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Abstract: Axion inflation coupled to Abelian gauge fields via a Chern-Simons-like term
of the form φFF̃ represents an attractive inflationary model with a rich phenomenology, in-
cluding the production of magnetic fields, black holes, gravitational waves, and the matter-
antimatter asymmetry. In this work, we focus on a particular regime of axion inflation, the
so-called Anber-Sorbo (AS) solution, in which the energy loss in the gauge-field production
provides the dominant source of friction for the inflaton motion. We revisit the AS solu-
tion and confirm that it is unstable. Contrary to earlier numerical works that attempted to
reach the AS solution starting from a regime of weak backreaction, we perform, for the first
time, a numerical evolution starting directly from the regime of strong backreaction. Our
analysis strongly suggests that, at least as long as one neglects spatial inhomogeneities in
the inflaton field, the AS solution has no basin of attraction, not even a very small one that
might have been missed in previous numerical studies. Our analysis employs an arsenal
of analytical and numerical techniques, some established and some newly introduced, in-
cluding (1) linear perturbation theory along the lines of ref. [1], (2) the gradient expansion
formalism (GEF) developed in ref. [2], (3) a new linearized version of the GEF, and (4) the
standard mode-by-mode approach in momentum space in combination with input from
the GEF. All these methods yield consistent results confirming the instability of the AS
solution, which renders the dynamics of axion inflation in the strong-backreaction regime
even more interesting than previously believed.
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1 Introduction

Primordial inflation [3–6] explains some of the puzzles of standard hot big-bang cosmol-
ogy, and is well supported by observations [7, 8]. However, the specific particle physics
realization of inflation remains unknown, and concrete implementations encounter theo-
retical challenges. For instance, explaining how the inflaton potential V (φ) can maintain
flatness against radiative corrections poses a problem. Additionally, in large-field models
of inflation, there is the issue of how the inflaton can span a trans-Planckian range. These
challenges become even more significant within the swampland program, where bounds on
the curvature of scalar potentials and on the excursion of (pseudo)scalar fields [9] have
been conjectured.

Axion inflation offers a potential solution to the first problem by offering a mechanism
that protects the inflaton potential from large radiative corrections [10]. Moreover, the
most natural coupling of the axion inflaton to gauge fields provides additional elements that
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might help address both problems [11]. It is important to note that the simplest model of
axion inflation, called natural inflation [10], has been ruled out by data [7, 8, 12]. However,
certain nonminimal realizations, such as the two-axion model of aligned inflation [13], or
models of monodromy inflation with a flattened potential [14] have solutions compatible
with current data [15, 16], that will be probed by future CMB experiments, such as CMB-
S4 [17]. In these realizations, the inflaton excursion ∆φ is parametrically greater than the
axion scale f that characterizes the potentials of the axion(s). Parametrically, this same
scale governs the coupling of the inflaton to gauge fields,

L ⊃ −αφ

4f φF F̃ , (1.1)

where F is the gauge field strength, F̃ its dual, and αφ is a dimensionless coupling that,
depending on the specific UV completion of the model, can be expected to be of order one.
The motion of the inflaton amplifies one gauge field helicity during inflation [11] with a
magnitude that is exponentially sensitive to the parameter

ξ ≡ αφ φ̇

2fH $ αφ√
2

√
εV MP
f

, standard slow-roll (1.2)

where the dot denotes the derivative with respect to cosmic time; H is the Hubble rate;
εV is a slow-roll parameter, εV ≡ M2

P (dV/dφ)2 /
(
2V 2); and MP is the reduced Planck

scale, related to Newton’s constant by MP = (8πGN )−1/2. In the most straightforward
case, ∆φ = O (f), the axion scale needs to be close to Planckian, and ξ is suppressed by
the smallness of εV . On the contrary, models of aligned natural inflation or of monodromy
inflation accommodate an axion scale parametrically smaller than MP, so the parameter ξ

in (1.2) can be naturally of order one.
For ξ = O (1), the gauge-field amplification induced by its coupling (1.1) to the infla-

ton can result into a very interesting phenomenology, as the amplified gauge modes can
scatter to produce primordial scalar perturbations and gravitational waves (GWs) [18, 19].
Interestingly, this stochastic GW background (SGWB) is circularly polarized, as the cou-
pling (1.1) amplifies only one of the two gauge-field polarizations, and these modes produce
one GW polarization much more significantly than the other one. Unfortunately, the strong
limits on the gauge-field amplification enforced by the non-observation of the scalar pertur-
bations that they produce prevent this GW signal from being observable at CMB scales.1
The situation might be more interesting at smaller scales. As long as its evolution is de-
scribed by eq. (1.2), the parameter ξ grows during inflation. The exponential sensitivity of
the gauge-field production to ξ then results in a GW signal that is naturally much greater at
scales smaller than the CMB scale [27–29], so that the produced GWs might be observable
by a variety of GW observatories [30]. Also in this case, one must investigate whether this
potential GW signature can take place without a simultaneous overproduction of scalar

1While in this work we focus on the case of an Abelian gauge field, this problem persists also in the SU(2)
case [20, 21] of chromo-natural inflation [22]. The sourced GWs can be observed in specific realizations in
which the rolling axion is not the inflaton, so that the production of scalar perturbations is reduced [23–25].
See also ref. [26] for a non-minimal extension of ref. [22].
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perturbations, which would lead to too many primordial black holes (PBHs) [31–35]. For
reasons that we discuss in the remainder of this Introduction, we still do not have a reliable
answer to this question.

When the parameter ξ is sufficiently large, the amplified gauge fields significantly
backreact on the background dynamics. The backreaction occurs via an αφ 〈E ·B〉 /f term
in the equation of motion (EOM) of the inflaton and via the gauge-field energy density
∝ 〈E ·E〉 + 〈B ·B〉 in the Friedmann equation for the Hubble rate.2 The former effect is
typically more relevant, as it is easier to impact the dynamics of the inflaton, which is slow-
roll suppressed, than that of the scale factor. Anber and Sorbo (AS) investigated this model
for the case where the background evolution is always in a regime of strong backreaction,
in which the dissipation due to the gauge-field production provides the dominant source of
friction (over the standard 3Hφ̇ Hubble friction term) for the inflaton motion [11]. Ref. [28]
considered instead the case where the evolution is in a regime of weak backreaction (in
which the gauge-field amplification negligibly impacts the background dynamics) at the
time when the CMB modes exit the horizon, followed by a smooth transition to the regime
of strong backreaction, causing the generation of a visible GW signal at smaller scales.
In these and in several successive works, the strong-backreaction AS regime was studied
under the assumption that the inflaton speed, and hence the parameter ξ (t), follow a
slow and monotonic steady-state evolution, characterized by the friction due to gauge-field
amplification perfectly balancing the gradient force from the inflaton potential at all times.
This is the typical behavior that is expected in a realization of warm inflation [36].

In the past few years, this system has been studied with different numerical schemes
of increasing precision and sophistication. Refs. [34, 37–40] numerically integrated the evo-
lution for the case of a homogeneous inflaton coupled to a large set of gauge-field modes
Aλ (τ, k). The authors of ref. [41] adopted a recursive integration approach to study the
same system of equations. They initially integrated the equations for the gauge modes us-
ing an “external” inflaton and scale factor evolution, where the backreaction of the gauge
modes is neglected. Next, they employed these gauge-mode solutions as “external func-
tions” for the backreaction in the evolution equations for the inflaton and scale factor. In
this way, they obtained improved solutions for these two quantities from which they could
then obtain improved solutions for the gauge modes. By iteratively updating this proce-
dure, they achieved convergence towards a consistent solution encompassing all these quan-
tities. Refs. [2, 42, 43] took a different approach [44] by considering a set of equations for
the two-point correlators of the “electric” and “magnetic” combinations. These equations
involve other two-point correlators that include spatial derivatives, such as 〈E · rotnB〉.
By constructing a hierarchy of equations involving correlators with an increasing number
of spatial derivatives, one can numerically solve them after truncating the hierarchy at a
certain order. This allows for the computation of the correlators and provides a system-
atic method for studying the dynamics of the system. This gradient expansion formalism
(GEF) is extended to a computation of linear perturbations in this work.

2We use electromagnetic notation for simplicity, even though we are not necessarily assuming that the
gauge field coupled to the inflaton is the Standard Model photon or the hypercharge gauge boson.

– 3 –



J
H
E
P
1
1
(
2
0
2
3
)
1
8
3

While all these studies assumed a homogeneous inflaton, the equations for a gauge field
coupled to a spacetime-dependent inflaton were studied in refs. [45, 46] on the lattice.3 The
lattice simulations conducted in ref. [45] yielded results for the inflaton power spectrum and
bispectrum in the weak-backreaction regime, which exhibited excellent agreement with the
analytical computations of refs. [18, 55]. However, the findings from the numerical stud-
ies [2, 34, 37–46] of the strong-backreaction regime contradicted the analytical expectations.
It was discovered that the evolution of the inflaton does not occur in a steady-state regime;
instead, the parameter ξ (t) undergoes large oscillations, with a period of approximately
∼ 5 e-folds, around the steady-state analytical solution. Ref. [41] showed that these os-
cillations can be attributed to a memory effect. Specifically, a gauge-field mode begins to
undergo amplification when its reduced wavelength is approximately a factor of 2ξ smaller
than the Hubble horizon, λ ≡ λ/ (2π) $ H−1/ (2ξ). The amplification ceases shortly after
the mode crosses the horizon at λ = H−1, and the energy of the mode is subsequently
diluted by the expansion of the Universe. This introduces a sensitivity of the backreaction
at a given time t to the evolution of the system during the previous few e-folds. This
sensitivity gives rise to an oscillatory behavior in the derivative of the inflaton field, φ̇(t).
These oscillations aim to “adjust” the cumulative effect of the gauge fields amplified during
the preceding few e-folds, aligning it with the slope of the potential at the specific moment
in question.4

This interpretation was confirmed by the analytical study in ref. [1], which solved the
linearized set of equations for the homogeneous inflaton perturbation, δφ, and gauge-mode
perturbations about an AS solution with constant H and φ̇. The equation for the gauge-
mode perturbations can be formally solved in terms of a Green function (constructed from
the gauge modes of the unperturbed AS solution) and the inflaton perturbation. These
formal solutions were then substituted back into the equation for δφ, resulting in an integro-
differential equation where the memory effects are encoded in the kernel of the integral.
Through suitable simplifications, ref. [1] reduced this equation to an algebraic equation,
and the roots of this equation were then determined numerically. In addition to providing
a relationship between the growth and period of the oscillations and the model parameters,
this analysis differs from the previous ones, as it addresses the instability of the AS solution
assuming it as an initial condition rather than considering an evolution that started in the
weak-backreaction regime and that was expected to evolve into the AS solution. This
explored the stability of the AS solution itself, excluding the possibility that it may only
have a small basin of attraction that was not reached by the existing studies.

The findings of ref. [1] confirmed the instability previously observed in numerical stud-
ies. These analytical results were, however, obtained with considerable simplifications
(particularly, with respect to the form of the Green function), and it is therefore important
to confirm them with a numerical study that, contrary to the existing ones, assumes the

3While this discussion is focused on the inflationary evolution, lattice simulations of reheating at the
end of inflation can be found in refs. [47–54].

4To avoid this problem, and generate a stable steady-state dissipative regime, ref. [56] recently provided
a construction, based on scalar field interactions, that can generate an “instantaneous” sensitivity of the
backreaction to the particle production.
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AS solution as initial condition. This is the goal of the present work. We do this with two
independent methods, both based on the GEF. Firstly, we consider the linearized system
of perturbations considered in ref. [1] and rewrite them in GEF language. We do not apply
any analytical approximation to these equations, but we rather solve them numerically, us-
ing the same general ansatz for δφ adopted in ref. [1]. Our solutions provide more accurate
results compared to ref. [1], albeit at the cost of a less direct connection with the model
parameters. These improved results confirm the presence of unstable modes observed in
ref. [1], yielding more precise values for the growth and period of the oscillations. Secondly,
we employ the GEF equations to conduct a full numerical study, starting from the AS so-
lution as initial condition. This approach allows us to consistently incorporate variations
in the Hubble rate and the inflaton speed, which occur in concrete inflationary models but
were neglected in the analytical computations of ref. [1] and our first method. Importantly,
this represents the first numerical evidence of the instability of the AS solution in the
strong-backreaction regime, assuming its validity at the beginning of the evolution.

The work is organized as follows. In section 2, we review the basics of the axion
inflation model that we are going to be interested in, presenting all the equations and
tools that are generally used to study the dynamics of the inflaton and gauge fields in this
model. We also precisely define the AS solution and discuss in which part of parameter
space we expect this solution to be realized. In section 3, we consider the simplified case of
a constant Hubble rate and a constant inflaton dragging force, such that the AS solution
corresponds to a constant inflaton velocity. After discussing two methods that allow us
to study the stability of the AS solution in the linear perturbation regime (the method
in ref. [1] as well as the linearized GEF), we present the numerical results showing the
spectrum of Lyapunov exponents of the linear system as well as the survival time of the
AS solution and the late-time behavior of the exact solution in the nonlinear regime. In
section 4, we consider the case of a realistic inflationary model where the Hubble rate is
now consistently determined by the Friedmann equation and analyze the stability of the
AS solution in this case. Section 5 is devoted to our conclusions. In appendix A, we list
some auxiliary formulas for the bilinear functions in the GEF. In appendix B, we explain
how we impose the initial conditions for the GEF system for the purposes of the analysis
in section 3, and we study the dependence of the survival time of the AS solution on the
axion inflation model parameters and on the initial conditions. Finally, in appendix C,
we give more details on a novel self-correction procedure that we employ in our GEF
computations and which allows us to extend the applicability of the GEF to later times.
Throughout the work, we use natural units and set ! = c = 1; then, the reduced Planck
mass reads MP = 2.43×1018GeV. We assume that the Universe is described by a spatially
flat Friedmann-Lemaître-Robertson-Walker (FLRW) metric with line element (in terms of
cosmic time t and conformal time τ)

ds2 = gµνdx
µdxν = −dt2 + a2(t)dx2 = a2(τ)

[
−dτ2 + dx2

]
. (1.3)
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2 Model and tools

2.1 Axion inflation

In the axion inflation model, the pseudoscalar inflaton field φ couples to a U(1) gauge field
Aµ via a Chern-Simons-like term. The corresponding action has the following form:

S[φ, Aµ] =
∫

d4x
√

−g
[
−1
2g

µν∂µφ∂νφ − V (φ) − 1
4FµνF

µν − β φ

4MP
FµνF̃

µν
]
, (2.1)

where V (φ) is the inflaton potential; Fµν = ∂µAν − ∂νAµ is the gauge-field tensor; F̃µν =
εµναβFαβ/(2

√
−g) is the associated dual tensor with totally antisymmetric Levi-Civita

symbol, εµναβ with ε0123 = 1; and β ≡ αφ MP/f is a dimensionless axion-vector coupling
constant. From eq. (2.1), we can compute the inflaton and gauge-field EOMs,

1√
−g

∂µ
[√

−g gµν∂νφ
]

− dV

dφ
− β

4MP
FµνF̃

µν = 0 , (2.2)

1√
−g

∂µ
[√

−g Fµν]+ β

MP
F̃µν∂µφ = 0 , (2.3)

where the latter equation is supplemented by the Bianchi identity for the dual tensor,

1√
−g

∂µ

[√
−g F̃µν

]
= 0 . (2.4)

In temporal gauge, the gauge field is written as Aµ = (0, A). Then, the three-vectors
of the physical electric field E and magnetic field B in the comoving frame are defined as

E = −1
a

∂A

∂t
, B = 1

a2
rotA . (2.5)

Correspondingly, the components of the gauge-field tensor and its dual are expressed in
terms of the components of E and B in the following way:

F0i = −aEi , Fij = a2εijkB
k , F̃0i = −aBi , F̃ij = −a2εijkE

k , (2.6)

where εijk is the totally antisymmetric Levi-Civita symbol in three spatial dimensions.
The energy-momentum tensor following from the action (2.1) reads

Tµ
ν = −∂µφ ∂νφ − FµλFνλ + δµν

[1
2∂αφ ∂αφ + V (φ) + 1

4FαβF
αβ
]
, (2.7)

which, assuming a spatially homogeneous inflaton field, yields an energy density

ρ = 〈T 0
0 〉 = 1

2 φ̇2 + V (φ) + 1
2〈E2 +B2〉 , (2.8)

where the angle brackets around T 0
0 and E2+B2 denote the expectation value during infla-

tion. The energy density determines the Hubble expansion rate H through the Friedmann
equation,

H2 = ρ

3M2
P
. (2.9)
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Finally, we rewrite eqs. (2.2)–(2.4) in three-vector form,

φ̈ + 3Hφ̇ + V ′(φ) = β

MP
〈E ·B〉 , (2.10)

Ė + 2HE − 1
a
rotB + β

MP
φ̇B = 0 , (2.11)

Ḃ + 2HB + 1
a
rotE = 0 , (2.12)

divE = 0, divB = 0 . (2.13)

The system of equations (2.9)–(2.13) is a complete set of equations governing the joint
evolution of the homogeneous inflaton field, scale factor, and gauge fields in position space
during axion inflation.

Let us now switch to momentum space and consider the quantized gauge field

Â(t,x) =
∫

d3k

(2π)3/2
∑

λ=±

[
ελ(k)âk,λAλ(t, k)eik·x + ελ∗(k)â†k,λA∗

λ(t, k)e−ik·x
]
, (2.14)

with mode functions Aλ(t, k), polarization three-vectors ελ(k), and annihilation (creation)
operators âk,λ (â†k,λ) for electromagnetic modes with momentum k and circular polarization
λ = ±, and k = |k|. The polarization vectors satisfy the relations

k ·ελ(k) = 0, ελ∗(k) = ε−λ(k), [ik×ελ(k)] = λkελ(k), ελ∗(k) ·ελ′(k) = δλλ′
, (2.15)

Note that the first relation is equivalent to choosing Coulomb gauge in addition to temporal
gauge, which we can impose since divE = 0. The creation and annihilation operators obey
the canonical commutation relations

[âk,λ, â†k′,λ′ ] = δλλ′δ(3)(k − k′) . (2.16)

For the vector potential in eq. (2.14), the Maxwell equations (2.12)–(2.13) are identi-
cally satisfied, while eq. (2.11) leads to an EOM for the mode functions,

Äλ(t, k) +HȦλ(t, k) +
[
k2

a2
− λ

k

a

β

MP
φ̇

]

Aλ(t, k) = 0 , (2.17)

which takes a slightly simpler form when written in conformal time τ =
∫ t dt′/a(t′),

∂2Aλ(τ, k)
∂τ2 +

[
k2 − λk

β

MP

dφ

dτ

]
Aλ(τ, k) = 0 . (2.18)

Deep inside the horizon, kτ → −∞, the first term inside the square brackets dominates,
and eq. (2.18) takes the form of a simple harmonic-oscillator equation. This allows us to
impose the Bunch-Davies boundary condition [57] in the asymptotic past, which amounts
to selecting the flat-space positive-frequency solutions for modes deep inside the horizon,

Aλ(τ, k) $ 1√
2k

e−ikτ , kτ → −∞ . (2.19)
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Next, we use eq. (2.14) to compute the vacuum expectation value of E · B on the
right-hand side of eq. (2.10). Then, in conformal time, the Klein-Gordon equation reads

d2φ

dτ2 + 2aH dφ

dτ
+ a2V ′(φ) = − β

4π2a2MP

kh∫

0

dk k3
∂

∂τ

[∣∣A+(τ, k)
∣∣2 −

∣∣A−(τ, k)
∣∣2
]
. (2.20)

Finally, we express the gauge-field energy density in terms of the mode functions. Then,
the Friedmann equation for the Hubble rate H = (da/dτ)/a2 takes the form

H2 = 1
3M2

P

{ 1
2a2

(
dφ

dτ

)2
+ V (φ) + 1

4π2a4

kh∫

0

dk
∑

λ=±

[
k4
∣∣Aλ

∣∣2 + k2
∣∣∣
∂Aλ

∂τ

∣∣∣
2]}

. (2.21)

Here, the momentum scale kh in eqs. (2.20) and (2.21) denotes a finite upper integration
limit. This cutoff is necessary to separate the physically relevant gauge-field modes, which
undergo enhancement due to the axial coupling, from pure vacuum fluctuations. We choose
kh such that the bracket in the mode equation (2.18) vanishes for one polarization state,

kh =
∣∣∣∣

β

MP

dφ

dτ

∣∣∣∣ . (2.22)

In this way, the integrals in eqs. (2.20) and (2.21) include all modes for which one polar-
ization has experienced the tachyonic instability. In summary, eqs. (2.18)–(2.21) represent
the full set of equations describing the dynamics of axion inflation in momentum space.

2.2 Gradient expansion formalism

An alternative way to treat axion inflation in position space is the gradient expansion
formalism (GEF) [2]. Let us introduce the following set of bilinear gauge-field functions:

E(n) ≡ 1
an

〈E · rotnE〉 , (2.23)

G(n) ≡ − 1
2an 〈E · rotnB + rotnB ·E〉 , (2.24)

B(n) ≡ 1
an

〈B · rotnB〉 , (2.25)

and recast the Maxwell equations (2.11) and (2.12) as an infinite tower of equations,

Ė(n) + (n+ 4)H E(n) − 2β

MP
φ̇G(n) + 2G(n+1) = SE , (2.26)

Ġ(n) + (n+ 4)H G(n) − β

MP
φ̇B(n) − E(n+1) + B(n+1) = SG , (2.27)

Ḃ(n) + (n+ 4)H B(n) − 2G(n+1) = SB . (2.28)

Here, the source terms on the right-hand side of the equations denote boundary terms that
account for the fact that the number of physically relevant modes changes in time during
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inflation, as a consequence of the fact that the cutoff scale in eq. (2.22) changes with time.
These boundary terms were derived in ref. [2] and are given by the expressions

SE = d ln kh(t)
dt

1
4π2

(
kh(t)
a(t)

)n+4 ∑

λ=±1
λnEλ (ξ(t)) , (2.29)

SG = d ln kh(t)
dt

1
4π2

(
kh(t)
a(t)

)n+4 ∑

λ=±1
λn+1Gλ (ξ(t)) , (2.30)

SB = d ln kh(t)
dt

1
4π2

(
kh(t)
a(t)

)n+4 ∑

λ=±1
λnBλ (ξ(t)) , (2.31)

where the auxiliary functions Eλ, Gλ and Bλ are given in terms of Whittaker functions,

Eλ(ξ) =
eπλξ

4ξ2

∣∣∣(2i|ξ| − iλξ)W−iλξ, 12
(−4i|ξ|) +W1−iλξ, 12

(−4i|ξ|)
∣∣∣
2
, (2.32)

Gλ(ξ) =
eπλξ

|2ξ| Re
[
Wiλξ, 12

(4i|ξ|)W1−iλξ, 12
(−4i|ξ|)

]
, (2.33)

Bλ(ξ) = eπλξ
∣∣∣W−iλξ, 12

(−4i|ξ|)
∣∣∣
2
, (2.34)

and where the gauge-field production parameter ξ was already introduced in eq. (1.2),

ξ ≡ βφ̇

2HMP
. (2.35)

The quantity kh(t) in eqs. (2.29)–(2.31) is the wavenumber of the highest-momentum mode
that has ever become tachyonically unstable during the entire evolution of the system
leading up to the moment of time t,

kh(t) ≡ max
t′≤t

{

a(t′)
∣∣∣∣∣
βφ̇(t′)
MP

∣∣∣∣∣

}

. (2.36)

Note that this definition slightly deviates from the momentum scale kh defined in eq. (2.22);
in fact, kh(t) in eq. (2.36) represents an improved version of kh in the sense that it accounts
for the fact that the evolution of the right hand side of eq. (2.22) is not monotonic when the
inflaton velocity oscillates. Employing kh in eq. (2.22) as the upper integration boundary,
therefore, leads to situations where modes that already experienced the tachyonic insta-
bility, and which should thus be regarded as physically excited, fall into the region above
the UV cutoff and are hence removed from the momentum integrals. With the improved
definition, a mode is accounted for at all times after it has become unstable for the first
time. In the following, we will exclusively work with the definition in eq. (2.36).

Finally, in order to solve the system of equations numerically, we need to truncate it
at some finite order ncut. This can be done by expressing the quantities of order (ncut +1)
through expressions of lower order. One of the simplest ways to truncate the system was
discussed in ref. [2] and it is based on the following relation:

E(ncut+1) =
(
kh(t)
a(t)

)2
E(ncut−1) , (2.37)
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and analogously for G(ncut+1) and B(ncut+1). This truncation condition can be justified
by the following consideration. For sufficiently large order n, the spectrum of bilinear
quantities E(n), G(n), and B(n) is always blue and, therefore, the dominant contribution
stems from modes with momenta k $ kh. Then, the mean value theorem for the integral
over momentum leads to the condition (2.37) [2]. Knowing the behavior of the spectrum
near the cutoff momentum kh, one could estimate the error of the truncation introduced
by the truncation condition. In practice, however, the truncation order ncut is chosen in
such a way that increasing ncut further does not have an impact on the solution.

2.3 Anber-Sorbo solution
If the gauge field is absent (or, at least, sufficiently weak such that its contributions to the
Friedmann and Klein-Gordon equations can be neglected) and the potential V (φ) is suffi-
ciently flat, the inflaton φ follows the slow-roll attractor solution where the Hubble friction
term is almost exactly compensated by the gradient force from the inflaton potential,

3Hφ̇ + V ′(φ) $ 0, 3H2M2
P $ V (φ). (2.38)

This describes the usual case of slow-roll inflation, which is a true attractor solution: any
initial deviation quickly tends to zero, leading the system into the slow-roll regime.

The idea of Anber and Sorbo in ref. [11] was to realize the inflationary stage even with
a steep potential V (φ) (for which the standard slow-roll regime is impossible) due to the
backreaction from the produced gauge fields. In this case, the potential-gradient force is
compensated by the gauge-field friction term on the right-hand side of the Klein-Gordon
equation,

V ′(φ) $ β

MP
〈E ·B〉. (2.39)

However, this solution is now known to be unstable, as discussed in detail in the Introduc-
tion. A first analytical computation demonstrating the instability of the AS solution was
recently presented by two of us (M.P. and L. S.) in ref. [1]. In the present paper, we shall
substantiate this computation by a comprehensive numerical analysis that will allow us to
achieve two results: (i) precisely determine the growth rate of instabilities around the AS
solution and hence (ii) measure the survival time of the AS solution, which we define as
the time when the relative deviation from the AS solution becomes of O (1).

First of all, let us give a precise definition of the AS solution that we will use throughout
the paper. Let us assume for a moment that the AS solution is indeed an attractor solution,
as initially proposed in ref. [11] and subsequently assumed as a working hypothesis in many
papers in the literature. Then, under this assumption, we expect the system to slowly
evolve in time because of the strong friction coming from the gauge-field backreaction. In
this regime, it is natural to assume that the value of the gauge field at a given moment of
time is determined by the inflaton velocity at the same moment of time, i.e., there is no
retardation between the inflaton evolution and the gauge-field response. In this case, the
Klein-Gordon equation (2.10) represents a closed equation for the inflaton field,

φ̈(t) + 3H(t)φ̇(t) + V ′(φ) = β

MP
〈E ·B〉[φ̇(t)] , (2.40)
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where we now emphasize that 〈E ·B〉 is a functional of the inflaton velocity φ̇ and where
the Hubble parameter follows from the Friedmann equation in the usual way,

H2 (t) = 1
3M2

P

[1
2 φ̇2(t) + V (φ) + 1

2
(
〈E2〉[φ̇(t)] + 〈B2〉[φ̇(t)]

)]
. (2.41)

In order to find the explicit form of the functional dependence of the energy densities and
the Chern-Pontryagin density on φ̇, we assume again that the inflaton is rolling slowly and
the Universe is expanding quasi-exponentially. Therefore, on the timescale of a few e-folds,
one can assume that the Hubble parameter H and the inflaton velocity φ̇ are approximately
constant. This significantly simplifies the mode equation (2.18) in conformal time,

∂2Aλ(τ, k)
∂τ2 +

[
k2 + 2λk

ξ

τ

]
Aλ(τ, k) = 0 , (2.42)

where we used the relation a(τ) = −1/(Hτ) for de Sitter space and where the parameter
ξ introduced in eq. (2.35) is now constant (for definiteness, let us assume ξ > 0). In this
case, eq. (2.42) has an exact solution in terms of Whittaker functions. The Bunch-Davies
boundary condition (2.19) allows to extract a unique solution of the form

Aλ (τ, k) =
eλπξ/2
√
2k

W−iλξ, 12
(2ikτ) , (2.43)

whereWκ,µ(z) is the WhittakerW function. Eq. (2.42) implies that negative-helicity modes
A− are not enhanced, because the expression in square brackets is always positive. However,
positive-helicity modes A+ experience a tachyonic instability when k < 2ξ aH, which leads
to their exponential amplification. This can be directly seen from the following approximate
expression for A+ in terms of elementary functions, which is valid for x - 2ξ [11]:

A+(τ, k) $ 1√
2k

[(
x

2ξ

)1/4
eπξ−2

√
2ξx + i

2

(
x

2ξ

)1/4
e−πξ+2

√
2ξx
]
, x ≡ −kτ . (2.44)

Now, substituting eq. (2.43) into the expressions for the Chern-Pontryagin density and
energy densities, we find

〈E2〉 = H4e0(ξ) , 〈E ·B〉 = −H4g0(ξ) , 〈B2〉 = H4b0(ξ) , (2.45)

where the functions e0, g0, and b0 are given in the form of integrals of the Whittaker
functions (A.5)–(A.7) in appendix A. Using eq. (2.44), we can approximately write

e0(ξ) ≈ 6!
218π2

e2πξ

ξ3
, g0(ξ) ≈ 7!

221π2
e2πξ

ξ4
, b0(ξ) ≈ 8!

224π2
e2πξ

ξ5
. (2.46)

Therefore, we now define the AS solution as a solution of the system of equations

φ̈ + 3Hφ̇ + V ′(φ) = − β

MP
H4g0

(
βφ̇

2HMP

)

, (2.47)

H2 = 1
3M2

P

{
φ̇2

2 + V (φ) + H4

2

[

e0

(
βφ̇

2HMP

)

+ b0

(
βφ̇

2HMP

)]}

. (2.48)
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Sec. 3: constant gradient V ′, constant Hubble rate H, Friedmann equation ignored

Solution ξ parameter Methods

AS ξ̄ (t) ξ̄ (t) = ξ0 = const is an exact solution

Full solution ξ̄ (t) + δξ (t) • Linear regime at early times:
Linear perturbation theory and linearized GEF
• Nonlinear regime at late times:
Full GEF and mode-by-mode solution with GEF input

Sec. 4: constant gradient V ′, dynamical Hubble rate H, Friedmann equation included

Solution ξ parameter Methods

Enforced AS ξ̄ (t) Numerical solution of eqs. (2.47)–(2.48)

Full solution ξ (t) Full GEF and mode-by-mode solution with GEF input

Table 1. Overview of the solutions studied in section 3 and 4 and the methods used to obtain
them.

Note that for a generic inflationary model, the solution of eqs. (2.47)–(2.48) is not a solution
of the full system of equations (including Maxwell’s equations for the gauge field), since
in the full system the assumptions underlying eqs. (2.47)–(2.48), namely H = const and
ξ = const, are not necessarily satisfied. Therefore, we will often refer to this solution as
the “enforced” AS (EAS) solution, which is characterized by the fact that we insist on (or
“enforce”) the specific functional dependence encoded in the functions e0, g0, and b0. We
study the stability of the EAS solution in a specific inflationary model in section 4. On the
other hand, in the particular case of constant background quantities, considered in detail
in section 3, the AS solution is an exact solution of the full system of equations, which
can be realized by choosing the right initial conditions.5 Nonetheless, a main result of our
analysis will be that, even though the AS solution is an exact solution of eq. (2.47) for
constant H and ξ, it turns out to be unstable against arbitrarily small perturbations and
therefore only has a finite survival time, as we will demonstrate in detail. In table 1, we
summarize our notations for the different types of solutions considered in the next sections
as well as the methods used to obtain them.

2.4 Parameter choice

Let us now specify the model parameter values that we are going to be interested in, i.e.,
the region in parameter space corresponding to the strong-backreaction regime. To do so,
we assume that the system is initialized in phase space either in the AS solution or at least
sufficiently close to it, so that we can employ the equations of motion (2.47)–(2.48).

5Strictly speaking, the conditions of constant H and φ̇ cannot be simultaneously satisfied, as a rolling
inflaton will induce a time dependence in the Hubble parameter. This approximation becomes exact in the
limit in which β → ∞ (i.e., f → 0) and φ̇ → 0, while H and ξ are finite and constant.
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Specifically, we shall impose two conditions. On the one hand, the backreaction in
the Klein-Gordon equation must be strong, meaning that the additional friction from the
gauge field dominates over the Hubble friction term and hence governs the evolution of the
inflaton field. On the other hand, the contribution of the produced gauge fields to the total
energy density of the Universe needs to remain small compared to that of the inflaton, so
that we can still realize a stage of accelerated (inflationary) expansion with the effective
equation of state parameter w = p/ρ < −1/3. In order to give a quantitative meaning
to these two conditions, we introduce two parameters, δKG and δF, which measure the
strength of the backreaction in the Klein-Gordon and Friedmann equations, respectively,

δKG = |(β/MP)〈E ·B〉|
|3Hφ̇|

= 1
6

(
βH

MP

)2 ∣∣∣∣
g0(ξ)

ξ

∣∣∣∣ , (2.49)

δF =
1
2(〈E

2〉 + 〈B2〉)
3H2M2

P
= 1

6

(
H

MP

)2
[e0(ξ) + b0(ξ)] . (2.50)

Then, the conditions determining the desired parameter range can be formulated as
δKG / 1 , δF - 1 . (2.51)

These two conditions are independent and satisfied across an extended volume in the three-
dimensional parameter space spanned by β, ξ, and H. Still, it will be helpful to define a
benchmark in the sense of an “optimal parameter choice” determined by the condition

√
δKG δF = 1 . (2.52)

This choice gives the central section of the relevant parameter range where the backreaction
is strong in the Klein-Gordon equation and, at the same time, small in the Friedmann
equation. We expect that even away from the optimal parameter choice, as long as the
conditions (2.51) are satisfied, we will obtain qualitatively the same results.

The condition (2.52) allows to eliminate one of the parameters, e.g., the Hubble rate,
in terms of the two other parameters,

H

MP
= 1

β1/2

( 36 ξ

g0(ξ)[e0(ξ) + b0(ξ)]

)1/4
. (2.53)

To obtain an intuition for the analytical dependence on the parameter ξ, we use the ap-
proximate expressions in eq. (2.46), which allow us to write the more explicit expression

H

MP
= 233/4π

15751/4
ξ2e−πξ

√
β

(
1 + 7

8ξ2

)−1/4
. (2.54)

Moreover, in the range of ξ values 5 ! ξ ! 10, which is the most interesting for the present
study, we find a simple empirical relation, i.e., a fit formula,

H

MP
= 2 × 10−7

(100
β

)1/2
exp[−2.85(ξ − 7)], (2.55)

which reproduces the exact result up to an error of a few percent. This is good enough for
us; the condition in eq. (2.52) is not an exact requirement, anyway. It merely serves the
purpose of providing us with guidance as to where in parameter space we can expect the
strong-backreaction regime of axion inflation to be realized. Unless specified otherwise, we
will therefore use the relation (2.55) in all computations in the remainder of this work.
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3 Constant background quantities

Let us start our discussion of the AS solution considering the simple case of constant Hubble
rate and constant inflaton potential gradient, H = const and V ′ (φ) = const. In this case,
the Universe expands exponentially (de Sitter spacetime), and we effectively disregard the
Friedmann equation.6 At the same time, the Klein-Gordon equation admits a solution with
constant inflaton velocity. Indeed, setting φ̈ = 0 in eq. (2.47) and expressing everything in
terms of the ξ parameter, which is also constant, we obtain the following equation:

6H2MP
β

ξ + V ′ = − β

MP
H4 g0 (ξ) . (3.1)

For given values of the axion-vector coupling β, Hubble rate H, and potential gradient V ′,
this equation can be solved for the associated constant value of ξ. Thus, in this simple
case, the AS solution turns out to be ξ (t) = ξ0 = const; see table 1. It is important to
note that this is not only the solution of the approximate eq. (2.47), but also a particular
solution of the full system of equations, including the EOM for the gauge-field modes. Since
ξ = const, the gauge-field mode functions have the form (2.43) and, therefore, the simple
relations in eq. (2.45) are exact. In particular, this means that a system prepared exactly
in this state will remain in it forever. It is interesting, however, to study the stability of
this solution and consider the evolution of small perturbations around it. In what follows,
we shall denote all quantities in the AS solution by a bar, e.g., ξ̄.

3.1 Linear perturbation theory
In order to study the stability of the AS solution, let us construct a linear perturbation
theory for deviations from this solution following the same strategy as in ref. [1]. We write
the perturbed quantities as

φ (τ) = φ̄ (τ) + δφ(τ) , Aλ (τ, k) = Āλ (τ, k) + δAλ (τ, k) . (3.2)
The background quantities evolve according to equations similar to eqs. (2.18) and (2.10),

∂2Āλ(τ, k)
∂τ2 +

[

k2 − λk
β

MP

dφ̄

dτ

]

Āλ(τ, k) = 0 , (3.3)

d2φ̄

dτ2 + 2aH dφ̄

dτ
+ a2V ′(φ̄) = − β

4π2a2MP

kh∫

0

dk k3
∂

∂τ

∑

λ=±
λ
∣∣Āλ(τ, k)

∣∣2. (3.4)

Subtracting eqs. (3.3), (3.4) from eqs. (2.18), (2.10), respectively, and keeping only pertur-
bation terms up to linear order, we obtain the system of EOMs for the perturbations,

∂2δAλ(τ, k)
∂τ2 +

[

k2 − λk
β

MP

dφ̄

dτ

]

δAλ(τ, k) = λk
β

MP
Āλ(τ, k)

dδφ

dτ
, (3.5)

d2δφ

dτ2 + 2aH dδφ

dτ
+ a2V ′′(φ̄)δφ = − β

2π2a2MP

kh∫

0

dk k3
∂

∂τ

∑

λ=±
λRe[Āλ(τ, k)δA∗

λ(τ, k)] . (3.6)

6As we already remarked, doing so, the Friedmann equation is violated by the fact that the total energy
density cannot be perfectly constant for V ′ (φ) $= 0; in this section we assume a regime in which this
violation is sufficiently small so not to substantially impact our results. This equation is fully considered in
the evolution studied in the next section.
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The solution of eq. (3.5) can be formally expressed as,

δAλ(τ, k) = λk
β

MP

τ∫

−∞

dτ ′ Gλ,k(τ, τ ′)Āλ(τ ′, k)dδφ(τ ′)
dτ ′ , (3.7)

where the Green function Gλ,k(τ, τ ′) is a solution of the differential equation
[

∂2

∂τ2 + k2 − λk
β

MP

dφ̄

dτ

]

Gλ,k(τ, τ ′) = δ(τ − τ ′) . (3.8)

The differential operator acting on the Green function is exactly the same as the differential
operator in eq. (3.3). Ā(τ, k) is hence the solution of the corresponding homogeneous
equation. A second linearly independent solution is Ā∗(τ, k), since the mode equation has
real coefficients. This allows us to construct the retarded Green function as follows:

Gλ,k(τ, τ ′) = i
[
Āλ(τ, k)Ā∗

λ(τ ′, k) − Ā∗
λ(τ, k)Āλ(τ ′, k)

]
θ(τ − τ ′) , (3.9)

where we used the fact that the mode functions are normalized in such way that their
Wronskian equals

∂Āλ(τ, k)
∂τ

Ā∗
λ(τ, k) − ∂Ā∗

λ(τ, k)
∂τ

Āλ(τ, k) = −i. (3.10)

Substituting eq. (3.7) into eq. (3.6), we get the source term on the right-hand side,

r.h.s. = 1
2π2

(
β

aMP

)2 kh∫

0

dk k4
∂

∂τ

τ∫

−∞

dτ ′ dδφ(τ ′)
dτ ′

∑

λ=±
Im
[
Ā2

λ(τ, k)Ā∗2
λ (τ ′, k)

]
. (3.11)

Taking into account that Im[. . .] = 0 when τ = τ ′ in this expression, we evaluate the
derivative with respect to τ and finally obtain the EOM for the scalar-field perturbation,

d2δφ

dτ2 + 2aH dδφ

dτ
+ a2V ′′(φ̄)δφ

=
(

β

πaMP

)2 kh∫

0

dk k4
τ∫

−∞

dτ ′ dδφ(τ ′)
dτ ′

∑

λ=±
Im
[

Āλ(τ, k)
∂Āλ(τ, k)

∂τ
Ā∗ 2

λ (τ ′, k)
]

. (3.12)

In eq. (3.12), we kept the most general form of the mode functions. Next, in order to
simplify eq. (3.12), we assume that the gauge-field mode functions can be represented as

Āλ (τ, k) =
1√
2k

Wλ (x) , x = −kτ = k

aH
, (3.13)

where Wλ (x) is an arbitrary function of x and λ for the time being. Both the exact
solution in eq. (2.43) and the approximate one in eq. (2.44) can be represented in this
way. Moreover, following ref. [1], we look for power-law solutions of the EOM (3.12). We
therefore choose the following ansatz for the scalar-field perturbation:

δφ (τ) = C (−τ)−ζ , (3.14)
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where C and ζ are constant. Once this ansatz is inserted in eq. (3.12), and the allowed ζ

are found, we exploit the fact that, for any solution ζ, also its complex conjugate ζ∗ is a
solution, to obtain a real inflaton perturbation,

δφ (τ) = C
[
(−τ)−ζ + (−τ)−ζ∗] = C

[
HζeζN +Hζ∗

eζ∗N
]
= C̃ eRe(ζ)N cos [Im (ζ)N + ϕ0] .

(3.15)
where we have introduced the number of e-folds, N ≡ ln a. Writing δφ in this way, we can
identify Re(ζ) with the growth rate and Im(ζ) with the angular oscillation frequency of δφ

as a function of the number of e-folds. In fact, the most general linearized perturbation will
be a linear combination of modes of the form (3.15), where each term has one allowed ζn
(with its complex conjugate) and the coefficients Cn are obtained from the initial condition
for the perturbation.

Now, we set V ′′ = 0 (since in our case V ′ = const), substitute eqs. (3.13) and (3.14)
into eq. (3.12), and perform the change of integration variables τ ′ → x′ = −kτ ′ and
k → x = −kτ . After that, the combination C (−τ)−ζ−2 appears in all terms on the left-
and right-hand sides. Canceling this τ -dependence, we obtain the following equation for ζ:

ζ (ζ + 3) = − ζ

4π2

(
βH

MP

)2 2ξ̄∫

0

dxx3+ζ

+∞∫

x

dx′

(x′)ζ+1
∑

λ=±
Im
[
Wλ(x)W ′

λ(x)W∗ 2
λ (x′)

]
, (3.16)

where W ′
λ(x) = dWλ(x)/dx. Up to now, we were able to work with a general function

Wλ(x). However, in order to determine the allowed power-law exponents ζn, one needs to
specify the function Wλ(x) and solve eq. (3.16) numerically. In the case of constant H and
ξ̄, which we consider here, the function Wλ(x) can be extracted from eq. (2.43),

Wλ(x) = eπλξ̄/2W−iλξ̄,1/2 (−2ix) . (3.17)

This equation may be simplified following ref. [1]. Firstly, we take into account only the
enhanced λ = + gauge polarization. Secondly, we replace the upper integration limit in
the second integral by 2ξ̄, which is motivated by the fact that for x′ > 2ξ̄ the integrand is
no longer enhanced, but it actually becomes a rapidly oscillating function that integrates
to a negligible amount. Thirdly, if we use the approximate form of the mode function A+
in eq. (2.44), we obtain an approximate equation for ζ of the form

R (ζ) ≡
(

βH

MP

)2 315
215π2

e2πξ̄

ξ̄5
1

(2ζ − 1) (2ζ + 7)




Γ (2ζ + 8)

Γ (9)
(
8ξ̄
)2ζ−1 − 1



 = 1 , (3.18)

which agrees with eq. (3.14) in ref. [1], expressed in the notation of the present paper.

3.2 Linearized gradient expansion formalism
The gradient expansion formalism (GEF) introduced in section 2.2 allows us to find an
exact numerical solution for the system of coupled inflaton and gauge-field EOMs in the
strong-backreaction regime. For constant background quantities H and V ′, the system
of equations can be further simplified. First of all, since the inflaton field φ itself does
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not appear in the system and only its derivative φ̇ is involved, it is convenient to use the
parameter ξ in eq. (2.35) as a new field variable. This renders the Klein-Gordon equation
a first-order ordinary differential equation, like all the equations of the GEF. Moreover,
since H = const, it is more convenient to work with the number of e-folds, N = ln a = Ht

as a time variable, instead of physical time t. This leads us to:
dξ

dN
+ 3 ξ − v = −b2

2 G(0) , v ≡ − βV ′

2H2MP
, b ≡ βH

MP
, (3.19)

where v and b are dimensionless parameters accounting for the dragging force caused by
the potential gradient and the axion-vector coupling, respectively. This equation needs to
be supplemented by the tower of equations that govern the gauge-field evolution:

dE(n)

dN
+ (n+ 4)E(n) − 4ξG(n) + 2G(n+1) = (2ξ)n+4

4π2
d ln κh
dN

∑

λ=±
λnEλ , (3.20)

dG(n)

dN
+ (n+ 4)G(n) − 2ξB(n) +B(n+1) − E(n+1) = (2ξ)n+4

4π2
d ln κh
dN

∑

λ=±
λn+1Gλ , (3.21)

dB(n)

dN
+ (n+ 4)B(n) − 2G(n+1) = (2ξ)n+4

4π2
d ln κh
dN

∑

λ=±
λnBλ , (3.22)

where Eλ, Gλ, and Bλ are functions of the production parameter ξ given in
eqs. (2.32)–(2.34). In eqs. (3.20)–(3.22), moreover, we introduced the dimensionless bi-
linear functions

E(n) = E(n)

Hn+4 , G(n) = G(n)

Hn+4 , B(n) = B(n)

Hn+4 , (3.23)

the dimensionless momentum of the horizon-crossing mode

κh (N) = kh
H

= max
N ′<N

[
2ξ
(
N ′) eN

′]
, (3.24)

and its derivative
d ln κh
dN

=
(1

ξ

dξ

dN
+ 1

)
θ
(1

ξ

dξ

dN
+ 1

)
θ
(
2ξ eN − κh (N)

)
, (3.25)

where θ(x) is the Heaviside unit step function.
Although this system can be directly employed to study the true solution in the strong-

backreaction regime, it is also instructive to linearize it for small deviations from the AS
solution. Denoting all quantities in the AS solution by bars and small deviations by δ’s,
we obtain the following system of equations, which define what we shall refer to as the
linearized gradient expansion formalism (LGEF):

dδξ

dN
+ 3δξ = −b2

2 δG(0) , (3.26)

dδE(n)

dN
+ (n+ 4)δE(n) − 4ξ̄ δG(n) − 4Ḡ(n) δξ + 2δG(n+1) = δSE , (3.27)

dδG(n)

dN
+ (n+ 4)δG(n) − 2ξ̄δB(n) − 2B̄(n) δξ + δB(n+1) − δE(n+1) = δSG , (3.28)

dδB(n)

dN
+ (n+ 4)δB(n) − 2δG(n+1) = δSB , (3.29)
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where

δSE = (2ξ̄)n+4

4π2
∑

λ=±
λn
{
Eλ(ξ̄)

ξ̄

[
(n+ 4)δξ + dδξ

dN

]
+ dEλ(ξ̄)

dξ̄
δξ
}
, (3.30)

δSG = (2ξ̄)n+4

4π2
∑

λ=±
λn+1

{
Gλ(ξ̄)

ξ̄

[
(n+ 4)δξ + dδξ

dN

]
+ dGλ(ξ̄)

dξ̄
δξ
}
, (3.31)

δSB = (2ξ̄)n+4

4π2
∑

λ=±
λn
{
Bλ(ξ̄)

ξ̄

[
(n+ 4)δξ + dδξ

dN

]
+ dBλ(ξ̄)

dξ̄
δξ
}
. (3.32)

This system is also infinite in principle, and, in order to use it in practice, one has to
truncate it at some order ncut. The simplest way to do so is to assume that, for all orders
larger than ncut, the bilinear functions exactly coincide with the background values in the
AS solution, i.e.,

δE(n) = δG(n) = δB(n) = 0, n > ncut. (3.33)

The advantage of the LGEF compared to other methods is that it leads to a system of
linear ODEs with constant coefficients. Its solution can easily be found by methods of linear
algebra. In particular, the ansatz δξ ∝ eζN (the same as in the previous subsection), and
similarly for all perturbations of bilinear functions, reformulates the problem from studying
the evolution in time to just finding eigenvalues of the matrix of the linear system, i.e., to
a purely algebraic task. In practice, this turns out to be the simplest approach.

3.3 Results and discussion

We shall now discuss our numerical results obtained for the case of constant Hubble rate
H and constant potential gradient V ′. As noted above, the AS solution is a true solution
of the Maxwell and Klein-Gordon equations. This means that, if we perfectly fine-tune the
initial conditions for ξ and all gauge-field bilinear quantities to be in the AS solution, the
system will remain in this solution indefinitely. Perfectly fine-tuned initial conditions are,
however, of little interest. In fact, they are even impossible to achieve in any numerical
study with finite numerical precision. In what follows, we will therefore slightly detune
the initial conditions and study the dynamical evolution of the system away from the AS
solution. As we will find that the AS solution is unstable, we sometimes denote this as the
“decay of the AS solution”, which also features prominently in the title of this paper.

In this subsection, we apply all three approaches discussed above in order to study the
stability of the AS solution with respect to small perturbations. The linear perturbation
theory and the LGEF allow us to determine the spectrum of Lyapunov exponents ζ and,
thus, to capture all possible scenarios for the evolution of the system at once, however, only
in the regime of small perturbations. On the other hand, the full GEF allows us to get an
exact numerical solution of the system for some specified initial conditions that is valid also
for large deviations from the AS solution. Therefore, these methods are complementary to
each other and allow us to study the same system from different angles.
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Figure 1. Eigenvalues of the LGEF system with ncut = 70 (red dots) and solutions of eq. (3.18),
which agrees with eq. (3.14) in ref. [1] (green circles), in the complex ζ plane for ξ0 = 7 and β = 102.5.
The contour plot in the background shows the absolute deviation from equality in eq. (3.18). In
the white region, |R − 1| > 102, exceeding the scale of the color code. For each solution ζ, also the
complex conjugate ζ∗ is a solution. In this figure, only the solutions with positive imaginary parts
are shown.

3.3.1 Lyapunov exponents

It is instructive to first work out the spectrum of Lyapunov exponents ζ for our physical
system. For definiteness, we perform the numerical analysis in the region of parameter
space ξ0 ∈ [5, 9], β ∈ [101.5, 103.5], and H determined by eq. (2.55). For the benchmark
point with β = 102.5 and ξ0 = 7 (which is the central point of the specified parameter
range), this spectrum is shown in figure 1 in the form of a sequence of red dots in the
complex plane for ζ. These points have been found by using the LGEF truncated at
ncut = 70. We want to compare the results of this numerical integration with the solutions
of eq. (3.16) for ζ. This equation, which follows from the linear perturbation theory,
contains integrals of highly oscillatory special functions, and it turns out that finding its
solutions is computationally very costly. We have checked that, for the root with the
greatest real part, ζ1, the numerical solution of eq. (3.16) is in perfect agreement with
the LGEF result presented in the figure. This root is of great importance since, having
the greatest real part, it is the one that controls the growth rate of the instability at late
times; see eq. (3.14). A much quicker comparison of the eigenvalues obtained from the
LGEF system with the analytical computation can be done in terms of the approximate
equation (3.18) (i.e., eq. (3.14) in ref. [1]), which is easier to solve. We show the roots
of this equation by green empty circles in figure 1. The background color of this figure
is the density plot of the absolute value of R − 1, the difference between the function
on the left-hand side of eq. (3.18) and unity. As evident from figure 1, the approximate
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Figure 2. (a) Real and (b) imaginary parts of the eigenvalue ζ1, corresponding to the fastest-
growing mode, as functions of ξ0. The bands of finite width reflect different values of β ∈
[101.5, 103.5]. The blue band follows from the LGEF, while the green band shows the solution
of eq. (3.18). The red dashed line in panel (b) is the analytical estimate in ref. [41]; see eq. (3.34).

equation (3.18) allows us to obtain the spectrum of the Lyapunov exponents ζ with good
accuracy. In particular, it also shows that among the ζ values there is at least one with
positive real part meaning that the AS solution is unstable; this confirms the findings
of ref. [1]. Figure 1 also shows that there is a one-to-one correspondence between the
solutions obtained from the LGEF method and the solutions that we were able to derive in
the context of linear perturbation theory and starting from the ansatz in eq. (3.14). This
observation serves as another (a posteriori) justification for the ansatz in eq. (3.14) and
confirms that we did not overlook any solutions in our linear-perturbation-theory analysis
in section 3.1.

It is important to note that the Lyapunov exponents are complex numbers. As is
clear from eq. (3.15), a generic complex ζ with positive real and non-vanishing imaginary
parts indicates that the deviation from the AS solution shows an oscillatory behavior with
a growing amplitude, where Re(ζ) determines the growth rate while Im(ζ) is the angular
frequency of the oscillations. Let us now focus on the eigenvalue with the greatest real part,
ζ1, which corresponds to the fastest-growing mode. This mode also has a nonvanishing
imaginary part. In figures 2 (a) and (b), we show the real and imaginary parts of this
root as functions of ξ0. For each ξ0, we actually present a band of values assumed by this
root. The different values inside the band are obtained for different values of the axion-
vector coupling in the range β ∈ [101.5, 103.5]. The blue bands shown in the two panels are
obtained using the LGEF system while the green bands follow from eq. (3.18). We find
that the exact numerical results in blue are in excellent qualitative agreement and good
quantitative agreement with the approximate analytical results in green. This observation
serves as a validation and refinement of the results presented in ref. [1] and is one of the
main results of the present work. The AS solution is unstable and the fastest-growing
perturbation mode is characterized by the growth rate Re(ζ1) and oscillation frequency
Im(ζ1) in figure 2.

Re(ζ1) is a monotonically increasing function of ξ0 and a decreasing function of β at
fixed ξ0. The imaginary part exhibits the opposite behavior. For comparison, in figure 2 (b),
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we also show the estimate for the oscillation frequency found in ref. [41],

ω = Im(ζ1) $ π

ln(ξ20/2)
. (3.34)

This expression follows from the fact that the response of the gauge-field Pontryagin density
〈E ·B〉 to changes in the inflaton velocity is retarded by approximately ∆Nξ $ ln(ξ20/2).
The main reason for this delay is that the growth rate of modes that cross the horizon
and undergo the tachyonic instability at a certain moment of time is determined by the
instantaneous value of ξ; however, these modes are still not dominating the spectrum of
〈E ·B〉 at this moment of time and will only do so ∆Nξ e-folds later. We point out the
good qualitative agreement between the estimate (3.34) and our numerical results. At the
quantitative level, the two values agree up to a factor of roughly 1.5.

3.3.2 Decay of the AS solution
Next, let us discuss what we shall refer to as the survival time of the AS solution. This
quantity can be naturally defined as the moment of time when the relative deviation of
the full numerical solution from the constant AS solution becomes of order unity. To be
specific, in this work, we define the survival time as the first moment of time (or the number
of e-folds from the beginning) when the production parameter ξ deviates from the initial
value in the AS solution, ξ0, by more than half an order of magnitude,

NAS ≡ min
i

Ni ,
|ξ(Ni) − ξ0|

ξ0
= 10−1/2 , (3.35)

where the Ni denote the moments (in terms of the number of e-folds N) when the condition
on the right-hand side is satisfied, and where we initialize the system at N = 0.

We emphasize that, in contrast to the Lyapunov exponents ζn, which are intrinsic and
characteristic properties of the physical system, the survival time NAS depends on the way
in which one imposes initial conditions. For the sake of definiteness, we assume that all
gauge-field bilinear quantities are in the AS solution corresponding to a certain value of
the production parameter ξ0, while the initial ξ value is detuned to ξ0 + δξ0 by some small
amount δξ0. Since, for the constant background case considered in this section, the AS
solution is an unstable equilibrium solution, the survival number of e-folds depends on the
detuning parameter δξ0 (it is infinite for δξ0 = 0) as well as on the instability rate controlled
by the Lyapunov coefficients studied above. As mentioned above, in the linear regime the
quantity ξ (N)− ξ0 is the linear superposition of a series of eigenmodes, each characterized
by a Lyapunov exponent ζn. Let us denote this series as

|ξ (N) − ξ0| =
∑

n

rn δξ0Re
(
eζnN+iϕn

)
, (3.36)

where the real coefficients rn and phases ϕn depend on how the initial δξ0 projects on each
eigenmode, and where the initial number of e-folds has been set to N = 0. Assuming a
non-zero overlapping with the fastest growing mode (namely, the mode whose Lyapunov
coefficient, denoted above as ζ1, has the greatest real part), and ignoring the initial phase
ϕ1, we then have

|ξ (N) − ξ0| $ r1 δξ0 eRe(ζ1)N , (3.37)
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Figure 3. Time evolution of the relative deviation δξ/ξ0 for an initial ξ value in the AS solution
ξ0 = 7, axion-vector coupling β = 102.5, and initial fine-tuning (initial displacement) δξ0/ξ0 = 10−6.
(a) Full time interval, (b) zoom-in into the transition region from the initial decaying phase to the
growing phase. The green solid lines show the solution obtained by the GEF truncated at order
ncut = 151; the blue dashed lines correspond to the result of the LGEF truncated at order ncut = 70.
In panel (a), only the fastest-growing mode ζ1 is included; in panel (b), three modes, ζ1,2,5, are
included. The vertical gray dashed line in panel (a) indicates the survival time of the AS solution
when the relative deviation of ξ from the AS value ξ0 reaches 10−1/2 (horizontal dashed line).

leading to the survival number of e-folds

NAS $ − 1
Re (ζ1)

[
ln
∣∣∣∣
δξ0
ξ0

∣∣∣∣+ ln
(
101/2r1

)]
$ − 1

Re (ζ1)
ln
∣∣∣∣
δξ0
ξ0

∣∣∣∣ , (3.38)

where we ignore the order one term proportional to ln
(
101/2r1

)
in our discussion. We verify

the dependence of NAS on the initial conditions numerically in appendix B and show that
it is in a good accordance with the estimate (3.38); see figure 9. This provides a nontrivial
check of the validity of our numerical scheme. Moreover, we study the dependence of the
survival time on the parameters of the axion inflation model, which is also presented in
appendix B. In this appendix, we also provide more details on how we choose the GEF
initial conditions.

In figure 3, we instead present one specific example of the departure from the AS
solution. The evolution shown is characterized by β = 102.5, ξ0 = 7, and an initial fine-
tuning of δξ0/ξ0 = 10−6. The green solid line in the figure shows the evolution of δξ/ξ0 as
computed using the GEF system. In panel (a) of figure 3, the evolution is tracked until
the deviation becomes of order unity. The survival number of e-folds NAS ≈ 29 is shown
by the vertical gray dashed line. In panel (b), only the first 10 e-folds are shown. The blue
dashed lines correspond to the LGEF solution (truncated at ncut = 70) taking into account,
respectively, only the fastest-growing mode in panel (a), and three eigenmodes ζ1, ζ2, and
ζ5 in panel (b) (we recall that the eigenmodes are sorted by decreasing real part of ζ).

The first two eigenvalues, ζ1 and ζ2, have positive real parts, namely, they correspond
to unstable departures from AS. The remaining eigenvalues have negative real parts. They
correspond to stable departures of decreasing amplitudes. As visible from panel (a), the
most unstable mode ζ1 is by itself able to account for the departure of ξ from its initial
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Figure 4. Late-time evolution of (a) the production parameter ξ and (b) energy densities ρE =
〈E2〉/2, ρB = 〈B2〉/2, and the Chern-Pontryagin density ρEB = |〈E ·B〉|/2 for ξ0 = 7, β = 102.5,
and δξ0/ξ0 = 10−6. The vertical dashed lines show the moment of time N = NAS when the linear
perturbation theory breaks down (relative deviation of ξ from the AS value exceeds 10−1/2).

value throughout the linearized stage. The inclusion of the other unstable modes, and,
particularly, of the stable mode ζ5, well reproduces also the initial phase visible in the
figure in which δξ decreases.7 We stress that the decreasing stage visible in the figure is
due to the fact that our choice of initial conditions is mostly mapped to this stable mode
of eigenvalue ζ5, and it is not indicating that the AS solution is initially stable.

Finally, let us consider the late-time behavior of the solution, in the regime of large
deviations from the AS solution, i.e., for N > NAS. This is the region where neither linear
perturbation theory nor the LGEF are applicable. Therefore, we can only use the GEF
in order to find the solution of the equations of motion. For the benchmark scenario with
ξ0 = 7 and β = 102.5, the GEF solution is shown by the blue solid lines in figure 4. Panel (a)
shows the time evolution of the ξ parameter, while panel (b) illustrates the behavior of
the produced gauge-field energy densities ρE = 〈E2〉/2, ρB = 〈B2〉/2, and the Chern-
Pontryagin density ρEB = |〈E ·B〉|/2. The red dashed lines show the corresponding AS
solution. As we see from the plots, the time behavior of all quantities becomes almost
perfectly periodic showing a sequence of highly oscillatory phases. In the simple case of
constant background quantities, these oscillations will last indefinitely.

It is important to note that, for such a complicated and nonmonotonic behavior of the
ξ parameter as shown in figure 4, the cutoff momentum kh, for which eq. (2.36) gives

kh (N) = max
N ′≤N

[
2HeN

′ ∣∣ξ(N ′)
∣∣
]
, (3.39)

7The eigenvalue ζ5 corresponds to the point in the upper half of figure 1 that is well separated from the
regular sequence of roots in the lower part of the plot. Its imaginary part is significantly greater than that
of the first eigenvalues of the lower sequence. Correspondingly, δξ oscillates much faster during the initial
decreasing stage than in the following unstable phase. In passing, we also mention that a separated root,
such as the ζ5-mode in the present benchmark scenario, is not always present in the spectrum. For instance,
fixing β = 102.5 as the value considered in the figure, this separated root also exists for ξ0 = 5, but not
for ξ0 = 9. The complicated form of the equations that we are solving, even in the simpler approximate
form (3.18), does not allow us to determine a priori whether this separate root is present or not.
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is not growing at all times; instead, there is a sequence of plateaus in kh (N) where it
remains constant. During these plateau stages, the truncation condition in eq. (2.37) may
not be accurately satisfied because some of the underlying assumptions [see the paragraph
below eq. (2.37)] are not valid at this time. In particular, the assumption that the spectral
densities of E(n), G(n), and B(n) are dominated by the mode kh at large n may be violated.
These effects can lead to the breakdown of the GEF in a way that we discuss in appendix C.
In this appendix, we also show one possible solution to this problem, namely, the GEF self-
correction procedure.

4 Time-dependent background quantities

In this section we turn to the realistic case in which the Hubble parameter is not a constant,
as assumed in the previous section, but it is consistently determined by the Friedmann
equation (2.9). For simplicity, we still consider the potential gradient V ′ to be constant,
meaning that the inflaton potential is a simple first-order polynomial,

V (φ) = V0 + V ′φ. (4.1)
Such a potential is still not a realistic choice that could describe the whole stage of inflation
over a large range in field space. A linear potential violates, e.g., the constraints on the
tensor-to-scalar ratio imposed by CMB observations [7, 8], and does not allow for a graceful
exit from the inflationary stage. Nevertheless, it serves as a good local approximation for
a variety of potentials in restricted regions of field space. In any case, in the following, we
shall use the simple potential in eq. (4.1) primarily for illustrative purposes.

Firstly, let us give a recipe to determine the AS solution in any realistic inflationary
model. As discussed in section 2, the AS solution ignores the retardation of the gauge-
field response to the changes in the inflaton velocity. This allows to get a closed set
of equations (2.47)–(2.48) determining the inflaton evolution. Since in the derivation of
those equations we used the expressions for the gauge-field energy densities and the Chern-
Pontryagin density for constant ξ and H parameters, the solution of eqs. (2.47)–(2.48) is
not a solution of the full system of equations, which treats the Maxwell equations for the
gauge field on the same footing as the Klein-Gordon and Friedmann equations. For this
reason, we refer to the solution of eqs. (2.47)–(2.48) as the “enforced” AS (EAS) solution.

In order to find the numerical EAS solution of eqs. (2.47)–(2.48), it is more convenient
to rewrite the EOMs as a system of two first-order differential equations for the functions
φ(t) and ξ(t). In order to do so, we first solve eq. (2.48) with respect to H,

H(φ, ξ) =



 2V (φ)/M2
P

3 − 2 ξ2/β2 +
√
(3 − 2 ξ2/β2)2 − 2 [e0(ξ) + b0(ξ)]V (φ)/M4

P




1/2

. (4.2)

Then, the EOM for φ follows from the definition of ξ in eq. (2.35), while the equation for
ξ can be derived from eq. (2.47). Finally, the desired system of equations has the form

φ̇ = 2MP
β

H (φ, ξ) ξ , (4.3)
(
1 + ξ

∂ lnH
∂ξ

)
ξ̇ +

(
1 + 2ξMP

3β

∂ lnH
∂φ

)
3Hξ = − βV ′

2HMP
− β2H3

2M2
P

g0(ξ) . (4.4)
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In order to study the stability of the AS solution in a fully time-dependent background,
we have to initialize the system of eqs. (4.3)–(4.4) and, simultaneously, the full system
of Klein-Gordon (2.10) and GEF equations (2.26)–(2.28) using exactly the same initial
conditions. We use the following algorithm to impose these initial conditions:

(i) Specify the axion-vector coupling β and the desired value of ξ0; propose a Hubble rate
H0 according to eq. (2.55) that puts the system in the strong-backreaction regime.

(ii) Use eqs. (2.47)–(2.48) to determine V0 and V ′ in the inflaton potential (4.1). In doing
so, set φ̈0 = 0 and work with initial inflaton field value φ0 = 0, for definiteness.

(iii) Initialize the EAS system of eqs. (4.3)–(4.4) at a slightly smaller value of ξ < ξ0
and φ < 0, to allow the system to cope with any potential inconsistency of the initial
conditions. That is, let the system dynamically roll into a smooth and stable solution.

(iv) Determine the moment of time when the ξ parameter in the EAS solution crosses the
desired value ξ0 and use it as the initial moment of time for the GEF. Note that this
typically does not happen exactly at the origin of field space. We therefore no longer
intend to initialize the system when φ̈0 = 0 and φ0 = 0. These conditions were used
in step (ii) only to obtain some reasonable values for V0 and V ′. For given values
of V0 and V ′, we can now forget about the fact that they were derived assuming
φ̈0 = 0 and φ0 = 0. Instead, we now use the set of consistent values of φ, φ̈, and H

that we dynamically reach when the system has rolled into a smooth solution and
ξ corresponds to the desired value ξ0.8 The advantage of this procedure is that it
allows us to initialize the GEF with a self-consistent set of input values, including φ̈

and hence the time derivative of ξ.

(v) Use φ and φ̇ from the previous step to initialize the Klein-Gordon equation (2.10)
for the GEF; compute the initial conditions for the bilinear functions in the GEF by
inserting ξ0 and H into eqs. (A.5)–(A.7) in appendix A.

Below, we present the numerical results we obtain using the GEF and compare them to
the corresponding results based on the EAS solution.

Figures 5–7 present the results of the evolution for three different realizations of the
model. More precisely, in all three figures the same value of the axion-vector coupling
β = 102.5 and of the Hubble parameter H0 = 2.7×1011GeV are assumed. The three figures
differ by a decreasing steepness of the potential V ′ and, consequently, in the correspondingly
required value of ξ0 (the specific values of ξ0 and of the slow-roll parameter εV,0 assumed
in each figure are shown in their titles). Panels (a) of each figure show the evolution of
the ξ parameter as a function of number of e-folds N , while panels (b) of each figure show
the evolution of the energy densities ρE , ρB, and the Chern-Pontryagin density ρEB of the
produced gauge fields. In all figures and panels, the blue solid lines show the exact solution

8In fact, we find that this approach results in a numerically negligible deviation between H and H0, less
than 0.01%. In figures 5–7 discussed below, we therefore label all plots with the H0 value chosen in step
(i), even though the self-consistent value of H is only determined in step (iv).
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Figure 5. Time evolution of (a) the parameter ξ and (b) the energy densities for the axion-vector
coupling β = 102.5 in the realistic inflationary model featuring a steep inflaton potential with
initial values of the Hubble parameter H0 = 2.7 × 1011 GeV and slow-roll parameter εV,0 = 6.1
(corresponding to ξ0 = 7.1). The blue solid lines show the true solution of the system found using
the GEF, while the red dashed lines correspond to the enforced AS solution. The vertical dashed
lines show the moment of time N = NAS when the linear perturbation theory breaks down (relative
deviation of ξ from its initial value exceeds 10−1/2). The vertical dotted lines show the end of
inflation for the real system (blue) and for the enforced AS solution (red).

Figure 6. Same as figure 5 but for initial slow-roll parameter εV,0 = 1.9 (corresponding to ξ0 = 7).

of the full system of equations obtained from the GEF, while the red dashed lines show
the corresponding quantities in the EAS solution. Vertical dotted lines of the same color
show the moment of time when inflation ends (ä = 0) for the chosen initial conditions, and
the gray dashed vertical lines denote as usual the survival time of the AS solution, i.e., the
moment when the relative deviation of the blue curve from the red curve for the evolution
of ξ reaches the threshold value of 10−1/2 for the first time. In the following, we discuss a
few features that can be read off from these figures.

Firstly, we note that the survival time of the EAS solution cannot be increased to
infinity by fine-tuning the initial conditions. This is due to the fact that, once H and φ̇

are allowed to consistently vary, the EAS solution is no longer an exact solution of the full
system of equations. This poses an upper limit on the survival time, which we typically
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Figure 7. Same as figure 5 but for initial slow-roll parameter εV,0 = 0.4 (corresponding to ξ0 =
6.85).

found to be around 5 to 7 e-folds. Secondly, the evolution of the exact numerical solution
of the system is qualitatively the same as in the simple case of constant H considered in
section 3. Indeed, the curve for the ξ parameter initially shows oscillations around the AS
solution with a growing amplitude until the deviations becomes eventually of order unity
and the growth stops due to nonlinearities in the system. After that, a new phase typically
sets in, characterized by quasiperiodic stages of fast oscillations. However, now, due to the
continuously changing Hubble parameter, the amplitude and oscillation frequency slowly
change in time. Thirdly, the comparison between the different figures shows that the
duration of inflation strongly depends on the steepness of the potential. Note that, for
the case of a very steep potential (with initial value of the slow-roll parameter εV,0 ≈ 6.1)
shown in figure 5, the duration of inflation is just 7 e-folds. The second phase of fast
oscillations of ξ does not even start in this case. For a flatter potential with εV,0 ≈ 1.9,
shown in figure 6, inflation lasts for approximately 13 e-folds, allowing for one stage of
fast oscillations. Further flattening the potential with εV,0 ≈ 0.4, as shown in figure 7,
the duration of inflation is greater than 30 e-folds, and here five periods of fast oscillations
appear.9 Note that the fast oscillatory stages in the ξ evolution lead again to the plateaus in
the evolution of kh, which complicates the integration of the GEF system. In particular, in
order to obtain the numerical results with a controllable accuracy until the end of inflation,
we need to apply several self-correction procedures, which we discuss in appendix C.

In figure 8, we further elaborate on the comparison of the evolution of the ξ parameter
obtained in a realistic inflationary model (the same blue solid line as in figure 7) with that
obtained under the assumption of constant H (equal to the initial H value in the realistic
model; the evolution of ξ in this case is shown by an orange solid line). Both evaluations
are shown as a function of the number of e-folds N , with the value N = NAS set when the
ξ parameter has increased by half an order of magnitude with respect to the corresponding

9In the case εV,0 ≈ 0.4, the slow-roll inflation occurs even in the absence of gauge fields; however, it lasts
less than one e-fold and is followed by hitting the value V (φ) = 0. The gauge fields not only extend the
duration of inflation but also lead to the radiation-dominated universe shortly before the potential hits the
zero value.
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Figure 8. Time evolution of the parameter ξ in the realistic inflationary model (blue line) compared
to the late-time behavior of ξ in the toy model with constant H (orange line) studied in section 3.
The curves are shifted in such a way that the moments of time when the condition (ξ−ξ̄)/ξ̄ = +101/2
is satisfied for the first time coincide (vertical dashed line), where ξ̄ denotes either the value ξ0 = 6.85
in the case of constant background quantities or the time-dependent ξ value according to the EAS
solution in the case of time-dependent background. The green dashed-dotted horizontal line shows
the initial value ξ0 = 6.85 for both curves.

AS value (which equals ξ0 = 6.85 in the case of constant background quantities and which
is taken from the EAS solution in the case of time-dependent background). The figure
clearly demonstrates that the two solutions are very close to each other, not only qualita-
tively but even showing a good quantitative agreement. In particular, the amplitude and
frequency of the large-amplitude oscillations in the nonlinear-perturbation regime are in a
good agreement. We only observe a slow drift of the parameters due to slow-roll corrections
for the realistic inflationary model. This result means that the case of constant background
quantities considered in great detail in section 3, despite its simplicity, still allows to obtain
a good intuition for the time evolution in the realistic case. We attribute this agreement
to the fact that, also in the realistic case, H changes only very slowly during inflation.

5 Conclusions

An axion-like inflaton coupled to a gauge field provides probably one of the simplest and
best motivated models where matter production occurs during inflation. Several studies in
the last few years have shown that, in the strong-backreaction regime, this model displays a
highly nontrivial behavior, significantly different from the steady state AS solution. Such a
behavior has been mostly studied via numerical techniques (with the exception of ref. [1]),
and the origin and the fate of this departures are the subject of ongoing research.

In this work, we used the gradient expansion formalism developed in refs. [2, 43, 44]
to improve our understanding of the system. In the first part of our work, we studied a
setup similar to that of ref. [1], where the velocity of the inflaton is initially close to its AS
value, under the assumption of a constant Hubble parameter. The analysis we presented
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in section 3 leads to results that agree with those of ref. [1]: among the complex Lyapunov
exponents for perturbations around the AS solution, there is always at least one exponent
with a positive real part, which results in oscillation of increasing amplitude of the inflaton
velocity about the value predicted by the steady state AS solution. While the results of
section 3 were obtained for a system identical to that of ref. [1], the techniques used, and
in particular the approximations, are significantly different. For instance, ref. [1] uses an
approximate Green function, which is not required in the solution of section 3, whereas the
truncation of the hierarchy of equations in section 3 has no counterpart in the analysis of
ref. [1]. For this reason, those results corroborate each other. In the second part of our work,
we studied the onset of the instability in the case in which the Hubble parameter is evolving
over time. Previous numerical studies in the literature started in the weak-backreaction
regime and saw the instability building up as the backreaction becomes strong. One might
therefore wonder whether the AS solution might still be stable (even if, possibly, with a
very small basin of attraction) if one started directly from the strong-backreaction regime.
The analysis of section 3, which assumes Ḣ = 0, does not fully settle this question, since
in that case δξ = 0 is a valid (albeit unstable) solution that might in principle be stabilized
when Ḣ 1= 0. Although it is hard to imagine that a slow-roll variation of H could change
this behavior, this remained a logical possibility from the existing literature. Our analysis
of section 4 shows that this is not the case. Even if we place our solution on the AS values in
the strong-backreaction regime “by hand”, the time dependence of the Hubble parameter
will destabilize the system, leading in only a few e-folds to the oscillating behavior observed
in previous studies of the transition from weak to strong backreaction.

While we believe that our work clarifies, and possibly settles, the questions around the
onset of the instability in the axion-vector system, there are still open questions concerning
the subsequent evolution and the possible end of the unstable regime. Thus far, these
questions have been tackled only with the use of numerical studies. The majority of those
studies assumes a spatially uniform inflaton field, which results in a quasi-periodic pattern
of oscillations in the inflaton velocity, where deviations from perfectly periodic oscillations
are only due to the slow-roll evolution of the inflaton zero mode probing different parts of
the potential at different times. So far, only two works have considered the effects of spatial
fluctuations of the inflaton field during the inflationary stage (and none has considered the
effects of metric perturbations around an FLRW background). These lattice studies, being
computationally expensive, covered only a relatively brief time interval. The study of
ref. [45] was able to capture the first oscillation of the inflaton velocity, whose shape agrees
with that found in the works with a homogeneous inflaton. More recently, ref. [46] studied
the system for a more extended time range, showing that, around the time of the first
oscillation, spatial inhomogeneities in the inflaton field build up very rapidly, and that
the subsequent oscillations in the inflaton velocity have a suppressed amplitude. This is
a relevant qualitative change with respect to the previous results, which warrants further
study. How does this behavior depend on parameters? (Indeed, the pattern of oscillations
in the examples shown in [46] changes significantly for very small variations of the axial
coupling.) To what extent are the results in ref. [46] affected by the fact that the simulations
are probing only the last ! 10 e-folds of inflation? We hope that a (semi-)analytical study
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extending the formalism presented here might shed more light on these questions; we plan
to return to this problem in the future.
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A Bilinear functions for constant ξ and H

In the case of constant ξ and H, i.e., for a constant inflaton velocity in a stationary de
Sitter spacetime, the gauge-field mode functions are given by the expression in eq. (2.43),
which enters the spectral representation of the bilinear electromagnetic functions,

E(n) =
kh∫

0

dk

k

kn+3

2π2an+4
∑

λ=±
λn|A′

λ(τ, k)|2, (A.1)

G(n) =
kh∫

0

dk

k

kn+4

2π2an+4
∑

λ=±
λn+1Re[A∗

λ(τ, k)A′
λ(τ, k)], (A.2)

B(n) =
kh∫

0

dk

k

kn+5

2π2an+4
∑

λ=±
λn|Aλ(τ, k)|2, (A.3)

where kh = kh(τ) = 2ξaH = −2ξ/τ . Substituting the explicit form of the mode functions
into these integrals, one obtains the following expressions:

E(n) = Hn+4en(ξ) , G(n) = Hn+4gn(ξ) , B(n) = Hn+4bn(ξ) , (A.4)

where

en (ξ) =
2ξ∫

0

dx

4π2
∑

λ=±
λnxn+1eλπξ

∣∣∣(x − λξ)W−iλξ,1/2 (−2ix) − iW1−iλξ,1/2 (−2ix)
∣∣∣
2
, (A.5)

gn (ξ) =
2ξ∫

0

dx

4π2
∑

λ=±
λn+1xn+2eλπξ Re

[
Wiλξ,1/2 (2ix)W1−iλξ,1/2 (−2ix)

]
, (A.6)

bn (ξ) =
2ξ∫

0

dx

4π2
∑

λ=±
λnxn+3eλπξ

∣∣∣W−iλξ,1/2 (−2ix)
∣∣∣
2
. (A.7)
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These expressions are valid for any value of ξ > 0. However, in the case of strong gauge-
field production when ξ " 5, it is possible to derive simple approximate expressions for
the bilinear functions taking into account that (i) only one circular polarization, λ = +,
is exponentially enhanced, while the second one can be safely neglected, and (ii) there
is a simple representation for the mode function in terms of elementary functions that is
valid for −kτ - 2ξ [see eq. (2.44)]. Here, the second condition can be justified by the
fact that the spectral densities for the lowest-order bilinear functions are maximal in the
region |kτ | ∼ 1/ξ [41], which is indeed much less than 2ξ for sufficiently large ξ. However,
both conditions listed above are not valid for the bilinear quantities of high order n. For
them, the spectral densities are peaked at the UV boundary of the spectrum, i.e., at
k ∼ kh, because of the additional kn factor in the integrals (A.1)–(A.3). In this region, the
mode functions of both polarizations are of the same order of magnitude and cannot be
approximated by eq. (2.44). Below, we state nonetheless the approximate expressions for
the bilinear functions based on the mode functions in eq. (2.44) for arbitrary n. However,
one must keep in mind that the applicability of these expressions is somewhat limited.

Neglecting the exponentially suppressed term in eq. (2.44), we have the following ex-
pression for the mode function:

A+ (τ, k) $ 1√
2k

(
x

2ξ

)1/4
eπξ−2

√
2ξx, x = −kτ . (A.8)

In its time derivative, one should differentiate only the exponential function since it is
changing the fastest

A′
+ (τ, k) $

√
k

2

(
x

2ξ

)−1/4
eπξ−2

√
2ξx . (A.9)

Then, we obtain the following results for the dimensionless bilinear functions:

eapproxn = (2n+ 6)!
25n+18π2

e2πξ

ξn+3 , gapproxn = (2n+ 7)!
25n+21π2

e2πξ

ξn+4 , bapproxn = (2n+ 8)!
25n+24π2

e2πξ

ξn+5 . (A.10)

In order to impose the initial conditions for the GEF, we work with eqs. (A.5)–(A.7). We
only use eapprox0 , gapprox0 , and bapprox0 in our estimate of the parameter range in section 2.4.

B Survival time of the AS solution

In this appendix, we discuss in more detail the way in which we impose the GEF initial
conditions in section 3, and we study the dependence of the survival time of the AS solution,
NAS, on the initial conditions and the parameters of the axion inflation model in the toy
model that assumes a constant Hubble rate H throughout the whole evolution.

The exact procedure by which to perturb the initial conditions requires some thought,
especially, in view of the fact that we intend to use the GEF to determine the full numerical
solution of the system. The GEF system that we wish to integrate has (3ncut+4) unknown
functions, where ncut is the truncation order of the system, and therefore there are plenty
of ways to perturb the initial conditions. To be concrete, we will opt for one of the simplest
possibilities in our analysis, consisting of the following four-step algorithm:

– 31 –



J
H
E
P
1
1
(
2
0
2
3
)
1
8
3

Figure 9. Survival time of the AS solution as a function of the initial fine-tuning δξ0/ξ0 for ξ0 = 7
and axion-vector coupling β = 102.5. The blue solid and green dotted lines correspond to positive
and negative initial deviations, respectively. The red dashed line shows the analytical estimate of
the survival time in eq. (3.38), which is based on the growth rate of the fastest-growing mode.

(i) For a given value of the axion-vector coupling constant β in the Lagrangian, choose
an initial value of the parameter ξ in the AS solution, ξ0.

(ii) Use eq. (2.55) to determine the optimal Hubble rate (allowing us to realize δKG / 1
and δF - 1); find the corresponding gradient of the inflaton potential from eq. (3.1).

(iii) Compute the initial conditions for the bilinear quantities E(n), G(n), B(n) according
to eqs. (A.5)–(A.7) in appendix A for the values of ξ0 and H fixed in (i) and (ii).

(iv) Perturb the initial ξ value by a small deviation from ξ0, i.e., ξ0 → ξ0 + δξ0. The
relative deviation δξ0/ξ0 is a free parameter that controls the AS survival time.

The survival time of the AS solution is determined according to eq. (3.35) as the first
moment of time when the relative deviation of the exact solution of the system deviates from
the AS solution by half an order of magnitude. For example, for the axion-vector coupling
β = 102.5 and initial relative deviation δξ0/ξ0 = 10−6 from the AS solution ξ0 = 7, the sur-
vival time NAS ≈ 29 e-folds, according to figure 3 in the main text. If we choose other values
for the fine-tuning of the initial condition, δξ0/ξ0, the survival time of the AS solution will
change. This dependence is shown in figure 9. The blue solid line (green dotted line) cor-
responds to the initial deviation in the direction of greater (smaller) ξ values. Not surpris-
ingly, the survival time has a clear logarithmic dependence on |δξ0| as long as this quantity
is in the linear regime, in agreement with eq. (3.38). This general decreasing trend visible
in figure 9 is easy to understand: the closer we are to the AS solution initially, the more
time it will take the deviation to grow until they become of order unity. This dependence
can be simply estimated as in eq. (3.38), which is shown by the red dashed line in figure 9
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four values of ξ fine-tuning: (a) δξ0/ξ0 = +10−6, (b) δξ0/ξ0 = −10−6, (c) δξ0/ξ0 = +10−3, (d)
δξ0/ξ0 = −10−3.

and nicely reproduces the slope of the exact solution. The constant shift of this line can be
explained by the fact that eq. (3.38) underestimates the survival time since it does not ac-
count for the initial decreasing stage.10 Deviations from this dependence (small wiggles on
the blue and green lines) occur because of the phase of the cosine function when the solution
crosses the threshold value 10−1/2. The agreement with the analytical results confirms the
robustness of our numerical techniques also for the small departures shown in the figure.

In order to see how the survival time of the AS solution depends on the model pa-
rameters, the axion-vector coupling constant β and the initial production parameter ξ0,
we perform a scan over this two-dimensional parameter space and present the results in
the form of heatmap plots in figure 10. We fix the initial relative deviation in ξ to be
(a) δξ0/ξ0 = +10−6, (b) −10−6, (c) +10−3, and (d) −10−3, which are shown in the cor-

10This initial stage exists because our initial deviation from the AS solution has a nonzero overlap with
also some decreasing mode, see figure 3.
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responding panels of figure 10. The comparison between the two top and the two bottom
panels again confirms the scaling of eq. (3.38). For Re (ζ1) $ 0.55, as indicated by figure 2,
a variation of 103 in δξ0/ξ0 provides a shift NAS $ 12.5, in good agreement with the various
panels. More interestingly, each panel shows how the survival number of e-folds depends
on the model parameters ξ0 and β. This dependence is characterized by a wavelike pattern,
meaning that the survival time changes non-monotonically with the increase of β or ξ0.
This can be explained by the fact that the time dependence of δξ/ξ0 is an oscillatory func-
tion with increasing amplitude [see figure 3 (a)]. Typically, a slight change in the model
parameters leads to a small phase shift in the oscillations, and the curve for |δξ/ξ0| crosses
the threshold value of 10−1/2 at a slightly different time. There can, however, be situations
where, after a small change in β or ξ0, the curve for |δξ/ξ0| does not reach the threshold
during the same oscillation as before, but it has to evolve approximately half an oscillation
period more to do this. This results in jumps in NAS, as can be clearly seen in figure 10.

Overall, our results in figures 9 and 10 corroborate our understanding of the relation
between the growth rate of the fastest-growing mode, Re(ζ1), and the survival time of
the AS solution, NAS, and thus serve as another numerical validation of the analysis in
section 3.

C Self-correction algorithm for the GEF

At the end of section 3, we discuss a challenge that we encounter when employing the GEF
during the period of fast oscillations shown, e.g., in figures 4, 6, 7, and 8. For such a fast and
non-monotonic change in ξ (or, equivalently, in the inflaton velocity), the cutoff momentum
given by eqs. (2.36) and (3.39) shows a sequence of plateaus in the time evolution. This
is clearly seen in figure 11 (a), plotted for the case β = 102.5 and constant background
quantities H0 = 2.7×1011GeV and ξ0 = 6.85, where the red curve shows the expression
2 eN |ξ(N)|, and the green solid line is the upper envelope of this function, which is kh/H.

During these plateau stages, the underlying assumption that the spectral densities of
E(n), G(n), and B(n) are dominated by the mode kh at large n, which allows us to truncate
the GEF system at some finite order ncut, is violated. Indeed, let us consider the mode
equation (2.18). In the case of constant H, it implies that, at a given moment of time N ,
the tachyonic instability occurs for modes with momenta

k < 2HeN |ξ(N)| . (C.1)

During each of the plateau stages, all these momenta are less than kh, which equals the
largest value of 2HeN |ξ(N)| in all preceding moments of time. This means that the spectral
densities are growing for modes with smaller momenta than kh, such that these modes may
become of the same importance as kh in the integrals over the spectra. This introduces
a numerical error in the last equations of the GEF, where the truncation is performed,
which then quickly propagates through the system of equations, finally reaching the zeroth
order. Note that increasing ncut does not help to avoid this problem but only postpones
it to higher-order bilinear quantities. Therefore, in order to detect the situation where
the GEF starts giving inaccurate results, one should always perform a consistency check
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Figure 11. Time dependences of (a) the cutoff momentum kh and (b) the relative error of the
GEF result for ρE , ρB , and ρEB compared to the mode-by-mode (MBM) solution for β = 102.5,
ξ0 = 6.85, and H = 2.7×1011 GeV. Gray vertical lines show the moments of time when the self-
correction procedure has been applied. The empty circles show the relative error of the GEF result
compared to the MBM solution that one finds when no self-correction procedure is applied.

using the mode-by-mode (MBM) solution. For this, one takes the time dependence of the
scale factor a and the inflaton velocity φ̇ from the GEF result [in the case of constant
background quantities, one just needs to take the dependence ξ(N)], and solves the mode
equation (2.17) or (2.42) for all modes that cross the horizon during the time interval used
in the GEF. Then, using eqs. (A.1)–(A.3), one can compute the bilinear functions that
follow from the MBM solution and compare them to those from the GEF result. The
relative deviations between them,

εX ≡
∣∣∣∣
XGEF − XMBM

XMBM

∣∣∣∣ , (C.2)

where in the place of X one may take, e.g., the lowest-order bilinear gauge-field quantities
E(0), G(0), and B(0), can be used to estimate the consistency of the GEF solution. Note
that this relative deviation is not a true numerical error of the GEF result, because the
MBM solution that we use as a reference is not independent from the GEF solution, but
it is based on the time dependence of ξ taken from the GEF result. We will, nevertheless,
refer to it as an “error” in what follows.
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The empty circles in figure 11 (b) show the typical behavior of the relative error during
the plateau in kh: at some point, it starts increasing and exceeds the 1% threshold (shown
by the purple dashed line). If one allows the GEF system to go further in time, the error
reaches much greater values. Therefore, in order to control the accuracy of the GEF results,
one needs to reinitialize it at the moment when the error exceeds the selected threshold.
To do so, one may use the spectra obtained by the MBM approach in order to compute
the bilinear functions according to eqs. (A.1)–(A.3). This helps to improve the situation
and keep the error under control. The vertical gray lines in figure 11 mark the times at
which the self-correction was performed. The error in the corrected result remains always
less than the chosen threshold of 1% during the whole duration of the simulation.

The algorithm underlying our self-correction procedure can be summarized as follows:

(i) Perform numerical runs of the GEF equations for two different values of ncut (suffi-
ciently large so that, for the time intervals without plateaus in kh, the results of both
runs coincide)11 up to the time in which the results start to deviate.

(ii) Use the time dependence of ξ and a from the GEF result and solve the mode equa-
tion (2.17) in order to obtain the mode spectrum of the produced gauge fields.

(iii) Compute the zeroth-order bilinear quantities from the spectrum using the expressions
in eqs. (A.1)–(A.3) and find the relative error of the GEF result using eq. (C.2).

(iv) When the error exceeds the set threshold, compute the values of the bilinear functions
according to eqs. (A.1)–(A.3) for n > 0.

(v) Use these new corrected values for the bilinear functions to reinitialize the GEF.

In order to avoid small jumps (by ∼ 1%) in the zeroth-order quantities, E(0), G(0),
and B(0), which may lead to a short spurious stage of relaxation to a smooth solution just
after the reinitialization, it is better to reinitialize only the bilinear quantities starting from
n = 1, while keeping the old values for the zeroth-order quantities along with the values
of ξ and a, which cannot be updated by the MBM approach. Finally, we comment on the
choice of the threshold in the error. If one chooses a greater (smaller) threshold, less (more)
frequent self-corrections are required. In practice, one therefore needs to find a compromise
between the accuracy of the numerical result and the required computation time.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

11In the absence of plateau regions, the error of the GEF result first decreases with increasing ncut and
then tends to a certain constant residual value which is caused not by the truncation procedure but by other
approximations, e.g., in the boundary terms, see ref. [2]. Therefore, it is important to compare the results
with two different values of ncut and make sure that the error introduced by the truncation procedure is
negligible.
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