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1 Introduction

One of the standard predictions of inflation is the generation of a slightly red, unpolarized,
almost exactly Gaussian component of the stochastic gravitational wave background (SGWB).
The amplitude of this component can span tens of orders of magnitude, depending on the en-
ergy scale at which inflation took place. As a consequence, the observation of the signature that
this background leaves on the B-modes of the Cosmic Microwave Background (CMB) might
well be behind the corner. Or, on the other hand, the amplitude of this background might be
so small that it will never be observed. Moreover, the red tilt of its spectrum plus the current
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limit at CMB scales [1], implies that this SGWB is below the reach of current (LIGO, Virgo,
KAGRA) or upcoming (LISA, Einstein Telescope, Cosmic Explorer) laser interferometers.

The above predictions assume the zero mode of the inflaton(s) to be the only relevant
degree(s) of freedom during inflation, so that the only gravitational waves (GWs) generated
during inflation are those related to the amplification of the vacuum modes of the metric due to
the inflationary expansion. If, on the other hand, the inflationary Universe contains additional
fields with su�ciently large finite-wavelength excitations, then these excitations provide an
additional source of GWs, which might be blue and/or parity-odd and/or non-Gaussian, and
whose amplitude will generally be not solely determined by the inflationary energy scale.

A simple and well motivated model where a spectrum of gravitational waves with all
these properties is generated is characterized by an axion-like inflaton „ in interaction with a
U(1) gauge field through the „Fµ‹F̃ µ‹ coupling. In this case the rolling inflaton sources the
modes of the gauge field of a given helicity, which are amplified proportionally to the quantity
› Ã „̇/H, where „ is the inflaton field and H is the inflationary Hubble parameter. In the
simplest case of constant or adiabatically evolving ›, the amount of gauge field is exponentially
sensitive to this parameter, so that a large amplification of gauge modes is easily achieved.
Those fields, in their turn, source an additional population of scalar and tensor modes [2, 3].

Given that the quantity › generally increases during inflation, this e�ect is typically more
relevant at the later stages of inflation, when smaller scales than the CMB ones leave the
horizon — that is, this sourced component is generally expected to have a blue spectrum. This
can naturally lead to a situation where, while no e�ects of these sourced signals are observed
at CMB scale, a stochastic background of gravitational waves might be observable by pulsar
timing arrays, Gaia astrometry or laser interferometers [4–8], while density perturbations
might be large enough as to seed a sizeable amount of primordial black holes [9–14].

The fact that the energy in the amplified gauge modes is exponentially large in › implies
that during the later stages of inflation, when observable tensors can be produced, these
vectors strongly backreact on the inflaton evolution. Such a regime of strong backreaction has
first been studied analytically in [15], where it was found that the transfer of energy to gauge
fields slows down the rolling of the inflaton, leading to longer inflation and to a plateau in the
energy in gauge modes as a function of the number of e-folds. In [5], this was then shown to
imply that also the spectrum of produced tensors would plateau at interferometer frequencies.

The analytical study in [15] follows the conventional assumption made on models of warm
inflation [16], where the dissipation of energy from the inflaton, rather that the expansion
of the universe, is the main source of friction for the inflaton motion. As always done for
this class of models, it was assumed that the inflaton velocity was evolving slowly enough
that at any given time t during inflation the spectrum of photons depended only on ›(t). In
other words, it was assumed that the photon spectrum did not retain any memory of the
previous evolution of the system. Later on, refs. [17–23] studied the coupled inflaton/gauge
field system numerically, solving the equation of the gauge field mode by mode, e�ectively
accounting for memory e�ects in the gauge field spectrum. All those works found that, once
these e�ects are accounted for, in the strong backreaction regime › performs large oscillations
with an O(1) fractional amplitude around the value originally derived in [15]. While these
numerical simulations assumed a homogeneous inflaton, the work [24] solved the full system
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of inflaton and gauge field excitations on a lattice, also obtaining an oscillatory evolution
in excellent agreement with [17–23].

More recently, ref. [25] obtained the same behavior analytically, in the regime in which the
amplitude of these oscillations can be treated as a perturbatively small quantity. The period
of those oscillations was found in [25] to be of approximately 5 e-folds, which is consistent
with the numerical results. The analytical study explicitly shows [25] that the cause of the
instability is a delay between the moment that a given mode is amplified and the moment in
which it is relevant for backreaction, as originally argued in [17] and [18], and later discussed
in detail in [21], thus causing the memory e�ect on › (t) that we have mentioned.

In the present work we study the shape of the spectra of tensors produced by the
gauge field modes once those oscillations are accounted for. To obtain those spectra we
solve numerically the coupled system describing the axion/gauge field dynamics. Similarly
to [17–23], our only approximation is that we neglect the spatial fluctuations in the inflaton
field. An argument in favor of the validity of this approximation is the fact that the numerical
results of [24], which were obtained without assuming spatial homogeneity of the inflaton, are
in good agreement, for the first oscillation in the inflaton velocity or so, with those of [17–23]
and with those we obtain in this paper. Our numerical scheme uses an improved treatment
of the ultraviolet gauge field modes, so that we are able to carry the numerical integration
for the full duration of inflation, and produce results in qualitative agreement with those
of the earlier literature, where the comparison can be made.

Moving to the main focus of our paper, the generation of gravitational waves, it is of
course safe to neglect their backreaction during inflation. Therefore, we compute their spectra
applying the Green function method to the photon source that we have evaluated numerically.
It is worth noting that, while the general expression of the graviton Green function depends
on the momentum and background expansion history, the large-scale expression of the Green
function depends only on the expansion history, but not on the momentum.

The formulae presented in our paper can be applied to any inflationary potential, and the
precise quantitative results strongly depend on the potential. However, our main general result
is that the tensor power spectrum can show oscillations with an amplitude of several orders
of magnitude and period of a couple of decades in frequency. While those oscillations occur
around an average spectrum approximately given by the one obtained using the analytical
formulae of [5, 15], their amplitude and period are large enough to appear as observable
features within the bandwidth of various GWs observatories, from pulsar timing arrays, to
astrometry, to interferometers. Remarkably, also the di�erence between the amplitude of
left- and right-handed gravitational waves turns out to be frequency dependent, with a ratio
of amplitudes ranging from O(1) to five orders of magnitude.

Rather than performing a systematic study of models of inflation, we discuss just a
single example of an inflationary potential that allows to satisfy constraints from CMB and
from LIGO-Virgo-KAGRA, while leading to a spectrum of gravitational waves that might
be observable by several other forthcoming and future experiments. This should be seen as
an existence proof, as other potentials and values of the inflaton-gauge field coupling would
lead to significantly di�erent phenomenology.
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We conclude this introductory section by noting that, as the present paper was being
submitted, a lattice study of axion inflation which accounts for inflaton inhomogeneities was
posted [26]. Compared to the earlier work [24, 26] follows the evolution of the system for
a longer time. That study shows that relatively large spatial gradients in the inflaton field
develop quickly once the strong backreaction regime is reached. This phenomenon results in an
attenuation of the subsequent oscillations of the inflaton’s zero mode. For the first oscillation
or so in the inflaton’s velocity, however, and in agreement with [24], the lattice result [26]
follows closely the behavior obtained when the inflaton is assumed to be homogeneous. As a
consequence, we expect that the results presented in this paper will maintain their validity for
the first oscillation of the inflaton’s zero mode or two, and correspondingly, for the gravitational
waves that were sourced during that time. While it is harder to conjecture the behavior of the
tensor modes sourced at later time, it is worth noting that, as was first observed in [27], the
large inflaton gradients lead to an important population of gauge field modes of the helicity
opposite to that produced in the weak backreaction regime. As a consequence, we expect
the chiral asymmetry of the gravitational waves sourced at this stage to be less pronounced.

Our work is organized as follows. In section 2 we present the equations governing our
system, that we compare to the case of a constant › in appendix B. Section 3 contains an
overall description of the numerical techniques used to solve the equations presented in the
previous section. The details of the numerical implementation are discussed in appendices A, C
and D. We present the results of our numerical study in section 4 and appendix E, and
we summarize and conclude in section 5.

2 An axionic inflaton interacting with a U(1) field, and generation of
tensor modes

In this section we present the equations controlling the evolution of the system. In subsec-
tion 2.1 we present the equations for the axion-inflaton and gauge fields. In subsection 2.2
we then provide the expressions controlling the production of the tensor modes from gauge
fields. Contrary to most of the existing literature, that provides these expressions in terms of
specific solutions for the gauge modes (most often, with constant parameter ›), we present
these relations in terms of arbitrary gauge field mode functions, in which we later insert the
numerical solutions obtained from the system of subsection 2.1. In subsection 2.5 we then
formally solve the equation controlling the GW production, paying particular attention to
the Green function employed in the solution. Within each subsection the reader is referred
to specific equations in appendix A, where the main equations obtained in that subsection
are rewritten in term of the variables used in our numerical integrations. Moreover, to make
contact with the literature, in appendix B we evaluate some of these results for constant
› (defined in eq. (2.6)).

2.1 Equations for the inflaton and the gauge fields

The model is defined by the action

S =
⁄

d4x
Ô

≠g

C
M2

p

2 R ≠ 1
2 (ˆ„)2 ≠ V („) ≠ 1

4F 2 ≠ „

4f
F̃ F

D

, (2.1)
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where Fµ‹ © ˆµA‹ ≠ ˆ‹Aµ is the field strength of a U(1) gauge field, and F̃ µ‹ © ÷
µ‹–—

F–—

2
Ô

≠g

its dual, with ÷µ‹–— totally antisymmetric and ÷0123 = 1. The FLRW line element is given
by ds2 = ≠dt2 + a2 (t) dx̨2 = a2 (·)

#
≠d·2 + dx̨2

$
.

For a homogeneous inflaton we are free to choose the gauge A0 = Ǫ̀ · Ą = 0, in which
one obtains the equations [28]

Ą ≠ Ò2Ą ≠ „Õ

f
Ǫ̀ ◊ Ą = 0 ,

„ÕÕ + 2H„Õ + a2
dV

d„
= a2

f
Ę · B̨ ,

H2 = 1
3M2

p

C
1
2„

Õ
2 + a2 V + a2

2
1
Ę2 + B̨2

2D

, (2.2)

where H © a
Õ

a
, while prime denotes derivative with respect to the conformal time · . Although

the gauge field is not necessarily identified with the Standard Model photon, for convenience
we have used electromagnetic notation, with1

Ę = ≠ 1
a2

ĄÕ , B̨ = 1
a2

Ǫ̀ ◊ Ą . (2.3)

We decompose the gauge field as

Âi(·, x̨) =
⁄

d3k

(2fi)3/2
eik̨·x̨ Âi(·, k̨) =

ÿ

⁄=±

⁄
d3k

(2fi)3/2

Ë
‘(⁄)

i
(k̨)A⁄(·, k)â⁄(k̨) eik̨·x̨ + h.c.

È
,

(2.4)
where

Ë
â⁄(k̨), â†

‡ (p̨)
È

= ”⁄‡ ”(3)(k̨ ≠ p̨), while the properties of the polarizations operators
are given in ref. [28], with ⁄ = +1 (respectively, ⁄ = ≠1) corresponding to the left-handed
(respectively, right-handed) circular polarization. The gauge field mode functions satisfy

AÕÕ
± +

3
k2 û k

„Õ

f

4
A± = 0 . (2.5)

This expression often appears in the literature as

AÕÕ
± +

1
k2 û 2›aHk

2
A± = 0 , › © „̇

2fH
, (2.6)

where dot denotes derivative with respect to the physical time t. For a slow-roll inflationary
solution, the quantity › is constant to first order in slow roll. The gauge field amplification is
in this case exponentially sensitive to ›, and this combination is the most immediate quantity
that allows to asses the amount of production (as a rough estimate, visible signatures at CMB
scales require › ƒ 2.5, while signatures at smaller scales typically occur for › ƒ 5, see ref. [29]).
In this work we explore the production in the case of varying ›, as it occurs in the regime of
significant backreaction of the gauge fields on the background inflaton evolution [25].

The evolution of the inflaton field, of the scale factor, and of the gauge modes is controlled
by the last two equations in (2.2) and by eq. (2.5). In appendix A we show how these equations
are combined, and written in terms of rescaled variables, in our numerical integrations.

1To simplify the notation, we omit the symbol hat indicating an operator in presence of the vector sign.
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Without loss of generality, we can assume „Õ > 0 in eq. (2.5), so that the mode functions
A+ experience a large growth during inflation, while the modes A≠ remain close to their
vacuum value, and we disregard them in the remainder of this work.2 To express in a
compact way the gauge field contributions to the last two equations of (2.2), it is convenient
to introduce the fields

ĈE

i © Êi (·, x̨) , ĈB

i © B̂i (·, x̨) , (2.7)

which evaluate to (using the property i k̨ ◊ ‘̨ (±)(k̨) = ±k ‘̨ (±)(k̨) for the “magnetic” con-
tribution)

Ĉ–

i = 1
a2

⁄
d3k

(2fi)3/2
eik̨·x̨‘(+)

i
(k̨)

Ë
F–(·, k) â+(k̨) + F ú

–(·, k) â†
+(≠k̨)

È
, (2.8)

with mode functions given by

F– (·, k) ©
)
≠AÕ

+ (·, k) , k A+ (·, k)
*

, (2.9)

(with – = E, B). From this expressions one readily obtains

e
Ĉ–

i Ĉ—

i

f

symm.
©

K
Ĉ–

i
Ĉ—

i
+ Ĉ—

i
Ĉ–

i

2

L

= 1
2fi2a4

⁄ Œ

0

dk k2 Re
Ë
F– (·, k) F ú

— (·, k)
È

, (2.10)

where Re denotes the real part (we note that the symmetrization is only required to evaluate
the Ę · B̨ product).

In appendix B we evaluate the gauge mode functions and these correlators in the case
of constant ›.

2.2 Equations for the GWs

Decomposing the FLRW line element, perturbed by tensor modes, as

ds2 = a2 (·)
Ë
≠d·2 +

1
”ij + ĥij (·, x̨)

2
dxidxj

È
, (2.11)

where ĥij is transverse and traceless, we obtain, to quadratic order in ĥ,

SGW =
⁄

d4x

C
M2

p a2

8
1
ĥÕ

ij ĥÕ
ij ≠ ĥij,kĥij,k

2
≠ a4

2 ĥij

1
Êi Êj + B̂i B̂j

2D

. (2.12)

To obtain a canonically normalized field describing tensor modes in Fourier space we
decompose

ĥij (·, x̨) = 2
Mp a(·)

⁄
d3k

(2fi)3/2
eik̨·x̨ ÿ

⁄=+,≠
�ú

ij,⁄(k̂) Q̂⁄(·, k̨) , (2.13)

where the polarization operators,

�ú
ij,±(k̂) © ‘(±)

i
(k̂)‘(±)

j
(k̂) , (2.14)

2If instead „
Õ

< 0, the two polarizations interchange their role.
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are written in terms of the circular polarization operators introduced in eq. (2.4). The
equations of motion for Q̂⁄ are then

A
ˆ2

ˆ·2
+ k2 ≠ aÕÕ

a

B

Q̂⁄(k̨, ·) = ≠ a3

Mp

�ij,⁄(k̂)
⁄

d3x

(2fi)3/2
e≠ik̨·x̨

Ë
Êi Êj + B̂i B̂j

È
© Ŝ⁄(·, k̨) ,

(2.15)
which are solved by the sum Q̂⁄ = Q̂(v)

⁄
+ Q̂(s)

⁄
of a homogeneous plus a sourced term. From

the solution, we evaluate the power spectra

P⁄ (k) ”(3)(k̨ + k̨Õ) = k3

2fi2

e
ĥ⁄(·, k̨) ĥ⁄(·, k̨Õ)

f

= k3

2fi2

4
M2

p a2

e
Q̂⁄(·, k̨) Q̂⁄(·, k̨Õ)

f
, (2.16)

which are the sum of the incoherent vacuum and sourced contributions.
To compute the present contribution of the GWs one needs to account for the transfer

functions for these modes from horizon re-entry to today [30]. The GW modes of our interest
re-enter the horizon during radiation domination. For these modes, one finds the present
fractional energy density [31]

�GWh2 (k) © h2

flc

dflGW,k

d ln k
= �R h2

24
ÿ

⁄

P⁄ (k) , (2.17)

where flc is the critical energy density of the current universe, h parametrizes the Hubble
constant in units of 100 km s≠1 Mpc≠1, while �R ƒ 4.15 ◊ 10≠5/h2 is the current fractional
density in photons and neutrinos, as if they were relativistic today (the convenience in
this rescaling is dictated by the fact that the ratio between the energy density of GW and
radiation is constant inside the horizon).

2.3 Vacuum GWs

Disregarding slow-roll corrections, the homogeneous solution of eq. (2.15), with mode functions
normalized to the adiabatic vacuum at asymptotically early times, is

Q̂(v)

⁄
(k̨) = q⁄(·, k) â⁄(k̨) + qú

⁄(·, k) â†
⁄
(≠k̨) ,

q⁄(·, k) = e≠ik·

Ô
2k

3
1 ≠ i

k ·

4
, (2.18)

from which we write
e
Q̂(v)

⁄
(·, k̨)Q̂(v)

⁄
(·, k̨Õ)

f
= |q⁄ (·, k)|2 ”(3)

1
k̨ + k̨Õ

2
æ H2a2

2 k3
”(3)

1
k̨ + k̨Õ

2
, (2.19)

where the last expression is the super-horizon limit. Inserting this in (2.16), we obtain the
well known expression for the vacuum power spectrum

P (v)

⁄
= H2

fi2M2
p

, (2.20)

which is independent of ⁄ (the vacuum is unpolarized).
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2.4 Sourced GWs

The sourced solution of eq. (2.15) is

Q̂(s)

⁄
(·, k̨) =

⁄
·

d· Õ Gk

!
·, · Õ" Ŝ⁄(· Õ, k̨) , (2.21)

where the Green function satisfies
A

ˆ2

ˆ·2
+ k2 ≠ aÕÕ

a

B

Gk

!
·, · Õ" = ”(3)

!
· ≠ · Õ" , (2.22)

and, as we are interested in the retarded one, we write

Gk

!
·, · Õ" © G̃k

!
·, · Õ" �

!
· ≠ · Õ" , (2.23)

where � denotes the Heaviside step function and where G̃k is computed in subsection 2.5.
The source Ŝ⁄(·, k̨) is defined in eq. (2.15). We rewrite it in terms of eq. (2.8) and we
evaluate the two-point correlator

e
Ŝ⁄(· Õ, k̨)Ŝ⁄(· ÕÕ, k̨Õ)

f
=

2”(3)

1
k̨+k̨Õ

2

a(· Õ)a(· ÕÕ)M2
p

⁄
d3p

(2fi)3

1
16

A

1≠⁄
pcos◊≠k


k2≠2pkcos◊+p2

B2

(1+⁄cos◊)2

◊
Ë
FE(· Õ,p)FE(· Õ, |̨k≠p̨|)+FB(· Õ,p)FB(· Õ, |̨k≠p̨|)

È

◊
Ë
FE(· ÕÕ,p)FE(· ÕÕ, |̨k≠p̨|)+FB(· ÕÕ,p)FB(· ÕÕ, |̨k≠p̨|)

Èú
, (2.24)

where ◊ is the angle between the external momentum k̨ and the integration momentum
p̨, and where the property

---̨‘(⁄) (p̂) · ‘̨(+)(q̨)
---
2

=
31 ≠ ⁄ p̂ · q̂

2

42

, (2.25)

has been used. Using eqs. (2.9), (2.16), and (2.21), we then arrive to

P (s)

⁄
(k) = 1

4fi2M4
p

⁄
k d3p

(2fi)3

A

1≠⁄
pcos◊≠k


k2 ≠2pk cos◊+p2

B2

(1+⁄cos◊)2 (2.26)

◊
-----

⁄
k·

d
!
k· Õ" k G̃k (·, · Õ)

a(·)a(· Õ)

C
1
k

AÕ
+(· Õ, p)AÕ

+(· Õ, |̨k ≠ p̨|)+ p |̨k ≠ p̨|
k

A+(· Õ, p)A+(· Õ, |̨k ≠ p̨|)
D-----

2

.

The rescalings in this expression are motivated by the fact that, in natural units, the functions
A and G̃k have, respectively, mass dimension ≠1/2 and ≠1, so that the second line of
this expression is dimensionless. We then immediately see that the full expression (2.26)
is dimensionless.

In appendix A we rewrite this expression in terms of the variables used in our numerical
integrations. In appendix B we instead evaluate this expression in a de Sitter background
and for constant ›, showing that it leads to a scale invariant power spectrum outside the
horizon, in agreement with the results in the literature.
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2.5 Green function for the sourced GWs

In this subsection we study the Green function of eq. (2.22). In particular, we are interested
in the retarded Green function, that is written in the form (2.23), where the function G̃k

needs to satisfy
A

ˆ2

ˆ·2
+ k2 ≠ aÕÕ

a

B

G̃k

!
·, · Õ" = 0 , G̃k (·, ·) = 0 ,

d

d·
G̃k

!
·, · Õ"

---
· Õ=·

= 1 . (2.27)

To obtain this function, we consider two linearly independent solutions F1,2 (·, k) of
the associated homogeneous equation

A
ˆ2

ˆ·2
+ k2 ≠ aÕÕ

a

B

Fi (·, k) = 0 , i = 1, 2 . (2.28)

In particular, for any given mode (namely, for any given value of k), the last term a
ÕÕ

a
is

much smaller than k2 at asymptotically early times (when the mode is deep inside the
horizon), and we can choose for F1 (·) the solution that approaches the positive-frequency
adiabatic vacuum at these early times

lim
·æ≠Œ

F1 (·, k) = e≠ik·

Ô
2k

. (2.29)

We then choose F2 (·, k) = F ú
1 (·, k), noting that F1 and F ú

1 are indeed linearly independent.
We note from the asymptotic form (2.29) that these two solutions satisfy the Wronskian
condition

F Õ
1 (·, k) F2 (·, k) ≠ F Õ

2 (·, k) F1 (·, k) = ≠i . (2.30)

Using eq. (2.28) it is immediate to see that the left hand side of this expression is constant,
and therefore the two solutions F1,2 (·) satisfy eq. (2.30) at all times. Using this, we can
then see that

G̃k

!
·, · Õ" = F1 (·, k) F2 (· Õ, k) ≠ F2 (·, k) F1 (· Õ, k)

F Õ
1

(· Õ, k) F2 (· Õ, k) ≠ F Õ
2

(· Õ, k) F1 (· Õ, k) = 2 Im
#
F ú

1 (·, k) F1

!
· Õ, k

"$
, (2.31)

where Im denotes the imaginary part, satisfies all the requirements in (2.27). Therefore,
combining the above results, the Green function of our interest is given by

Gk

!
·, · Õ" = G̃k

!
·, · Õ" �

!
· ≠ · Õ" , G̃k

!
·, · Õ" = 2 Im

#
F ú

1 (·, k) F1

!
· Õ, k

"$
, (2.32)

where F1 (·, k) is the solution of eq. (2.28) subject to the initial condition (2.29).
We stress that eq. (2.32) is the Green function for the sourced GW for any arbitrary

evolution of the scale factor a (·), and not simply for slow-roll inflation. One only requires
a su�ciently prolonged accelerated expansion stage so that initially the modes were deep
inside the horizon, and the initial condition (2.29) is physically motivated. In particular,
it can be used for our problem, where the inflaton and, consequently, the scale factor have
a nontrivial evolution.
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In appendix A we rescale this Green function and rewrite it in terms of the variable
used in our numerical integrations. Here we make two observations. Firstly, we show that
eq. (2.32) reproduces the known Green function in a de Sitter background. In this case

adS = ≠ 1
H·

∆ F1,dS (·, k) = 1Ô
2k

3
1 ≠ i

k·

4
e≠ik· , (2.33)

and, from eq. (2.32),

G̃k,dS

!
·, · Õ" =

!
1 + k2·· Õ" sin (k (· ≠ · Õ)) ≠ k (· ≠ · Õ) cos (k (· ≠ · Õ))

k3·· Õ , (2.34)

in agreement with the known result. Secondly, we observe from this expression that the
Green function greatly simplifies in the super-horizon limit

lim
k·, k· Õæ0

G̃k,dS

!
·, · Õ" = ·3 ≠ ·

Õ
3

3·· Õ . (2.35)

We note that this result is k≠independent. We show now that this is the case for any
evolution of the scale factor. The most general solution of eq. (2.28) in the super-horizon limit is

lim
kπa(·)H(·)

F (·, k) = a (·, k)
5
c1 + c2

⁄
·

·ú

d· Õ

a2 (· Õ)

6
, (2.36)

where c1 and c2 are two integration constants, while ·ú denotes some reference time after which
the super-horizon approximation is accurate. The integration constants generally depend
on k and on the evolution of the scale factor before the mode entered in the super-horizon
regime. However, they drop from the combination

lim
kπa(·)H(·), a(· Õ)H(· Õ)

G̃k

!
·, · Õ" = lim

kπa(·)H(·), a(· Õ)H(· Õ)

Im [F (·, k) F ú (· Õ, k)]
Im [F Õ (· Õ, k) F ú (· Õ, k)]

= a (·) a
!
· Õ"

⁄
·

· Õ

d· ÕÕ

a2 (· ÕÕ) , (2.37)

which is indeed k≠independent, and which, we stress, is valid beyond slow-roll inflation. This
relation reproduces the expression (2.35) when evaluated in the de Sitter background, and is
confirmed by our numerical integrations that we discuss below. After having verified it, we
use the relation (2.37) in the super-horizon regime, to speed up the numerical integrations.

3 The numerical scheme

Evolving the system of equations (A.4) and (A.5) numerically during inflation in the strong
backreaction regime is a highly non-trivial task. Several di�erent approaches have been
proposed in the literature to tackle this problem. The first such approach was pursued in
references [17, 18, 20] and consisted of solving the resulting integro-di�erential system of
equations by discretizing the integral and reconstructing it at every moment in time using the
trapezoid or parallelogram rule. The second approach developed in [19, 22] makes use of the
gradient expansion formalism, which consists of evolving a system of di�erential equations of
bilinear electromagnetic functions. The third approach, presented in [21], solves the system
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of integro-di�erential equations in an iterative manner starting from the solution using the
analytic approximation for the backreaction as the first step of the iteration. Finally, a full
lattice calculation was performed in [24], which not only takes into account the spatial gradient
of the gauge field but also that of the inflaton. This simulation has been used to compute the
power spectrum of scalar perturbations as opposed to gravitational waves, which is the subject
of the present work. Moreover, they can cover a dynamical range of only a few e-folds.3

In order to facilitate our study of the power spectrum of gravitational waves at interfer-
ometer scales, we set a number of goals that our numerical scheme ought to achieve. Firstly,
we want to have su�cient resolution and e�ciency to study a strong backreaction regime
which may be relevant for a large portion of the observable ≥ 60 e-folds of inflation. We
also want our code to avoid iterative work so that a single run is su�cient to get the full
result. In order to achieve this we employ the first method described above and implement
a number of techniques that improve upon the previous work [20]. We implement our
algorithm in Mathematica.

3.1 Comoving momentum discretization and regularization of the
backreaction integral

Our discretization scheme for the backreaction integral consists of defining a set of comoving
momenta in the code variable k̃, defined in eq. (A.3), labeled with index i, equally spaced
in logarithmic space. Namely,

k̃i = k̃min

A
k̃max

k̃min

B i≠1
imax≠1

, (3.1)

where i is an integer ranging from 1 to imax. The minimum and maximum momentum
should be generally chosen in such a manner to allow for su�cient resolution of the strong
backreaction regime. It is not hard to obtain an indication for these upper and lower momenta.
We define k̃thr(N) to be the comoving momentum at the interface between stable and unstable
modes by setting the dispersion relation in (2.5) equal to zero. Converting this value in
code variables (see appendix A) we get

k̃thr(N) © eN H̃
d„̃

dN
, (3.2)

where the scale factor has been set to one at the start of the evolution. The lower bound on
the momentum range is given by the request that all modes at the start of our numerical
integration are deep in the stability regime, while the upper bound is approximately the
mode that exits the horizon at the end of inflation. We target a typical model of high-scale
inflation with about 60 e-folds of evolution, although these considerations can be clearly
modified for runs of di�erent duration. In terms of code variables, this results in

k̃min ∫ k̃thr(0) and k̃max . e60H̃(0) . (3.3)
3A smaller dynamical range is required to study the consequences of the gauge field instability for the

early stages of reheating after inflation. Lattice studies of axion-gauge field systems focusing on the epoch of
reheating include [32–39].
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After experimenting with the total number of modes we find that about iimax ƒ 400 is
su�cient to obtain convergent results for at least the last 40 e-folds of inflation (which are
those for which we have a relevant backreaction in the cases we studied) and, for concreteness,
we use k̃min = 104 k̃thr(0) and k̃max = e60H̃(0).

Additionally the integrand of the backreaction term
e
Ę · B̨

f
, given in code variables

in eq. (A.5), generally has to be regularized in the ultra-violet (UV). In principle such a
regularization may seem unnecessary since the quantity d

dN

---Ā⁄

---
2

formally vanishes deep in
the stable regime. However, there is always some small non-zero numerical noise which is
then amplified in the UV due to the presence of the dk̃ k̃2 factor, combined with the fact
that the comoving momentum range spans many decades in k-space. For these reasons it is
necessary to regularize the integral, which in practice consists of setting a hard momentum
cuto� beyond which any contribution is neglected.4 The function k̃reg(N) denotes the time
dependent momentum threshold beyond which the gauge modes should be disregarded in
the backreaction term. Physically, at every instant in time this threshold should be the
maximum comoving momentum that has ever become tachyonic at any point in time before
that instance, or mathematically

k̃reg(N) © MAX
Ë
k̃thr(N Õ)

È
, where N Õ < N . (3.4)

The algorithmical implementation of this is described in detail in appendix C.

3.2 Gauge mode equations of motion regularization
Evolving the equation of motion of the gauge modes (last of equations (A.4)) and the auxiliary
functions F̄(N, k̃) (first of (A.18)), necessary for the numerical computation of the Green
function using (A.16), is rather challenging due to the large hierarchy of terms involved
on the right hand sides. More specifically, both equations contain terms proportional to
k̃/(H̃eN ) which, for the highest momentum modes in our code, are initially many orders
of magnitude greater than one.

To expand on the previous point, the comoving momenta employed in our integration
span a range of approximately 27 decades, cf. eq. (3.3), and hence it is inevitable that at
early times the hierarchy between the Hubble horizon scale and the smallest wavelength5

is so large that keeping track of the evolution of the modes becomes exponentially more
“expensive” computationally. In order to tackle this issue we keep the modes fixed at their
vacuum configuration until they come close to the threshold between stability and instability,
whereupon they are allowed to evolve. Specifically, the momentum below which the mode is
free to evolve should be as low as possible, because that makes the computation faster, while
simultaneously much greater than the threshold momentum k̃thr, which signifies the onset of
the instability, in order to satisfy the assumption that the modes are well into their vacuum
configuration. After several trials, we identified a convenient cuto� value to be

k̃vac(N) © 105/2 k̃reg(N) . (3.5)
4The use of the cut-o� is justified by the fact that, when the backreaction is relevant, there is a clear

separation between the peak of the scales that are physically amplified and the vacuum modes, see figure 3.
5Namely the ratio between the initial a H̃ and the greater k̃i, which need to be part of our range, since

they become dynamically relevant in the later stages of the evolution.
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In practice, a mode k̃i that is initially greater than k̃vac(N) is not integrated. As soon as
k̃vac(N) increases above k̃i, the gauge mode with this momentum is initialized according to the
last two initial conditions in (A.7), and it is evolved according to the last of eqs. (A.4). Only
after also k̃reg(N) becomes greater than k̃i, we include the contribution of this mode in the
backreaction term

e
Ę · B̨

f
and in the GWs source. This process introduces a phase di�erence

between the various modes that is however phenomenologically irrelevant for the computation
of gravitational waves since the phase di�erence is factorized and then cancelled away in the
expression for the gravitational wave power spectrum. To conclude this subsection, we note
that the particular method by which we keep the modes frozen in the vacuum configuration
employs a “trick” that takes advantage of the fact that in the vacuum configuration the first
derivative of the rescaled gauge mode functions Ā and auxiliary functions F̄ is formally zero.
We outline how we employ this property to keep the modes frozen in appendix C.

3.3 Summary of the numerical scheme

The techniques outlined above, combined with several further simplifications and optimizations
that are Mathematica specific, described in details in appendix D, result in a code that can
evolve the strong backreaction regime which may last for a significant fraction of the total
duration of inflation in a memory e�cient manner.

The code takes typically thirty minutes to run on a regular desktop computer and
produces the background functions as well as the gauge modes and auxiliary functions
F̄(N, k̃) as a function of time for each momentum k̃i. These functions are then used in (A.16)
combined with the Green function calculated (A.19) to compute the power spectrum of
gravitational waves. The power spectrum computation takes approximately 3.5 minutes per
k̃i, which implies that the total power spectrum for the entirety of the imax = 400 modes
takes approximately ≥ 23 hours to compute. For the example outlined in the next section
we only compute the power spectrum for 250 of the total modes, excluding those generated
while › was too small to give a visible GW production. For some further comments on the
Mathematica implementation see appendix D.

4 Results

In this section we present the results of the code described above for a specific inflaton
potential. We do not aim to be exhaustive in the study of a landscape of potentials, but
we rather want to demonstrate how a simple potential with certain qualitative features may
allow the system to enter the strong backreaction regime for some period during inflation,
and produce characteristic signatures in the power spectrum of gravitational waves at scales
relevant for pulsar timing arrays, astrometry, and space-based interferometers.

Qualitativaly, the potential is characterized by a very flat part at CMB scales, with
a small and negative curvature which is consistent with CMB observations, followed by a
steeper part during which the speed of the axion and, consequently, the particle production
are enhanced. Subsequently, the potential flattens out and the production becomes ine�cient,
so to avoid PBH overproduction [9, 11], GW oveproduction at reheating [37, 38] and the
current limit on the SGWB at ground-based interferometers [40].

– 13 –



J
C
A
P
0
1
(
2
0
2
4
)
0
3
4

50 100 150 200 250 300 350 400

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 1. Plot of the five branch potential defined in (4.1). The red vertical lines denote the field value
sixty e-folds before the end of inflation, and at the end of inflation respectively. The black dashed lines
denote the transition points between the various branches. The parameters in this example are „̃0 =
57, „̃1 = 112, „̃2 = 186, „̃3 = 221, „̃4 = 317, c1 = 9.48 · 10≠4, c2 = 2.39 · 10≠6, c3 = 9.05 · 10≠9, c4 =
3.97 · 10≠11 and the two straight line slopes are c5 = 4.95 · 10≠3 and c6 = 3.68 · 10≠4, respectively.

The exact shape of the potential beyond this point and a detailed study of the end of
inflation is beyond the scope of this work. Our goal is to study in detail a period of inflation
during which the system enters the strong backreaction regime. However, for concreteness,
we are choosing a potential that is consistent with observations at CMB scales.

Specifically, our potential consists of an initial quartic hilltop part, followed by two straight
lines that are smoothly connected using quadratic expressions. This results in five branches

Ṽ („̃) =

Y
________]

________[

5
1 ≠ c1

1
„̃ ≠ „̃0

2
≠ c2

1
„̃ ≠ „̃0

22

≠ c3

1
„̃ ≠ „̃0

23

≠ c4

1
„̃ ≠ „̃0

24
6

„̃0 Æ „̃ Æ „̃1

p1 „̃2 + p2 „̃ + p3 „̃1 Æ „̃ Æ „̃2

c5 „̃ + p4 „̃2 Æ „̃ Æ „̃3

p5 „̃2 + p6 „̃ + p7 „̃3 Æ „̃ Æ „̃4

c6 „̃ + p8 „̃4 Æ „̃ .
(4.1)

Parameters c1 ≠ c4 are fixed so that at CMB scales the backreaction is negligible and the
predictions are compatible with the Planck constraints on inflation. In turn, c5 and c6 are the
slopes of the straight lines which control the amount of particle production at intermediate
and late times, respectively. The remaining parameters p1 ≠ p8 are then fixed in terms of
the previous ones to ensure continuity of the potential and its derivative at the interfaces
of the five branches. We plot the potential in figure 1, listing the potential parameters in
the caption. The potential listed above, combined with the axion-gauge coupling strength
1/f = 57/Mp, define the parameters of our model example.

For these parameters, at CMB scales the system is in the low backreaction regime with
CMB scale predictions ns = 0.96 and r = 0.023 which are consistent with the latest constraints
at 2‡ [1]. Later in the evolution, when the slope of the potential becomes steeper, the system
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Figure 2. The two upper panels display, respectively, the evolution of the Hubble rate H and the
Hubble slow-roll parameter ‘H for the model example described in the main text. The bottom panel
displays the evolution of the parameter › Ã „̇/H controlling the gauge field amplification. In all
panels, the black solid lines take properly into account the backreaction of the produced gauge fields,
while the black dashed lines show the evolution that would take place in the same potential if the
backreaction were incorrectly disregarded. The evolution is shown as a function of the number of
e-folds N © ln a, where the scale factor a is normalized to 1 at the start.

enters the strong backreaction regime. This regime is characterized by a nontrivial evolution
of the inflaton speed that we have discussed in the Introduction, and that is visible through
the evolution of › (t) shown in the third panel of figure 2. In the first two panels of that figure
we show instead the evolution of the Hubble rate H and of the slow-roll parameter ‘H © ≠ Ḣ

H2 ,
confirming that this intermediate stage is not characterized by standard slow-roll evolution.

This nontrivial evolution is due to the backreaction of the produced quanta. The
backreaction term is shown in figure 3 for a few indicative moments during inflation. The
chronological orders of the four panels is top-left æ top-right æ bottom-left æ bottom-right,
and, for brevity, we will denote the four panels as “first”, “second”, “third”, and “fourth” in
this discussion, following the chronological order. In each panel we show the k≠dependent
integrand of the backreaction term, normalized with respect to the slope of the potential

e
Ę · B̨

f

f V Õ(„) ©
⁄

d ln k̃ B(N, k̃) , (4.2)
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so that when a significant portion of the spectrum B(N, k̃) reaches the critical value of
one, then also its integral is of order one, and we know that the system enters the strong
backreaction regime.

The first panel shows an early moment in time while the backreaction is negligible.
The evolution of the backreaction spectrum is relatively straightforward during the stage of
negligible backreaction, with the term dominated by the modes that have become unstable in
the moments immediately before the one shown, and that are therefore close to the cut-o�.
The outmost left vertical solid (green) line corresponds to the horizon scale, k̃ = eN H̃ (N),
while the other vertical solid (red) line, k̃ = k̃thr (N), separates the unstable from the
stable modes. These lines monotonically move to the right in this stage, analogously to
the dashed vertical line k̃ = k̃reg (N), that indicates the upper limit of the modes included
in the backreaction. This dashed line is defined as the greatest value ever assumed by the
second solid (red) line, and therefore the two lines coincide as long as the second solid (red)
line is moving monotonically to the right. We recall that modes between the dashed and
the dotted vertical line, k̃ = k̃vac (N), are evolved by the code, but are not included in the
backreaction, as these are still vacuum modes that need to be renormalized away. Finally,
the gray, horizontal, dashed line is a visual reference point that denotes the value one in the
vertical axis, to indicate when backreaction becomes important.

The second and third panel are both taken at N ƒ 30. The backreaction term is now
dominant, as shown by the fact that the backreaction spectra have reached the horizontal
dashed line. We see from figure 2 that at this moment the inflaton is experiencing a maximum
of its speed for the third time. These three times have created three peaks in the gauge
field spectrum, that in turn create the three peaks in the backreaction term that are visible
in the two panels. We notice from the second panel that the backreaction has started to
decrease the inflaton speed from this third maximum. This is testified by the fact that the
vertical red line (corresponding to the value of › Ã „̇ at the moment shown) has moved
to the left of the vertical dashed line (corresponding to the maximum value tht › Ã „̇ has
ever attained up to that moment).

The third panel corresponds to a moment �N = 0.1 subsequent to the second one. The
backreaction spectrum is nearly unchanged, but the red line has disappeared from the figure.
This is due to the fact that the backreaction actually causes the inflaton speed to momentarily
become negative for a very narrow interval of times around the one shown. The backreaction
term can indeed dominate and overwhelm the equation of motion of the inflaton, practically
eliminating its kinetic energy and in certain cases reversing its motion for brief instances
(this has previously been noticed by the numerical analyses [17, 20, 21]).

Lastly, the fourth panel corresponds to a late time in which the backreaction has again
become negligible. The backreaction spectrum exhibits a series of peaks corresponding to
number of times in which „̇ reached a maximum during its evolution. This is again a stage
of standard slow roll inflation, with › Ã „̇

H
monotonically increasing, as witnessed by the

superposition of the two red and dashed vertical lines.
We note that the di�erent panels show a di�erent range of momenta. We also note that,

at any fixed comoving momentum, the backreaction term decreases at late times (once the
gauge field production at that scale has ceased) due to redshift.
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Figure 3. Plot of the backreaction spectrum defined in eq. (4.2). Di�erent panels correspond to
di�erent times, indicated by the value of N on the vertical scale. For each panel: the blue (red) line
corresponds to a positive (negative) contribution of a given mode to the backreaction at the end of
inflation; the grey dashed horizontal line is the reference point that the backreaction spectrum must
reach in order to be important in the evolution of the inflaton and is equal to one; the green line
indicates the mode that crosses the horizon at that given moment; the solid red vertical line is the
threshold between stability and instability k̃thr given by eq. (3.2); the black dashed vertical line is the
backreaction cuto� k̃reg defined in eq. (C.5); the dotted black vertical line is the gauge mode vacuum
evolution cuto� k̃vac defined in eq. (3.5).

Finally, let us discuss the SGWB produced in the model. The production is shown in
figure 4 in terms of the SGWB fractional spectral energy density (2.17), with the blue and
red curves corresponding to the two di�erent GW polarizations and the black dashed curve
corresponding to the vacuum contribution.

We see from the figure that the oscillatory features in the particle production parameter
› are also inherited by the sourced GWs spectrum, which also oscillates around an average
value. The frequency of these oscillations matches the corresponding periodicity of the
particle production parameter as a function of e-folds. For our choice of parameters the
oscillations of the power spectrum cover a wide range of experiments from PTA, to astrometry,
to space-based interferometers. The exact positioning of the peaks and the width of the
overall signal depends on the exact shape of the potential and one can imagine that any
potential whose slope varies in a qualitatively similar way to our example will necessarily
imply the emergence of a power spectrum that shares the features observed in figure 4. We
see that, for essentially all the scales in which the sourced GWs are significant, one circular
GW polarization is produced with much greater amplitude than the other one. Although
this is a well known result of this mechanism [3], a novel e�ect that appears from our results
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Figure 4. The sourced gravitational wave power spectrum of the Left (blue line) and Right (red line)
polarization as well as the vacuum (back dashed line) superimposed with the power-law-integrated
sensitivity curves corresponding to various current and future experiments taken from [41] and [8] in
the case of THEIA. The parameters chosen correspond to the coupling strength 1/f = 57/Mp. The
squares, stars and triangles are points for which we plot the integrand of the power spectrum defined
in (A.16) in appendix E.

is that the level of parity violation varies widely depending on the scales under consideration.
Just to make an example, for the three points marked with, respectively, squares, stars and
triangles in figure 4, the chirality parameter

�‰ © Ph,+ ≠ Ph,≠
Ph,+ + Ph,≠

, (4.3)

is computed to be, respectively, �‰ = 0.25, 0.992, 0.99998.
These features can be understood with a series of considerations. The most immediate one

is the direct relation between the instantaneous value assumed by › at any given time during
inflation and the modes that were produced at that time. Consider two well separated times
t1 and t2 and assume that › takes the two di�erent values ›1 and ›2 at those two times. For
the moment, also assume for simplicity that › is constant for some time around both t1 and
t2. In this case, GWs of frequency f1 (resp., f2) that leave the horizons at times near t1 (resp.,
t2) are mostly sourced by gauge modes that also leave the horizon at that time, which have
an amplitude controlled by ›1 (resp., ›2). Therefore, if ›2 > ›1, then �GW (f2) > �GW (f1).

This e�ect is clearly seen in our results. There is however a further e�ect, related to
the variation of › within the few e-folds in which a given GW mode is mostly sourced. A
GW mode of momentum k̨ is sourced by two gauge modes, of momenta p̨ and q̨ that satisfy
p̨ + q̨ = k̨. If › is rapidly growing while the scales k leave the horizon, gauge modes of
momenta greater than k have a significantly greater amplitude than those of momenta of
order k, and dominate the production of the GW modes of momentum k (with the two
vectors p̨ and q̨ being nearly anti-aligned). On the other hand, if › is nearly constant or
decreasing, the GW production is dominated by gauge modes of momenta close to or smaller
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than k. This can be seen in the shape of the integrand controlling the GW production,
which we show and discuss in appendix E.

The integrands shown in that appendix also allow us to understand why the GW
polarization visible in figure 4 is strongly scale-dependent. The GW modes with frequency
marked with squares in the figure presenting nearly identical amplitude for the two polarization,
are produced in a phase of fast growth of ›. On the contrary, a significant polarization is
obtained at scales marked with stars and triangles, which were produced on a stage in which
› was, respectively, nearly constant (in an average sense, across a range of a few e-folds) and
decreasing. As we just discussed, in the first case, the production is due to high-momentum,
nearly head-on, gauge modes. These two gauge modes have nearly opposite helicity, and
therefore the in-state has nearly vanishing total spin, producing a nearly equal amount of the
two GW polarizations. In the other two cases, the production is dominated by gauge modes
with momentum Æ k, resulting in a polarization-dependent GW production.

4.1 Animation of the results

The discussion of the previous subsection enlightens the interplay between the backreaction
term and the evolution of the inflaton field. To further visualize this relation, and to get a
more intuitive understanding of the system, we have prepared an animation in which the
dynamical evolution of the backreaction spectrum is shown alongside that of the inflaton
field and of the sourced GWs. Instead of the physical backreaction defined in (4.2) we plot
the same quantity multiplied by e4N /e4◊60, which factors out the dilution of the integrand
of the backreaction due to the expansion of the universe, and which normalizes the overall
multiplication factor to be equal to one at the end of inflation. This makes the visualization
easier in video format, allowing us to keep the horizontal and vertical axis range fixed. We
call this the comoving backreaction Bcom(N, k̃) and the reference point that the backreaction
line has to reach to be relevant for the equation of motion of the inflaton is now varying
with time, and it is equal to e4N /e4◊60 (gray horizontal dashed line).

We also plot the spectrum of gravitational waves in real time, once per e-fold, as it is
being produced. We do this by computing the power spectrum starting from the beginning of
inflation and then for each subsequent e-fold we add only the contribution of the intervening
e-fold in the integral over the number of e-folds. This allows us to re-use the previous e-folds
without having to compute the power from the start of inflation at every moment in time. This
technique is possible due to the properties of the Green function which allows us to fix the time
dependence of the Green function at N = 60 inside the integral and extract the factor eN/60

outside the time integration. This is a good approximation as long as N > N Õ which is true
for our computation. We also verified that this incremental process yields the same final power
spectrum as it does computing the power spectrum at the end of inflation in a single step.

The video is available at this link, where the various panels display the evolution of
the inflaton along its potential (top left), the particle production parameter (top right), the
backreaction spectrum (bottom left), and the gravitational wave power spectrum (bottom
right) in “real time”. It consists of 50 frames per second with each second corresponding
to a single e-fold of evolution.
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5 Conclusions

An appealing scenario for early universe inflation is that in which an axion plays the role
of the inflaton. Such a scenario, motivated by considerations of technical naturalness [42],
introduces new dynamics through the axionic coupling of the inflaton to gauge fields. This
coupling strongly amplifies one helicity of the gauge fields, making the overall dynamics of
the system very non-trivial, with issues like backreaction that become important. Moreover,
since the amplified gauge fields also naturally source gravitational waves, they provide a
new way of generating a stochastic background of GW beyond that associated with vacuum
fluctuations, with a greater spectrum at smaller scales than the CMB ones, that can be
detected by a variety of GWs observatories.

It has been recently realized that the e�ects of backreaction of the gauge fields on the
inflaton-axion induces a qualitative change in the dynamics of the system. In this regime,
the motion of the inflaton field and the gauge field production do not reach a steady state
evolution, where the friction on the inflaton motion through the energy dissipated in the gauge
fields perfectly balance each other at every time. Rather, the system performs oscillations
about this steady state, so that the inflaton speed oscillates with a period that we find to be
about 4 e-folds in our simulation, and bursts of gauge field production occur at the maxima
of the inflaton speed. In the present work we have pointed out and explored the fact that
these bursts induce a characteristic peaked structure in the SGWB spectrum that gives a
distinctive signature accross multiple bands of GW frequencies, from pulsar timing arrays,
to astrometry to laser interferometry bands.

Furthermore, we observe that the maximal parity violating coupling between the inflaton-
axion and the gauge fields induces a strongly chiral SGWB, where the ratio between left-handed
and right-handed GW chiralities is both frequency dependent and oscillating. At very low
frequencies (near PTA sensitivity), generated in a stage in which the amount of gauge field
amplification is increasing with time, the ratio between the two chiralities is (relatively) close
to one, while at higher frequencies (near ET/CE sensitivity) it becomes very di�erent from
one, with one polarization (depending on the sign of the inflaton-gauge field interacton) always
dominating over the other one. At intermediate frequencies (near Gaia and LISA bands)
the GW spectral amplitude and chiral ratio is widely fluctuating over several decades in
frequency, a signature that could be used to distinguish this SGWB from others, see [31, 43].

The results presented in section 4 concern a very specific potential that has been chosen
to illustrate the range of e�ects that can be achieved while maintaining consistency with CMB
observations. However, our numerical apparatus can be applied to a much broader range of
potentials and strengths of the inflation-gauge field coupling, leading to a rich phenomenology.

Finally, our analysis assumes the inflaton field to be homogeneous, while we take into
account the full backreaction from the whole spectrum of gauge field fluctuations that are
resonantly amplified. While very recent lattice studies show that gradients in the inflaton do
change the dynamics of the system, the initial oscillating pattern is unchanged, so that we
expect our results for the first peak or two in the gravitation al wave spectra to be robust.
Moreover, the larger gradients observed in lattice simulations could result in specific mass
spectra of primordial black holes.
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A Code variables

In this appendix we present the rescaled variables and equations that we integrate numerically.
As “time variable” of our evolutions the number of e-folds is used, defined as

N ©
⁄

t

t0
dtÕ H

!
tÕ" , (A.1)

where H © ȧ

a
is the Hubble rate, and where t0 is some reference initial time, that we take

when the CMB modes are still well inside the horizon. We normalize the scale factor to
1 at this initial time, so that

a = eN , · = ·0 +
⁄

t

t0

dtÕ

a (tÕ) = ·0 +
⁄

N

0

dN

H (N Õ) eN Õ . (A.2)

We denote by V0 the value of the inflaton potential at this initial time, and we introduce
the dimensionless quantities and fields

k̃ © MpÔ
V0

k , H̃ © MpÔ
V0

H , f̃ © f

Mp

, „̃ © „

f
, Ṽ

1
„̃

2
© V („)

V0

,

Ā± ©
Ô

2k eik(·≠·0) A± =

Ò
2Mp k̃

V 1/4

0

e
ik̃

s
N

0
dN

Õ

H̃(NÕ) eNÕ
A± , (A.3)

where the rescaling of the gauge field mode eliminates their fast evolving time-dependent
phase in the UV regime. In these variables, the last two eqs. of (2.2) and eq. (2.5) can
be combined to give

d2„̃

dN2
= ≠ d„̃

dN
+ f̃2

6

A
d„̃

dN

B3

≠
Ṽ Õ

1
„̃

2

f̃2H̃2
≠

2Ṽ
1
„̃

2

3H̃2

d„̃

dN
+

e
Ę · B̨

f

symm

f̃2V0H̃2
,

dH̃

dN
= ≠2H̃ ≠ f̃2H̃

6

A
d„̃

dN

B2

+
2Ṽ

1
„̃

2

3H̃
,

d2Ā±
dN2

=

S

U1 + f̃2

6

A
d„̃

dN

B2

+ 2ik̃

H̃eN
≠

2Ṽ
1
„̃

2

3H̃2

T

V dĀ±
dN

± k̃Ā±

H̃eN

d„̃

dN
, (A.4)
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where prime on the rescaled inflaton potential denotes derivative with respect to the rescaled
inflaton. In these variables, the gauge correlators read

e
Ę · B̨

f

symm
= ≠ V 2

0

8fi2M4
p

H̃

e3N

⁄
dk̃ k̃2

ÿ

⁄

⁄
d

dN

---Ā⁄

---
2

, (A.5)

K
Ę2 + B̨2

2

L

symm

= V 2
0

8fi2M4
p e4N

⁄
dk̃ k̃

ÿ

⁄

S

Ue2N H̃2

-----
dĀ⁄

dN
≠ i

k̃ Ā⁄

H̃ eN

-----

2

+ k̃2

---Ā⁄

---
2

T

V .

In principle, one could subtract the vacuum contribution from the second of (A.5), while this
is not needed in the first equation, since the vacuum contributions of the two polarizations
cancel against each other. We note however that the second expression does not appear in
the system (A.4), and it is not used in our numerical integration.

We integrate the set of equations (A.4) numerically. At each time step, the backreaction
integral in the first line of (A.5) is evaluated by discretizing the momenta as discussed in
subsection 3.1, and by using the trapezoid rule. Coherently with the sampling (3.1), we
discretize using the logarithm of k̃i so that the step is identical for all points
⁄

k̃max

k̃min
I

1
k̃

2
dk̃∆

imax≠1ÿ

i=1

�lnk̃i

k̃iIk̃i
+k̃i+1I

k̃i+1

2 = �lnk̃

2

A

k̃minI
k̃min

+k̃maxI
k̃max

+2
imax≠1ÿ

i=1

k̃iIk̃i

B

.

(A.6)
The first two terms in the parenthesis are further disregarded because the integrand assumes
negligible values there (otherwise our result would depend on the choice of UV and IR cuto�s).

We note from the system (A.4) that we chose to integrate a first order di�erential equation
for the Hubble rate, by di�erentiating the third of (2.2). That equation is then used to set
the initial condition for the Hubble rate. More precisely, we choose the initial time well
before the CMB modes left the horizon, and with a su�ciently flat inflaton potential, such
that the inflaton is performing a standard slow-roll evolution, with negligible gauge field
amplification and backreaction. The gauge modes are initially in the adiabatic vacuum, and
the full set of initial conditions at N = 0 is given by

„̃ (0) = „̃0 , H̃ (0) = 1Ô
3

,
d„̃

dN

---
N=0

= ≠ 1
f̃2

dṼ

d„̃

---
„̃=„̃0

, Ā⁄ (0) = 1 ,
dĀ⁄

dN

---
N=0

= 0 .

(A.7)
We now discuss the set of equations that we integrate numerically to evaluate the GW

production. Rewritten in terms of N , eq. (2.15) rewrites

ÔN Q̂⁄

1
N, k̨

2
=

Ŝ⁄

1
N, k̨

2

H2 e2N
, (A.8)

where we introduced the operator

ÔN © d2

dN2
+

5
1 + 1

H

dH

dN

6
d

dN
+

C
k2

H2 e2N
≠ 2 ≠ 1

H

dH

dN

D

. (A.9)

In terms of the Green function

ÔN GN

!
N, N Õ" = ”

!
N ≠ N Õ" , GN

!
N, N Õ" = G̃N

!
N, N Õ" �

!
N ≠ N Õ" , (A.10)
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we have the formal solution

Q̂⁄

1
k̨, N

2
=

⁄
N

0

dN ÕG̃k

!
N, N Õ" Ŝ⁄(N, k̨)

(H (N Õ) eN Õ)2
. (A.11)

As this solution coincides with (2.21), rewritten in terms of N instead of · , we can immediately
relate the Green functions in the two variables

G̃k

!
N, N Õ" = H

!
N Õ" eN

Õ
G̃k

!
· (N) , · Õ !

N Õ""
, (A.12)

where the relation between · and N is given in (A.2). The explicit expression for the Green
function in code variables is given at the end of this appendix.

We then proceed as in subsection 2.4 of the main text. In particular, eq. (2.26) rewrites6

P⁄(k)= k3e≠2N

16fi4M4
p

⁄ Œ

0

dpp2

⁄
1

≠1

dcos◊
A

1≠⁄
pcos◊≠k


k2≠2kpúcos◊+p2

ú

B2

(1+⁄cos◊)2 (A.13)

◊

------

⁄
N

0

dN Õ G̃k(N,N Õ)
eNÕ

S

UdA+(N Õ,p)
dN Õ

dA+

1
N Õ,|̨k≠p̨|

2

dN Õ + p|̨k≠p̨|
H2(N Õ)e2N Õ A+(N Õ,p)A+(N Õ,|̨k≠p̨|)

T

V

------

2

,

where we have performed one trivial angular integration (the rotation of the integration
variable p̨ at fixed angle ◊ with k̨). To perform the remaining two integrals we introduce the
variables p © k (X + Y ) , q ©

---̨k ≠ p̨
--- © k (X ≠ Y ). In terms of these variable, the integral

of any function f of p and of cos ◊ reads
⁄ Œ

0

dpp2

⁄
1

≠1

dcos◊f (p,cos◊)=2k3

⁄ Œ

1/2

dX
⁄

+1/2

≠1/2

dY
1
X2≠Y 2

2
f

3
k(X+Y ),

1+4XY

2(X+Y )

4
.

(A.14)
The momentum integral leading to P⁄ (k) can be visualized as a one loop integral with
internal momenta p̨ and q̨ = k̨ ≠ p̨. In the boundary of (A.14) the two momenta p̨ and q̨

are either aligned or anti-aligned. More specifically, let us consider the {X, Y } =
Ó

1

2
, ≠1

2

Ô

“corner”, corresponding to p̨ = 0 and q̨ = k̨. Starting from this point and moving along
the Y = ≠1

2
boundary corresponds to taking p̨ and q̨ anti-aligned, with p̨ pointing in the

opposite direction to k̨ (namely, cos ◊ = ≠1), and q > p. The two remaining boundaries
have instead p̨ pointing and in the same direction as k̨ (namely, cos ◊ = +1). In the X = 1

2

segment, both p̨ and q̨ are directed as k̨, while in the remaining Y = 1

2
boundary q̨ is directed

opposite to the other two vectors, with p > q. These two boundaries join each other at the
{X, Y } =

Ó
1

2
, 1

2

Ô
“corner”, where p̨ = k̨, while q̨ vanishes.

In these variables we obtain

P⁄(k)= k6e≠2N

128fi4M4
p

⁄ Œ

1/2
dX

⁄ 1/2

≠1/2
dY

!
1≠4Y 2"2(1+2⁄X)4

X2≠Y 2

-----

⁄
N

0
dN Õ G̃k (N,N Õ)

eN Õ (A.15)

◊
C

dA+(N Õ,k(X+Y ))
dN Õ

dA+(N Õ,k(X≠Y ))
dN Õ +

k2 !
X2≠Y 2"

H2(N Õ)e2N Õ A+(N Õ,k(X+Y ))A+(N Õ,k(X≠Y ))
D-----

2

,

6As G̃k is dimensionless, the second line of this expression has mass dimension ≠2, so that the full result is
dimensionless, as it should be.
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and we note that the integrand is symmetric under Y æ ≠Y , which corresponds to interchang-
ing the internal momenta p̨ ¡ q̨ in the loop. Performing the rescalings (A.3) finally results in

P⁄ (k) = e≠2N V 2
0

512fi4M8
p

⁄ Œ

1/2

dX
⁄

1/2

≠1/2

dY

!
1 ≠ 4Y 2

"2 (1 + 2⁄X)4

(X2 ≠ Y 2)2

-----

⁄
N

0

dN Õ k̃2 G̃k (N, N Õ)
eNÕ

◊
I

dĀ+

1
N Õ, k̃ (X + Y )

2

dN Õ

dĀ+

1
N Õ, k̃ (X ≠ Y )

2

dN Õ

≠ i k̃

eN Õ H̃ (N Õ)

C

(X + Y ) Ā+

1
N Õ, k̃ (X + Y )

2 dĀ+

1
N Õ, k̃ (X ≠ Y )

2

dN Õ

+ (X ≠ Y )
dĀ+

1
N Õ, k̃ (X + Y )

2

dN Õ Ā+

1
N Õ, k̃ (X ≠ Y )

2 DJ-----

2

©
⁄ Œ

1/2

dX
⁄

1/2

≠1/2

dY C (X, Y ) . (A.16)

We conclude this section by presenting the Green function in code variables. The Green
function can be obtained following the steps outlined in subsection 2.5 of the main text, by
replacing the di�erential operator in eq. (2.27) by that in eq. (A.10). The first step is to solve
the homogeneous di�erential equation ÔN F (N, k) = 0 subject to the sub-horizon initial
condition (2.29), rewritten in terms of the variable N . To rescale away this fast evolving
initial phase, we rescale the wanted solution as done in eq. (A.3) for the gauge modes

F̄ (N, k) ©
Ô

2k eik(·≠·0) F (N, k) =

Ò
2Mp k̃

V 1/4

0

e
ik̃

s
N

0
dN

Õ

H̃(NÕ) eNÕ F (N, k) , (A.17)

where the rescaled function is fully determined by7

Y
__]

__[

d
2 F̄(N, k)

dN2 +
Ë
1 + 1

H̃

dH̃

dN
≠ 2i k̃

H̃ eN

È
d F̄(N, k)

dN
≠

Ë
2 + 1

H̃

dH̃

dN

È
F̄ (N, k) = 0 ,

F̄
--
N=0

= 1 , dF̄
dN

--
N=0

= 0 .

(A.18)

Once F̄ (N, k) is determined numerically, we employ it in the Green function

G̃k

!
N, N Õ" = Im [F (N, k) Fú (N Õ, k)]

Im
Ë

dF(N Õ, k)

dN Õ Fú (N Õ, k)
È

=
Im

5
e≠ik̃

s
N

NÕ
dn

H̃(n) en F̄ (N, k) F̄ú (N Õ, k)
6

Im
Ë

d F̄(N Õ, k)

dN Õ F̄ú (N Õ, k)
È

≠ k̃

H̃(N Õ) eNÕ

---F̄ (N Õ, k)
---
2

. (A.19)

As derived analytically in eq. (2.37), and as we verify numerically, in the super-horizon
regime the Green function satisfies

lim
k̃πeN H(N), eNÕ

H(N Õ)
G̃k

!
N, N Õ" = H̃

!
N Õ" eN+2N

Õ
⁄

N

N Õ

d· ÕÕ

H̃ (N ÕÕ) e3N ÕÕ . (A.20)

7As a check of our the numerical scheme, we actually implemented the initial conditions for Ā± and F̄
including the first order term in H̃ (0) /k̃, and we verified that, for the initial times that we chose, these
corrections produced negligible e�ects on the final results.
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B Results at constant ›

In this appendix we evaluate some of the expressions of the main text in the case of constant
›, to compare with some results obtained in the literature in this case.

We start from the gauge field mode functions and correlators. For constant ›, and for
a de Sitter background, namely, to zeroth order in slow-roll, eq. (2.6) is solved exactly by
an irregular Coulomb function. Ref. [15] provided a simpler expression,

A+ ƒ 1Ô
2k

3≠k·

2›

41/4

efi›≠2

Ô
≠2›k· , (B.1)

that approximates very well the exact solution at its maximum, which is what matters in
computing the e�ects of the gauge field amplification (see ref. [29] for a detailed discussion).
Correspondingly, the E≠ and B≠mode functions defined in eq. (2.9) are

FE ƒ ≠
Û

2›

≠k·
A+ , FB = k A+ , (B.2)

and the correlators (2.10) evaluate to

ÈEi EiÍsymm
ƒ 2.78 ◊ 10≠4H4

e2fi›

›3
, ÈBi BiÍS

= 2.44 ◊ 10≠4H4
e2fi›

›5
π

e
Êi Êi

f

symm
,

ÈEi BiÍsymm
= ≠2.44 ◊ 10≠4H4

e2fi›

›4
, (B.3)

in agreement with eq. (2.15) of [28]. The inequality in the first line holds in the phenomeno-
logically relevant regime › ∫ 1.

Next, we discuss the GWs production in a de Sitter geometry and with constant ›. We
start from eq. (2.26) of the main text, where we recall that, for the dS case, the Green
function evaluated for super-horizon modes reads (compare with eq. (2.34))

lim
·æ0

G̃k

!
·, · Õ" = k· Õ cos (k· Õ) ≠ sin (k· Õ)

k3·· Õ . (B.4)

We insert this expression in eq. (2.26), together with the mode functions (B.1) and (B.2),
and, after some lengthy but straightforward algebra, we arrive to

P⁄ (k) = H4

2fi2M4
p

e4fi›

›
(B.5)

◊
⁄

d3pú

(2fi)3
p1/2

ú |k̂ ≠ p̨ú|1/2
(1 + ⁄ cos ◊)2

1
1 ≠ pú cos ◊ + ⁄


1 ≠ 2pú cos ◊ + p2

ú

22

16 (1 ≠ 2pú cos ◊ + p2
ú)

◊
I⁄ Œ

≠k·

dxx1/2 [sin x ≠ x cos x]
52›

x
+

Ò
pú |k̂ ≠ p̨ú|

6
e

≠2

Ô
2›x

Ë
Ô

pú+

Ô
|k̂≠p̨ú|

ÈJ2

,

where p̨ú © p̨/k. The second line contains the two integrals

I1 © 2›
⁄ Œ

0

dxx≠1/2 (sin x ≠ x cos x) e≠2Q

Ô
2›x ,

I2 =
Ò

pú |k̂ ≠ p̨ú|
⁄ Œ

0

dxx1/2 (sin x ≠ x cos x) e≠2Q

Ô
2›x , (B.6)
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where Q ©
5Ô

pú +
Ò

|k̂ ≠ p̨ú|
6
, and where we set ≠k· æ 0 in the lower extremum of

integration, which is appropriate for the solution in the super-horizon regime. At › ∫ 1
we can approximate

I1 ƒ 2›

3

⁄ Œ

0

dx x5/2 e≠2Q

Ô
2›x = 2›

3
45

32
Ô

2Q7›7/2
,

I2 ƒ 1
3

Ò
pú |k̂ ≠ p̨ú|

⁄ Œ

0

dx x7/2e≠2Q

Ô
2›x = 1

3

Ò
pú |k̂ ≠ p̨ú| 315

32
Ô

2Q9›9/2
. (B.7)

We insert these expressions into eq. (B.5) and perform the d3pú integration numerically
(in fact one angular integration is trivial, as we also discussed in the previous appendix). We
verified that I2 provides a negligible contribution in the › ∫ 1 regime (being suppressed by
one additional power of 1/› relative to I1). The final result for the left handed (⁄ = +1)
and right handed (⁄ = ≠1) GWs is

PL (k) ƒ 8.72 · 10≠8H4 e4fi›

M4
p ›6

, PR (k) ƒ 1.86 · 10≠10H4 e4fi›

M4
p ›6

, (B.8)

which agrees with eqs. (3.39) and (3.41) of ref. [28]. We note that our eq. (B.5) is a factor
of 4 smaller than eq. (3.40) of ref. [28]. Given the agreement between their and our final
numerical values, we conclude that eq. (3.40) of ref. [28] is a�ected by a typo.

C Numerical implementation of the UV cuto�s

We devote this appendix to a detailed explanation of our implementation of the momentum
cuto� of the backreaction integral and the equations of motion of the gauge field and auxiliary
function F̃ .

Regarding the backreaction cuto�, we define the regularized integral as follows

Ireg(k̃) © R(N, k̃) I(k̃) , (C.1)

where R(N, k̃) is a regularization function. For all practical purposes this function could take
the form of a Heaviside step function, but in practice the numerical di�erential equation
solver in Mathematica works better with analytic functions. As a result we choose the
following function for the regulator

R(N, k̃) © 1
2

I

tanh
C

103 ln
A

k̃reg(N)
k̃

BD

+ 1
J

, (C.2)

where the number 103 controls the steepness of the regulator and in practice our choice makes
it indistinguishable from a Heaviside step function. The function k̃reg defined in (3.4) has
to be solved for numerically along with the equations of motion. In the initial stages of
inflation while the system is still in the low backreaction regime, k̃thr(N) is a monotonously
increasing function of time. During this period, the momentum cuto� and the threshold
between stability and instability are identical,

k̃reg(N) = k̃thr(N), early times and negligible backreaction . (C.3)
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Subsequently, when the system enters the strong backreaction regime, the function k̃thr(N)
evolves in a non-monotonous way; however, the momentum cuto� k̃reg(N) should be a
monotonously increasing function of the number of e-folds that is equal to the greatest
value that k̃thr(N) has ever obtained before this moment. We implement this using event
triggers in Mathematica.

During the evolution of the numerical di�erential solver NDSolve, we define an event
trigger using the function WhenEvent which checks at every instant in time whether an
event satisfying a condition has been triggered. The condition in our case is the change in
the monotonicity of k̃thr(N), which can also be rewritten as

dk̃thr

dN
= eN H̃

d„̃

dN
+ eN

dH̃

dN

d„̃

dN
+ eN H̃

d2„̃

dN2
< 0 . (C.4)

This implies that the event will trigger once the derivative of k̃thr switches from positive to
negative. When this event triggers, we program Mathematica to save the value of k̃thr at this
particular moment and use the function AppendTo to append the value of k̃thr in an initially
empty list which we call K̃loc,max, therefore saving the local maxima of k̃thr as the evolution
progresses. We use the option DiscreteVariables to include in the evolution a discrete
variable which is a function to be evaluated by NDSolve, that has an initial condition but
that does not obey a corresponding di�erential equation. We call this function k̃loc,max(N),
and the code changes its value at every event trigger to be k̃loc,max æ MAX

Ë
K̃loc,max

È
.

We then define the momentum cuto� as

k̃reg(N) = 1
2

I

tanh
C

103 ln
A

k̃thr(N)
k̃loc,max(N)

BD

+ 1
J

k̃thr(N)

+ 1
2

I

tanh
C

≠103 ln
A

k̃thr(N)
k̃loc,max(N)

BD

+ 1
J

k̃loc,max(N) . (C.5)

This function e�ectively picks out the maximum value ever attained by k̃thr, from the start of
the code up to the moment N . This function is plotted for the parameters chosen in the main
body in figure 5. The algorithm described above allows for the computation of the regularized
backreaction integral with the correct cuto� in real time without the need for iterative work.

Let us now turn our attention to the UV cuto� of the evolution of the gauge modes
Ā and auxiliary functions F̄ . The cuto� can be easily implemented by setting the entire
right hand side of the last line of (A.4) equal to zero for any comoving momentum above
k̃vac(N) as follows.

d2Ā±
dN2

= R(N, k̃)

Y
]

[

S

U1 + f̃2

6

A
d„̃

dN

B2

+ 2ik̃

H̃eN
≠

2Ṽ
1
„̃

2

3H̃2

T

V dĀ±
dN

± k̃Ā±

H̃eN

d„̃

dN

Z
^

\ , (C.6)

with the replacement k̃reg(N) æ k̃vac(N) in the numerator of (C.2) and an analogous
expression for (A.16). This is essentially a “trick” that takes advantage of the fact that in the
vacuum configuration the first derivative of the mode functions is formally zero. Since the
speed is zero, one only needs to set the second derivative to zero to guarantee that the modes
are frozen. Once the threshold k̃vac(N) grows beyond a specific k̃, the regulator becomes
e�ectively equal to one and the mode starts evolving from the vacuum configuration while
obeying the appropriate equation of motion inside the curly bracket of (C.6).
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Figure 5. Comparison between k̃thr(N) and k̃reg(N) for the scenario presented in section 4. The black
dashed line is given by (C.5) whereas the red line is the threshold between stability and instability
defined in (3.2) The red lines vanish briefly because the direction of motion of the inflaton switches
momentarily and the plot does not have enough resolution to keep track of the rapidly decreasing
value in logarithmic units. Clearly, this has no e�ect on the two regulators k̂reg (N) and k̂vac (N), that
are sensitive only to the maximum value attained by k̃thr up to N .

D Additional comments on the numerics with Mathematica

This appendix is dedicated to providing the reader with a bird’s-eye view of the numerical
setup with Mathematica. Our set of di�erential equations consists of the scalar field equation
of motion, the equation for the Hubble rate, one equation for each gauge mode and auxiliary
function F̄ . There are 1 + 2imax second order and 1 first order (namely the one for the
rescaled Hubble rate) di�erential equations (note that we ignore in the code the polarization
of the gauge field that is not expected to become tachyonic). We solve all equations isolating
the greatest derivative order on the left hand side and moving every other term to the right
hand side. Subsequently we reduce the order of the system to be first order by introducing
auxiliary variables whenever necessary. Specifically, for a generic variable Z(N) which obeys
a second order di�erential equation, we introduce the auxiliary variable Zd(N) and rewrite
the system as follows

Z ÕÕ(N) = . . . æ
)
Z Õ

d(N) = . . . , Z Õ(N) = Zd(N)
*

. (D.1)

This reduces the system to a total of 3 + 4imax first order di�erential equations. Subse-
quently, we separate the real and imaginary parts of the gauge modes and auxiliary functions
F̄ and evolve them separately using the expansion

Ā(N, k̃) = ĀRE(N, k̃) + iĀIM(N, k̃) . (D.2)

This step manifestly eliminates every imaginary unit in the equations of motion and
generally provides stability to the code since everything is assumed a-priori to be a real
variable. The total number of equations is then 3 + 8imax (the number of equations does not
double, since the inflaton, its derivative, and the Hubble rate are real quantities). Finally,
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adding the auxiliary discrete variable introduced in appendix C, necessary for the computation
of the backreaction cuto�, we end up with a total of 3204 equations for imax = 400.

We then evolve the system using the function NDSolve and using the method Methodæ
{"Sti�nessSwitching", Methodæ {"ExplicitRungeKutta, Automatic}}. This method
is ideal for the type of di�erential equations we are studying since it switches between a
sti� and non-sti� solver depending on whether the criteria for sti�ness are satisfied. During
the low backreaction regimes the code generally evolves using the Runge-Kutta approach
which is very fast and e�cient and conveniently allows Mathematica to make use of autopar-
allelization, which is a process by which the large summations in our code are vectorized
and performed in parallel among all available cores. On the other hand, when the bursts of
particle productions occur, Mathematica switches to a sti� solver that is slower, but more
appropriate to the strong backreaction regime.

We have tested the robustness of the code by performing trials with varying discretization
options and for limited range of modes as well as various accuracy and precision requirements.
We also tested various other numerical di�erential equation solvers and achieved identical
results but for a large price in speed and memory e�ciency.

The raw results of the numerical solver are then used in (A.19) and (A.16) for the
computation of the gravitational wave power spectrum. This process involves certain technical
aspects that are worth mentioning. We discretize the time variable into �N = 0.5 intervals
and define the real and imaginary part of the gauge modes as a smooth function of momentum
by interpolating the solutions over ki over the fixed time. These smooth functions have a
hard UV cuto� which is fixed to be k̃reg. This step regularizes the gravitational wave integral,
eliminating any possible unphysical UV contribution.

We then define a grid in (ln(X), Y ) space that consist of 100 ◊ 100 points equally
spaced in the two variables. We choose variables ln(X) and Y because we observe that
the dominant contribution in the X direction may be consolidated anywhere between small
X ≥ 1/2 values or very large X ≥ O(100) and we want to capture the integrand (A.16)
accurately at both scales. On the other hand the variable Y is sampled linearly because
that is su�cient to capture the dominant contribution to the integrand for all the possible
integrand shapes that may arise.

We then proceed to compute the gravitational wave power for an external momentum k̃ by
selecting the mode of interest from our original set of imax = 400 modes. The one dimensional
time integral contained in the absolute value of (A.16) is computed first using the one dimen-
sional trapezoid rule, once for each combination of (ln(X), Y ) for a total of 100 ◊ 100 times.
We finally multiply the absolute value square of the integral with the polarization dependent
prefactor and compute the integral over dX and dY using the 2-dimensional version of the
trapezoid rule separately for each polarization. We also apply the same simplifying identity
to the 2-dimensional trapezoid rule as the 1-dimensional version written in (A.6) which in this
case dramatically speeds up the integration. We have experimented with the time and mo-
mentum spacing and determined that the process described above leads to convergent results.
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Figure 6. Three dimensional plots of the natural logarithm of the integrand defined in eq. (A.16).
The left side corresponds to the integrand of the plus polarization while the right side corresponds to
the minus polarization. From top to bottom the panels correspond to the pair of squares, stars and
triangles as they appear in figure 4. The instantaneous slope of the particle production parameter ›
at the moment when the mode corresponding to the gravitational wave crossed the horizon as well as
the chirality parameter defined in (4.3) is given for each panel.

E Momentum dependence of the GW source and implications for the
GW polarization

In this appendix we show the momentum dependence of the GW source, to support the
considerations that we made in the final part of section 4. We recall that a GW of momentum
k̨ is sourced by two gauge modes, of momenta p̨ and q̨, that combine to give p̨ + q̨ = k̨. In
figure 6 we show the natural logarithm of the integrand C(X, Y ), defined in (A.16), controlling
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the production, as a function of the two momenta. We show it in terms of the variables
defined in eq. (A.14). We recall that the region X ∫ 1/2 (covering the outmost right part
of each panel in the figure) corresponds to modes with p, q ∫ k, which are anti-aligned
so to add up to k̨. The opposite regime X ƒ 1/2 corresponds to modes with p, q . k.
The two points at the top left and bottom left of each panel correspond to the “corners”
X = 1/2 and Y = ±1/2 of the integration domain, where one between p̨ or q̨ is equal to
k̨ while the other momentum vanishes.

Figure 6 presents three rows, consisting of two panels each. The top, middle and bottom
row corresponds, respectively, to the times marked with squares, stars, and triangles in figure 4.
For each row, the left (resp., right) panel shows the integrand of eq. (A.16) for the left-handed
(resp., right-handed) GW polarization. From top to bottom the comoving momentum k̃ is
2.43 · 108, 2.86 · 1011 and 3.09 · 1016 respectively. In each panel, we also indicate the value of
d›

dN
at that moment, and the resulting amount of GW polarization, defined in eq. (4.3)
In the top row of the figure we observe a relatively small amount of polarization. At this

time › is rapidly increasing and so the GW production of the GW modes that leave the horizon
around this time is dominated by gauge fields of higher momentum, that leave the horizon a few
e-folds later, when › is greater. This e�ect is eventually stopped by the phase space suppression,
and we find that the region with X ƒ O(10) dominates the integral. For these values that
gauge momenta are nearly anti-aligned, resulting in a polarization-independent production.8

The second row (resp., third row) corresponds to times in which › is nearly constant
(resp., rapidly decreasing) both in an instantaneous sense and for some e-folds across the time
shown. We observe from the figure that in the second row the production of the left-handed
polarization is dominated by X ƒ 1/2, Y ƒ 0, namely by p ƒ q ƒ k

2
. Among the three

rows, this case is the one that resembles the most the result obtained at constant ›. We
see from the figure, and from the (1 + 2⁄X)4 factor in eq. (A.16), that this region does not
contribute to the right-handed GW polarization, hence explaining the significantly higher
value of �‰ with respect to the top row. In the third row, characterized by a rapid decrease
of ›, we are in a situation in which the gauge modes whose wavelengths crossed the horizon
long before the wavelength of the gravitational wave being produced are far more abundant
than gauge modes of similar wavelength. This implies that the gauge mode dependence is
heavily skewed towards the infrared, which is precisely the point at which the parity violation
becomes maximal. This is manifest in the last row of panels in figure 6 where the dominant
contribution is consolidated in the upper and left-most corners of the integrand.
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