directly using (10). Because estimating V? via bootstrap involves resampling the
input data and running simulations for each resample, the computational load can be large. Moreover, even
when this computational effort is reduced by, for instance, suitably subsampling the input data (Lam and Qian
2018), the question remains on the best allocation of the simulation effort. A delta method—based CI can run into
undercoverage issues with finite samples due to the inadequacy of the linear approximation of the performance
measure. This motivates devising quantile-based bootstrap methods that can have better finite-sample
performance.

Given input sample size n, the width of (10) is minimized when Ry is large enough to wash away the simula-
tion error. In this case, the CI becomes

[Yr,(Eo) = 2102V, Yro(Fo) + 2102V, (11)

which has a half-width z;_, 2 V. Suppose now that we adopt BB, with the same point estimator, Y, (Eo), in (8).
The bootstrap principle stipulates that the resampled Y (E)-Y R, (Eo) in (7) should have a distribution mimick-
ing Yg, (Eo) — Y(F°), which implies that R should be chosen as R, (and R; chosen as another large number enough
to wash away the simulation error in Yk, (Fo)). This approach would then impose a heavy computational burden
as we need to run R = Ry new simulation replications for each of the B bootstrap resamples, which amounts to
(B + 1)Ry replications in total.

Suppose that we are less ambitious and are content with a half-width approximately z;_,/,+/V? + 0%/R, with R
relatively small. In this case, we can use a point estimator Y (Fo) (i.e., Ry = R), and resample estimators Yr(Ey) in
(7). In the case of BB, the total budget becomes BR + R, and we need R to be large enough so that the bootstrap
distribution of Yr(F;) — Y, (Fo) approximates the distribution of Yr(£o) — Y(F°) sufficiently well in the limit.
Conversely, if we have computed Y, (Fy) using a large R, in the bootstrap distribution, it is wasteful not to use it
as a point estimator in constructing a CI. In the case of PB, we can avoid computing Y, (F) and hence the simu-
lation budget is BR. Nonetheless, in either approach, one may wonder whether we can minimize the half-width
down to z;_,/»V by leveraging the structure of the bootstrapped simulation, instead of z;_,/,+/V? + 02 /R.

Based on the previous discussions, our main investigation is to design schemes that can both generate a CI
with the minimum half-width, while controlling R to be small. In the remainder of the paper, we take Ry = R,
and reuse the estimates Yk, (Fo) = Y, (Fo) in the two sides of (7) and choose a relatively small R to construct a CI
with a half-width that matches the approximate minimum length z;_,,,V dictated by the CLT. Such schemes
would be efficient both statistically (short half-widths) and computationally (a small simulation budget). Design-
ing these schemes is the focus of the next section.
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3. Shrinkage Bootstrap to Strengthen Direct Resampling

We propose two shrinkage approaches that aim to properly deflate the variability of the bootstrapped outputs to
match the minimal CI half-width implied by the CLT. These approaches are paired with either BB or PB, yielding
four candidate methods. Proofs of the theoretical results in this section are included in Section OS.1 of the online
supplement.

3.1. Sample Shrinkage Bootstrap

Our first approach is the sample shrinkage procedure that removes the excess variation caused by simulation error in

each Yr(Fp). Namely, our idea is to shrink each Yr(F;), b=1,...,B, toward the grand mean, Y = %25:1 Yr(Fp), as
Yi(Fy) = Yr+ (1 - Vr(Fy). (12)

The quantity, ¢, is the shrinkage factor that satisfies

B V.(¢(E,))
B —1V.((Fy)) + E[0?(F,)]/R’

(1-c)2 (13)

where E.[-] and V.(-) der}ote the expectation and variance over F b conditional on Fy or equivalently the original
data, that is, E.[-] = E[- | Fo] and V.(:) = V(- | Fo). In general, V.((F};)) and E.[0*(F;)] are unknown. Thus, we plug
in their estimates to define

B SSwithi
1_ N - within 14
‘ \/ m"‘x{o’ B—1 R(R—1)SSmmer)’ (9

where SSuiin 258 SR (Y(Fy) — Yr(£)? and  SSpereen 235, (Yr(Fy) — Yr)? are the within-group and
between-group sums of squares of the bootstrapped simulation outputs, respectively. Then, a 1 — « sample shrink-
age basic bootstrap (SSB) CI is constructed as [Yg, (Fo) —T1_a /2,?1{0 (Fo) —Ta 2], where 7, is the sample p-quantile
of ?R(ﬁb) — YRO(ﬁO),b =1,...,B. In other words, the quantiles, 7/, and ©1_,/, of YR(IE;,) — YRO (ﬁo),b =1,...,B,in
(8) are replaced with their shrunk counterparts. o

We first establish that the variance of the sbrunk resampled simulation outputs, V.(Yr(F};)), matches the vari-
ance contributed from IU only, namely V.(¢(F})).

Proposition 1 (Shrinkage Factor Matching). Given £y, suppose we modify (13) to

B V.(p(Fy)) 1
B—1V,(y(Fy)) +E[0%(E,)]/R B-1

(1-cf = (15)

Then, V.(Yr(Fy)) = V.((F})).

Note that (15) is the same as the right-hand side of (13) except for the last term, —1/(B — 1), which is negligible
for large B. To estimate (15), we adopt SSyiin/(B(R — 1)) and SSperween/(B — 1) — SSuitnin/(BR(R — 1)) as unbiased
estimators of E.[02(F})] and V*(yb(ﬁ »)), respectively. Proposition 1 does not require homoscedasticity of the simu-
lation errors, that is, 02(F},) needs not be identical for all b.

The same idea applies to constructing a (1 — a)-level sample shrinkage percentile bootstrap (SSP) CI. Starting from
the shrunk resampled simulation outputs Yr(F,), b=1,...,B, we obtain their /2 and 1 —a/2 sample quantiles
(,/2 and q,_, », and return [§, »,§;_, »]. In either SSB or SSP, computing ¢ and constructing the sample shrinkage
interval requires no additional simulation runs compared with BB or PB. Similar to PB, SSP does not require the
point estimate of Y(Fy) saving R, replications at .

Algorithm 1 (Sample Shrinkage Bootstrap Cls (SSB and SSP))

1: [Point esAtimator] Run Ry replications of the simulator using Fy as the input model to obtain YRO (ﬁ 0) =
SR Yo (Eo)/Ro.

2: forb=1,2,...,Bdo

3:  Generate F, by resampling Fy 1 times.

4:  Using £y, generate Y (Ey), Ya(Ey), ..., Yr(E,) and compute Yr(£y) = 21::1 Y,(F;)/R.

5: Using Y,(ﬁb), b=1,2...,B,r=1,2,...,R, calculate ¢ from (14).

6: forb=1,...,B, compute Yxr(F,) = éYg + (1 — €)Yr(E;), where Y = 37, Yr(E})/B.

7: CI construction:
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8: [Sample shrinkage basic bootstrap (SSB) CI] Find the empirical a/2 and 1 — /2 quantiles of Yr(E1) —Yg,
(Fo), YR(F2) — Yr,(Fo), ..., Yr(Fp) — Yr,(Fo), denoted by %,/, and 7;_,», respectively, and return [Yr,(Fo)—
102, YR, (Fo) — %apal-

9: [Sample shrinkage percentile bootstrap (SSP) CI] Find the empirical /2 and 1 — «/2 quantiles of Yr(E1),
Yx (F 2), .. YR(F B), denoted by g7, P and §,_, J2s respectively, and return [, J2s G1_4 /2]

Algorithm 1 summarizes how to compute the sample shrinkage bootstrap Cls.

3.2. Quantile Shrinkage Bootstrap

Our second proposal is quantile shrinkage bootstrap that directly shrinks the involved quantiles of the bootstrap
sample means. Recall that the BB CI introduced in Section 2.1 is [Yr,(Fo) — T1-a/2, YR,(Fo) — Ta/2], where %, , and
T1_a/2 are the @/2 and 1 — a/2 sample quantiles of Yr(E,) — YRO(ﬁO),b =1,...,B. We propose to shrink %,/ and
T1_as2 to (1 =)ty and (1 —c)T1_y 2, respectively, and return

[Yr,(Fo) = (1= 0)F1_a/2, YR, (Fo) — (1 — ©)2 2] (16)

as the (1 — a)-level quantile shrinkage basic bootstrap (QSB) CI for ¢(F°).

For the PB version, we take zia/z and ‘?1711/2/ the a/2 and 1 — a/2 quantiles of Yr(E,),b=1,...,B, and shrink
them to (1 —¢)j,/, and (1 —c)§;_, . Then we output the (1 — a)-level quantile shrinkage percentile bootstrap (QSP)
CI for ¢(F°) as

[cYRr,(Fo) + (1 = )10, Y Ry (Fo) + (1 = )y _y o] (17)

Similar to PB, (17) is reasoned from the distributional symmetry of Yr(Eo) — l/J(P ) and Yr(E,) — YRO (P 0), so that
~T1_ap(Yr(Fp) = Y, (Fo)) = Ta)o(Yr(Fs) — YR,(Fo)). This translates (16) to [Yr,(Fo) + (1 —)ta/2, Y, (Fo) +(1 -0
T1_4/2], which is equivalent to (17). Observe that each end point of (17) is a weighted average of Y, (Fo) and § qas2
or 4;_,,, where the weight given to the former is precisely the shrinkage factor, c. Once again, we estimate ¢ by ¢
in (14). Compared with SP discussed in Section 3.1, the point estimator, Yg, (Eo), is not canceled out in (17). In
other words, the benefit of not requiring calculation of the point estimate vanishes in this construction.

Algorithm 2 details the computation of the two quantile shrinkage bootstrap Cls.

Algorithm 2 (Quantile Shrinkage Bootstrap Cls (QSB and QSP))
1: Run Steps 1-5 of Algorithm 1.
2: CI construction:
3: [Quantile shrinkage basic bootstrap (QSB) CI] Find the empirical /2 and 1 — /2 quantiles of Yr(E,)—
Yr,(Fo), denoted by 7 ,/» and £1_,/» respectively, and return [Yr,(Fo) — (1 — &)%1_a/2, Yr,(Fo) — (1 — €)% 4]
4: [Quantile shrinkage percentile bootstrap (QSP) CI] Find the empirical a/2 and 1 — a/2 quantiles of Y(F,),
denoted by §, , and 4, , respectively, and return [6Yr,(Fo)+(1— é)qa/z,(?YRo (Fo)+(1— A1yl

4. Theory for Half-Width Minimization and Overcoverage Avoidance
This section establishes the validity of the shrinkage bootstrap Cls in Section 3. In particular, we show that the
obtained intervals have half-widths that are asymptotically equivalent to the one stipulated by N(0, V?). We focus
on the basic bootstrap versions (SSB and QSB) throughout our analyses in this section, noting that similar analy-
ses can be used for the PB versions. All proofs of theoretical results in this section are presented in Section OS.1
of the online supplement.

We adopt = to denote convergence in distribution, and L for convergence in probability. For random vari-
ables A and B, we say A | Fy = B in probability, if

P.(A < x)LP(B < x) for any x€R, where P.(-)2P(-|F). (18)

Note that P.(A < x) in (18) is random as the probability is conditional on Fy and thus invokes the convergence in

probability. See lemma 10.11 in Kosorok (2007) for the justification of (18) to define the notion of conditional

weak convergence in probability. Additionally, for any two positive sequences {a;} and {b;} indexed by k, we

say ar = o(by) if ax/by — 0 as k — oo, ay = w(by) if ax/by — co as k — o0, and a, = O(by) if C < ay /by < C for some

0<C<Cc< o and large enough k. For random sequences {a;} and deterministic sequence {bx}, we say a; =

0p(by) if ak/bk—>0 and a; = O,(by) if for any € > 0, there exist M, N > 0 such that P(| a; /by |< M) > 1 — € for k > N.
Here we state some general assumptions on 1 to establish the theory.
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Assumption 1 (Central Limit Theorem). The performance measure, (-), satisfies \/ﬁ(gb(ﬁo)—gb(Fc)):N(O,a%) as
n — oo, where a2 > 0.

Assumption 2 (Bootstrap Principle). We have \/ﬁ(t/)(ﬁb) — 1/1(130)) | Eo = N(O, 0%) in probability as n — co.

Assumption 1 is a mild condition satisfied by most performance measures and forms the basis to justify the
CLT-based CI. Assumption 2 is the bootstrap principle, which states that replacing F° and Fy with Fy and F},
respectively, satisfies the same asymptotic limit. Both Assumptions 1 and 2 are implied by Hadamard differentia-
bility of ¢(-) that is standard in the bootstrap literature (see theorems 20.8 and 23.9 in Van der Vaart (2000)).

The next assumption is regarding the behavior of the bootstrap.

Assumption 3 (Bootstrap Principle for Input and Stochastlc Uncertainties). We have nV(lp(FO)) — o7 and E[o 2(Fo)] —
as n — oo. Moreover, we have nV., (¢(Pb))—>ol, E. [az(Fh)]—m and E.[(F,)] — ¢(Fo) = 0p(1/4/n) as n — oco.

Assumption 3 implies that the bootstrap variance, V.(((F,)), closely approximates IU variance V(y(Fy)), a con-
sequence of Assumptions 1 and 2 with further integrability conditions. Assumption 3 also states that both
E[0?(Fo)] and E.[0%(F;)] approach 62 = V(e,(F)), which is reasoned from the closeness of F;, and F; to F*. Finally,
E*[yb(ﬁ )] — v(Eo) = 0,(1/+/n) follows from the conditional CLT in Assumption 2, so that the conditional bias,

E*[I#(ﬁ »)]— gb(lfo), should be of smaller order than the CLT scaling, 1/+/n.

Recall from Section 2 that we aim to choose small R, whereas Ry may be a relatively large number; we make
these choices precise here. By a small number we mean R = ©(n), that is, comparable to the input sample size,
and by a large number we mean Ry = w(n), that is, of a larger order than the input sample size. In particular, we
assume there is constant p > 0 such that R/n — p. Under this setting, we have the following result.

Proposition 2 (Shrinkage Factor Representation). Suppose Assumption 3 holds and R /n — p for some fixed constant p

r o [ViVR(FY))-E[0*(F)]/R ’_
>0.Let1—c —\/ = Vl»(YR(ﬁb)) VU=, then we have 1 — ¢ = 4/ 2/MOZ/R(l +0p(1)).

Note that ¢’ differs from c in (13) only by a factor of /325, which is negligible for moderate B. Additional
moment Conditions follow next; we let v3(F) £ E[¢3(F) | F] be the third conditional moment of the simulation error
given F, and v* £13(F°) for simplicity.

Assumption 4 (Moment Conditions). We assune E.[((F;) — E*tp(ﬁb))‘l] = 0,(1/n?), E.[(Y,(E}) — tp(ﬁb))4] =0p(1)
and E.[0*(F})] = Op(1) as n — co. Moreover, az(lf"b)ﬁm2 and v3(ﬁb)ﬂ>v3 as n — co.

The scaling, E (1,[}(1:" ) — E. 1,[)(1:" b))4] =0,(1/n 2), is reasoned from the conditional CLT in Assumption 2 so that

(lp(Pb) E. w(Fh)) is of order 1/n? while O,(1) for E.[(Y, (E,) — w(Fh)) ] and E.[0*(E})] follow from a flrute 51mula-
tion variance together with suitable mtegrablhty conditions. The convergences of 02(E,) and V3 (E}) to 02 and 3

are reasoned from the closeness of F, to F° as for Assumption 3. These convergences implicitly involve Fy. The
following result shows that ¢ defined in (14) has the same limit in probability as ¢ in (13). Note that (14) can be

rewrittenas 1 —¢ = \/max{O, (B(V —W/R))/((B—1)V)}, where V 2 5S;10en/(B— 1) and W £ SS i /(B(R — 1)).

Proposition 3 (Estimating Shrinkage Factor). Suppose Assumptions 3 and 4 hold, R/n — p for some fixed constant p >
0, and B = w(1). Then, we have

A

~

»
Vo= (v*(mﬁb)) - E[“T(F“]> (1+0,(1)), V = V.(x(Fu))(1 +0,(1), 19

. |__ot/n
I

Last, we make an additional assumption regarding nondegeneracy of simulation error.
Assumption 5 (Nondegenerate Simulation Variance). We have % > 0.

Although Assumption 5 only imposes a positivity condition on the simulation variance at F, combined with
Assumption 4, it implies that such a condition also holds for ¢2(F;) with an overwhelming probability as 1
increases.
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The last assumption is on the choice of R and R, relative to n.

Assumption 6 (Simulation Sample Size Choices). We choose R and R, such that R/n — p for some fixed constant p > 0,
Ro =w(n), and B = w(1).

We are now ready to state one of the main results of this section.

Theorem 1 (Asymptotic Limit and Minimal Variance of Shrinkage Bootstrap). Suppose Assumptions 2-6 hold. Then,
V(1 = &)YRr(Fp) + YR — YR, (Fo)) | Fo = N(0,0%) in probability.

Theorem 1 stipulates that n((1 —O)Yr(Fp) +EYR — Yr, (o)) converges to N(0,0?) in the asymptotic limit,
which matches the variability of the minimal-variance Gaussian variable that induces the normal CI in (11). To
translate this into validity of our bootstrap schemes, we need to show that the empirical a-quantile of {(Y(F,)—
Yr,(Fo)}t-; denoted by 7, converges to the corresponding quantile of N(0,02). This would conclude our boot-
strap interval matches the normality-based interval with the minimal variance, and moreover establish the
asymptotically exact coverage of our shrinkage-based bootstrap CI methods.

Because {vn(Y(E,) — Yr, (150))}5 ; are dependent due to our introduction of ¢ (even when conditional on Eo),
we need to ensure that their empirical cdf converges to N(0,0?) despite the dependence. Here, we develop a uni-
form convergence result for the empirical cdf constructed from {(Vn(Y(E,) — YR, (Fo))}b 1 given Fy denoted by
W;. The following lemma shows that W(-) converges to ®(-/a;) uniformly in probability.

Lemma 1. Suppose Assumptions 2—6 hold. Then, sup, g, | Wp(&) — D(E /o) | Lo.

Lemma 1 is a key step to show the following theorem, which states that 7, for any 0 < a < 1 well approxi-
mates 07z, /Vn.

Theorem 2 (Asymptotic Minimum Half-Width and Exact Coverage of Sample Shrinkage Basic Bootstrap (SSB)).
Suppose Assumptions 2—6 hold. Then, for any 0 < @ < 1, \/— N7, = 01za + 0p(1). Moreover, the SSB CI has an asymptoti-
cally exact coverage at the 1 —  level, that is, P{{)(F%) € [Y, (Eo) — 71 a2, YRU(FO) —%ap2]} = 1 —aasn— oo, where P
is taken with respect to the joint randomness from the data, bootstrapping and simulation runs.

Analyzing the quantile shrinkage CI is more straightforward. Theorem 3 follows directly from that v/nt ﬁi(alz+
a2/p)"! ?z5 and Proposition 3; thus, its proof is omitted.

Theorem 3 (Asymptotic Minimum Half-Width and Exact Coverage of Quantile Shrinkage Basic Bootstrap (QSB)).
Suppose Assumptions 2-6 hold. Then, for any 0 < a < 1, (1 — &)ty = 01za + 0y(1). Moreover, the QSB CI has an asymp-
totically exact coverage at the 1 — a level, that is, P{i)(F°) € [Y, (Eo)—(1=0)t1 a/ZrYR()(PO) —1-0typl} > 1-aas
n — oo, where P is taken with respect to the joint randomness from the data, bootstrapping, and simulation runs.

In contrast, without shrinkage, the BB CI exhibits overcoverage.

Theorem 4 (Asymptotic Limit and Overcoverage of BB). Suppose Assumptions 2-6 hold. Then, Va(YR(Ey) — Y, (Eo)) |
Fo = N(0,0%/p + a?) in probability. Consequently, the BB CI gives asymptotic coverage of

P{Y(F°) € [Yr,(Fo) — 1 a2, YR, (F0) — Tapa]} — D, (‘D;zl/pmlz(l —a/2)) - q)af(@;zl/pmlz (a/2))

as n — oo, where P is taken with respect to the joint randomness from the data, bootstrapping and simulation runs, and
D,(-) denotes the distribution function of N(0, a).

Theorem 4 stipulates that without shrinkage, Yr(F;) centered at Y, (Eo) satisfies a CLT that has a larger vari-
ance 0% /p + 07 than that in the CLT of the shrinkage estimator o7. This inflated variance arises from the simula-
tion noise in computing the resample estimator that contributes */p to the overall variance. As a result, if we
use the quantiles of this naive resample estimator to construct a BB CI, we get an asymptotic coverage probability
of ® Z(q);zl/p +02(1 —a/2))— z(<D »(a/2)), which is the probability content of N(0,07) between the a/2 and

(1 — a/2)th quantiles of a mismatched N(0, 0 +07) variable and is strictly greater than 1 — a. This reaffirms our

motivation to use shrinkage to resolve the coverage issue brought by IU when applying quantile-based bootstraps.
We close this section with an asymptotic guarantee in directly using the bootstrap variance estimates and the
CLT to construct Cls in the form of (11).

02 [p+o}



Downloaded from informs.org by [2610:148:2002:¢000:3248:5755:4741:1bf7] on 22 July 2024, at 10:58 . For personal use only, all rights reserved.

Song, Lam, and Barton: Shrinkage to Improve Bootstrap Under Input Uncertainty
10 INFORMS Journal on Computing, Articles in Advance, pp. 1-17, © 2024 INFORMS

Theorem 5 (Validity of Variance Bootstrap and Direct Use of Central Limit Theorem). Under Assumptions 1,3, 4, and 6,
define V and W as in Theorem 3. Then,

{YRO(I-QO) —21_gpp\/max{V — W/R}, Yg,(Fo) + z1_a/2\/ max{V — VAV/R}}

is an asymptotically exact (1 — a)-level CI for Y(F°).
We refer to the CI in Theorem 5 as the N method in the remainder of the paper.

5. Implementation Issues and Robustifying the Shrinkage Methods

Recall that the shrinkage factor, ¢, cannot be computed exactly and is replaced with its sample estimate ¢ in Algo-
rithms 1 and 2. However, when IU is relatively small compared with the simulation error variance, then ¢ tends
to be close to one. In this case, the probability that the estimated ¢ equals one may be significant. If we plug ¢ =1

in the place of c in (12), then YR(I:“ ») =Yg for all b=1,2,...,B, which makes the resulting shrinkage Cls have
width of zero.

To avoid this, we propose to replace ¢ with a lower confidence bound of a 1 — g CI for c instead of its point esti-
mate ¢. This makes the shrinkage to be less aggressive and more robust to the estimation error in ¢. The resulting
shrinkage Cls are wider than when ¢ is used. Algorithm 3 details how the lower confidence bound, c;,, is com-
puted from the same simulation outputs used to compute ¢ with no additional simulation effort. Essentially,
Algorithm 3 bootstraps the simulation runs made at Fi,E,,... F5 to compute ¢, for h=1,2,...,H, then returns
the /2 empirical quantile of ¢1,¢5, ..., as ¢p.

Algorithm 3 (Computing the Lower Confidence Bound for c)
Input: {Y1(F}), Ya(Fy),.... Yr(Ep) ) <p<p from Algorithm 1
1: forh=1,2,...,Hdo
2: forl=1,2,...,Bdo
3: Sample b; from {1,2,..., B} with equal probabilities.
4:  Compute ¢y from {Y; (ﬁb;), Yz(ﬁb;) ..... YR(ﬁbl’)}l <1<p from (14).
5: Let ¢y, be the 8/2 empirical quantile of ¢1,¢, ..., Ch.

In all our experiments in the following section, we adopt ¢;, instead of ¢ to compute SSB, SSP, QSB, and QSP Cls.

6. Computational Experiments
We present three experiment results to compare the performances of the proposed shrinkage approaches with
those of direct bootstrap and the CLT-based Cl in (11). That is, we compare BB, PB, N, SSB, SSP, QSB, and QSP.
Section 6.1 presents an M/M/1/k queueing simulation model, where the focus is on comparing the correct-
ness of coverage guarantees and the tightness of Cls. Section 6.2 examines an M/G/1/k queueing example to
illustrate the advantage of nonparametric approaches when the parametric family assumption is incorrect. In
Section 6.3, we compare the shrinkage approaches with metamodel-based approaches when the number of input
distributions is large using a Jackson network example. In all sections, we use H = 1,000 and = 0.05 to compute
co- All source codes for the experiments in this section are made available at https://github.com /INFORMSJoC/
2022.0044-1 (Song et al. 2023).

6.1. Steady-State M/M/1/k

We simulated an M/M/1/10 system, where the number of jobs in the system is initialized by sampling from its
steady-state distribution. The time in system (TIS) of the first-entering customer after initialization is calculated
via Lindley’s equation and returned as a simulation output. Two traffic intensities, p = 0.7 and 0.9, are tested. For
each p, four sample sizes n = 100, 400, 1,000, and 4,000 are examined. Recall that Theorems 2-5 prescribe R¢ =
w(n) and R/n — p for some p > 0. To match this, we set Ry = [n!!] and test p = 0.05,0.2, and 0.5. We adopt B =
1,000 in all experiments.

Table 1 shows the average coverage probabilities and widths for nominal 95% Cls for mean TIS computed
from 1,000 macroruns. For each combination of p,#, and R, the method that shows the closest coverage probabil-
ity to 95% is marked bold. The average CI widths for BB and PB are consistently larger than N in all cases,
whereas all shrinkage methods” widths match those of N closely. BB and PB show overcoverage when p = 0.05
because the simulation error is large relative to the input error. However, as p increases, PB still overcovers,
whereas BB show significant undercoverage for n = 100 and n = 400, which worsens under heavier traffic
(p=0.9). BB’s coverage matches 0.95 most closely for p=0.9 when (n,R)=(400,80) and (n,R) = (1000,200).
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Table 1. Average Coverage Probabilities (c) and Widths (w) of 95% Cls for M/M/1/10 System from 1,000 Macroruns

p n R Clo BB PB N SSB SSP QSB QSsP
0.7 100 5 0.50 1.000 1.000 0.911 0.883 0.973 0.921 0.972 c
5.35 5.35 2.21 271 271 2.71 271 w
20 0.30 0.953 0.991 0.927 0.838 0.956 0.872 0.951 c
3.35 3.35 2.26 2.36 2.36 2.36 2.36 w
50 0.17 0.893 0.971 0.908 0.822 0.943 0.834 0.943 c
2.75 2.75 2.28 2.30 2.30 2.30 2.30 w
400 20 0.52 1.000 1.000 0.901 0.905 0.974 0.930 0.969 c
2.72 2.72 1.09 1.32 1.32 1.32 1.32 w
80 0.31 0.976 0.993 0.943 0.886 0.963 0.906 0.965 c
1.67 1.67 1.11 1.16 1.16 1.16 1.16 w
200 0.18 0.924 0.982 0.922 0.847 0.947 0.863 0.942 c
1.36 1.36 1.11 1.13 1.13 1.13 1.13 w
1,000 50 0.52 1.000 1.000 0.923 0.941 0.978 0.962 0.979 c
1.73 1.73 0.69 0.83 0.83 0.83 0.83 w
200 0.31 0.984 0.998 0.950 0.905 0.966 0.932 0.968 c
1.05 1.05 0.69 0.72 0.72 0.72 0.72 w
500 0.17 0.947 0.986 0.931 0.891 0.947 0.902 0.950 c
0.86 0.86 0.69 0.71 0.71 0.71 0.71 w
4,000 200 0.53 1.000 1.000 0.920 0.934 0.979 0.958 0.974 c
0.86 0.86 0.34 0.41 0.41 0.41 0.41 w
800 0.31 0.985 0.999 0.942 0.909 0.956 0.922 0.957 c
0.52 0.52 0.34 0.36 0.36 0.36 0.36 w
2,000 0.18 0.951 0.980 0.913 0.883 0.945 0.889 0.939 c
0.43 0.43 0.34 0.35 0.35 0.35 0.35 w
0.9 100 5 0.47 0.99 1.000 0.859 0.823 0.96 0.848 0.951 c
6.65 6.65 3.05 3.53 3.53 3.53 3.53 w
20 0.26 0.922 0.986 0.878 0.804 0.933 0.819 0.928 c
429 4.29 3.11 3.19 3.19 3.19 3.19 w
50 0.14 0.837 0.969 0.873 0.774 0.927 0.787 0.928 c
3.60 3.60 3.11 3.11 3.11 3.11 3.11 w
400 20 0.45 0.997 1.000 0.909 0.913 0.966 0.925 0.963 c
3.58 3.58 1.75 1.97 1.97 1.97 1.97 w
80 0.23 0.952 0.989 0.901 0.864 0.945 0.875 0.942 c
2.35 2.35 1.76 1.81 1.81 1.81 1.81 w
200 0.12 0.910 0.967 0.925 0.878 0.948 0.884 0.947 c
2.01 2.01 1.76 1.77 1.77 1.77 1.77 w
1,000 50 0.45 0.997 0.999 0.92 0.907 0.958 0.918 0.956 c
2.31 2.31 1.15 1.28 1.28 1.28 1.28 w
200 0.22 0.957 0.986 0.917 0.883 0.943 0.896 0.942 c
1.53 1.53 1.15 1.19 1.19 1.19 1.19 w
500 0.11 0.928 0.962 0.924 0.896 0.940 0.902 0.935 c
1.31 1.31 1.15 1.16 1.16 1.16 1.16 w
4,000 200 0.44 0.999 0.999 0.919 0.927 0.955 0.944 0.954 c
1.17 1.17 0.59 0.65 0.65 0.65 0.65 w
800 0.22 0.974 0.994 0.933 0.916 0.964 0.922 0.961 c
0.77 0.77 0.59 0.61 0.61 0.61 0.61 w
2,000 0.11 0.955 0.969 0.935 0.919 0.949 0.925 0.950 c
0.67 0.67 0.59 0.59 0.59 0.59 0.59 w

Notes. Standard errors of all CI widths are less than 0.02. For each instance, the method exhibiting the closest coverage probability to 0.95 is
marked bold.

However, in both cases, as R increases the coverage worsens instead of improving. This implies that the idealized
BB CI without simulation error would in fact undercover, but we observe reasonable coverages for smaller R
values because of the simulation error convolution. The normal CI (N) exhibits consistent undercoverage across
almost all conditions and perform particularly poorly for p =0.9 and n =100. Both BB and N’s undercoverage
behaviors can be explained by asymmetry of the output function of this example, which we further investigate at
the end of this section.

Among the shrinkage bootstrap methods, SSB shows significant undercoverage in all cases. QSB mostly under-
covers except when 7 is 1,000 or 4,000 and p = 0.05 for p = 0.7. This is not surprising, considering the poor perfor-
mance of BB in this example. Because SSB and QSB are “shrunk” versions of BB, they are expected show worse



Downloaded from informs.org by [2610:148:2002:¢000:3248:5755:4741:1bf7] on 22 July 2024, at 10:58 . For personal use only, all rights reserved.

Song, Lam, and Barton: Shrinkage to Improve Bootstrap Under Input Uncertainty
12 INFORMS Journal on Computing, Articles in Advance, pp. 1-17, © 2024 INFORMS

coverage when BB undercovers. Conversely, SSP and QSP show most robust performance across all experiment
settings. For n = 1,000 and n = 4,000, all methods show improved performance than when 7 is smaller, as the
bootstrap distribution more closely approximates a normal distribution. Nevertheless, SSP and QSP still exhibit
advantages over PB and N matching the 95% coverage target more closely with tighter CIs.

Table 1 also reports the average ¢, of all 1,000 macroruns for each parameter setting. For each 7, as R increases,
the simulation error shrinks and ¢, decreases as a consequence. Typically, SSP and QSP are most effective when
Cjo is larger as the overcoverage and the CI width of PB can be significantly reduced. When ¢, is smaller, there is
not much room to reduce overcoverage by shrinkage and SSP and QSP may even undercover; see when
(n,R) =(100,50). Recall from Section 5 that ¢, can be computed within each macrorun. Thus, a user may decide
whether to adopt SSP/QSP over PB by evaluating cy,.

To provide further insights on the performance difference among BB and PB and their shrunk variants, we
present a histogram of average TIS calculated at 1,000 bootstrap samples when p=0.9,n =100, and R = 50 in
Figure 1. The symbols, A and e, respectively represent the mean TIS at F* (= (F¢)) and Y&, (Eo), whereas the solid
and dashed lines represent BB and PB Cls, respectively. Because the bootstrap sample means are right-skewed
for this example, the upper bound of BB is closer to Yg,(Fp) than that of PB. As a result, when Yg,(Fo) < ¢(F°)
and their difference is sufficiently large, BB may fail to cover {(F°) as shown in Figure 1. Such a phenomenon is
more likely to happen for higher traffic intensity (more skewed) and smaller n. Conversely, the PB CI benefits
from the existence of a monotonic transformation and covers y(F¢). The observed sknewness in Figure 1 also
explains why N, which produces a symmetric CI, undercovers.

6.2. Finite-Horizon M/G/1/k

In this section, we present the simulation results from an M/G/1/10 system starting empty. The Cls are con-
structed for the mean TIS for the first 20 jobs. Service times were generated from the bimodal distribution
adopted in Ghosh and Lam (2019): 0.3Beta(2, 6) + 0.7Beta(6,2). We set the arrival rate to be A ~ 1.17, which results
in p = 0.7. The mean TIS of the first 20 jobs estimated from 10° replications is 1.17.

Table 2 shows the average coverage probabilities and widths of nominal 95% Cls for mean TIS computed from
1,000 macroruns under two different real-world sample sizes, n = 400 and n = 1,000, whereas B = 1,000 is
adopted for all experiments. For each 1, we set Ry = [n!"'] and R = np for p = 0.05 and 0.2. For each combination
of n and R, the method that exhibits coverage closest to 95% is marked bold.

In Table 2, pPBe refers to the parametric bootstrap that adopts fitted exponential distributions for interarrival
and service time distributions, where the latter is clearly fitted to a wrong distribution family. The poor coverage
of pPBe demonstrates that it can be detrimental to take a parametric approach with a wrong distribution family.
Observe that SSP and QSP show excellent coverage probabilities in all experiment settings outperforming N. As
in the M/M/1/k case, BB, SSB, and QSB show undercoverage due to the skewness of the mean TIS distribution.

Figure 1. (Color online) Histogram of Average TIS of 1,000 Bootstrap Samples
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Notes. A represents the mean TIS at F° and e is YRO (13 0); the dashed /solid lines show BB/PB Cls. Observe that BB does not cover A.
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Table 2. Average Coverage Probabilities (c) and Widths (w) of 95% CIs for M/G/1/10 System from 1,000 Macroruns

n R Clo pPBe BB PB N SSB SSP QSB QSsP
400 20 0.34 0.005 0.990 0.998 0.942 0.917 0.957 0.925 0.957 c
0.48 0.51 0.51 0.31 0.34 0.34 0.34 0.34 w
80 0.14 0.000 0.941 0.975 0.941 0.917 0.948 0.918 0.947 c
0.35 0.37 0.37 0.32 0.32 0.32 0.32 0.32 w
1,000 50 0.34 0.000 0.985 0.997 0.939 0.932 0.958 0.939 0.958 c
0.30 0.32 0.32 0.20 0.21 0.21 0.21 0.21 w
200 0.14 0.000 0.970 0.977 0.949 0.939 0.950 0.938 0.952 c
0.22 0.24 0.24 0.20 0.20 0.20 0.20 0.20 w

Notes. Standard errors of all CI widths are less than 0.02. For each instance, the method exhibiting the closest coverage probability to 0.95 is
marked bold.

Moreover, SSP and QSP exhibit more dramatic reductions in the overcoverage and the width compared with PB
when ¢y, is larger.

6.3. Capacitated Jackson Network

In this section, we consider a capacitated Jackson network, where each node has a single server with capacity of
100 and exponential service time distributions with known mean = 1. The network structure has a layer of m
input nodes followed by a layer of m intermediate nodes and an output layer of two nodes. Two network forms
are considered: m = 4 and m = 10. Jobs arrive at the m nodes in Layer 1, then are routed randomly to Layer 2 and
(possibly) subsequently to Layer 3. The structure of the network for m = 10 is shown in Figure 2.

We assume that the arrival process at each node in Layer 1 is Poisson with average rate across the m nodes of
p =0.7. Once a job is finished at a node in Layer 1 or 2, the job is sent to the next node according to the routing
probabilities in Tables OS.1 and OS.2 in Section OS.2 of the online supplement. Some jobs exit the network after
Layer 2 instead of being routed to one of the two processing nodes in Layer 3. For all nonparametric methods,
we assume that the interarrival time distributions and routing probabilities are unknown and estimated by
empirical distributions from observations.

Each replication is initialized with an empty system. After a warm-up of 100 jobs, output is computed as the
average cumulative waiting time of the next 10 jobs whose services were completed without balking for each of
R simulation replications.

If one is willing to make parametric assumptions on the input distributions, the metamodel-based approach
by Barton et al. (2014) and Xie et al. (2014) has been shown to work well for a problem with a small to moderate
number of input distribution parameters. We apply the metamodel-based approach to the Jackson network
example assuming the correct input distribution families are known—a particularly favorable condition. For this
example, the parameter vector, & of the joint input distribution consisting of arrival rates and routing probabili-
ties is either 22 (m = 4) or 112 (m = 10) dimensional.

Figure 2. Three-Layer Jackson Network Structure

Layer 1 Layer 2
exit (node 23)




Downloaded from informs.org by [2610:148:2002:¢000:3248:5755:4741:1bf7] on 22 July 2024, at 10:58 . For personal use only, all rights reserved.

Song, Lam, and Barton: Shrinkage to Improve Bootstrap Under Input Uncertainty
14 INFORMS Journal on Computing, Articles in Advance, pp. 1-17, © 2024 INFORMS

As in Barton et al. (2014), we fit a stochastic Gaussian process (GP) with the squared exponential correlation
function after running replications at a set of design points in the space of &€ This is implemented in R using the
mlegp package. For large numbers of parameters, the design construction algorithm in Barton et al. (2014) is not
practical. An alternate space-filling design used here is discussed in Section OS.3 of the online supplement. Let
the maximum likelihood estimators (MLEs) computed from the input data and the bth bootstrap sample drawn
from empirical distributions be &, and &, respectively. Moreover, we denote the posterior GP mean by m(§) and
the bth order statistic of m(&,), m(&,),...,m(&y) by m). The two metamodel-bootstrap methods we compare are
as follows:

e Basic metamodel CI (BM) [ZYRU (go) — M([B(1-a/2)])s Zm(go) — m([B(a/2)])]

° PercentiLe metamodel CI (PM): [m([B(a/Z)'l)~m((B(17a/2)])]

Note that Y, (&) is the sample average of Ry replications run using &, as the input parameter vector, which is
analogous to Yg,(Fp) in the nonparametric approaches. A version of PM was proposed to provide a Bayesian
credible interval (Xie et al. 2014); in their work, the PM interval was constructed using stochastic samples from
the posterior GP instead of the posterior means to incorporate the prediction error. In our experiments, we define
BM and PM without prediction error, which eliminates the explicit inclusion of simulation error variance on the
CIs and produces narrower Cls.

In Table 3, we compare the empirical coverage probabilities and widths of 95% Cls constructed by each
method from 1,000 macroruns for the m = 4 capacitated Jackson network. To compare the computational costs of
bootstrap versus metamodel approaches, we report the CPU time in minutes (Xeon E5-2680 processors) per
macrorun: Tcpyp is the average time for computing all nonparametric bootstrap and N Cls and Tcpy v is the
average time for computing BM and PM CIs.

Two sets of sample sizes are tested: (i) 100 for interarrival time distributions and 1,000 for routing counts and
(ii) 400 and 4,000, respectively. To evaluate the coverage, the true mean waiting time is computed from 4 X 10°
Monte Carlo simulations using the true input distributions. For BM and PM, the GP model is fitted from R repli-
cations made at each of K space-filling design points, where K = 220 for m = 4 and K = 1,000 for m = 10. The
choices of K roughly follow the guidance for a design size that is ten times the number of parameters for GP
models Jones et al. (1998). Because the metamodel evaluations do not require simulations, BM and PM evaluate
the fitted metamodel at B = 1,000 bootstrap samples to construct the CIs, for both m = 4 and m = 10. Conversely,
to compute the CIs for BB, PB, N, SSB, SSP, QSB, and QSP, we adopt B = 220 for m = 4 and B = 1,000 for m = 10
to make the computational cost of these methods and metamodel-based methods comparable.

Table 3 shows several interesting features. First, as in Sections 6.1 and 6.2, BB and PB overcover when there is
substantial simulation error, namely, when ¢, is higher. Except for when the real-world sample size is 100/1,000
and R = 40, SSP and QSP provide good coverages with 58%—-75% interval widths of BB/PB/N. We continue to
observe that BB’s performance is inferior to PB. Even for metamodel-based intervals, PM outperforms BM. This
is likely due to the asymmetric distribution of the output statistic and is reduced with larger sample size.

As R increases, ¢;, decreases, and then the overcoverage by BB, PB, and N is reduced, and undercoverage for
SSP and QSP begins to appear. However, when the real-world sample sizes increase from 100/1,000 to
400/4,000, IU is reduced making the simulation error relatively large for the same R. Consequently, c;, increases

Table 3. Average Coverage Probabilities (c) and Widths (w) of 95% CIs for the m = 4 Jackson Network from 1,000
Macroruns

n R Clo Tcpup Terumm BB PB N SSB SSP QSB Qsp BM PM
100/1,000 10 0.34 0.3 1.5 0.984 0.996 0.998 0.902 0.935 0.922 0.944 0.917 0.941 c
3.14 3.14 3.21 2.08 2.08 2.08 2.08 222 222 w
40 0.15 1.4 1.9 0.929 0.963 0.963 0.871 0.920 0.880 0.922 0.901 0.924 c
222 222 227 1.88 1.88 1.88 1.88 2.14 2.14 w
160 0.05 4.3 4.6 0.878 0.942 0.933 0.860 0.934 0.862 0.933 0.890 0.953 c
1.92 1.92 1.97 1.83 1.83 1.83 1.83 2.20 221 w
400/4,000 10 0.51 0.3 1.1 1.000 1.000 1.000 0.956 0.977 0.967 0.977 0.937 0.960 c
2.72 2.72 277 1.35 1.35 1.35 1.35 1.16 1.16 w
40 0.34 0.9 2.0 0.992 1.000 0.999 0.922 0.963 0.940 0.964 0.942 0.962 c
1.57 1.57 1.61 1.04 1.04 1.04 1.04 1.09 1.09 w
160 0.15 32 41 0.936 0.974 0.973 0.897 0.947 0.902 0.949 0.939 0.979 c
1.12 1.12 1.14 0.95 0.95 0.95 0.95 1.14 1.14 w

Notes. Two sets of sample sizes are tested: (i) 100 for interarrival time distributions and 1,000 for routing counts and (ii) 400 and 4,000,
respectively. The CPU times, Tcpy p and Tcpymm, are reported in minutes.
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Table 4. Average Coverage Probabilities (c) and Widths (w) of 95% ClIs for the m = 10 Jackson Network from 1,000
Macroruns

w Clo TCPUD TCPU‘MM BB PB N SSB SSpP QSB QSP BM PM

5 0.61 1.3 240 0.999 1.000 1.000 0.790 0.956 0.909 0.958 0.786 0.948 c
1.98 1.98 1.99 0.77 0.77 0.77 0.77 0.69 0.69 w

50 0.44 1.5 290 0.998 0.998 0.998 0.898 0.923 0.926 0.941 0.919 0.879 c
1.34 1.34 1.35 0.75 0.75 0.75 0.75 0.78 0.78 w

400 0.20 3.8 260 0.962 0.964 0.974 0.925 0.912 0.926 0.922 0.946 0.877 c
1.36 1.36 1.37 1.09 1.09 1.09 1.09 1.21 1.21 w

Notes. We set R = 10 and the real-world sample sizes of 100 for the interarrival times and 1,000 for routing counts are adopted. Here, w
represents the number of completed customers we observe after the warm-up within each replication. The CPU times, Tcpu,p and Tcpu mm, are
reported in minutes.

and the shrinkage-based methods show improved performances. The performances of BM and PM are also
improved for the larger real-world sample case. This is because the sampling distribution of the MLEs are more
concentrated as the sample size increases, which reduces the response surface complexity and improves the
goodness-of-fit of the metamodel.

Last, BM and PM show good coverage, which can be attributed to that we do not include stochastic error term
when constructing BM/PM CI, and thus it is much less sensitive to overcoverage from simulation error. How-
ever, metamodel-based methods have two disadvantages. First, they require parametric distributions for input
probability models. Although a flexible family based on Bayesian mixtures was proposed by Xie et al. (2021),
parametric assumptions are not always appropriate, and misspecification can lead to significant errors—as seen
in the M/G/1/k examples. Second, without special model simplifications, the computation time needed to fit GP
metamodels is O(k®) per optimization iteration. That is, because multiple iterations are typically required to find
the MLEs for the GP model, the computational cost can be significant. These two issues are more apparent in the
results for the larger network presented in Table 4.

Table 4 compares the empirical coverage probabilities and widths of 95% CIs from 1,000 macroruns for the m
= 10 capacitated Jackson network. This network has 10 arrival rates and 102 routing probabilities for a total of
112 parameters for the GP metamodel. The larger network has greater simulation error. Additionally, we control
the length of each replication in this set of experiments by observing w number of completed customers waiting
times after the warmup. The larger w is, the smaller the simulation error is. Again, for each experiment, the
method that has the coverage closest to 95% is marked bold.

Table 4 shows less satisfactory performances for metamodel-based Cls. PM performs well when c;, = 0.61, pro-
ducing the tightest CI and the closest coverage to 95%. However, the coverage deteriorates with smaller simula-
tion error, indicating perhaps difficulty from mean reversion of the GP prediction, which increases when the
fitted GP model has a small simulation error variance estimate. BM shows improved coverage as c;, decreases.
This phenomenon is not predictable, however, and does not support BM as an effective method in general. Con-
versely, the increase in execution time for the metamodel-based approach is substantial, 70-200 times the execu-
tion time for the nonparametric approaches, with more than 80% of the total associated with metamodel fitting.

As for the m = 4 case, for large simulation error (c;, = 0.61) the SSP and QSP methods produce good coverage
with CIs that are from 38% to 39% of the width of the BB, PB, or N CIs. For moderate simulation error (c;, = 0.44),
SSP and QSP coverage is still close to 95%, with CI width approximately 56% of BB, PB, and N CIs, which con-
tinue to overcover. However, coverage for the shrinkage methods deteriorates for the low simulation error case
(c1o = 0.20), and CI widths are at approximately 80% of the BB, PB, and N ClIs.

Overall, the Jackson network results show good performance for SSP, QSP, and PM when there is substantial
simulation error. However, for problems with many parameters, PM is computationally inefficient. We conclude
that the shrinkage methods can perform as well as or better than metamodel-based methods even in the case the
correct parametric families are assumed known. The advantage can be expected to grow as the number of input
models increases, because getting an adequate fit becomes more difficult and the computational effort associated
with fitting the GP increases.

7. Conclusion

Direct bootstrap resampling provides a nonparametric characterization of IU free of assumptions on the para-
metric families, but it has significant overcoverage arising from the simulation stochastic error when the sim-
ulation effort is limited. To remedy the overcoverage, we designed two new bootstrap CI approaches that
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characterize and compensate for simulation error in a computationally efficient way without expending over-
whelming simulation effort to make the simulation error negligible. Both approaches use shrinkage strategies
to properly scale down the statistical variability implied by the CI due to the simulation error. The first
approach, sample shrinkage, shrinks bootstrap sample means toward a suitable average, and the second
approach, quantile shrinkage, directly adjusts the empirical quantiles of the bootstrap sample means in form-
ing the CL

Unlike the classical analyses on shrinkage, we investigate the case when the simulation errors are heterosce-
dastic and provide guidance on the choices of bootstrap sample size B and the number of replications at each
bootstrap, R. We show that our shrinkage strategies give rise to ClIs with widths that are on par with the asymp-
totically tight normal CI implied by the central limit theorem even when the shrinkage factor is estimated via
simulations. Moreover, to robustify the shrinkage CIs against the estimation error of the shrinkage factor, we
propose to construct a lower confidence bound for the shrinkage factor via bootstrapping the simulation outputs
without additional simulation runs. The resulting lower bound can also be used as a guide to decide when to
apply shrinkage over the classical bootstrap. From our empirical studies, a rule of thumb may be that when the
lower bound is greater than 0.2, the user can benefit from applying the shrinkage percentile bootstrap ClIs. We
also conducted several computational experiments, which demonstrated (i) the reduced CI widths and over-
coverage of the shrinkage methods, (ii) the advantage of nonparamteric approaches when input distributions are
improperly characterized, and (iii) the advantage over the parametric metamodel-based approach when the
number of parameters is large and the data size is limited.

Methods to address the accuracy of the bootstrap when the resulting simulation output is near a system
boundary, analyses to refine accuracy at even higher-order levels, and other approaches to further reduce simu-
lation effort are all areas for future research.
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