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Abstract. The scalar and tensor fluctuations produced during inflation can be correlated, if
arising from the same underlying mechanism. In this paper we investigate such correlation in
the model of axion inflation, where the rolling inflaton produces quanta of a U(1) gauge field
which, in turn, source scalar and tensor fluctuations. We compute the primordial correlator
of the curvature perturbation, {, with the amplitude of the gravitational waves squared,
hijhi;, at frequencies probed by gravitational wave detectors. This two-point function receives
two contributions: one arising from the correlation of gravitational waves with the scalar
perturbations generated by the standard mechanism of amplification of vacuum fluctuations,
and the other coming from the correlation of gravitational waves with the scalar perturbations
sourced by the gauge field. Our analysis shows that the latter effect is generally dominant.
The correlator, normalized by the amplitude of ( and of h;;h;;, turns out to be of the order of
1072 x ( f;%un)l/ 3 where f;ciun measures the scalar bispectrum sourced by the gauge modes.
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1 Introduction

The theory of inflation constitutes the dominant paradigm of primordial cosmology. Besides
solving the most important problems of the standard Hot Big Bang model, it is able to provide
an explanation, in excellent agreement with observations, for the origin of the temperature
anisotropies present in the Cosmic Microwave Background (CMB) radiation and of the density
fluctuations that characterize the large scale structure of the Universe. Among the many
different inflationary scenarios, axion inflation is one of those giving a satisfying solution
to the problem of UV sensitivity of the inflaton potential. In this model, proposed for the
first time in 1990 as natural inflation [1], the inflaton is a pseudo-Nambu-Goldstone Boson
that enjoys a (softly broken) shift symmetry, i.e., a symmetry under the transformation
¢ — ¢ + const, which protects its potential against large radiative corrections.

The axionic inflaton is naturally coupled to gauge fields through the operator qﬁFWF“” /1,
where f is the axion decay constant [2]. In the presence of such coupling, the rolling zero
mode of the inflaton acts as a source for the modes of the gauge field. As a result, quanta
of the gauge field are amplified into classical modes, which in turn source, through a process
of inverse decay, both scalar and tensor fluctuations. Since, due to the pseudoscalar nature
of the inflaton, only one of the two helicities of the gauge field experiences a tachyonic insta-
bility, the spectra of the tensor modes of different helicities have different amplitudes. This
scenario has multiple phenomenological predictions, including nongaussianities [3], deviations
from scale invariance [4], formation of a population of primordial black holes [5], generation
of primordial chiral gravitational waves at CMB [6] or interferometer [7]| frequencies, baryo-
genesis [8], as well as the possible generation of cosmologically relevant magnetic fields [9] -
see [10] for a review.

By comparing these phenomenological predictions with observations we can constrain
the relevant parameters characterizing the models of axion inflation. More specifically, there
are two significant observational lengthscales to examine. At large scales, probed by CMB
measurements, the primary constraint arises from the non-observation of primordial nongaus-
sianities for the scalar fluctuations. In axion inflation the sourced scalar fluctuations are highly
nongaussian. Consequently, for a viable model, we must require that the sourced component
of scalar modes is subdominant compared to that generated by the standard amplification
of vacuum fluctuations. This is equivalent to stating that the amplitude of the gauge field,
which sources the scalar and tensor fluctuations, must be relatively small. Therefore, the
sourced component of tensor fluctuations is also small at this stage.



At smaller scales, corresponding to modes that left the horizon closer to the end of
inflation, the situation becomes more interesting. For simple inflationary potentials, the
inflaton’s velocity increases as inflation progresses and therefore the population of gauge
quanta, whose amplitude depends exponentially on the inflaton’s velocity, becomes more
sizable towards the end of inflation. As a consequence, sourced gravitational waves of shorter
wavelengths, which are remarkably those probed by gravitational wave experiments, can
have a much larger amplitude and might even be directly detectable [7] by a variety of
observatories. Also in this regime we need the scalar fluctuations to remain bounded to avoid
an overproduction of primordial black holes [10, 11].

A natural follow-up to the recent observational evidence [12-14] of a stochastic grav-
itational wave background (SGWB) is the search for anisotropies, in analogy to the scalar
anisotropies observed in the CMB (see, e.g., [15] for a recent analysis of LIGO/Virgo/ KAGRA
and [16] for LISA’s reach in this respect). Study of these anisotropies can allow us to distin-
guish between the astrophysical and cosmological origin of the SGWB. Furthermore, cosmo-
logical tensor anisotropies may be correlated with the scalar anisotropies of the CMB if they
arise from the same underlying mechanisms [17]. Exploring such correlations can give impor-
tant information about the cosmological background of gravitational waves, thus providing
insights about the physics of the Early Universe. Reference [18] performed a study of the
statistics of these anisotropies while [19] studied the consequences of a non-trivial primordial
scalar-tensor-tensor nongaussianity on the energy density of gravitational waves.

In this work we compute the correlation between the curvature perturbation ((x) and
the squared amplitude of the tensor modes h;j(x) hi;(x) within the framework of axion infla-
tion. The computation is conducted at frequencies tested by gravitational detectors, and the
correlator is normalized by both the square root of the scalar power spectrum and the tensor
power spectrum. The two point function receives two contributions, reflecting the fact that
scalar fluctuations are generated both from the vacuum, through the standard amplification
process, and by modes of the gauge field, through the inverse decay process. More specifically,
we will study the two following situations:

e the rolling inflaton has fluctuations that are generated by the standard mechanism of
amplification of vacuum fluctuations in an expanding Universe. The rolling inflaton
then sources quanta of the gauge field, which in turn source gravitational waves. The
fluctuations in the inflaton are thus imprinted in the fluctuations in the gravitational
waves. We study this correlator in Section 3.1;

e the rolling inflaton sources quanta of the gauge field, which in turn source both scalar
fluctuations and gravitational waves. Since these modes are produced by the same
population of gauge modes, they are correlated. We study this correlator in Section 3.2.

As we will see, the second effect is generally dominant over the first one, and can lead
to a primordial cross-correlation of the order of (fe2™!/106)1/3 where f{I™! measures the
scalar bispectrum at CMB scales in the equilateral configuration generated by the gauge field
dynamics.

The correlator studied in this work is the one between scalar perturbations at CMB
scales, corresponding to modes that left the horizon early during inflation and gravitational
waves at interferometer scales, which correspond to modes that left the horizon later during
inflation. Even though these gravitational waves have relatively short (i.e., non cosmological)

wavelengths, their anisotropies are at large, cosmological scales.



During the last stages of axion inflation the large amplitude acquired by the gauge modes
implies that they can have strong backreaction effects on the inflating background. The
nonperturbative inflaton-gauge field dynamics, studied in numerous papers including [20-29],
is rich, complicated, and not yet fully understood. The production of gravitational waves,
although generated during the phase of strong backreaction, is treated at the perturbative
level. Reference 28] derived spectra of gravitational waves produced during this stage keeping
into account the nonperturbative dynamics of the inflaton-gauge field system, even if it ignored
inflaton inhomogeneities. Reference [30] performed an analogous study for the case of an
SU(2) gauge sector. The results of [28] suggest that, even though strong backreaction effects
complicate significantly the dynamics of the inflaton and of the gauge quanta, if the inflaton
evolution ¢(t) is known, then the resulting gravitational wave spectra reflect quite accurately
the shape of the function ¢(t) For the scope of our calculation, since we will formulate our
results in terms of gb(t) without referring to the specific dynamics that led to that expression,
our results should be valid even in the strong backreaction regime, at least as long as the
inflaton inhomogeneities are ignored. Moreover, there are reasons to expect that our results
will not change even once inflaton gradients are accounted for, since causality will prevent
the late strong dynamics from affecting physics at scales that have left the horizon at much
earlier times.

This paper is organized as follows. Section 2 contains a review of the amplification
process that quanta of gauge field undergo as the inflaton rolls down its potential, together
with the generation of curvature perturbations and of gravitational waves. Then, in Sec-
tion 3, we calculate the two contributions to the correlator between scalar fluctuations and
the squared amplitude of the gravitational waves: in Subsection 3.1 we study the correlation
of gravitational waves with the amplified vacuum scalar fluctuations and in Subsection 3.2
the correlation of gravitational waves with sourced scalar fluctuations. Finally, in Section 4
we discuss our results and we conclude.

2 Review of scalar and tensor perturbations from axion inflation

Our system consists of a pseudoscalar inflaton ¢ and a U(1) gauge field A, in interaction
with each other and with gravity through the action
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where g = det(g,), Fjw = 0,4, —0,A,, f is a constant with dimensions of mass, R is the
Ricci scalar, and e*”P is the totally antisymmetric tensor defined by €923 = +1. We will not
make any assumption about the shape of the potential V(¢), other than it is flat enough to
be able to support inflation.
Concerning the metric, we will assume that it is of the form of de Sitter space in flat
slicing plus tensor perturbations (repeated latin indices are understood to be summed upon)

(2.1)

ds* = a®(1) [~dr? + (8;5 + hij(x, 7)) da' da’] |

1
CL(T) = _H7T 5 h“ = @hm =0. (22)
We perturb the inflaton as
d(x, ) = ¢po(7) + do(x, T), (2.3)



so that the curvature perturbation is given by ¢ = —g&b. We will denote the derivative with
0

respect to conformal time 7 by a prime and that with respect to the cosmic time ¢, defined
through dt = a(7)dr, by an overdot. We set the scale factor to be equal to unity at the end
of inflation, i.e., inflation will end at 7o,q = —1/H.

We treat the homogeneous inflaton ¢o(7) and the scale factor a(7) as background quan-
tities, and we work with the following canonically normalized perturbations

Au(x, 7) with Ao(x, 7) =0, 0;Ai(x,7)=0,
O(x, 7) = a(r) 0p(x, ),

Hij(x, 1) = % a(t) hij(x, 7). (2.4)

Neglecting the mass of the inflaton, our perturbed Lagrangian takes the form
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where the first line describes the free scalar and free tensor perturbations, the second line
describes the free gauge field modes, and the last line contains the interactions that lead to
processes of the form A;A; — H;; and A;A; — ®.

By varying the Lagrangian (2.5) with respect to ®, H;; and A;, we obtain the equations
of motion
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The solution of eq. (2.6) splits into two parts: the solution of the homogeneous equation,
denoted as ®v, and the particular solution, denoted as ®g. The solution of the homogeneous
equation represents the usual vacuum fluctuations generated during inflation due to the ac-
celerated expansion of the background, while the particular solution is induced by the inverse
decay of the gauge fields. The homogeneous solution can be quantized through the standard
quantization of the free Lagrangian, using the first line of eq. (2.5), as

byl 7) = [ e [Pk 70 + B (k. 7)al (1]

Oy (k, 7) = \/12? (1 — sz) e T (2.9)

where the creation/annihilation operators af(k)/a(k) satlsfy the usual commutation relations
[a(k), a'(a)] = d(k — q), [a(k), a(q)] = [al (k), a'(q)] =



The power spectrum of the curvature perturbation, P, defined through the two point
function

7T2
(€0 Cla)) = 25 o) ol + ), (210)

results in the sum of the power spectra corresponding to the homogeneous and the particular
solutions, denoted as P¢ v and P¢ s, respectively.

Specifically, the homogeneous solution, corresponding to the scalar perturbations asso-
ciated to the mode functions (2.9), yields, at the end of inflation and for large scales,
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An analogous discussion holds also for the tensor perturbations H;;(x, 7), whose vacuum
2 H?
w2 M%"

In order to find the sourced components of the scalar and tensor power spectra we need
to take into account the generation of the electromagnetic field by the rolling pseudoscalar.

In order to do that, we start with the quantization of the vector field A;(x, 7):

component gives rise to Pp, v =

Ai(x, 7) = / (%il;%i e} ()€™ [Ar(k, ) an(0) + A3k, ) al(-R)] . (212)

where the helicity projectors eii (E) satisfy the relations
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Inserting the decomposition (2.12) into eq. (2.8) we obtain the equation of motion for the

mode functions Ay (k, 7),

AL (k, ) + <k2 - Ajf)k) Ax(k, 7) =0, (2.14)

which can be solved explicitly in terms of special functions if gﬁo = constant. However, we do
not need the exact solution. Defining

_ o
e= (2.15)
we can rewrite eq. (2.14) as
d? Ay §
i <1+2AIM> Ay =0, (2.16)

so that, assuming & > 0, the helicity A = —1 in eq. (2.16) has always real frequencies that are
adiabatically evolving (remember that 7 < 0). As a consequence, the mode A_ stays in its
vacuum and we will neglect it from now on. On the other hand, the positive helicity mode A4
has imaginary frequencies for a range of values of k7 and is therefore exponentially amplified.



In the WKB approximation, the leading term in the solution of the tachyonic modes of
A, reads [2]

Ak, T) ~ SR L v e 2V T2kTHTE (2.17)
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which is strictly speaking valid only in the range [3] é S k7| S 2€ (we will assume € 2 O(1)
throughout this paper). However, since the momenta in this range dominate the contributions
to the observables we will be interested in, we will apply the expression (2.17) to the entire
range 0 < |k 7| < oco. Eq. (2.17) shows that the A = + helicity of the gauge field is amplified
by a factor €™, which can be very large even for moderate values of &.

We are now in position to compute the leading order contribution of the amplified gauge
field to the curvature perturbation (. Taking the Fourier of eq. (2.6), we obtain the equation

dp
(2%)3/2

Ai(p, 7) (9 — p)jAr(q—p, 7) = 0.
(2.18)
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The particular solution of this equation, ®g, which corresponds to the sourced component of
scalar fluctuations, can be found using the retarded propagator

. Hr' dp
bsa r) =i [ ar Gylr ) [ S A ) (@ - p)Aa - ). (219)
Given that we are assuming an exact de Sitter background, the retarded propagator can be
written explicitly as

1+ k277 sin(k (7 — 7))+ k(7 —7) cos(k (1 — 7))
k377!
where © denotes the Heaviside step function.
The sourced component of the scalar fluctuations induces an additional contribution to

the power spectrum of the curvature perturbation, that for & 2 3, is well approximated by
the formula [3]

Gi(r,7') = o(r-1), (2.20)
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A commonly used measure of nongaussianity is the parameter fyi,, which measures the
amplitude of the bispectrum of the curvature perturbation and is defined via
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For single field, slow-roll inflation, the bispectrum has a small amplitude, and fny, is
of the order of the slow-roll parameters [31]. On the other hand, the sourced component
of the curvature perturbation, since it results from a 2 — 1 process, obeys an intrinsically
nongaussian statistics. Since such nongaussianities originate from some sub-horizon dynamics,
the bispectrum is peaked on equilateral configurations, i.e., for k1 = ko = ks, with [3]
. 12 _67¢
cauil 71 5 10° = &

go &7

(2.23)
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for £ 2 3 and in the regime P g < P¢,v. In the regime of large &, where P¢ s > P¢ v, fa,
converges to a value of the order of 104, which exceeds by a O(10%) factor the constraints from
Planck. This limits severely the value {omp taken by € when Cosmic Microwave Background
scales are leaving the horizon, leading to [32] éomB < 2.5.

The excited modes of the vector field are also a source of gravitational waves. To leading
order, production of gravitational waves via this process is described by the equation

2
Hij(a, 7) + ¢°Hyj(q, 7) — ﬁHij(q, T)
HT dp
= / (@) (Ai(p, 1) Aj(q—p, 7) — Fir(p, ) Fj(q—p, 7)),  (2.24)

where Fij(p, 7) = ip;A;(p,7) —ipjAi(p, 7). As a consequence of the functional dependence
of A} on k7 and on &, the electric field is stronger than the magnetic field by a factor ~ & = 1.
For this reason we will neglect the term Fj,(p, 7)Fjr(q—p, 7) in eq. (2.24). Using again the
Green’s function (2.20) we eventually obtain

H7T dp
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The resulting power spectrum for the tensor modes reads [6]

H2 H4 6471'5
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It is worth stressing that the sourced component of the gravitational waves is almost fully
chiral, as a consequence of the fact that only the 4+ helicity of the gauge field is excited. While
this fact can lead to a rich and interesting phenomenology, we will not be concerned with it
here.

The constraint on the parameter ¢ coming from the limits on nongaussianities implies
that Pj v > Py s. This constraint, however, holds only for the value {cmp taken by £ when
CMB scales left the horizon. The quantity £ is slowly evolving, typically increasing, during
inflation. Since the sourced component of the gravitational wave spectrum has an exponential
dependence on &, it is possible that at later times Pj, v is actually overwhelmed by Py 5. We
will denote by &paTe > Ecmp the value taken by € at this later stage. In particular, this
leads to the possibility that gravitational waves sourced by the vector field have such large
amplitude to be directly detectable by current or future gravitational detectors [7].

In the next section we will describe two mechanisms that induce correlation between the
curvature perturbation and the gravitational waves produced in axion inflation.

3 The correlator between scalar fluctuations and gravitational waves

We define the normalized correlator of scalar fluctuations and gravitational waves as

3 .
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where (...)" denotes the correlator stripped of the Dirac delta associated to momentum con-
servation, i.e.,

<hi]‘(k1,7') hz‘j(kg,T) C(kg, T)) = <hij(k1,7') hz‘j(kz, T) C(kg, T))l 5(1{1 + ko + k3) . (32)

The correlator (3.1) receives two different contributions: the first is the result of the correlation
of gravitational waves with the amplified vacuum scalar fluctuations; the second is due to the
correlation of gravitational waves with the sourced scalar fluctuations. In the following we
will examine the two cases separately.

3.1 Correlation with amplified vacuum scalar fluctuations

The spectrum Py, s of gravitational waves sourced by the gauge field depends on the values of
¢ and d) evaluated approximately at the time when the tensor modes under consideration left
the horizon, and where, in slow-roll approximation, ¢ is a function of ¢. As a consequence,
long wavelength perturbations in the values of ¢ will lead to correlated long wavelength
perturbations in the spectrum of gravitational waves. Schematically, in the long wavelength
approximation we can write

([hijhijls (X +¥)Cv (%)) = ([hijhij(¢(x +¥))]g v (%))

d [hijhij(¢o)]
~ ([hijhij (60l Cv (x)) + <]dqjos Sy (x +y)v(x) ) | (3:3)
where the first correlator in the second line vanishes since it is equal to ([hi;hij(¢0)]g) (Cv(x))
with (¢v(x)) = 0. Since [hijhi;j(¢o)]g is proportional to e*TLATE  the dominant contribution
to its variation, in the large-£ limit, is given by
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where in slow roll, assuming ¢o > 0, V’ < 0,
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where we have defined as usual the slow-roll parameters as
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The above results allow us to write the contribution to Cp¢ from the amplified vacuum
fluctuations of the scalar spectrum, which we denote as (Cp¢)y,, as

1 k3 dy —iky
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Then using d¢ = —(;'60 (/H, where (, being evaluated at superhorizon scales, is constant, and
writing (hijhij)g o Pp,s =~ Pp, we obtain

1 k3 d 4 '
(i - [ 0 8 e ) B )0
(3.9)
with
d 3 1 , 1 2 2
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so that we finally get

(Ch¢)y = 8méLaTE

\/PC,V <?7LATE _ GLATE) ' (3.11)

(2m)3/2 \ 2

To estimate our result for (Chc)v we note that both e arg and npare must be smaller
than 1. Moreover, {paTE is typically of the order of 10 or so. Using P¢,v =~ P¢ =~ 2 x 107?
(consistency with observations requires the sourced contribution to P¢ to be negligible), we
finally obtain the upper bound

|(Che)y| S O(107%), (3.12)

which is very small and, as we will see, subdominant with respect to the correlation between
sourced tensors and sourced scalar perturbations, that we will study now.
3.2 Correlation with sourced scalar fluctuations

In order to calculate the correlator between the sourced scalar and tensor fluctuations, that we
denote as (Cp¢)g, we use eqs. (2.4), (2.19) and (2.25) to find (hap, s(k1, T) hap, s(kz2, 7) (s(ks, 7))
in terms of the canonically normalized perturbations as
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where we have assumed that only the positive helicity photons contribute because, from
eq. (2.14), Ay is the only helicity that is amplified, and therefore

i €7 Aj(qs, m3) (ks — as); Ar(ks — q3,73) =
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and
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Using Wick’s theorem to decompose the last line of eq. (3.13) and inserting it back into (3.1)
we obtain

2k5H / [ /T dry dry  drs
72 Mp ¢o(7 f7’h VP —o @(71) a(72) a(73)
dq A(q, k J ko +
Gy (1, 71) Gy (7, 72) Gy (T, 73)/ aA(q (2177)972 2+ ) <k2 +q| A (q,m) A, (k1 — qf, 1)
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(Chre)g (k, 7) =

where we have collected the angular part inside the expression A:

Ak, Kz, ks) = dac 8a (e (k1) ef (<ka) ef (ka) €] (—k2) ef (ks) ef (—ka)+(a > b)) +(c < d)).
Using the explicit form of the gauge field (2.17), the expression (3.16) becomes
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272 (2m)9/2 Mb do(7) f a3(7) P \/Pe
d T
< [ i | dndndn & 6 VAT Gylr.m) Gipi(r.m) Grlrim)

(Che)g (k, 7) = =

X /qu(q,k—p—q,p+q)q1/2\k—p—qll/2p+q\1/2(!k—p—q!1/2+|p+q!1/2)

« e 2V 2EqT -2V 2E g2 2/ 26 [k—p—a|T1—2\/~2& [ptal 2—2y/2&s [pral T3 —24/—2&3 [k—p—q| T3
(3.17)

where we have also allowed for the parameter ¢ to be time-dependent, albeit adiabatically,
and we have denoted & = £(7;). In order to perform the calculation we set the time at the
end of inflation to be 7eng = —1/H and we measure all the integration variables in units of k,
ie. d =q/k, p' =p/k, k = k/k, x; = —k 7;. Then we can further simplify the expression by
performing the change of variables @ = q'+p’ and by taking the limit k/H — 0. Subsequently
we use the expressions

o0 2
d 3 —CL\/E ——
/0 xz°e e (8),
o 2
/ dr 2/ e VT = Z1(7), (3.18)
0

where the object a depends on £ and is in principle time-dependent, but we assume it to be
constant as the integral gets contributions only from a relatively narrow range of times. Since
the integration variables 71 and 7 are associate to the sourced tensor modes, whereas 73 is
associated to the scalar modes, we can set &1 = & = &pare and &3 = Eomp. We thus finally

obtain
4 H7 47 ELATE 027 EoMB F(S) I‘(7)2

(Che)g = . x T, (3.19)
2772 (2m)15/2 f (2v/2)2 &8 yrg €& Mp b0 Pr A/ Pe
where
o ke e la— o2k — gll/2 /2
/dp/dq Al-p k-q,q)|la-p'|/*|k—q|/*¢q i . (3.20)
(Ik — @2 + /27 (la — p/[V/2 + §/2)7 (|g — p'|V/2 + [k — a|1/2)7
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with

1 P P L
A(kl,kQ,k3)=4(2+3(k2-k3)2—5k2~k3+(k1-k3)2+(k1-kg)g—k1~k3+k1~k2

o~ o~~~ o~~~ —~— o~ o~~~

— (k1 - k3)(ki - ko) — (k2 - k3)(ky - ko) + (ko - k3)(k; - k3)

~ o~~~ ~ ~ e~~~

(kl kz)(kl kg)(kg kg) — 1 €441 k1d kQZ kgl (kl ko — k1 k3 — k2 k3 + 1)> . (3.21)

The integral can be computed numerically and evaluates to 7 ~ 6 X 1074, After having
substituted /P ~ \/Pc.v = H?/(2m ¢o) and Pj, ~ Py s from (2.26), the expression (3.19)

takes the simple form
e2méemB [T

5éMB f

Finally, we use eq. (2.23) together with the measured amplitude of the scalar perturba-
tions P¢ v =~ 2 X 107 to obtain

(Che)g =2 x 1071 (3.22)

(Che)g = 1.5 x 1072 (fglihL/s, (3.23)

4 Discussion and conclusions

An important component of current and future gravitational wave research is the detection
and characterization of the stochastic gravitational wave background. This background may
originate from astrophysical sources or have a cosmological origin. Specifically, identifying
a cosmological gravitational wave background will provide important information about the
very early universe.

A powerful approach to distinguish between astrophysical and cosmological backgrounds
involves studying their anisotropies. Notably, it has been shown that these anisotropies are
correlated with the anisotropies in the CMB [33, 34]. The exploration of such correlations
can significantly contribute to the interpretation of the CMB and SGWB measurements.

In the present paper we have investigated the correlator between the curvature pertur-
bation and the amplitude squared of the tensor modes, computed at the end of inflation,
within the axion inflation model. In this model, scalar fluctuations are generated through
two distinct mechanisms: first, from the vacuum via the standard amplification process, and
second, as a consequence of the production of gauge fields through a process of inverse decay.
Consequently, the correlator exhibits two distinct components.

Our analysis reveals that the correlation of gravitational waves with sourced scalar fluc-
tuations is approximately of the order of ~ 1.5x 1072 ( f;%UIl)l/ 3. where fﬁciml measures the am-
plitude of the bispectrum, in the equilateral configuration, of the scalar perturbations induced
at CMB scales by the gauge field population. Observations [35] constrain fﬁfiuﬂ < 0O(50). No-
tably, this correlation turns out to be larger than the correlation with the vacuum scalar

fluctuations. The correlator saturates to Cpe = O(1) when fﬁ%un = O(10°), which is indeed

the maximum value attainable by fequll in the perturbative regime.

Our main result, provided by eq. (3.23), corresponds to the initial correlation between
the tensor and scalar fluctuations in the model of axion inflation. The formalism of [36-38] can
then be applied to derive potentially observable quantities. The actual observability of such
correlators, subject to instrumental noise as well as to the intrinsic variance of the isotropic
component |39, 40|, will depend on the amplitude of the anisotropies in the gravitational wave

— 11 —



spectra. Such an amplitude is encoded in the correlator (h;;(x) hi;(x) hap(y)haes(y)), whose
calculation, in the model of axion inflation, requires the evaluation of the gauge field’s eight-
point function — a calculation that we leave to future work. However, we expect anisotropies
to have a potentially detectable amplitude. For instance, the lattice study of [41] showed
that the spectrum of gravitational waves induced by preheating at the end of inflation display
anisotropies with an amplitude of the order of ~ 1072,
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