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Abstract. The study of light lensed by cosmic matter has yielded much information
about astrophysical questions. Observations are explained using geometrical optics
following a ray-based description of light. After deflection the lensed light interferes,
but observing this diffractive aspect of gravitational lensing has not been possible
due to coherency challenges caused by the finite size of the sources or lack of near-
perfect alignment. In this article, we report on the observation of these wave effects of
gravitational lensing by recreating the lensing conditions in the laboratory via electro-
optic deflection of coherent laser light. The lensed light produces a beam containing
regularities, caustics, and chromatic modulations of intensity that depend on the
symmetry and structure of the lensing object. We were also able to observe previous
and new geometric-optical lensing situations that can be compared to astrophysical
observations. This platform could be a useful tool for testing numerical/analytical
simulations, and for performing analog simulations of lensing situations when they are
difficult to obtain otherwise. We found that laboratory lensed beams constitute a new
class of beams, with long-range, low expansion, and self-healing properties, opening
new possibilities for non-astrophysical applications.
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1. Introduction

Research on gravitational lensing over the past 30 years has had tremendous success
in understanding the phenomenon itself, and in using it for extracting information
about the cosmos. Arcs and rings produced by gravitational lensing are now a common
appearance in deep-field astronomical images. It constitutes a telescope to probe objects
further away from the reach of telescopes on or around Earth to investigate, for example,
ancient galaxies [1]. One of the greatest successes of gravitational lensing has been
to investigate dark matter [2, 3] and to put constraints on the abundance of massive
astrophysical compact halo objects (MACHOs) as an explanation for dark matter around
our galaxy [4]. Other important accomplishments include obtaining constraints on the
Hubble constant [5] and the finding of exoplanets around exotic bodies, among other
findings, via microlensing [6].

The phenomenon is well understood in terms of ray optics, which leads to a very
important aspect of gravitational lensing: the magnification of the light from a far-
away object. It leads to the observation of a multitude of images of the same object,
producing Einstein rings for the case of near-perfect alignment of the source/lensing-
mass/Earth; arc-pairs for slight misalignments; and other arcs and crosses for more
general asymmetric lensing objects, such as galaxies or clusters [7]. The ray analysis of
lensing yields caustics that are well understood in terms of singular optics [8, 7.

The diffractive aspect of gravitational lensing, the interference of light waves after
deflection, has been discussed since the early days of this field [9]. Gravitational
deflections are achromatic [7], but the full light field in the observation plane should
involve diffraction patterns due to the wave aspect of light. Lensed light is strongly
focused forward over a small solid angle. The earliest inquiry into this question found
that monochromatic light produced by a symmetric lensing object should have the
approximate form of a Bessel function [10], or more precisely expressed in terms of
confluent hypergeometric functions [11, 12, 13]. Beam patterns of asymmetric lenses
should yield astroid caustics [8] bearing diffractive decorations [14].

For most strong lensing situations with deflections of the order of arc-seconds, the
misalignment of the source, lens, and Earth creates path differences much larger than
the coherence length of the light, negating the possibility of wave interference. The
finite spatial extent of the sources have the effect of averaging out the fringes even for
near-perfect alignment [15, 16].

Given the challenges that are faced in observing the diffractive effects of lensing of
light waves, an alternative method to reproduce them via laboratory methods would
enhance our understanding of the phenomenon and help with further analysis and
discoveries. Previous attempts at simulating gravitational lensing in the laboratory
include the use of logarithmic-shaped axicons [17, 18], gradient-index media [19],
metamaterials [20], transformation optics [21] and water surface tension [22]. Most
of these attempts suffer from being limited by a rigid optical element.

In this work we use computerized holography with an electro-optical device to
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Figure 1. Conceptual sketch of the physical system we investigate. Light coming
from a distant source is deflected by the gravitational field of a lensing mass through
an angle «, that depends both on the Schwarzchild radius of and the distance to the
deflecting mass. This can be translated to a phase change following a logarithmic
dependence on the radial direction. Observation is carried out at a distance z away
from the lensing plane.

deflect the light of a laser beam according to the predictions of gravitational theory.
The resulting beams are a novel class of beams that adhere to the gravitational lensing
conditions. As will be shown below, these beams change radically in shape depending
on the structure of the lens, and so to distinguish them from other types of beams we
call them “Einstein beams.” They enable us to fully simulate gravitational lensing and
study them while varying all possible parameters of the problem, with the key advantage
that they can be programmed to produce any type of lensing situation.

This paper is organized as follows. In Sec. 2 we give a description of the method to
produce gravitational-like deflections of light beams. The results are then presented in
two sections, beginning with our observations of the diffractive features of lensed beams
in Sec. 3, and continuing by showing that our method also reproduces the geometric-
optic astrophysical observations of previous lensing situations plus new ones in Sec. 4.
We present experimental details in Sec. 5 and finish with concluding remarks in Sec. 6.

2. Gravitational lensing in the laboratory

In gravitational lensing, light deflection occurs over a relatively short range of distances
compared to the distances of the source and Earth to the lens [7]. Thus, it is fair
to approximate the deflection as occurring instantaneously on a plane (Fig. 1). The
deflection angle o depends inversely on the impact parameter r, the distance from the
lensing mass to the ray of light in the deflection plane [23],
27“5
= 77 (1)
where g = 2GM/c? is the Schwarzschild radius, with G being the gravitational
constant, M the mass of the deflecting object and c the speed of light. Such a deflection
was first predicted by Einstein in 1915 based on general relativity [24, 25], and measured
by Eddington and Dyson in 1919 [26] in a historic episode of scientific discovery.
A spatial light modulator (SLM), a pixelated computer-programmed liquid-crystal-
based phase shifter, can produce the same type of deflections in the laboratory.
Observing them along the span of an optical table requires the use of larger deflection
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angles, of the order of arc minutes. We found that it allowed the investigation of all
aspects of the phenomenon. The SLM deflects the light by imparting phase shifts on
an incoming light beam. Gravitational-like deflection following Eq. 1 can be imparted
onto the light by encoding a position-dependent phase [14, 27]

s = —2krgIn <£) ; (2)

To

where r now is the radial coordinate on the SLM, k is the wave number of the light
and ro is a reference radius where ¢sp = 0. We simulated a number of lensing
situations described below. We programmed values of rg in the range 0.1 — 10 m,
which in astrophysical situations would correspond to lensing masses from 4 x 10~ M,
to 3 x 1079 My, where M, is the mass of the Sun. A misaligned situation was simulated
by changing the location of the central mass programmed onto the SLM by horizontal
and vertical amounts dx and dy. Asymmetrical deflecting masses, such as elliptically-
shaped galaxies or clusters, were simulated by adding a parameter e that is related to
the ellipticity of the lens. Incorporating these features entailed modifying the encoding
of Eq. 2 by

r— 7"\/0082 ¢ + esin? ¢. (3)
Lensing by binary mass systems was studied as a function of their mass and separation
by superimposing displaced phase encodings. The possibility that certain astrophysical
objects, such as Kerr black holes, give angular momentum to the light, has been proposed
28, 29], and measured [30]. Adding an azimuthal phase to the encoding of the form
(¢, where £ is the topological charge (an integer) recreated situations where the lensing
objects imparted orbital angular momentum of ¢A per photon [31].

Figure 2 shows a schematic of the optical setup. We used coherent light beams in
the TEMyy mode from one of several laser sources and wavelengths: gas-based He-Ne
(633nm), He-Cd (442 nm) and Ar-ion (458, 477, 488, 496, 501, 514 nm); diode-pumped
solid-state lasers (532 and 589 nm), and diode lasers at 405, 670 and 694 nm. A system
of 2 achromatic lenses (L1 and L2, with focal lengths f; = 50mm and f, = 500 mm,
respectively) was used to mimic the point source of light shown, adjusted to produce
curved or planar wavefronts reaching the lensing object. For most of the data presented
in this article, we used the simpler setting of a planar wavefront incident onto it, which is
the case when the source-lens distance is much greater than the lens-observer distance.
This is the case shown in Fig. 2, where an optical fiber was connected to a collimator (FC)
producing a beam of small size that is later expanded and recollimated by lenses L.1 and
L2. The beam was then directed towards a liquid crystal spatial light modulator (SLM:
Hamamatsu model LCOS, with 792 x 600 pixels with 20 um pixel size) where a suitable
digital hologram was displayed. These were created using MATLAB as images with the
desired phase profile (modulo 27) encoded as grayscale (adjusted for the wavelength
in use). The image seen on the SLM shows an example of such a phase encoding for
the case of a symmetric lens. To this phase, we added a phase-grating encoding to
produce the lensed beam on the first-order diffraction, plus aberration corrections to
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Figure 2. Schematic of the laboratory implementation. The input laser beam was
optionally filtered by a single-mode fiber connected to a fiber coupler (FC). The (point)
source was adjusted by lenses L1 and L2. The light beam was then steered by mirrors
(M) to a spatial light modulator (SLM) with a phase encoding that affected the light
deflections. The beam was imaged by placing the camera (CAM1) on the light path
after the 4f relay system of lenses L3 and L4. Astrophysical observations were mimicked
by capturing light that was transmitted by a small aperture (SP2) in the beam path,
and far-field imaged by a lens (L5) and camera (CAM2).

counteract any SLM imperfections (not shown). A 4f imaging lens system (L3 and L4,
both achromatic with focal length f;, = 500mm, respectively) relayed the deflected
beam further away from the SLM for better diagnosis. The entire “Einstein” beam,
was imaged by placing a camera (Thorlabs DCC1645C with 3.6 pm pixel size) along the
beam path. We mimicked the astrophysical observations by limiting the light to pass
through a small pinhole of about 0.5-1 mm in diameter. A lens (L5 with focal length
100mm) and a camera (Thorlabs DCC1545M with 5.2 pm pixel size) separated by the
focal length of the lens provided the scale on the camera plane. Image analysis and fully
automated data acquisition were made using custom-made MATLAB scripts.

3. Diffractive features

Placing a camera in the observation plane of the lensed light revealed the wave aspect
of gravitational lensing. Figure 3(a) shows the pattern for a symmetric lensing object
taken with a monochromatic beam (of wavelength 633 nm).

The measured light beam reveals a pattern with the striking regularity of a Bessel
function, confirming previous treatments of the problem [10, 11]. While the shape
remains constant, the beam pattern expands non-monotonically with propagation. We
obtained the exact shape of the pattern analytically by using the diffraction integral
under the Fresnel approximation [32]

e““z -k 2 & 2 -k .2 -kp
Ulp, ¢l = ——e'z=" / / rUg[r, 0)e'z=""e "= «s0=2) gr dp (4)
1Az o Jo

where p and ¢ are respectively the radial and azimuthal coordinates in the transverse

plane at position z along the propagation direction, and with the initial field given by

Uplr, 0] o< expli2krs In(r/ro) + i00)]. (5)
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Figure 3. Images of Einstein beams with (a) £ = 0, and (c) £ = 2. They are well
explained by confluent hypergeometric functions and Bessel modes of order ¢, as shown
by the fit for £ = 0 in (b) and £ = 2 in (d). (e) Image montage of the beam taken at
12 wavelengths (405, 442, 458, 477, 496, 488, 514, 532, 589, 633, 670 and 694 nm) with
intensity magnified to better appreciate the chromatic character. (f) The radius of the
first minimum for ¢ = 0 as a function of the propagation distance.

The detailed derivation of the integral solution can be found in [33]. The result is a
light mode represented by

2
Ulp, p; 2] o< exp [zkz —al <gp + Z) + i/{p_] Pl x
2z

2
. m—1—‘,—2’]67‘5
lo|+2 . ikp*] (1) 2
F —ikrg; |¢ = | - 6
i |2 st + -5 (2 )
where 1Fi(a,b;x) is a confluent hypergeometric function. In the asymptotic

approximation, where k > 1/rg, the field converges to

1 kp? 2k?
Ulp. ;2] o — exp [zkz + 5 iésﬁ} iy [\/ = p] : (7)
z 2z z

where the amplitude distribution is governed by a Bessel function of order |¢|.
The Einstein beam on its own has interesting properties. Analysis of the beams gave
good fits of the intensity profile both to the exact and approximated models, as shown




Einstein beams and the diffractive aspect of gravitationally-lensed light 7

in Fig. 3(b), which displays a cut of the 633 nm beam along the center plotted with the
corresponding fits. Such a pattern corresponds to a Fresnel number m = 2rg/A = 9.5.
Our system allowed values of m within the range 0.2 to 30. When adding orbital
angular momentum to the beam, which can be imparted by a Kerr black hole [28], the
field vanishes at the phase discontinuity. Analytically, this is ensured by the term p°
in the exact solution of Eq. 6 and it is consistent with the asymptotic approximation
since Bessel functions with ¢ > 0 naturally vanish at p = 0. Fig. 3(c) and (d) show the
measured beam and corresponding fit for ¢ = 2, respectively, which is also fit successfully
by both theoretical approaches (exact and approximated).

The size of the radius of the first minimum p;_p;, is of the order of tens of
micrometers. This can also be calculated from Eq. 7, by setting the argument
kagpi—min = 2.405, where

27"5

Qp = 7? (8)
is the angular radius of the Einstein ring when the object-lens distance is much larger
than the lens-observer distance (z) [27]. As mentioned earlier, we programmed our lens
for deflections of the order of arc minutes. Astrophysical imaging observations of lensing
in the visible are typically in the order of arc seconds. This puts p;_ i, for astrophysical
observations in the millimeter range. Thus, observations of lensing with telescopes, such
as the Hubble Space Telescope (HST), average through the Einstein-beam fringes, if at
all observable. For a fixed lensing parameter ag, the radii of the rings increase linearly
with the wavelength. A composite image of 12 wavelengths across the visible is shown
in Fig. 3(d). Given that the radii of the rings increase at different rates for different
wavelengths, the overall pattern is very colorful due to the overlap of minima at some
wavelengths with maxima at other wavelengths. It constitutes an illustration of the
dispersion caused by the diffraction of gravitationally lensed light.

Einstein beams can also be considered a new class of light beams. They are an
intermediate case between non-diffracting beams, such as Bessel beams [34], which
show no expansion but are short-ranged; and Gaussian beams, which are long-ranged
but expand asymptotically linearly with z. We confirmed the prediction of Eq. 6 of
a dependence that increases with /z. In Fig 3(f) we display a graph of the radius
of the first minimum of the fitted pattern along with a fit proportional to /z, where
we see the beam expand from 36 pm to 67 pm in 0.25m. Einstein beams can be long-
ranged. The range z,,., of the Einstein beam can be calculated roughly by the lowest
deflection angle at the rim of the SLM (rgr.y = 6 mm) for incoming parallel rays, yielding
Zmax = Tera/(2rs). For example, using rg = 0.5 um we get 2., = 36 m. However, our
uncertainty in the expansion of the input beam can make the range vary significantly,
a slight expansion of the incoming beam can significantly vary the range. We have
observed a pattern featuring at least 3 rings, with p;_,;, = 7mm at a distance of about
100m along the hallways adjacent to our lab. A Gaussian beam starting with a waist
of 36 pm has a much larger beam radius of about 530 mm at that distance.

There is potentially a new associated phenomenon to be found in astrophysical
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observations: self-healing of the light beam from the shadow of obstacles. Einstein
beams and Bessel beams are made by the intersection of conical rays. If we imagine a
plane that contains the rays and the beam axis, in the case of Bessel beams, the rays
coming from above the axis are all parallel, and similarly rays coming from below. In
Einstein beams those sets of rays are not parallel. Instead, they have slowly varying
slopes, as shown schematically in Fig. 1. At different distances along the propagation
direction, the Bessel-beam mode is made approximately of a finite set of rays, but
beyond a self-healing distance, the pattern is mostly made of a different set of rays.
Thus, an obstacle in the path of the beam interrupts a set of rays creating a shadow,
but further downstream the shadow disappears, and the beam self-heals [35]. The same
is true for Einstein beams. This is not only a curious phenomenon, but the actual case
for gravitational lensing, where objects in space along the beam’s path act as obstacles.
In an aligned system for a light source sufficiently far away that the light rays arriving
at the lensing plane can be assumed to be parallel to the optical axis, using geometrical
considerations results in a self-healing distance zgg = 2/(25), where x is the physical
size of the obstacle and § is the angle that the rays form with the axis [35] (which is
constant for Bessel beams). In Einstein beams 5 = \/2rg/z, where z is the distance
from the lens to the self-healing point, thus zgy increases with object size and with the
separation between the obstacle and the lens. We verified the self-healing effect but
defer details for a separate publication. The self-healing images are similar to what one
expects of Bessel beams.

Asymmetric lensing objects have a significant effect on Einstein beams. The
smallest asymmetry transforms the symmetric Bessel-like pattern into astroid patterns
made of four cusps, and because of the monochromatic source that we use, it features
lattice interference patterns. The pattern that we see with symmetric lensing has an
axial caustic, and the Bessel rings are symmetric interference fringes. The asymmetry of
the lens produces crossings of gravitationally deflected light that results in 2-dimensional
interference lattice points, or decorations [14]. In Fig. 4(a) we see the smallest effect of
the elliptical perturbation: the coalescence of the first ring into 4 interference maxima
aligned with the axes of the asymmetry. We observed the same type of pattern with
elliptical lenses and binary lenses of low separation.

As the ellipticity of the elliptical lens is increased, and similarly, the separation of
binaries, the two types of patterns undergo a transformation. The next outer complete
ring from the previous set of parameters coalesces into a set of lattice points forming
a diamond, while the internal set of interferences fades, as shown in Figs. 4 (b) and
(c). It is also seen that the ends of the diamond are cusps due to a caustic fold
[14, 36]. The coalescing of rings into lattices proceeds as we increase the ellipticity
further. The sequence of patterns proceeds at different rates for different wavelengths
such that the patterns do not overlap. In Fig. 4(d) we show a pattern for a select
number of wavelengths. Such chromatic effects of lensing have never been observed.
The addition of orbital angular momentum to the elliptical lens distorts the symmetric
diamond into a displaced rectangular pattern, as shown in Fig. 4(e) for £ = —15. The
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Figure 4. Mosaic of Einstein beams bearing asymmetry. Elliptical lenses with
2krg = 20: for (a) e = 1.1, (b) e = 1.3 and (c) e = 2. (d) Image montage of an
elliptical lens with e = 1.5 and rg = 5.5 x 107%m (488, 514, 589, rg = 964nm). (e)
Elliptical lens of (c) plus orbital angular momentum with ¢ = —15

pattern mirror-flips about a vertical axis for £ = +15.

4. Geometrical-optics Features

The most notorious but less common situation in gravitational lensing involves the
fortuitous alignment of object, lens, and observer, which yields a symmetric Einstein
ring. Fortunately, the cosmos is so vast that Einstein rings still abound [37], and
have been observed since 1988 in the radio [38] and in 1992 in the visible [39], with
numerous others found since, for example, via the Sloan Sky survey [40]. The angular
Einstein radius at a distance z from the lens is given by Eq. 8. To mimic astrophysical
observations, which sample a small region of space, and integrate it over the telescope
aperture, we place a ~ 1 mm aperture and an additional lens in the path of the beam
(See Fig. 2). Figure 5(a) shows an example of a laboratory Einstein ring. For this
image we had oz = 4.9 x 107® rad = 17 arc min for k ~ 10"m~! and r¢ = 3 x 10~ m.
It produced a 0.5 mm radius ring on the active area of a CMOS digital camera. The
predictions of Eq. 8 were confirmed by measuring their radius and graphing it as a
function of the lensing mass, as shown in Fig. 5(b) in a linearized plot. A linear fit to
the data confirmed the relation. In a previous study, we also confirmed the non-linear
dependence of the Einstein radius with z [27].

Displacing the center of the hologram representing the lensing mass reproduced
well-known Einstein arcs. These are stationary points in the optical path length from
the object to the observer, which for a symmetric lens results in 2 arcs [41]. Such features
of lensing were the first evidence of lensing in astrophysical observations [42], and are
ubiquitous in deep-sky images showing gravitational lensing, including spectacular sights
obtained using the HST and other telescopes. The distinct path lengths that produced
the two arcs are of much interest in astrophysics because the light from the separate
arcs involve delay times that have been used for determining a more accurate value
of the Hubble constant [9, 5]. By being able to vary the misalignment smoothly in
our laboratory measurements, we were able to reproduce the smooth change of the
ring into arcs, as shown in Fig. 6(a-d), showing the transition for selected values of
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Figure 5. (a) Image of the laboratory recreation of an Einstein ring; (b) Linearized
graph of the relation of the Einstein-ring diameter with the Schwarzchild radius rg,
which is effectively the mass of the lensing object.

the misalignment. A dashed outline of the Einstein ring obtained for no displacement
(Fig. 6(a)) is used to measure the change in position of the arcs as a function of the
displacement. We observe that as the displacement increases, both arcs change in size,
position and in relative intensity.

We tested the orbital angular momentum of an Einstein ring, by adding to the lens
a topological charge ¢, as described earlier, and setting it up in an interferometer where
the Einstein ring bearing orbital angular momentum interferes with a plane wave. By
varying the relative phase we were able to produce interferograms and confirm that the
topological charge imparted by the lens is encoded onto the ring, as shown in Fig. 6(e),
in a false-color image of the phase in a ring determined for the case where ¢ = 20.

When we added elliptical asymmetry to the lensing mass, we observed the Einstein
cross, which is also explained in terms of stationary points aligned along the axes of the
elliptical lens. In Fig. 6 we show images for e = 1.3 (f), e = 1.5 (g) and e = 2 (h).
where e is as defined in Eq. 3. In that sequence, we can appreciate the metamorphosis
of the ring into arcs. We observe that they transform by increasing the intensity of
one opposite pair of arcs relative to the other. The horizontal and vertical axes flip for
e <1.

If we add a displacement along the horizontal direction, which is one of the most
common misalignment situations in astrophysical observations [40], we observe the
merging of 3 stationary points into a continuous long arc plus a short arc or point
opposite to it, as seen in Fig 6(i) for 0z = 15 pixels (px). The single arc decreases in
size for increasing displacements, such as dx = 50 px seen in (j). A displacement along
2 directions, such as éx = dy = 10 px in (k), shows yet a new situation: 2 arcs merge
to form a 3-arc pattern [8]. Observing such dynamic evolution has not yet been seen
astrophysically, but is easily done with our system.

For binary lenses, we see similar effects to those of elliptical lenses, thus we do
not show them here for the sake of brevity. In this case, however, the Einstein ring
turns into an ellipse as the separation between the binaries is increased from zero, and
coalesces into a cross as the separation is increased further. Our parameter set allowed
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Figure 6. Mosaic of observations of gravitational lensing as a function of laboratory

parameters. For symmetric lensing objects, we show a sample of the measurements as
a function of the displacement of the center of the lensing mass programmed in the
SLM with values (a) dx = 0, (b) dx = 15, (c) dz = 25 and (d) dx = 35 pixel units of
the SLM. Dashed circles mark the position of the Einstein ring. In all images but (a)
the intensity was artificially increased beyond saturation to make the fainter features
more visible. (e) False color phase map of a ring with orbital angular momentum with
¢ =20. An asymmetry is added by varying e in Eq. 3 for values (f) e = 1.3, (g) e = 1.5
and (h) e = 2. Addition of a displacement to the asymmetric lens with e = 1.5: for (i)
dx = 15 px, (j) = = 50 px, and (k) dx = dy = 10 px. (1) Addition of orbital angular
momentum with £ = 10 for e = 1.5 with no displacement.

us only a maximum distance between binary masses of about 10*rg, more resembling
the situation of contact binaries or black-hole/neutron-star systems. Adding orbital
angular momentum results in adjacent pairs of arcs of the Einstein cross to merge into
2 wide pairs, as shown in Fig. 6(1) for a topological charge ¢ = 10. This has not been
observed or recognized, as far as we know. Reversing the sign of the charge alternates
the pairing of arcs.

If we decrease the mass of the lensing object so that the ring is no longer seen
due to its radius being of the order of the resolution of the optical system, we get into
the microlensing-like regime. We could simulate weak lenses down to rg = 0.025nm,
being the SLM’s bit-depth the limiting factor. We mimicked microlensing events as
we scanned the displacement of the lens dz from -100 px to +100 px, and observe an
increase in the measured intensity, peaking at d= = 0, and decreasing as dx was increased
further. The arcs are more resilient to obstacles in self-healing, but show deformations
and caustics due to asymmetries in the obstacle. This could also be used to study the
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effect of complex caustics in microlensing [23].

5. Discussion and Conclusions

In summary, we have implemented a method to observe all of the gravitational lensing
effects in the laboratory using spatial light modulation. Astrophysical observations
span a wide range of scales, from wavelengths at the short end of the visible spectrum
to the radio. Our laboratory recreations tested a slice of this parameter space. With
simulated gravitational deflections of the order of arc minutes and coherent visible light
from a laser, we could image the beam onto a standard digital camera. This revealed
patterns with the striking regularity of Bessel-like beams for symmetric lenses. It allowed
us to observe the predicted caustics of gravitational lensing produced by asymmetric
lenses, which show lattice interference patterns that are rich and colorful when the
source of composed of multiple wavelengths. These types of details are not possible in
astrophysical observations because of the stringent conditions that are required, such as
a point-like source, perfect alignment, and the right combination of telescope aperture
and wavelength of the radiation. There is still hope to observe wave effects with
candidate point sources, such as pulsars, gamma-ray bursts[43] and fast radio bursts
[44]. Source size also approximates the point source for near solar lenses [45]. The
alignment situations where the path difference of the light around the lens is of the order
of the wavelength of the light can be achieved with small masses, such as primordial
black holes [46, 47]. The laboratory capability presented here allows us to explore
the gravitational diffraction patterns that have not yet been observed. Gravitational
lensing deflections are independent of the wavelength of the light, but other features
of astrophysical lenses, such as plasma surrounding them [48] or wavelength-dependent
masses [49] may be simulated with our system. So far these chromatic effects, or more
generally diffractive effects, have not been found in astrophysical observations.

While we have only experimented with point light sources, the laboratory capability
also opens new possibilities for observing rings and arcs by analog simulations of more
complex situations. For instance, additional modulator(s) can be added to simulate
extended sources of arbitrary shape. Our images of rings and arcs integrate over about
12 Einstein-beam rings, which is comparable to HST. These types of experiments could
allow a way to test current lensing theories and software [8, 50]. Laboratory methods
could also be used to study weak lensing due to dark matter or exoplanets by analog
simulations. The question of self-healing is an intriguing one. Could some observations
involve self-healing due to an obstruction in the path of the light, and what could they
reveal about the obstruction?

Einstein-type beams can also be used in non-astrophysical applications, such as
in light-sheet microscopy [51], remote sensing, and communications due to their low
expansion, self-healing, potentially deep penetration, and other properties already
considered for logarithmic axicons [52, 53]. The SLM can be used in the investigation

of a class of beams where the deflection angle is more generally proportional to ="
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(n € Ryg # 1), which may reveal new interesting optical-beam properties such as those
described here.
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