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Abstract. The study of light lensed by cosmic matter has yielded much information

about astrophysical questions. Observations are explained using geometrical optics

following a ray-based description of light. After deflection the lensed light interferes,

but observing this diffractive aspect of gravitational lensing has not been possible

due to coherency challenges caused by the finite size of the sources or lack of near-

perfect alignment. In this article, we report on the observation of these wave effects of

gravitational lensing by recreating the lensing conditions in the laboratory via electro-

optic deflection of coherent laser light. The lensed light produces a beam containing

regularities, caustics, and chromatic modulations of intensity that depend on the

symmetry and structure of the lensing object. We were also able to observe previous

and new geometric-optical lensing situations that can be compared to astrophysical

observations. This platform could be a useful tool for testing numerical/analytical

simulations, and for performing analog simulations of lensing situations when they are

difficult to obtain otherwise. We found that laboratory lensed beams constitute a new

class of beams, with long-range, low expansion, and self-healing properties, opening

new possibilities for non-astrophysical applications.
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1. Introduction

Research on gravitational lensing over the past 30 years has had tremendous success

in understanding the phenomenon itself, and in using it for extracting information

about the cosmos. Arcs and rings produced by gravitational lensing are now a common

appearance in deep-field astronomical images. It constitutes a telescope to probe objects

further away from the reach of telescopes on or around Earth to investigate, for example,

ancient galaxies [1]. One of the greatest successes of gravitational lensing has been

to investigate dark matter [2, 3] and to put constraints on the abundance of massive

astrophysical compact halo objects (MACHOs) as an explanation for dark matter around

our galaxy [4]. Other important accomplishments include obtaining constraints on the

Hubble constant [5] and the finding of exoplanets around exotic bodies, among other

findings, via microlensing [6].

The phenomenon is well understood in terms of ray optics, which leads to a very

important aspect of gravitational lensing: the magnification of the light from a far-

away object. It leads to the observation of a multitude of images of the same object,

producing Einstein rings for the case of near-perfect alignment of the source/lensing-

mass/Earth; arc-pairs for slight misalignments; and other arcs and crosses for more

general asymmetric lensing objects, such as galaxies or clusters [7]. The ray analysis of

lensing yields caustics that are well understood in terms of singular optics [8, 7].

The diffractive aspect of gravitational lensing, the interference of light waves after

deflection, has been discussed since the early days of this field [9]. Gravitational

deflections are achromatic [7], but the full light field in the observation plane should

involve diffraction patterns due to the wave aspect of light. Lensed light is strongly

focused forward over a small solid angle. The earliest inquiry into this question found

that monochromatic light produced by a symmetric lensing object should have the

approximate form of a Bessel function [10], or more precisely expressed in terms of

confluent hypergeometric functions [11, 12, 13]. Beam patterns of asymmetric lenses

should yield astroid caustics [8] bearing diffractive decorations [14].

For most strong lensing situations with deflections of the order of arc-seconds, the

misalignment of the source, lens, and Earth creates path differences much larger than

the coherence length of the light, negating the possibility of wave interference. The

finite spatial extent of the sources have the effect of averaging out the fringes even for

near-perfect alignment [15, 16].

Given the challenges that are faced in observing the diffractive effects of lensing of

light waves, an alternative method to reproduce them via laboratory methods would

enhance our understanding of the phenomenon and help with further analysis and

discoveries. Previous attempts at simulating gravitational lensing in the laboratory

include the use of logarithmic-shaped axicons [17, 18], gradient-index media [19],

metamaterials [20], transformation optics [21] and water surface tension [22]. Most

of these attempts suffer from being limited by a rigid optical element.

In this work we use computerized holography with an electro-optical device to
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Figure 1. Conceptual sketch of the physical system we investigate. Light coming

from a distant source is deflected by the gravitational field of a lensing mass through

an angle α, that depends both on the Schwarzchild radius of and the distance to the

deflecting mass. This can be translated to a phase change following a logarithmic

dependence on the radial direction. Observation is carried out at a distance z away

from the lensing plane.

deflect the light of a laser beam according to the predictions of gravitational theory.

The resulting beams are a novel class of beams that adhere to the gravitational lensing

conditions. As will be shown below, these beams change radically in shape depending

on the structure of the lens, and so to distinguish them from other types of beams we

call them “Einstein beams.” They enable us to fully simulate gravitational lensing and

study them while varying all possible parameters of the problem, with the key advantage

that they can be programmed to produce any type of lensing situation.

This paper is organized as follows. In Sec. 2 we give a description of the method to

produce gravitational-like deflections of light beams. The results are then presented in

two sections, beginning with our observations of the diffractive features of lensed beams

in Sec. 3, and continuing by showing that our method also reproduces the geometric-

optic astrophysical observations of previous lensing situations plus new ones in Sec. 4.

We present experimental details in Sec. 5 and finish with concluding remarks in Sec. 6.

2. Gravitational lensing in the laboratory

In gravitational lensing, light deflection occurs over a relatively short range of distances

compared to the distances of the source and Earth to the lens [7]. Thus, it is fair

to approximate the deflection as occurring instantaneously on a plane (Fig. 1). The

deflection angle α depends inversely on the impact parameter r, the distance from the

lensing mass to the ray of light in the deflection plane [23],

α =
2rS
r

, (1)

where rS = 2GM/c2 is the Schwarzschild radius, with G being the gravitational

constant, M the mass of the deflecting object and c the speed of light. Such a deflection

was first predicted by Einstein in 1915 based on general relativity [24, 25], and measured

by Eddington and Dyson in 1919 [26] in a historic episode of scientific discovery.

A spatial light modulator (SLM), a pixelated computer-programmed liquid-crystal-

based phase shifter, can produce the same type of deflections in the laboratory.

Observing them along the span of an optical table requires the use of larger deflection
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angles, of the order of arc minutes. We found that it allowed the investigation of all

aspects of the phenomenon. The SLM deflects the light by imparting phase shifts on

an incoming light beam. Gravitational-like deflection following Eq. 1 can be imparted

onto the light by encoding a position-dependent phase [14, 27]

ϕSLM = −2krS ln

(
r

r0

)
, (2)

where r now is the radial coordinate on the SLM, k is the wave number of the light

and r0 is a reference radius where ϕSLM = 0. We simulated a number of lensing

situations described below. We programmed values of rS in the range 0.1 − 10 µm,

which in astrophysical situations would correspond to lensing masses from 4× 10−11M⊙

to 3×10−9M⊙, where M⊙ is the mass of the Sun. A misaligned situation was simulated

by changing the location of the central mass programmed onto the SLM by horizontal

and vertical amounts δx and δy. Asymmetrical deflecting masses, such as elliptically-

shaped galaxies or clusters, were simulated by adding a parameter e that is related to

the ellipticity of the lens. Incorporating these features entailed modifying the encoding

of Eq. 2 by

r → r

√
cos2 ϕ+ e sin2 ϕ. (3)

Lensing by binary mass systems was studied as a function of their mass and separation

by superimposing displaced phase encodings. The possibility that certain astrophysical

objects, such as Kerr black holes, give angular momentum to the light, has been proposed

[28, 29], and measured [30]. Adding an azimuthal phase to the encoding of the form

ℓϕ, where ℓ is the topological charge (an integer) recreated situations where the lensing

objects imparted orbital angular momentum of ℓℏ per photon [31].

Figure 2 shows a schematic of the optical setup. We used coherent light beams in

the TEM00 mode from one of several laser sources and wavelengths: gas-based He-Ne

(633 nm), He-Cd (442 nm) and Ar-ion (458, 477, 488, 496, 501, 514 nm); diode-pumped

solid-state lasers (532 and 589 nm), and diode lasers at 405, 670 and 694 nm. A system

of 2 achromatic lenses (L1 and L2, with focal lengths f1 = 50mm and f2 = 500mm,

respectively) was used to mimic the point source of light shown, adjusted to produce

curved or planar wavefronts reaching the lensing object. For most of the data presented

in this article, we used the simpler setting of a planar wavefront incident onto it, which is

the case when the source-lens distance is much greater than the lens-observer distance.

This is the case shown in Fig. 2, where an optical fiber was connected to a collimator (FC)

producing a beam of small size that is later expanded and recollimated by lenses L1 and

L2. The beam was then directed towards a liquid crystal spatial light modulator (SLM:

Hamamatsu model LCOS, with 792× 600 pixels with 20 µm pixel size) where a suitable

digital hologram was displayed. These were created using MATLAB as images with the

desired phase profile (modulo 2π) encoded as grayscale (adjusted for the wavelength

in use). The image seen on the SLM shows an example of such a phase encoding for

the case of a symmetric lens. To this phase, we added a phase-grating encoding to

produce the lensed beam on the first-order diffraction, plus aberration corrections to
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Figure 2. Schematic of the laboratory implementation. The input laser beam was

optionally filtered by a single-mode fiber connected to a fiber coupler (FC). The (point)

source was adjusted by lenses L1 and L2. The light beam was then steered by mirrors

(M) to a spatial light modulator (SLM) with a phase encoding that affected the light

deflections. The beam was imaged by placing the camera (CAM1) on the light path

after the 4f relay system of lenses L3 and L4. Astrophysical observations were mimicked

by capturing light that was transmitted by a small aperture (SP2) in the beam path,

and far-field imaged by a lens (L5) and camera (CAM2).

counteract any SLM imperfections (not shown). A 4f imaging lens system (L3 and L4,

both achromatic with focal length f3,4 = 500mm, respectively) relayed the deflected

beam further away from the SLM for better diagnosis. The entire “Einstein” beam,

was imaged by placing a camera (Thorlabs DCC1645C with 3.6 µm pixel size) along the

beam path. We mimicked the astrophysical observations by limiting the light to pass

through a small pinhole of about 0.5-1mm in diameter. A lens (L5 with focal length

100mm) and a camera (Thorlabs DCC1545M with 5.2 µm pixel size) separated by the

focal length of the lens provided the scale on the camera plane. Image analysis and fully

automated data acquisition were made using custom-made MATLAB scripts.

3. Diffractive features

Placing a camera in the observation plane of the lensed light revealed the wave aspect

of gravitational lensing. Figure 3(a) shows the pattern for a symmetric lensing object

taken with a monochromatic beam (of wavelength 633 nm).

The measured light beam reveals a pattern with the striking regularity of a Bessel

function, confirming previous treatments of the problem [10, 11]. While the shape

remains constant, the beam pattern expands non-monotonically with propagation. We

obtained the exact shape of the pattern analytically by using the diffraction integral

under the Fresnel approximation [32]

U [ρ, φ] =
eikz

iλz
ei

k
2z

ρ2
∫ ∞

0

∫ 2π

0

rU0[r, θ]e
i k
2z

r2e−i kρ
z

cos(θ−φ) dr dθ (4)

where ρ and φ are respectively the radial and azimuthal coordinates in the transverse

plane at position z along the propagation direction, and with the initial field given by

U0[r, θ] ∝ exp[i2krS ln(r/r0) + iℓθ]. (5)
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3. Images of Einstein beams with (a) ℓ = 0, and (c) ℓ = 2. They are well

explained by confluent hypergeometric functions and Bessel modes of order ℓ, as shown

by the fit for ℓ = 0 in (b) and ℓ = 2 in (d). (e) Image montage of the beam taken at

12 wavelengths (405, 442, 458, 477, 496, 488, 514, 532, 589, 633, 670 and 694 nm) with

intensity magnified to better appreciate the chromatic character. (f) The radius of the

first minimum for ℓ = 0 as a function of the propagation distance.

The detailed derivation of the integral solution can be found in [33]. The result is a

light mode represented by

U [ρ, φ; z] ∝ exp

[
ikz − iℓ

(
φ+

π

2

)
+ ik

ρ2

2z

]
ρ|ℓ| ×

1F1

[
|ℓ|+ 2

2
− ikrS; |ℓ|+ 1;− ikρ2

2z

](
1

z

) |ℓ|
2
−1+ikrS

(6)

where 1F1(a, b;x) is a confluent hypergeometric function. In the asymptotic

approximation, where k ≫ 1/rS, the field converges to

U [ρ, φ; z] ∝ 1

z
exp

[
ikz +

ikρ2

2z
− iℓφ

]
J|ℓ|

[√
2k2rS
z

ρ

]
, (7)

where the amplitude distribution is governed by a Bessel function of order |ℓ|.
The Einstein beam on its own has interesting properties. Analysis of the beams gave

good fits of the intensity profile both to the exact and approximated models, as shown
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in Fig. 3(b), which displays a cut of the 633 nm beam along the center plotted with the

corresponding fits. Such a pattern corresponds to a Fresnel number m = 2rS/λ = 9.5.

Our system allowed values of m within the range 0.2 to 30. When adding orbital

angular momentum to the beam, which can be imparted by a Kerr black hole [28], the

field vanishes at the phase discontinuity. Analytically, this is ensured by the term ρℓ

in the exact solution of Eq. 6 and it is consistent with the asymptotic approximation

since Bessel functions with ℓ > 0 naturally vanish at ρ = 0. Fig. 3(c) and (d) show the

measured beam and corresponding fit for ℓ = 2, respectively, which is also fit successfully

by both theoretical approaches (exact and approximated).

The size of the radius of the first minimum ρ1−min is of the order of tens of

micrometers. This can also be calculated from Eq. 7, by setting the argument

kαEρ1−min = 2.405, where

αE =

√
2rS
z

, (8)

is the angular radius of the Einstein ring when the object-lens distance is much larger

than the lens-observer distance (z) [27]. As mentioned earlier, we programmed our lens

for deflections of the order of arc minutes. Astrophysical imaging observations of lensing

in the visible are typically in the order of arc seconds. This puts ρ1−min for astrophysical

observations in the millimeter range. Thus, observations of lensing with telescopes, such

as the Hubble Space Telescope (HST), average through the Einstein-beam fringes, if at

all observable. For a fixed lensing parameter αE, the radii of the rings increase linearly

with the wavelength. A composite image of 12 wavelengths across the visible is shown

in Fig. 3(d). Given that the radii of the rings increase at different rates for different

wavelengths, the overall pattern is very colorful due to the overlap of minima at some

wavelengths with maxima at other wavelengths. It constitutes an illustration of the

dispersion caused by the diffraction of gravitationally lensed light.

Einstein beams can also be considered a new class of light beams. They are an

intermediate case between non-diffracting beams, such as Bessel beams [34], which

show no expansion but are short-ranged; and Gaussian beams, which are long-ranged

but expand asymptotically linearly with z. We confirmed the prediction of Eq. 6 of

a dependence that increases with
√
z. In Fig 3(f) we display a graph of the radius

of the first minimum of the fitted pattern along with a fit proportional to
√
z, where

we see the beam expand from 36 µm to 67 µm in 0.25m. Einstein beams can be long-

ranged. The range zmax of the Einstein beam can be calculated roughly by the lowest

deflection angle at the rim of the SLM (rSLM = 6mm) for incoming parallel rays, yielding

zmax = r2SLM/(2rS). For example, using rS = 0.5 µm we get zmax = 36m. However, our

uncertainty in the expansion of the input beam can make the range vary significantly,

a slight expansion of the incoming beam can significantly vary the range. We have

observed a pattern featuring at least 3 rings, with ρ1−min = 7mm at a distance of about

100m along the hallways adjacent to our lab. A Gaussian beam starting with a waist

of 36 µm has a much larger beam radius of about 530mm at that distance.

There is potentially a new associated phenomenon to be found in astrophysical
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observations: self-healing of the light beam from the shadow of obstacles. Einstein

beams and Bessel beams are made by the intersection of conical rays. If we imagine a

plane that contains the rays and the beam axis, in the case of Bessel beams, the rays

coming from above the axis are all parallel, and similarly rays coming from below. In

Einstein beams those sets of rays are not parallel. Instead, they have slowly varying

slopes, as shown schematically in Fig. 1. At different distances along the propagation

direction, the Bessel-beam mode is made approximately of a finite set of rays, but

beyond a self-healing distance, the pattern is mostly made of a different set of rays.

Thus, an obstacle in the path of the beam interrupts a set of rays creating a shadow,

but further downstream the shadow disappears, and the beam self-heals [35]. The same

is true for Einstein beams. This is not only a curious phenomenon, but the actual case

for gravitational lensing, where objects in space along the beam’s path act as obstacles.

In an aligned system for a light source sufficiently far away that the light rays arriving

at the lensing plane can be assumed to be parallel to the optical axis, using geometrical

considerations results in a self-healing distance zSH = x/(2β), where x is the physical

size of the obstacle and β is the angle that the rays form with the axis [35] (which is

constant for Bessel beams). In Einstein beams β =
√

2rS/z, where z is the distance

from the lens to the self-healing point, thus zSH increases with object size and with the

separation between the obstacle and the lens. We verified the self-healing effect but

defer details for a separate publication. The self-healing images are similar to what one

expects of Bessel beams.

Asymmetric lensing objects have a significant effect on Einstein beams. The

smallest asymmetry transforms the symmetric Bessel-like pattern into astroid patterns

made of four cusps, and because of the monochromatic source that we use, it features

lattice interference patterns. The pattern that we see with symmetric lensing has an

axial caustic, and the Bessel rings are symmetric interference fringes. The asymmetry of

the lens produces crossings of gravitationally deflected light that results in 2-dimensional

interference lattice points, or decorations [14]. In Fig. 4(a) we see the smallest effect of

the elliptical perturbation: the coalescence of the first ring into 4 interference maxima

aligned with the axes of the asymmetry. We observed the same type of pattern with

elliptical lenses and binary lenses of low separation.

As the ellipticity of the elliptical lens is increased, and similarly, the separation of

binaries, the two types of patterns undergo a transformation. The next outer complete

ring from the previous set of parameters coalesces into a set of lattice points forming

a diamond, while the internal set of interferences fades, as shown in Figs. 4 (b) and

(c). It is also seen that the ends of the diamond are cusps due to a caustic fold

[14, 36]. The coalescing of rings into lattices proceeds as we increase the ellipticity

further. The sequence of patterns proceeds at different rates for different wavelengths

such that the patterns do not overlap. In Fig. 4(d) we show a pattern for a select

number of wavelengths. Such chromatic effects of lensing have never been observed.

The addition of orbital angular momentum to the elliptical lens distorts the symmetric

diamond into a displaced rectangular pattern, as shown in Fig. 4(e) for ℓ = −15. The
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Figure 4. Mosaic of Einstein beams bearing asymmetry. Elliptical lenses with

2krS = 20: for (a) e = 1.1, (b) e = 1.3 and (c) e = 2. (d) Image montage of an

elliptical lens with e = 1.5 and rS = 5.5 × 10−6 m (488, 514, 589, rS = 964 nm). (e)

Elliptical lens of (c) plus orbital angular momentum with ℓ = −15

.

pattern mirror-flips about a vertical axis for ℓ = +15.

4. Geometrical-optics Features

The most notorious but less common situation in gravitational lensing involves the

fortuitous alignment of object, lens, and observer, which yields a symmetric Einstein

ring. Fortunately, the cosmos is so vast that Einstein rings still abound [37], and

have been observed since 1988 in the radio [38] and in 1992 in the visible [39], with

numerous others found since, for example, via the Sloan Sky survey [40]. The angular

Einstein radius at a distance z from the lens is given by Eq. 8. To mimic astrophysical

observations, which sample a small region of space, and integrate it over the telescope

aperture, we place a ∼ 1mm aperture and an additional lens in the path of the beam

(See Fig. 2). Figure 5(a) shows an example of a laboratory Einstein ring. For this

image we had αE = 4.9× 10−3 rad = 17 arc min for k ≃ 107 m−1 and rS = 3× 10−6 m.

It produced a 0.5mm radius ring on the active area of a CMOS digital camera. The

predictions of Eq. 8 were confirmed by measuring their radius and graphing it as a

function of the lensing mass, as shown in Fig. 5(b) in a linearized plot. A linear fit to

the data confirmed the relation. In a previous study, we also confirmed the non-linear

dependence of the Einstein radius with z [27].

Displacing the center of the hologram representing the lensing mass reproduced

well-known Einstein arcs. These are stationary points in the optical path length from

the object to the observer, which for a symmetric lens results in 2 arcs [41]. Such features

of lensing were the first evidence of lensing in astrophysical observations [42], and are

ubiquitous in deep-sky images showing gravitational lensing, including spectacular sights

obtained using the HST and other telescopes. The distinct path lengths that produced

the two arcs are of much interest in astrophysics because the light from the separate

arcs involve delay times that have been used for determining a more accurate value

of the Hubble constant [9, 5]. By being able to vary the misalignment smoothly in

our laboratory measurements, we were able to reproduce the smooth change of the

ring into arcs, as shown in Fig. 6(a-d), showing the transition for selected values of



Einstein beams and the diffractive aspect of gravitationally-lensed light 10

Figure 5. (a) Image of the laboratory recreation of an Einstein ring; (b) Linearized

graph of the relation of the Einstein-ring diameter with the Schwarzchild radius rS ,

which is effectively the mass of the lensing object.

the misalignment. A dashed outline of the Einstein ring obtained for no displacement

(Fig. 6(a)) is used to measure the change in position of the arcs as a function of the

displacement. We observe that as the displacement increases, both arcs change in size,

position and in relative intensity.

We tested the orbital angular momentum of an Einstein ring, by adding to the lens

a topological charge ℓ, as described earlier, and setting it up in an interferometer where

the Einstein ring bearing orbital angular momentum interferes with a plane wave. By

varying the relative phase we were able to produce interferograms and confirm that the

topological charge imparted by the lens is encoded onto the ring, as shown in Fig. 6(e),

in a false-color image of the phase in a ring determined for the case where ℓ = 20.

When we added elliptical asymmetry to the lensing mass, we observed the Einstein

cross, which is also explained in terms of stationary points aligned along the axes of the

elliptical lens. In Fig. 6 we show images for e = 1.3 (f), e = 1.5 (g) and e = 2 (h).

where e is as defined in Eq. 3. In that sequence, we can appreciate the metamorphosis

of the ring into arcs. We observe that they transform by increasing the intensity of

one opposite pair of arcs relative to the other. The horizontal and vertical axes flip for

e < 1.

If we add a displacement along the horizontal direction, which is one of the most

common misalignment situations in astrophysical observations [40], we observe the

merging of 3 stationary points into a continuous long arc plus a short arc or point

opposite to it, as seen in Fig 6(i) for δx = 15 pixels (px). The single arc decreases in

size for increasing displacements, such as δx = 50 px seen in (j). A displacement along

2 directions, such as δx = δy = 10 px in (k), shows yet a new situation: 2 arcs merge

to form a 3-arc pattern [8]. Observing such dynamic evolution has not yet been seen

astrophysically, but is easily done with our system.

For binary lenses, we see similar effects to those of elliptical lenses, thus we do

not show them here for the sake of brevity. In this case, however, the Einstein ring

turns into an ellipse as the separation between the binaries is increased from zero, and

coalesces into a cross as the separation is increased further. Our parameter set allowed
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(a) (c)(b) (d)
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Figure 6. Mosaic of observations of gravitational lensing as a function of laboratory

parameters. For symmetric lensing objects, we show a sample of the measurements as

a function of the displacement of the center of the lensing mass programmed in the

SLM with values (a) δx = 0, (b) δx = 15, (c) δx = 25 and (d) δx = 35 pixel units of

the SLM. Dashed circles mark the position of the Einstein ring. In all images but (a)

the intensity was artificially increased beyond saturation to make the fainter features

more visible. (e) False color phase map of a ring with orbital angular momentum with

ℓ = 20. An asymmetry is added by varying e in Eq. 3 for values (f) e = 1.3, (g) e = 1.5

and (h) e = 2. Addition of a displacement to the asymmetric lens with e = 1.5: for (i)

δx = 15 px, (j) δx = 50 px, and (k) δx = δy = 10 px. (l) Addition of orbital angular

momentum with ℓ = 10 for e = 1.5 with no displacement.

us only a maximum distance between binary masses of about 104rS, more resembling

the situation of contact binaries or black-hole/neutron-star systems. Adding orbital

angular momentum results in adjacent pairs of arcs of the Einstein cross to merge into

2 wide pairs, as shown in Fig. 6(l) for a topological charge ℓ = 10. This has not been

observed or recognized, as far as we know. Reversing the sign of the charge alternates

the pairing of arcs.

If we decrease the mass of the lensing object so that the ring is no longer seen

due to its radius being of the order of the resolution of the optical system, we get into

the microlensing-like regime. We could simulate weak lenses down to rS = 0.025 µm,

being the SLM’s bit-depth the limiting factor. We mimicked microlensing events as

we scanned the displacement of the lens δx from -100 px to +100 px, and observe an

increase in the measured intensity, peaking at δx = 0, and decreasing as δx was increased

further. The arcs are more resilient to obstacles in self-healing, but show deformations

and caustics due to asymmetries in the obstacle. This could also be used to study the
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effect of complex caustics in microlensing [23].

5. Discussion and Conclusions

In summary, we have implemented a method to observe all of the gravitational lensing

effects in the laboratory using spatial light modulation. Astrophysical observations

span a wide range of scales, from wavelengths at the short end of the visible spectrum

to the radio. Our laboratory recreations tested a slice of this parameter space. With

simulated gravitational deflections of the order of arc minutes and coherent visible light

from a laser, we could image the beam onto a standard digital camera. This revealed

patterns with the striking regularity of Bessel-like beams for symmetric lenses. It allowed

us to observe the predicted caustics of gravitational lensing produced by asymmetric

lenses, which show lattice interference patterns that are rich and colorful when the

source of composed of multiple wavelengths. These types of details are not possible in

astrophysical observations because of the stringent conditions that are required, such as

a point-like source, perfect alignment, and the right combination of telescope aperture

and wavelength of the radiation. There is still hope to observe wave effects with

candidate point sources, such as pulsars, gamma-ray bursts[43] and fast radio bursts

[44]. Source size also approximates the point source for near solar lenses [45]. The

alignment situations where the path difference of the light around the lens is of the order

of the wavelength of the light can be achieved with small masses, such as primordial

black holes [46, 47]. The laboratory capability presented here allows us to explore

the gravitational diffraction patterns that have not yet been observed. Gravitational

lensing deflections are independent of the wavelength of the light, but other features

of astrophysical lenses, such as plasma surrounding them [48] or wavelength-dependent

masses [49] may be simulated with our system. So far these chromatic effects, or more

generally diffractive effects, have not been found in astrophysical observations.

While we have only experimented with point light sources, the laboratory capability

also opens new possibilities for observing rings and arcs by analog simulations of more

complex situations. For instance, additional modulator(s) can be added to simulate

extended sources of arbitrary shape. Our images of rings and arcs integrate over about

12 Einstein-beam rings, which is comparable to HST. These types of experiments could

allow a way to test current lensing theories and software [8, 50]. Laboratory methods

could also be used to study weak lensing due to dark matter or exoplanets by analog

simulations. The question of self-healing is an intriguing one. Could some observations

involve self-healing due to an obstruction in the path of the light, and what could they

reveal about the obstruction?

Einstein-type beams can also be used in non-astrophysical applications, such as

in light-sheet microscopy [51], remote sensing, and communications due to their low

expansion, self-healing, potentially deep penetration, and other properties already

considered for logarithmic axicons [52, 53]. The SLM can be used in the investigation

of a class of beams where the deflection angle is more generally proportional to r−n
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(n ∈ R>0 ̸= 1), which may reveal new interesting optical-beam properties such as those

described here.
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