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Abstract

Despite fundamental interests in learning quantum circuits, the existence of a com-
putationally efficient algorithm for learning shallow quantum circuits remains an open
question. Because shallow quantum circuits can generate distributions that are clas-
sically hard to sample from, existing learning algorithms do not apply. In this work,
we present a polynomial-time classical algorithm for learning the description of any un-
known 𝑛-qubit shallow quantum circuit 𝑈 (with arbitrary unknown architecture) within
a small diamond distance using single-qubit measurement data on the output states of
𝑈 . We also provide a polynomial-time classical algorithm for learning the description of
any unknown 𝑛-qubit state |𝜓⟩ = 𝑈 |0𝑛⟩ prepared by a shallow quantum circuit 𝑈 (on
a 2D lattice) within a small trace distance using single-qubit measurements on copies
of |𝜓⟩. Our approach uses a quantum circuit representation based on local inversions
and a technique to combine these inversions. This circuit representation yields an op-
timization landscape that can be efficiently navigated and enables efficient learning of
quantum circuits that are classically hard to simulate.
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1 Introduction

The question of how to efficiently learn expressive classes of quantum states and circuits features
prominently in quantum complexity theory, quantum algorithm design, and the experimental char-
acterization of quantum devices. As a first step, one might consider the efficiency of learning shallow
(constant depth) quantum circuits, where, to date, there has been no resolution despite consider-
able interest from a number of angles. From a complexity perspective, shallow quantum circuits are
known to be more powerful than their classical counterparts [1–4], and under widely accepted com-
plexity assumptions, sampling from the output distribution of shallow quantum circuits is classically
hard to simulate [5–9]. This computational power provides the basis for quantum computational
advantage with NISQ (noisy intermediate-scale quantum) devices and supports the quest for de-
veloping quantum algorithms based on learning parameterized shallow quantum circuits [10–24].
Within an experimental setting focused on coherent errors or gate calibration, characterizing a
NISQ device can be modeled as learning what shallow quantum circuit the device is performing.
Despite substantial interest in the question of learning shallow quantum circuits from these direc-
tions, to date, no polynomial time algorithm for learning shallow quantum circuits has been found.
In this work, we introduce several efficient algorithms for two related tasks.

Theorem (Summary of main results). There are polynomial time algorithms for (1) learning the
description of an unknown 𝑛-qubit shallow quantum circuit 𝑈 (with arbitrary unknown architecture)
within a small diamond distance, given access to 𝑈 ; (2) learning the description of an unknown
𝑛-qubit state |𝜓⟩ = 𝑈 |0𝑛⟩ prepared by a shallow quantum circuit 𝑈 (on a 2D lattice) within a small
trace distance, given copies of |𝜓⟩.

The main challenges in learning shallow quantum circuits are twofold. While foundational
results in computational learning theory have established the efficient learnability of shallow classical
circuits [25–27], these techniques may not apply to shallow quantum circuits, as these circuits can
generate distributions with nontrivial correlations over the entire system that are classically hard
to simulate [7–9]. Furthermore, even when the structure of a shallow quantum circuit is known up
to parameterization, the optimization landscape for learning shallow quantum circuits is swamped
with exponentially many suboptimal local minima [23]. The bad optimization landscape causes
standard optimization methods, such as gradient descent algorithms and Newton methods, to fail
in learning shallow quantum circuits.

To address these challenges, we consider a quantum circuit representation based on local inver-
sions, which yields an optimization landscape that can be efficiently navigated. The local inversions
disentangle qubits in each local region in a way that does not perturb the remaining system. We
then show how these local inversions may be combined to build up the entire circuit without having
to solve a computationally hard problem. Together, this new technique enables us to learn a natural
class of quantum circuits that are classically hard to simulate.

1.1 Background

Learning shallow classical circuits Although the shallow quantum case has many conceptual
challenges resulting from non-locality, the learnability of shallow classical circuits is a fundamental
question in computational learning theory that has been well-studied and resolved in many cases.
Learning constant-depth classical circuits with bounded fan-in gates (NC0) is equivalent to learning
juntas and can be performed in polynomial time from uniform samples [26]. In addition, quasi-
polynomial time algorithms are known for learning constant-depth classical circuits with unbounded
fan-in AND/OR gates (AC0) [25], as well as mod 𝑝 gates (AC0[𝑝]) [27] in the PAC model. The
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problem of learning shallow quantum circuits (QNC0) and their output states are natural quantum
analogs of learning Boolean circuits. As QNC0 can be exponentially more powerful than AC0 for
some computational problems [4], it is natural to ask if shallow quantum circuits can be learned
efficiently from random data samples.

Quantum machine learning When one parameterizes the gates in a quantum circuit, the pa-
rameterized quantum circuit forms an ML model, known as a quantum neural network, that can
learn from data and make predictions on new inputs [10–16]. Since deep parameterized quantum
circuits suffer from having barren plateaus in the optimization landscape [28, 29] and are challenging
to implement on noisy quantum devices [30, 31], shallow quantum circuits have been subject to ex-
tensive study in recent years [17–24]. Various applications of learning shallow quantum circuits have
been explored, ranging from compressing quantum circuits for implementing a unitary [16, 32–35],
speeding up quantum dynamics [36–40], to learning generative models for sampling from predicted
distributions [41–46]. While the optimization landscape for learning shallow quantum circuits is
free from barren plateau [17], the landscape is swamped with exponentially many suboptimal local
minima; see Section 10 and [23] for a study of this phenomenon. The presence of a large number of
suboptimal local minima causes standard local optimization methods, such as gradient descent or
Newton’s method, to fail in learning parameterized shallow quantum circuits.

Efficient quantum tomography While quantum state and process tomography generally re-
quire exponential resources, performing tomography over some restricted families of states or pro-
cesses can be made computationally efficient. Examples of such families include matrix product
states [47–49], high-temperature Gibbs states [50–52], stabilizer states [53–56], quantum phase states
[57], noninteracting Fermionic states [58], Clifford circuits with a small number of T gates [54, 56,
59], Pauli channels under structural assumptions [60–63], and interacting Hamiltonian dynamics
[64–74] (see [75] for a recent survey). Most of these examples correspond to quantum circuit fami-
lies that are classically easy to simulate [76–80]. In contrast, sampling from the output distribution
of constant-depth quantum circuits is classically hard even when restricted to a 2D lattice [6, 81].
The experimental effort to characterize NISQ devices motivates the question of how to perform
tomography for states and processes generated by shallow quantum circuits. While these states
can be learned sample-efficiently using shadow tomography [82–84], no computationally efficient
algorithms are known.

1.2 Our Results

We first focus on cases where one is given black-box access to the unknown unitary in (1) learning
general shallow quantum circuits and (2) learning geometrically-local shallow quantum circuits. We
then consider the more restricted model where one is only provided access to copies of an unknown
state and focus on (3) learning quantum states prepared by geometrically-local shallow quantum
circuits on 2-dimensional lattices.

1.2.1 Learning general shallow quantum circuits

Let 𝑈 be an unknown 𝑛-qubit unitary generated by a shallow quantum circuit. The learning al-
gorithm uses a randomized measurement dataset consisting of 𝑁 samples about 𝑈 [16, 39, 40,
85–88]. This dataset has been proposed as the classical shadow of 𝑈 [85–87]. Each classical
data sample specifies a random 𝑛-qubit product input state |𝜓ℓ⟩ =

⨂︀𝑛
𝑖=1 |𝜓ℓ,𝑖⟩ and a randomized

Pauli measurement outcome |𝜑ℓ⟩ =
⨂︀𝑛

𝑖=1 |𝜑ℓ,𝑖⟩ on the output states 𝑈 |𝜓ℓ⟩, where |𝜓ℓ,𝑖⟩ , |𝜑ℓ,𝑖⟩ ∈
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{|0⟩ , |1⟩ , |+⟩ , |−⟩ , |𝑦+⟩ , |𝑦−⟩} are single-qubit stabilizer states. Each data sample can be generated
by a single query to 𝑈 . Our goal is to learn 𝑈 within a small diamond distance. The following
results have the form of learning a circuit 𝑉 acting on 2𝑛 qubits, such that ‖𝑉 − 𝑈 ⊗ 𝑈 †‖◇ ≤ 𝜀.
Hence, 𝑉 can be used to implement 𝑈 by tracing out the 𝑛-qubit ancilla system.

Our first main result shows that one can learn 𝑈 with a polynomial sample and computational
complexity, with only the assumption that 𝑈 is constant-depth (i.e., 𝑈 has arbitrary unknown
connectivity). Furthermore, the result applies even when the circuit generating 𝑈 can have any
number 𝑚 of ancilla qubits used as working space and can have arbitrary two-qubit gates in SU(4)
between any pair of the 𝑛 +𝑚 qubits so long as the resulting operation on the 𝑛 system qubits is
unitary. The learning algorithm is fully classical given the randomized measurement dataset.

Theorem 1 (Learning shallow quantum circuits; see Theorem 5). Given an unknown 𝑛-qubit uni-
tary 𝑈 generated by a constant-depth circuit over any two-qubit gates between any pair of qubits.
One can learn a constant-depth circuit approximating 𝑈 to diamond distance 𝜀 with high probability
from 𝑁 = 𝒪(𝑛2 log(𝑛)/𝜀2) samples about 𝑈 and poly(𝑛)/𝜀2 classical running time.

When the circuit is over a finite gate set, 𝑈 can be learned to zero error with high probability
from 𝑁 = 𝒪(log 𝑛) samples and poly(𝑛) time.

1.2.2 Learning geometrically-local shallow quantum circuits

The algorithm for learning general shallow quantum circuits runs in polynomial time but with a large
exponent. Furthermore, the depth of the learned circuit 𝑉 , while constant, could be substantially
greater than the depth of 𝑈 . Motivated by the fact that most realistic quantum systems are
geometrically local on a finite-dimensional lattice, it is natural to wonder if these aspects can be
improved when learning geometrically-local quantum circuits on lattices. Next, we show that this
is indeed the case.

See Theorem 6 for a related result on learning shallow circuits over any geometry represented
by a bounded-degree graph.

Theorem 2 (Learning geometrically-local shallow circuits; see Theorem 7). Given an unknown
𝑛-qubit geometrically-local depth-𝑑 quantum circuit 𝑈 over a 𝑘-dimensional lattice with 𝑑, 𝑘 = 𝒪(1).
One can learn a geometrically-local shallow circuit that approximates 𝑈 to diamond distance 𝜀 with
high probability from 𝑁 = 𝒪(𝑛2 log(𝑛)/𝜀2) classical data samples and either

• 𝒪(𝑛3 log(𝑛)/𝜀2) classical running time with a learned circuit depth of (𝑘 + 1)44(8𝑘𝑑)
𝑘
+ 1.

• (𝑛/𝜀)𝒪((8𝑘𝑑)𝑘+1) classical running time with a learned circuit depth of (𝑘 + 1)(2𝑑+ 1) + 1.

When the circuit is over a finite gate set, 𝑈 can be learned to zero error with high probability from
𝑁 = 𝒪(log 𝑛) samples and 𝒪(𝑛 log(𝑛)) time with a learned circuit depth of (𝑘 + 1)(2𝑑+ 1) + 1.

This shows that in the geometrically local setting, the learned circuit depth can achieve a linear
blow-up. Furthermore, the learning algorithm works for 𝑑 = polylog(𝑛) depth circuits at the cost
of quasipolynomial running time.

We remark that the more formal statement of the above theorem, which is labeled in this work as
Theorem 7, can be straightforwardly generalized to a larger class of unitaries called quantum cellular
automata (QCA), which play an important role in understanding quantum phases of matter [89–92].
These are unitaries that map any geometrically local operator to a geometrically local operator in
the Heisenberg picture. For any such unitary, our proof technique applies without any modification,
yielding an efficient algorithm for learning any QCAs. Interestingly, while shallow quantum circuits
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are QCAs by definition, the converse statement is not necessarily true. For instance, shifting a set
of qubits on a one-dimensional lattice trivially maps local operators to local operators. However, it
is impossible to decompose this unitary into a geometrically local shallow quantum circuit [90]; see
Ref. [91, 92] for other nontrivial examples of QCA. Therefore, our algorithm is applicable beyond
shallow quantum circuits.

So far, we have been focusing on learning a shallow quantum circuit from a classical randomized
measurement dataset. A natural question asks if further improvement is possible when we allow
more general quantum query access to 𝑈 . In the following, we show that by using quantum queries
to 𝑈 , an exponential improvement in query complexity is possible and this result is asymptotically-
optimal in both time and query complexity for learning geometrically-local shallow circuits over finite
gate sets. Surprisingly, quantum access also allows these circuits to be with certainty, dropping the
familiar qualifier of high probability. The matching lower bounds stem from the need to query at
least Ω(1) times to obtain any information about 𝑈 and to write down the learned 𝑛-qubit circuit,
which requires Ω(𝑛) time.

Theorem 3 (Learning shallow circuits with quantum queries; see Theorem 8). An unknown 𝑛-qubit
geometrically-local shallow quantum circuit 𝑈 over a finite gate set can be learned to zero error with
zero failure probability using Θ(1) queries to 𝑈 and Θ(𝑛) quantum computational time.

1.2.3 Learning output states of geometrically-local shallow quantum circuits

Besides learning the 𝑛-qubit unitary 𝑈 using input-output queries, it is natural to study the problem
of learning a pure quantum state |𝜓⟩ prepared by a shallow quantum circuit 𝑈 , i.e., |𝜓⟩ = 𝑈 |0𝑛⟩.
Here, instead of given access to 𝑈 , we are only given copies of the pure state |𝜓⟩ as in quantum
state tomography [47, 93]. As discussed in Section 1.1, most families of efficient learnable quantum
states, such as matrix product states [47–49] and stabilizer states [53–56], correspond to quantum
circuit families that are classically easy to simulate [77, 78]. In contrast, constant-depth quantum
circuits are classically hard to simulate even when restricted to a 2D lattice [6, 7].

Learning 𝑈 |0𝑛⟩ from copies of 𝑈 |0𝑛⟩ has an incomparable difficulty to the earlier results because
it has a less stringent requirement (learning an output state of 𝑈) but a more restricted access model
(accessing copies of 𝑈 |0𝑛⟩ instead of 𝑈). While |𝜓⟩ = 𝑈 |0𝑛⟩ can be learned from polynomially many
copies [51, 94], the restricted access model makes the problem computationally more challenging,
and the question of whether there exists a polynomial time algorithm remains open. We give an
efficient algorithm when 𝑈 is restricted to a 2D lattice.

Theorem 4 (Learning quantum states prepared by 2D shallow circuits; see Theorem 9). Given
copies of an unknown pure state |𝜓⟩, with the promise that |𝜓⟩ = 𝑈 |0𝑛⟩ for an unknown geometrically-
local circuit 𝑈 with depth 𝑑 over a 2-dimensional lattice. One can learn a geometrically-local shallow
circuit with depth 3𝑑 that prepares |𝜓⟩ to trace distance 𝜀 with high probability, using 2𝒪(𝑑2) ·(𝑛/𝜀)𝒪(1)

copies of |𝜓⟩, in time
(︀
𝑛𝑑3/𝜀

)︀𝒪(𝑑3). When the circuit 𝑈 is over a finite gate set, |𝜓⟩ can be learned
to zero error with high probability from 𝒪(log(𝑛)) copies and 𝒪(𝑛 log 𝑛) time.

Similarly, this result applies to 𝑑 = polylog(𝑛) depth at the cost of quasipolynomial running
time. The efficient learnability of quantum states prepared by a shallow quantum circuit acting on
3D lattices (or on more general geometries) remains a challenging and interesting open problem.

1.3 Discussion

Higher circuit depth In the general setting without geometric locality, we show that log-depth
circuits require exponentially many quantum queries to learn within a small diamond distance (see
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Prop. 3), which is proven by showing that log-depth circuits can implement Grover’s oracle over
2𝑛 elements and applying the Grover lower bound [95]. Therefore, our result for efficiently learning
general constant-depth quantum circuits cannot be extended to much higher depth.

In the geometrically-local setting, Theorem 7 implies polynomial-time learnability for quantum
circuits on a 𝑘-dimensional lattice up to log(𝑛)1/𝑘 depth, and quasi-polynomial time for up to
polylog(𝑛) depth. What structural assumptions allow us to efficiently learn quantum circuits beyond
polylog-depth remains an important open question.

Worst-case vs average-case distance Motivated by the above discussion, it is natural to con-
sider learning quantum circuits under weaker notions of distance, analogous to the classical notion
of PAC learning. The standard notion of average-case distance in the literature [96, 97] is defined
as the distance between output states when averaging over input states generated by Haar random
unitaries. While learning polynomial-size quantum circuits to small average-case distance can be
achieved with polynomial sample complexity [16, 39], the computational complexity of achieving a
small average-case distance remains an open question.

In addition, Ref. [86] considered a weaker notion of an average-case error where the goal is to
learn observables of the output state for random input states and showed that under this notion,
any quantum circuit (even those with exponential depth) could be learned in quasi-polynomial time.

Verifying the learned shallow quantum circuit Our learning algorithm provably works under
the promise that the unknown 𝑛-qubit channel 𝒞 corresponds to a unitary 𝒞(𝜌) = 𝑈𝜌𝑈 † and the
unitary 𝑈 is generated by a shallow quantum circuit. This promise does not necessarily hold: 𝑈
could be a deep quantum circuit that may or may not have a shallow quantum circuit implemen-
tation, and 𝒞 may not be close to a unitary due to the noise in the quantum device. Even if there
is no promise of 𝒞, one can still bluntly apply our learning algorithm to learn an 𝑛-qubit channel
ℰ generated by a shallow quantum circuit. However, the learned circuit ℰ is no longer guaranteed
to be close to the true unknown channel 𝒞. This raises the question of whether we can verify the
learned circuit ℰ or the promise on 𝒞.

In Section 9, we give an efficient verification algorithm that outputs pass if ℰ is close to 𝒞 in
the average-case distance and 𝒞 is close to unitary. The verification algorithm outputs fail if ℰ is
not close to 𝒞. Because ℰ is generated by a shallow quantum circuit, the verification algorithm only
needs to use the classical dataset consisting of random input product states and randomized Pauli
measurement outcomes on the outputs of 𝒞.

Being able to verify the learned shallow quantum circuits is central to applications such as
compressing quantum circuits for a known unitary. In this case, we have a known 𝑛-qubit unitary 𝑈
that we know how to implement using a high-depth circuit. The goal is to learn a low-depth circuit
that approximates 𝑈 . If 𝑈 does have a shallow circuit implementation, then our algorithm will learn
a shallow circuit implementation for 𝑈 . However, 𝑈 may not have a shallow circuit implementation.
In this case, the verification algorithm can tell us that our learning algorithm has failed. So far, we
are using a simple verification algorithm based on a (weak) approximate local identity test, which
only guarantees a small average-case distance. Whether more advanced verification schemes can
be used to achieve stronger guarantees efficiently is an interesting question that requires further
exploration.
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2 Technical overview

Let 𝑈 be an unknown 𝑛-qubit circuit of depth 𝑑 = 𝒪(1). We consider the following two tasks: (1)
Learn a constant-depth circuit 𝑈̂ from random data samples from 𝑈 or query access to 𝑈 , such
that 𝑈 and 𝑈̂ are close in diamond distance. (2) Learn a constant-depth circuit 𝑈̂ from measuring
copies of the 𝑛-qubit state |𝜓⟩ = 𝑈 |0𝑛⟩, such that 𝑈̂ |0𝑛⟩ and 𝑈 |0𝑛⟩ are close in trace distance.

A basic idea to learn 𝑈 is to produce a guess 𝑈̂ and check if 𝑈̂ is close to 𝑈 (i.e., 𝑈̂ † ·𝑈 is close
to identity). While the search space over 𝑈̂ is exponentially large, the locality of shallow circuits
allows us to search more efficiently. For example, in the following figure, we can find a small local
inversion circuit 𝑉1, that disentangles qubit 1 (the rightmost qubit), i.e., 𝑈𝑉1 ≈ 𝑈 ′ ⊗ 𝐼1. Here, the
input wires are at the bottom, and the output wires are at the top; 𝑉1 is applied before applying 𝑈 .

𝑈

𝑉1

≈ 𝑈 ′ (1)

This follows from a two-step argument. First, the existence of such a local inversion circuit is
guaranteed by the locality of 𝑈 , as undoing the gates in the backward lightcone (shaded blue
region) of qubit 1 forms such a local inversion. Second, given a guess 𝑉1, we develop an efficient
procedure to check approximate local identity, i.e. 𝑈𝑉1 ≈ 𝑈 ′ ⊗ 𝐼1 for some 𝑛 − 1 qubit unitary
𝑈 ′. This allows us to find local inversions via brute force enumerate-and-test since the search space
is small (as 𝑉1 has depth 𝑑 and is supported within a constant size region). Note that after this
exhaustive process, we may find a list of valid local inversions. The “ground truth” local inversion
compatible with the unique global inverse of the unitary is among them, but we do not know which
one. Similarly, given copies of a state |𝜓⟩ = 𝑈 |0𝑛⟩ we can find small local inversion circuits 𝑉1 to
disentangle qubit 1, 𝑉1 |𝜓⟩ ≈ |𝜓′⟩ ⊗ |0⟩1 for some 𝑛− 1 qubit state |𝜓′⟩.

The above argument shows a procedure to efficiently learn local inversions for each qubit for
both of our learning problems. The central question is whether this suffices to reconstruct the
circuit and, if so, whether the reconstruction can be done efficiently. The main obstacle is that local
inversions for each qubit are not unique, and two local inversions on neighboring qubits may not be
consistent in the overlapping regions. Finding a consistent set of local inversions may require solving
a constraint satisfaction problem that is computationally hard. Next, we show how to overcome
this obstacle for learning 𝑈 and |𝜓⟩ = 𝑈 |0𝑛⟩.

2.1 Learning 𝑈 to a small diamond distance

2.1.1 Sewing local inversions

Suppose we have learned a set of local inversions 𝒞𝑖 for an unknown shallow quantum circuit 𝑈
for each qubit 𝑖. Here, we show how to reconstruct the circuit using the learned local information.
Surprisingly, the algorithm only requires an arbitrary element 𝑉𝑖 ∈ 𝒞𝑖 for each qubit 𝑖, without the
need to search for the element compatible with the global inverse, which could require solving a
complicated constraint satisfaction problem. The formal statements on this algorithmic technique
are given in Section 5.2.1.

For simplicity, here we first assume all the local inversions are found exactly without any approx-
imation. Take any 𝑉1 ∈ 𝒞1, applying it to the unknown circuit 𝑈 gives 𝑈𝑉1 = 𝑈 ′ ⊗ 𝐼1, see Eq. (1),
where we imagine qubit 1 to be the rightmost qubit and use a simple 1D geometry for illustration.
This represents some progress: applying 𝑉1 reduces the unknown 𝑛-qubit unitary 𝑈 to an unknown
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(𝑛− 1)-qubit unitary 𝑈 ′ (note that 𝑈 ′ may not be a shallow circuit). A natural thought is whether
we can keep making this progress by applying local inversion on other qubits. The main issue here
is that now the unitary has changed. For example, consider qubit 2 which is right next to qubit 1.
Due to the fact that they have overlapping lightcones, some local inversion 𝑉2 ∈ 𝒞2 may no longer
work for the new circuit 𝑈𝑉1. Separately, we can attempt to find local inversion for qubit 2 with
respect to this new circuit 𝑈𝑉1; however, doing so might disturb the progress we have made on
qubit 1 and therefore requires coordinated effort across different qubits. This is exactly the type of
constraint satisfaction problem that we want to avoid.

Here we introduce a general approach to keep making progress: the idea is to introduce a fresh
ancilla qubit, swap it with qubit 1, and then undo the local inversion 𝑉1. We show this in two steps:
first, introduce a fresh ancilla qubit (red) and swap it with qubit 1,

𝑈

𝑉1

= 𝑈 ′ (2)

and then apply 𝑉 †
1 ,

𝑈

𝑉1

𝑉 †
1

= 𝑈 ′

𝑉 †
1

= 𝑈 (3)

To explain the second equality of Eq. (3), note that without the swap operation, the above procedure
is not doing anything (since we just perform some operation and undo it). In the second picture of
Eq. (3), after experiencing 𝑉 †

1 , the red wire corresponds to the first output wire of 𝑈 , but then it
gets swapped out to the ancilla. Therefore, the overall effect is equivalent to performing a swap at
the end after applying 𝑈 .

The key reason that the above procedure is useful is because it repairs the circuit. This allows
us to continue doing the same operation on qubit 2 because even though a lot of operations were
applied before 𝑈 (see the first picture in Eq. (3)), it is equivalent to as if nothing were applied
before 𝑈 (see the last picture in Eq. (3)); therefore we can similarly apply 𝑉 †

2 , swap with a new
fresh qubit, and 𝑉2 before 𝑈 , achieving the effect of swapping qubit 2 at the end. Repeating the
above procedure for all qubits, we have learned a circuit 𝑈̂ acting on 2𝑛 qubits that satisfies

𝑈

learned circuit 𝑈̂

= 𝑈 (4)

which implies that 𝑈̂ = 𝑆 ·(𝑈⊗𝑈 †), where 𝑆 denotes the global swap operation between the system
and ancilla qubits. To implement 𝑈 using the learned circuit, on input 𝜌 we initialize an ancilla
register with some arbitrary state (say |0𝑛⟩), apply 𝑆 · 𝑈̂ and trace out the ancilla register, and
the output state equals 𝑈𝜌𝑈 †. We can use a similar procedure to implement 𝑈 †. Thus, the above
procedure simultaneously learns to implement 𝑈 and 𝑈 †, using access only to 𝑈 .
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Finally, we remark that the learned circuit 𝑆 · 𝑈̂ is shallow. To see this, note that 𝑆 = SWAP⊗𝑛

is depth-1. 𝑈̂ consists of unitaries of the form 𝑊𝑖 := 𝑉𝑖 · SWAP · 𝑉 †
𝑖 that are local : each of them

supports on the lightcone of qubit 𝑖, as well as an extra ancilla qubit. Therefore we can implement
non-overlapping 𝑊𝑖s simultaneously, and all of the 𝑊𝑖s can be stacked into a constant number of
layers since, at most, a constant number of qubits share overlapping lightcones.

To achieve the optimal query and time complexity of Θ(1),Θ(𝑛) for learning geometrically-local
shallow quantum circuits over finite gate sets in Theorem 3, we present a quantum learning algorithm
that finds the exact local inversions for all 𝑛 qubits with zero failure probability by querying 𝑈 for
only 𝒪(1) times. This surprising scaling is achieved by combining a few ideas: (a) coloring the
geometry described by a bounded-degree graph, (b) decoupling the 𝑛-qubit unitary 𝑈 into 𝒪(𝑛)
few-qubit channels based on the coloring, and (c) designing a tournament to perfectly distinguish
between two classes of few-qubit quantum channels: those that form an exact local identity versus
those that do not. The tournament uses the perfect distinguishability of certain pairs of CPTP maps
shown in [98], where we design the few-qubit channels to ensure perfect distinguishability. Then,
the learning algorithm finds a good order to sew the local inversions to produce a constant-depth
circuit implementation for the unknown constant-depth 𝑛-qubit circuit 𝑈 .

2.1.2 Sewing Heisenberg-evolved Pauli operators

Next, we describe a simpler technique based on directly sewing the Heisenberg-evolved Pauli oper-
ators 𝑈 †𝑃𝑖𝑈 (𝑃𝑖 is a single-qubit Pauli acting on qubit 𝑖) and discuss how it is closely related to
local inversion. Section 5.2.2 provides a detailed discussion of this technique.

We first describe how to learn the Heisenberg-evolved Pauli operators. Because 𝑈 is a shallow
quantum circuit, each operator 𝑈 †𝑃𝑖𝑈 acts on a constant number of qubits. The few-qubit observ-
able 𝑈 †𝑃𝑖𝑈 can be reconstructed from the randomized measurement dataset. Let the random input
product state be |𝜓⟩ = |𝜓1⟩ ⊗ · · · ⊗ |𝜓𝑛⟩, where |𝜓𝑖⟩ is a random one-qubit stabilizer state. Because
each qubit in the output state is measured in a random 𝑋,𝑌, 𝑍 basis with equal probability, we
will measure 𝑃𝑖 on the output state 𝑈 |𝜓⟩⟨𝜓|𝑈 † with probability 1/3. This allows us to estimate
⟨𝜓|𝑈 †𝑃𝑖𝑈 |𝜓⟩. Then, we show that we can efficiently reconstruct 𝑈 †𝑃𝑖𝑈 from a small number of
different random input states.

After learning the 3𝑛 Heisenberg-evolved Pauli operators 𝑈 †𝑃𝑖𝑈 , we present a direct approach
for sewing them into a circuit. This approach uses the identity SWAP = 1

2

∑︀
𝑃∈{𝐼,𝑋,𝑌,𝑍} 𝑃 ⊗𝑃 . Let

𝑆𝑖 be the SWAP gate acting on the 𝑖-th system qubit and the 𝑖-th ancilla qubit, let 𝑆 = ⊗𝑛𝑖=1𝑆𝑖 be
the global swap between system and ancilla, and let 𝑊𝑖 := 𝑈 †𝑆𝑖𝑈 = 1

2

∑︀
𝑃∈{𝐼,𝑋,𝑌,𝑍} 𝑈

†𝑃𝑖𝑈⊗𝑃, ∀𝑖 =
1, . . . , 𝑛. From the previous technique for sewing local inversion, we have proven the identity

𝑈 ⊗ 𝑈 † = 𝑆 ·
𝑛∏︁
𝑖=1

(︁
𝑉𝑖 · 𝑆𝑖 · 𝑉 †

𝑖

)︁
, (5)

where 𝑉𝑖 satisfies 𝑈𝑉𝑖 = 𝑈 ′(𝑖) ⊗ 𝐼𝑖 is an arbitrary exact local inversion on qubit 𝑖. We can see that

𝑉𝑖 · 𝑆𝑖 · 𝑉 †
𝑖 = 𝑈 †𝑈𝑉𝑖 · 𝑆𝑖 · 𝑉 †

𝑖 𝑈
†𝑈 = 𝑈 †𝑆𝑖𝑈 =𝑊𝑖 =⇒ 𝑈 ⊗ 𝑈 † = 𝑆 ·

𝑛∏︁
𝑖=1

𝑊𝑖 = 𝑆 ·
𝑛∏︁
𝑖=1

(︁
𝑈 †𝑆𝑖𝑈

)︁
. (6)

The new equation can also be seen by itself: simply cancel 𝑈 with 𝑈 † in the product so that the
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right-hand side becomes 𝑆𝑈 †𝑆𝑈 , and observe that

𝑈 𝑈 † = 𝑈 †

𝑈

(7)

As we can see, the Heisenberg-evolved Pauli operators can be directly sewn into 𝑈 ⊗ 𝑈 †.
This outlines the following procedure to learn 𝑈 : first learn the Heisenberg-evolved Pauli oper-

ators {𝑈 †𝑃𝑖𝑈}𝑛𝑖=1, combine them to form {𝑊𝑖}𝑛𝑖=1 according to 𝑊𝑖 =
1
2

∑︀
𝑃∈{𝐼,𝑋,𝑌,𝑍} 𝑈

†𝑃𝑖𝑈 ⊗ 𝑃𝑖,
and reconstruct the circuit using {𝑊𝑖}𝑛𝑖=1. Note that each 𝑊𝑖 acts on a constant number 𝑘 of qubits
and can be directly compiled into a circuit of depth 2𝑂(𝑘). To further optimize the depth of the
learned circuit, notice that each 𝑊𝑖 has the form 𝑊𝑖 = 𝑈 †𝑆𝑖𝑈 = 𝑉𝑖𝑆𝑖𝑉

†
𝑖 , i.e., it can be represented

by a depth-(2𝑑 + 1) circuit. We can find such a representation for 𝑊𝑖 by brute-force enumerating
all depth-(2𝑑 + 1) circuits acting on 𝑘 qubits, and the learned circuit has the same form as in
Section 2.1.1. This thus provides a simpler framework for learning an unknown shallow quantum
circuit 𝑈 using a classical dataset containing random samples about 𝑈 .

To prove Theorem 1 and 2 on learning general and geometrically-local shallow quantum circuits,
we combine this framework with some additional ideas on (a) coloring the 𝑘-dimensional lattices
to ensure all qubits with the same color has nonoverlapping lightcone, (b) truncating small Fourier
coefficients to ensure the learned observables acts only on qubits in the support of the true ob-
servables, (c) compiling the Heisenberg-evolved Pauli operator when over a finite gate set, and (d)
finding a good order to sew the Heisenberg-evolved Pauli operators into a short-depth circuit.

2.2 Learning 𝑈 |0𝑛⟩ to a small trace distance

Next, we discuss how to learn a quantum state |𝜓⟩ = 𝑈 |0𝑛⟩ prepared by a shallow circuit 𝑈 , given
copies of |𝜓⟩. While this problem appears to be simpler (we need to learn 𝑈 |0𝑛⟩ instead of the
entire 𝑈), the weaker access model (we only have access to the output of 𝑈 for the all-zero input
state |0𝑛⟩) poses new fundamental challenges. In particular, we can learn local inversions 𝑉𝑖 that
give 𝑉𝑖𝑈 |0𝑛⟩ = |𝜓′⟩ ⊗ |0⟩𝑖 instead of the much stronger 𝑈𝑉𝑖 = 𝑈 ′ ⊗ 𝐼𝑖, and the previous approach
of “keep making progress by swapping ancilla qubits” does not seem to work.

Here, we address these challenges by developing new techniques tailored to a 2D lattice. The
main idea is to disentangle the state into many 1D-like states that are easy to learn by leveraging
the fact that 1D constraint satisfaction problems can be efficiently solved.

2.2.1 Disentangling a 2D quantum state

Our starting point is the simpler problem of learning a state |𝜓⟩ = 𝑈 |0𝑛⟩, with the promise that 𝑈
is a shallow circuit (white box) acting on a 1D lattice:

𝑈

𝐴 𝐵 𝐶

(8)

Let 𝐴, 𝐵, and 𝐶 be contiguous regions of constant size. We can find a set of local inversions 𝒞𝐴 for
𝐴 by enumerating over circuits acting on the lightcone of 𝐴 (blue shape). The question is how to
combine different local inversions into a circuit. The key observation is that two neighboring local
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inversions can be merged together if they are “consistent”, i.e., sharing the same gates where they
overlap. For example, some 𝑉𝐴 ∈ 𝒞𝐴 (blue) and 𝑉𝐵 ∈ 𝒞𝐵 (red) can be merged into a larger circuit
of the same depth 𝑉𝐴𝐵 if they share the same gates in the overlapping region (intersecting triangle);
the merged circuit 𝑉𝐴𝐵 satisfies 𝑉𝐴𝐵 |𝜓⟩ = |𝜓′⟩ ⊗ |0⟩𝐴𝐵. This defines a constraint satisfaction
problem: we need to find a local inversion for each region such that neighboring local inversions
are consistent. Such a solution must exist (since the “ground truth” local inversions satisfy these
constraints), and we can efficiently find such a solution by simple dynamic programming in time
𝒪(𝑛|𝒞|2) where |𝒞| denotes the maximum number of local inversions for a small region. This gives
a circuit 𝑉 that satisfies 𝑉 |𝜓⟩ = |0𝑛⟩, so the state |𝜓⟩ can be prepared by |𝜓⟩ = 𝑉 † |0𝑛⟩.

From this perspective, generalizing this approach to 2D may be a difficult task since constraint
satisfaction problems on 2D lattices are NP-hard in general. We address this challenge using an
additional insight: instead of solving the constraint satisfaction problem directly in 2D, we first use
the 1D argument to disentangle the 2D state.

𝐴 𝐵 𝐶 𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6 𝐵7

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 (9)

The LHS of (9) shows a quantum state |𝜓⟩ prepared by a depth-𝑑 circuit acting on a 2D lattice,
divided into three regions 𝐴, 𝐵, and 𝐶. A well-known fact about these states is that they have
finite correlation length : if the width of 𝐵 is sufficiently large (say 5𝑑), then the mutual information
between 𝐴 and 𝐶 is zero, i.e. the reduced density matrix of 𝜌 = |𝜓⟩⟨𝜓| on 𝐴𝐶 satisfies 𝜌𝐴𝐶 = 𝜌𝐴⊗𝜌𝐶 .
This fact itself does not simplify the problem because 𝐴 and 𝐶 are both entangled with 𝐵. However,
if for some reason we have 𝜌𝐵 = |0⟩⟨0|𝐵, then this would force 𝜌𝐴 and 𝜌𝐶 to be pure states and not
entangled with any outside qubits.

But this is exactly what we can achieve using the 1D argument: we can learn local inversions for
a small piece of 𝐵 (shaded blue) by finding circuits acting on a slightly larger region (dotted blue).
We can do this for contiguous small regions (here, the blue, red, and green regions play exactly the
same role as in (8)), and by repeating the 1D argument we can find a depth-𝑑 circuit 𝑉 acting on
a region slightly larger than 𝐵, such that Tr𝐴𝐶(𝑉 |𝜓⟩⟨𝜓|𝑉 †) = |0⟩⟨0|𝐵. After applying 𝑉 , the state
becomes |𝜑⟩𝐴 ⊗ |0⟩𝐵 ⊗ |𝜑⟩𝐶 for some unknown pure states |𝜑⟩𝐴, |𝜑⟩𝐶 .

Finally, note that this argument can be repeated horizontally across the entire system; overall,
we can learn a depth-𝑑 circuit 𝑉 such that 𝑉 |𝜓⟩ has the form of RHS in (9). Here, all the shaded
𝐵 regions are inverted and in the state |0⟩. Each of the white regions is in a pure state and
disentangled with each other. Now, the problem is reduced to learning each of the states |𝜑⟩𝐴𝑖

on
the white regions separately. To prepare |𝜓⟩, we first prepare (⊗𝑖 |𝜑⟩𝐴𝑖

)⊗ |0⟩𝐵, then apply 𝑉 †.

2.2.2 Learning finite correlated states in 1D

Here we address the final step of learning the 1D-like states |𝜑⟩𝐴𝑖
. The main challenge here is that

the previous argument in (8) is not immediately applicable: we do not have the guarantee that
|𝜑⟩𝐴𝑖

is prepared by a shallow circuit acting on |0⟩𝐴𝑖
. Instead, what we know is that the global

state (⊗𝑖 |𝜑⟩𝐴𝑖
)⊗|0⟩𝐵 is prepared by a depth-2𝑑 circuit acting on |0⟩𝐴𝐵, because it equals to 𝑉 |𝜓⟩.

Our starting point is to observe the following structure of the state |𝜑⟩𝐴𝑖
: it can be prepared

by a depth-2𝑑 circuit acting on 𝐴𝑖 as well as some ancilla qubits 𝐴𝐿𝑖 and 𝐴𝑅𝑖 (see Fig. 5 for an
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illustration). To see this, recall that |𝜑⟩𝐴𝑖
is part of a state that is prepared by a depth-2𝑑 circuit.

Now, imagine that we undo all the gates in that circuit, except for those in the backward lightcone
of 𝐴𝑖. This procedure does not affect the state on 𝐴𝑖, and the resulting circuit (denoted as 𝑊𝑖)
has exactly the same shape as in Fig. 5, where 𝐴𝐿𝑖 , 𝐴𝑅𝑖 both have width 2𝑑. We then develop an
algorithm to learn such a depth-2𝑑 circuit to prepare |𝜑⟩𝐴𝑖

. This problem is different from (8) in
nature due to the existence of ancilla qubits. However, its simple 1D structure allows us to develop
a similar argument by solving a 1D constraint satisfaction problem. This implies that we can learn
a depth-2𝑑 circuit to prepare the entire system in RHS of (9). Thus the total learned circuit depth
to prepare |𝜓⟩ equals 3𝑑 (see Claim 2 of Theorem 9).

In addition, we give a separate argument showing that each of the disentangled states |𝜑⟩𝐴𝑖
in

RHS of (9) can be prepared with a 1D circuit of depth 2𝒪(𝑑2) without any ancilla qubits. This
implies an algorithm where the learned circuit for preparing |𝜓⟩ has depth 2𝒪(𝑑2) and does not use
ancilla qubits (see Claim 3 of Theorem 9).

Finally, note that throughout Section 2.2.1 and 2.2.2 we have been working with a simple
setting with a finite gate set, which allows each step in the above argument to be performed exactly
without any approximation error. Generalizing these arguments to arbitrary SU(4) gates requires
each step of the argument to be robust, in the sense that small errors in each step do not accumulate
significantly. In particular, we can only approximately disentangle the state using the procedure in
(9), and learning the remaining 1D states poses new technical challenges as they are no longer pure.
These issues are addressed in Section 8.4, which leads to a robust version of the above result; see
Claim 1 of Theorem 9.

3 Preliminaries

Let stab1 = {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |𝑦+⟩ , |𝑦−⟩} be the set of single-qubit stabilizer states. Given an
𝑛-qubit unitary 𝑈 , we use the Catholic letter 𝒰 to denote the corresponding CPTP map 𝒰(𝑋) =
𝑈𝑋𝑈 †. We denote ℐ as the identity CPTP map. Given a Pauli operator 𝑃 ∈ {𝑋,𝑌, 𝑍}, we consider
𝑃𝑖 to be a multi-qubit operator that is equal to the tensor product of 𝑃 on the 𝑖-th qubit and identity
on the rest of the qubits. We also consider the following definitions.

Definition 1 (Reduced channel). Given 𝑛 > 0, 𝑖 ∈ {1, . . . , 𝑛}, and an 𝑛-qubit CPTP map 𝒞. The
reduced channel ℰ𝒞̸=𝑖 of the CPTP map 𝒞 with the 𝑖-th qubit removed is

ℰ𝒞̸=𝑖(𝜌 ̸=𝑖) = Tr𝑖

(︃
𝒞

(︃
𝐼(𝑖)

2
⊗ 𝜌 ̸=𝑖

)︃)︃
, (10)

where 𝜌 ̸=𝑖 is a density matrix on all except the 𝑖-th qubit, 𝐼(𝑖) is the identity on the 𝑖-th qubit, and
Tr𝑖 is the partial trace over the 𝑖-th qubit. For 𝑘 ∈ {0, 1, . . . , 𝑛}, we define

ℰ𝒞>𝑘(𝜌>𝑘) = Tr≤𝑘

(︃
𝒞

(︃
𝐼(1,...,𝑘)

2𝑘
⊗ 𝜌>𝑘

)︃)︃
, (11)

where 𝜌>𝑘 is a density matrix on all except the first 𝑘 qubits, 𝐼(1,...,𝑘) is the identity on the first 𝑘
qubits, and Tr≤𝑘 is the partial trace over the first 𝑘 qubits. Given a subset of qubits 𝑆 ⊆ {1, . . . , 𝑛},
we define

ℰ𝒞𝑆(·) = Tr/∈𝑆

(︃
𝒞

(︃
𝐼(/∈𝑆)

2𝑛−|𝑆| ⊗ (·)

)︃)︃
, (12)

where 𝐼(/∈𝑆) is the identity on qubits not in 𝑆 and Tr/∈𝑆 is the partial trace over qubits not in 𝑆.
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Definition 2 (Fidelity). Given two quantum states 𝜌, 𝜎. The fidelity ℱ(𝜌, 𝜎) ∈ [0, 1] between the
two states is defined as Tr

(︀√︀√
𝜌𝜎
√
𝜌
)︀2. If 𝜎 = |𝜓⟩⟨𝜓|, then ℱ(𝜌, 𝜎) = ⟨𝜓| 𝜌 |𝜓⟩.

Fact 1 (Properties of fidelity [99]). The function 1− 𝐹 (𝜌, 𝜎) satisfies

1− 𝐹 (𝜌, 𝜎) = 1− 𝐹 (𝜎, 𝜌) (symmetric); (13)
1− 𝐹 (𝜌, 𝜎) ≥ 0 (nonnegative); (14)
1− 𝐹 (𝜌, 𝜎) = 0 ⇐⇒ 𝜌 = 𝜎 (identity of indiscernible). (15)

But 1 − 𝐹 does not satisfy triangle inequality. In contrast, Θ(𝜌, 𝜎) := arcsin
(︁√︀

1− 𝐹 (𝜌, 𝜎)
)︁
∈

[0, 𝜋/2] is symmetric, nonnegative, and satisfies identity of indiscernible and triangle inequality,

Θ(𝜌, 𝜎) ≤ Θ(𝜌, 𝜏) + Θ(𝜏, 𝜎). (16)

Hence, 𝜃(𝜌, 𝜎) is a metric (known as the Fubini-Study metric), but 1 − 𝐹 (𝜌, 𝜎) is not. In addition
to the metric properties, we also have

1− 𝐹 (𝜓, 𝜌) ≤ 1

2
‖𝜓 − 𝜌‖tr, (17)

for any state 𝜌 and any pure state 𝜓, where ‖·‖tr is the trace norm. Also, the fidelity is monotonic
increasing under CPTP maps,

𝐹 (ℰ(𝜌), ℰ(𝜎)) ≥ 𝐹 (𝜌, 𝜎), (18)

for any CPTP map ℰ and any state 𝜌, 𝜎.

Definition 3 (Average-case distance). Given two 𝑛-qubit CPTP maps ℰ1, ℰ2. The average-case
distance 𝒟ave(ℰ1, ℰ2) between the two CPTP maps is defined as

E
|𝜓⟩:Unif

[︀
1−ℱ(ℰ1(|𝜓⟩⟨𝜓|), ℰ2(|𝜓⟩⟨𝜓|))

]︀
, (19)

where E|𝜓⟩:Unif considers averaging under the uniform measure over pure states.

Fact 2 (Haar average for average-case distance [96]). Given an 𝑛-qubit CPTP map ℰ and an 𝑛-qubit
unitary 𝑈 . We have the following identity,

𝒟ave(ℰ ,𝒰) =
2𝑛

2𝑛 + 1

⎛⎝1− 1

4𝑛

∑︁
𝑖,𝑗

⟨𝑖| ℰ
(︁
𝑈 † |𝑖⟩⟨𝑗|𝑈

)︁
|𝑗⟩

⎞⎠ , (20)

after averaging over the uniform measure over pure states.

Proposition 1 (Normalized Frobenius norm). Given two 𝑛-qubit unitaries 𝑈1, 𝑈2. We have

1

3
min
𝜑∈R

⃦⃦
𝑒𝑖𝜑𝑈1 − 𝑈2

⃦⃦2
𝐹

2𝑛
≤ 𝒟ave(𝒰1,𝒰2) ≤ min

𝜑∈R

⃦⃦
𝑒𝑖𝜑𝑈1 − 𝑈2

⃦⃦2
𝐹

2𝑛
, (21)

where ‖𝑋‖𝐹 =
√︀
Tr(𝑋†𝑋) is the Frobenius norm of 𝑋.
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Proof. From [96], the average-case distance (also known as the average gate fidelity) satisfies

𝒟ave(𝒰1,𝒰2) =
2𝑛

2𝑛 + 1

(︂
1− 1

4𝑛

⃒⃒⃒
Tr
(︁
𝑈 †
1𝑈2

)︁⃒⃒⃒2)︂
. (22)

Expanding the definition of Frobenius norm, we have

min
𝜑∈R

⃦⃦
𝑒𝑖𝜑𝑈1 − 𝑈2

⃦⃦2
𝐹

2𝑛
= 2

⎛⎝1−

⃒⃒⃒
Tr
(︁
𝑈 †
1𝑈2

)︁⃒⃒⃒
2𝑛

⎞⎠ . (23)

Recall that

0 ≤

⃒⃒⃒
Tr
(︁
𝑈 †
1𝑈2

)︁⃒⃒⃒
2𝑛

≤ 1. (24)

Hence, we have⎛⎝1−

⃒⃒⃒
Tr
(︁
𝑈 †
1𝑈2

)︁⃒⃒⃒
2𝑛

⎞⎠ ≤
⎛⎝1 +

⃒⃒⃒
Tr
(︁
𝑈 †
1𝑈2

)︁⃒⃒⃒
2𝑛

⎞⎠⎛⎝1−

⃒⃒⃒
Tr
(︁
𝑈 †
1𝑈2

)︁⃒⃒⃒
2𝑛

⎞⎠ ≤ 2

⎛⎝1−

⃒⃒⃒
Tr
(︁
𝑈 †
1𝑈2

)︁⃒⃒⃒
2𝑛

⎞⎠ . (25)

This immediately implies that

2

3

⎛⎝1−

⃒⃒⃒
Tr
(︁
𝑈 †
1𝑈2

)︁⃒⃒⃒
2𝑛

⎞⎠ ≤ 2𝑛

2𝑛 + 1

⎛⎜⎝1−

⃒⃒⃒
Tr
(︁
𝑈 †
1𝑈2

)︁⃒⃒⃒2
4𝑛

⎞⎟⎠ ≤ 2

⎛⎝1−

⃒⃒⃒
Tr
(︁
𝑈 †
1𝑈2

)︁⃒⃒⃒
2𝑛

⎞⎠ (26)

which is equivalent to

1

3
min
𝜑∈R

⃦⃦
𝑒𝑖𝜑𝑈1 − 𝑈2

⃦⃦2
𝐹

2𝑛
≤ 𝒟ave(𝒰1,𝒰2) ≤ min

𝜑∈R

⃦⃦
𝑒𝑖𝜑𝑈1 − 𝑈2

⃦⃦2
𝐹

2𝑛
. (27)

This concludes the proof.

Definition 4 (Worse-case distance / diamond distance). Given two 𝑛-qubit CPTP maps ℰ1, ℰ2.
The worst-case distance 𝒟◇(ℰ1, ℰ2) between the two CPTP maps is defined as

1

2
max
𝜌
‖(ℰ1 ⊗ ℐ)(𝜌)− (ℰ2 ⊗ ℐ)(𝜌)‖1 ≜

1

2
‖ℰ1 − ℰ2‖◇, (28)

where 𝜌 is maximized over 2𝑛-qubit states and ℐ(>𝑛) is an identity map acting on the 𝑛 qubits.
𝒟◇(ℰ1, ℰ2) is also known as diamond distance and ‖·‖◇ is the diamond norm.

Fact 3 (Diamond distance for unitaries; Prop. 1.6 of [100]). For any two unitaries 𝑈1, 𝑈2, we have

min
𝜑∈R

⃦⃦⃦
𝑒𝑖𝜑𝑈1 − 𝑈2

⃦⃦⃦
∞
≤ ‖𝒰1 − 𝒰2‖◇ ≤ 2min

𝜑∈R

⃦⃦⃦
𝑒𝑖𝜑𝑈1 − 𝑈2

⃦⃦⃦
∞
. (29)

Fact 4 (Exact unitary synthesis; see e.g. [101, 102]). Given any unitary 𝑈 acting on 𝑘 qubits, there
is an algorithm that outputs a circuit (acting on 𝑘 qubits) consisting of at most 4𝑘 two-qubit gates,
which exactly implements the unitary 𝑈 , in time 2𝑂(𝑘).
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Corollary 1 (Exact unitary synthesis in geometrically-local circuit). Given any unitary 𝑈 acting
on 𝑘 qubits and a connected graph 𝐺 over 𝑘 qubits, there is an algorithm that outputs a geometrically-
local circuit (acting on 𝑘 qubits and consists only of gates between connected qubits) consisting of at
most 2𝑘4𝑘 two-qubit gates, which exactly implements the unitary 𝑈 , in time 2𝑂(𝑘).

Proof. For each two-qubit gate in the original synthesis protocol, which may not be geometrically-
local under the connectivity graph 𝐺, we consider at most 𝑘 − 1 swap gates to move one of the
qubits from the original location to a location next to the other qubit, apply the two-qubit gate,
then perform at most 𝑘 − 1 swap gates to move the qubit back to the original location.

4 Approximate local identity

A central concept that we will use to define local inversion for representing 𝑛-qubit unitaries is the 𝜀-
approximate local identity. In this section, we provide the properties for understanding the concept
of approximate local identity. In particular, we will consider a strong and a weak form of local
identity in Section 4.1 and 4.2. In each section, we state the definition, show how to characterize
if a unitary map forms a strong/weak 𝜀-approximate local identity, and prove how local identity
relates to global identity.

4.1 Strong 𝜀-approximate local identity

We begin by looking at a strong form of approximate local identity. The idea is that the action of
the 𝑛-qubit unitary 𝑈 on the 𝑖-th qubit is close to the identity map, while the action on the other
qubits is close to the reduced channel of 𝑈 with the 𝑖-th qubit removed (feed in a maximally mixed
state on qubit 𝑖 and trace out qubit 𝑖 at the end). Recall Definition 1 of reduced channel,

ℰ𝒰̸=𝑖(𝜌 ̸=𝑖) = Tr𝑖

(︃
𝒰

(︃
𝐼(𝑖)

2
⊗ 𝜌 ̸=𝑖

)︃)︃
, (30)

where 𝜌 ̸=𝑖 is a density matrix on all except the 𝑖-th qubit, 𝐼(𝑖) is the identity on the 𝑖-th qubit, and
Tr𝑖 is the partial trace over the 𝑖-th qubit.

Definition 5 (Strong 𝜀-approximate local identity). Given 𝑛 > 0, 𝜀 ≥ 0, and 𝑖 ∈ {1, . . . , 𝑛}. An
𝑛-qubit unitary 𝑈 is a strong 𝜀-approximate local identity on the 𝑖-th qubit if

𝒟◇

(︁
𝒰 , ℐ(𝑖) ⊗ ℰ𝒰̸=𝑖

)︁
≤ 𝜀, (31)

where ℐ(𝑖) ⊗ ℰ𝒰̸=𝑖 is an 𝑛-qubit CPTP map that acts as identity on the 𝑖-th qubit.

While diamond distances are typically hard to characterize, the strong 𝜀-approximate local
identity can be characterized up to a constant factor by studying the Heisenberg evolution of single-
qubit Pauli observables under the 𝑛-qubit unitary 𝑈 . Hence, in order to check if an 𝑛-qubit unitary
𝑈 strong approximate local identity on the 𝑖-th qubit, all we need to check is whether the three
Pauli observables 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 remains approximately unchanged after Heisenberg evolution under 𝑈 .

Lemma 1 (Characterization of strong 𝜀-approximate local identity). Given 𝑛 > 0, 𝜀 ≥ 0, and an
𝑛-qubit unitary 𝒰 . If 𝒰 is a strong 𝜀-approximate local identity on the 𝑖-th qubit, then

1

2

⃦⃦⃦
𝑈 †𝑃𝑖𝑈 − 𝑃𝑖

⃦⃦⃦
∞
≤ 𝜀, ∀𝑃 ∈ {𝑋,𝑌, 𝑍}, (32)
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where 𝑃𝑖 is the Pauli operator 𝑃 acting only on qubit 𝑖, and 𝑈 †𝑃𝑖𝑈 is the Heisenberg evolution of
𝑃𝑖 under 𝑈 . Furthermore, if the following holds,

1

2

∑︁
𝑃∈{𝑋,𝑌,𝑍}

⃦⃦⃦
𝑈 †𝑃𝑖𝑈 − 𝑃𝑖

⃦⃦⃦
∞
≤ 𝜀, (33)

then 𝒰 is a strong 𝜀-approximate local identity on the 𝑖-th qubit.

Proof. We start by showing the first claim. Consider any 𝑛-qubit pure state |𝜓⟩. We have⃦⃦⃦
𝑈 †𝑃𝑖𝑈 − 𝑃𝑖

⃦⃦⃦
∞

= max
|𝜓⟩

⃒⃒⃒
⟨𝜓|
(︁
𝑈 †𝑃𝑖𝑈 − 𝑃𝑖

)︁
|𝜓⟩
⃒⃒⃒
. (34)

By the definition of CPTP maps, we have

⟨𝜓|𝑈 †𝑃𝑖𝑈 |𝜓⟩ = Tr (𝑃𝑖𝒰 (|𝜓⟩⟨𝜓|)) . (35)

From the definition of diamond distance and of strong 𝜀-approximate local identity on the 𝑖-th
qubit, we have the following inequality,

1

2

⃒⃒⃒
Tr (𝑃𝑖𝒰 (|𝜓⟩⟨𝜓|))− Tr

(︁
𝑃𝑖

(︁
ℐ(𝑖) ⊗ ℰ𝒰̸=𝑖

)︁
(|𝜓⟩⟨𝜓|)

)︁⃒⃒⃒
≤ 𝜀. (36)

By the definition of a CPTP map, we have

Tr ̸=𝑖
(︀
ℰ𝒰̸=𝑖(𝜌)

)︀
= 𝜌 (37)

for any quantum state 𝜌, where Tr ̸=𝑖 traces out all qubits except for qubit 𝑖. Hence, we have
Tr
(︁
𝑃𝑖

(︁
ℐ(𝑖) ⊗ ℰ𝒰̸=𝑖

)︁
(|𝜓⟩⟨𝜓|)

)︁
= Tr(𝑃𝑖 |𝜓⟩⟨𝜓|). Together, we obtain the first claim.

The second claim uses the following equality defined over an 𝑛+ 1-qubit system,

1

2

⎛⎝𝐼𝑛+1 +
∑︁

𝑃∈{𝑋,𝑌,𝑍}

𝑃𝑖 ⊗ 𝑃

⎞⎠ = 𝑆𝑖,𝑛+1, (38)

where 𝐼𝑛+1 is an 𝑛 + 1-qubit identity, 𝑃𝑖 is an 𝑛-qubit unitary that acts as the Pauli operator 𝑃
on the 𝑖-th qubit, and 𝑆𝑖,𝑛+1 is the swap operator between qubit 𝑖 in the first 𝑛 qubits and the last
qubit (qubit 𝑛+1). We interpret the error in the Heisenberg-evolved single-qubit Pauli observables
as an error in commuting the Pauli observable 𝑃𝑖 and the 𝑛-qubit unitary 𝑈 ,⃦⃦⃦

𝑈 †𝑃𝑖𝑈 − 𝑃𝑖
⃦⃦⃦
∞

= ‖𝑃𝑖𝑈 − 𝑈𝑃𝑖‖∞. (39)

From this interpretation, we have the following inequalities,

‖𝑆𝑖,𝑛+1(𝑈 ⊗ 𝐼)− (𝑈 ⊗ 𝐼)𝑆𝑖,𝑛+1‖∞ ≤
1

2

∑︁
𝑃∈{𝑋,𝑌,𝑍}

‖(𝑃𝑖 ⊗ 𝑃 )(𝑈 ⊗ 𝐼)− (𝑈 ⊗ 𝐼)(𝑃𝑖 ⊗ 𝑃 )‖∞ (40)

≤ 1

2

∑︁
𝑃∈{𝑋,𝑌,𝑍}

‖(𝑃𝑖𝑈 − 𝑈𝑃𝑖)⊗ 𝑃‖∞ (41)

=
1

2

∑︁
𝑃∈{𝑋,𝑌,𝑍}

‖𝑃𝑖𝑈 − 𝑈𝑃𝑖‖∞ ≤ 𝜀. (42)
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The above inequality can be easily generalized to any of the following,

‖𝑆𝑖,𝑗(𝑈 ⊗ 𝐼𝑚)− (𝑈 ⊗ 𝐼𝑚)𝑆𝑖,𝑗‖∞ ≤ 𝜀, (43)

where 𝑚 ≥ 1, 𝑛 + 1 ≤ 𝑗 ≤ 𝑛 +𝑚, and 𝐼𝑚 is the identity operator on 𝑚 qubits. Recall the formal
definition diamond distance from Definition 4,

𝒟◇ (ℰ1, ℰ2) =
1

2
max
𝜌
‖(ℰ1 ⊗ ℐ𝑛)(𝜌)− (ℰ2 ⊗ ℐ𝑛)(𝜌)‖1, (44)

where 𝜌 is a density matrix over 2𝑛 qubits, and ℐ𝑛 is the identity map over 𝑛 qubits. From Fact 3,
for any two unitaries 𝑈1, 𝑈2, we have ‖𝒰1 − 𝒰2‖◇ ≤ 2‖𝑈1 − 𝑈2‖∞. We obtain the following from
Eq. (43), ⃦⃦⃦

𝒮𝑖,𝑗(𝒰 ⊗ 𝐼𝑚)− (𝒰 ⊗ 𝐼𝑚)𝒮𝑖,𝑗
)︁⃦⃦⃦

◇
≤ 2‖𝑆𝑖,𝑗(𝑈 ⊗ 𝐼𝑚)− (𝑈 ⊗ 𝐼𝑚)𝑆𝑖,𝑗‖∞ ≤ 2𝜀. (45)

The strong 𝜀-approximate local identity considers

𝒟◇

(︁
𝒰 , ℐ(𝑖) ⊗ ℰ𝒰̸=𝑖

)︁
=

1

2
max
𝜌

⃦⃦⃦
(𝒰 ⊗ ℐ𝑛)(𝜌)− (ℐ(𝑖) ⊗ ℰ𝒰̸=𝑖 ⊗ ℐ𝑛)(𝜌)

⃦⃦⃦
1
. (46)

We add one more qubit to form 2𝑛+ 1 qubits. The additional qubit begins in a maximally mixed
state 𝐼/2, stays in 𝐼/2, and is traced out at the end. Let us now consider the following series of
analysis,⃦⃦⃦

(𝒰 ⊗ ℐ𝑛)(𝜌)− (ℐ(𝑖) ⊗ ℰ𝒰̸=𝑖 ⊗ ℐ𝑛)(𝜌)
⃦⃦⃦
1

(47)

=
⃦⃦⃦
Tr2𝑛+1 [(𝒰 ⊗ ℐ𝑛+1)(𝜌⊗ (𝐼/2))]− (ℐ(𝑖) ⊗ ℰ𝒰̸=𝑖 ⊗ ℐ𝑛)(𝜌)

⃦⃦⃦
1

(48)

=
⃦⃦⃦
Tr𝑖 [(𝒮𝑖,2𝑛+1 ∘ (𝒰 ⊗ ℐ𝑛+1)) (𝜌⊗ (𝐼/2))]− (ℐ(𝑖) ⊗ ℰ𝒰̸=𝑖 ⊗ ℐ𝑛+1)(𝜌⊗ (𝐼/2))

⃦⃦⃦
1

(49)

≤
⃦⃦⃦
Tr𝑖 [((𝒰 ⊗ ℐ𝑛+1) ∘ 𝒮𝑖,2𝑛+1) (𝜌⊗ (𝐼/2))]− (ℐ(𝑖) ⊗ ℰ𝒰̸=𝑖 ⊗ ℐ𝑛+1)(𝜌⊗ (𝐼/2))

⃦⃦⃦
1
+ 2𝜀 (50)

=
⃦⃦⃦
(ℐ(𝑖) ⊗ ℰ𝒰̸=𝑖 ⊗ ℐ𝑛+1)(𝜌⊗ (𝐼/2))− (ℐ(𝑖) ⊗ ℰ𝒰̸=𝑖 ⊗ ℐ𝑛+1)(𝜌⊗ (𝐼/2))

⃦⃦⃦
1
+ 2𝜀 = 2𝜀. (51)

The only inequality above uses Eq. (45). We have proved the claim.

The following two lemmas give the relationships between global and local identity checks. The
basic idea is to check whether a map is close to identity by checking whether the map forms
approximate local identities on all the 𝑛 qubits. If the map is far from identity, then the map is not
an approximate local identity for some qubits. If the map is an approximate local identity for all
qubits, then the map is close to the identity.

Lemma 2 (Global non-identity check from local non-identity checks). Given an integer 𝑛 > 0
and an 𝑛-qubit unitary 𝑈 . If there exists 𝜀 > 0 and 𝑖 ∈ {1, . . . , 𝑛}, such that 𝒰 is not a strong
𝜀-approximate local identity on the 𝑖-th qubit, then ‖𝒰 − ℐ‖◇ ≥ 𝜀/2.

Lemma 3 (Global identity check from local identity checks). Given an integer 𝑛 > 0 and an 𝑛-qubit
unitary 𝑈 . If there exists 𝜀1, . . . , 𝜀𝑛 > 0, such that 𝒰 is a strong 𝜀𝑖-approximate local identity on
the 𝑖-th qubit for all 𝑖 ∈ {1, . . . , 𝑛}, then ‖𝒰 − ℐ‖◇ ≤ 3

∑︀𝑛
𝑖=1 𝜀𝑖.

We give proofs of these two lemmas at the end of this subsection. Lemma 2 is proven by
contradiction. To prove Lemma 3, we consider a stabilizer decomposition for a single qubit.
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Proposition 2 (Single-qubit stabilizer decomposition). Given an integer 𝑛 > 0 and an 𝑛-qubit
density matrix 𝜌. For any 𝑆 ⊆ {1, . . . , 𝑛}, 𝜌 can be written as a linear combination of 𝑅 = 10|𝑆|

𝑛-qubit density matrices 𝜌1, . . . , 𝜌𝑅, 𝜌 =
∑︀𝑅

𝑟=1 𝛼𝑟𝜌𝑟, where 𝛼𝑟 ∈ R and 𝜌𝑟 is a density matrix that
satisfies

𝜌𝑟 =
⨂︁
𝑗∈𝑆
|𝑠𝑗⟩⟨𝑠𝑗 | ⊗ Tr𝑆(𝜌𝑟), (52)

for some |𝑠𝑗⟩ ∈ stab1. We also have
∑︀𝑅

𝑟=1 𝛼𝑟 = 1 and
∑︀𝑅

𝑟=1 |𝛼𝑟| = 3|𝑆|.

Proof. Given an integer 𝑖 ∈ {1, . . . , 𝑛}, consider the following linear map ℳ𝑖 which equals to the
identity channel on 𝑖-th qubit,

ℳ𝑖(𝜌) := |0⟩⟨0|𝑖 ⊗ ⟨0| 𝜌 |0⟩𝑖 + |1⟩⟨1|𝑖 ⊗ ⟨1| 𝜌 |1⟩𝑖

+
1

2
|+⟩⟨+|𝑖 ⊗ ⟨+| 𝜌 |+⟩𝑖 −

1

2
|+⟩⟨+|𝑖 ⊗ ⟨−| 𝜌 |−⟩𝑖

− 1

2
|−⟩⟨−|𝑖 ⊗ ⟨+| 𝜌 |+⟩𝑖 +

1

2
|−⟩⟨−|𝑖 ⊗ ⟨−| 𝜌 |−⟩𝑖 (53)

+
1

2
|𝑦+⟩⟨𝑦+|𝑖 ⊗ ⟨𝑦+| 𝜌 |𝑦+⟩𝑖 −

1

2
|𝑦+⟩⟨𝑦+|𝑖 ⊗ ⟨𝑦−| 𝜌 |𝑦−⟩𝑖

− 1

2
|𝑦−⟩⟨𝑦−|𝑖 ⊗ ⟨𝑦+| 𝜌 |𝑦+⟩𝑖 +

1

2
|𝑦−⟩⟨𝑦−|𝑖 ⊗ ⟨𝑦−| 𝜌 |𝑦−⟩𝑖 ,

=

10∑︁
𝑟=1

𝑏𝑟 |𝑠𝑟⟩⟨𝑠𝑟|𝑖 ⊗ ⟨𝑠
′
𝑟| 𝜌 |𝑠′𝑟⟩𝑖 . (54)

where |𝑠⟩⟨𝑠|𝑖 is a single-qubit stabilizer state on the 𝑖-th qubit, ⟨𝑠| 𝜌 |𝑠⟩𝑖 is a partial inner product
on the 𝑖-th qubit, 𝑠𝑟, 𝑠′𝑟, 𝑏𝑟 takes on the corresponding values in stab1, stab1, {1, 1/2,−1/2},
respectively. The fact that ℳ𝑖 equals to the identity CPTP map ℐ is because of the following
identity

𝜌 =
∑︁

𝑃∈{𝐼,𝑋,𝑌,𝑍}

Tr𝑖(𝑃𝑖𝜌)⊗
𝑃𝑖
2
, (55)

where 𝑃𝑖 acts on the 𝑖-th qubit, and Eq. (53) follows by further decomposing the Pauli operators
into their eigenstates.

Without loss of generality, we consider 𝑘 = |𝑆| and 𝑆 = {1, . . . , 𝑘}. The identity 𝜌 = (∘𝑖∈𝑆ℳ𝑖)(𝜌)
gives rise to the equality

𝜌 =
10∑︁
𝑟1=1

· · ·
10∑︁
𝑟𝑘=1

(︃
𝑘∏︁
𝑖=1

𝑏𝑟𝑖

)︃
|𝑠𝑟1 , . . . , 𝑠𝑟𝑘⟩⟨𝑠𝑟1 , . . . , 𝑠𝑟𝑘 | ⊗ ⟨𝑠

′
𝑟1 , . . . , 𝑠

′
𝑟𝑘
| 𝜌 |𝑠′𝑟1 , . . . , 𝑠

′
𝑟𝑘
⟩ . (56)

We define 𝑟 =
∑︀𝑘

𝑖=1 10
𝑖−1𝑟𝑖, 𝑅 = 10𝑘, 𝑍𝑟 = Tr

(︀
⟨𝑠′𝑟1 , . . . , 𝑠

′
𝑟𝑘
| 𝜌 |𝑠′𝑟1 , . . . , 𝑠

′
𝑟𝑘
⟩
)︀
≥ 0, and

𝜌𝑟 =

{︃
|𝑠𝑟1 , . . . , 𝑠𝑟𝑘⟩⟨𝑠𝑟1 , . . . , 𝑠𝑟𝑘 | ⊗

⟨𝑠′𝑟1 ,...,𝑠
′
𝑟𝑘

|𝜌|𝑠′𝑟1 ,...,𝑠
′
𝑟𝑘

⟩
𝑍𝑟

if 𝑍𝑟 > 0,

|𝑠𝑟1 , . . . , 𝑠𝑟𝑘⟩⟨𝑠𝑟1 , . . . , 𝑠𝑟𝑘 | ⊗ 𝐼
2𝑛−𝑘 if 𝑍𝑟 = 0,

(57)

and 𝛼𝑟 = 𝑍𝑟
∏︀𝑘
𝑖=1 𝑏𝑟𝑖 . It is not hard to check that

∑︀
𝑟 |𝛼𝑟| = 3𝑘. Together, we have the single-qubit

stabilizer decomposition 𝜌 =
∑︀𝑅

𝑟=1 𝛼𝑟𝜌𝑟.
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Proof of Lemma 2. We consider proof by contradiction. Assume ‖𝒰 − ℐ‖◇ < 𝜀/2. For any integer
𝑚 ≥ 0, for any state |𝑠⟩𝑖 ∈ stab1 on the 𝑖-th qubit, and for any (𝑛− 1+𝑚)-qubit density matrix 𝜌,⃦⃦⃦

(𝒰 ⊗ ℐ(>𝑛)) (|𝑠⟩⟨𝑠|𝑖 ⊗ 𝜌)− |𝑠⟩⟨𝑠|𝑖 ⊗ (ℰ𝑈̸=𝑖 ⊗ ℐ(>𝑛))(𝜌)
⃦⃦⃦
1

(58)

≤
⃦⃦⃦
(𝒰 ⊗ ℐ(>𝑛)) (|𝑠⟩⟨𝑠|𝑖 ⊗ 𝜌)− |𝑠⟩⟨𝑠|𝑖 ⊗ 𝜌

⃦⃦⃦
1
+
⃦⃦⃦
|𝑠⟩⟨𝑠|𝑖 ⊗ 𝜌− |𝑠⟩⟨𝑠|𝑖 ⊗ (ℰ𝑈̸=𝑖 ⊗ ℐ(>𝑛))(𝜌)

⃦⃦⃦
1

(59)

≤ ‖𝒰 − ℐ‖◇ + ‖𝒰 − ℐ‖◇ < 𝜀. (60)

The first inequality follows from putting in |𝑠⟩⟨𝑠|𝑖 ⊗ 𝜌 and using triangle inequality. The second
inequality follows from the definition of diamond distance, the identity⃦⃦⃦

|𝑠⟩⟨𝑠|𝑖 ⊗ 𝜌− |𝑠⟩⟨𝑠|𝑖 ⊗ (ℰ𝑈̸=𝑖 ⊗ ℐ(>𝑛))(𝜌)
⃦⃦⃦
1

(61)

=

⃦⃦⃦⃦
⃦|𝑠⟩⟨𝑠|𝑖 ⊗ Tr𝑖

(︃
𝐼(𝑖)

2
⊗ 𝜌

)︃
− |𝑠⟩⟨𝑠|𝑖 ⊗ Tr𝑖

(︃(︁
𝒰 ⊗ ℐ(>𝑛)

)︁(︃𝐼(𝑖)
2
⊗ 𝜌

)︃)︃⃦⃦⃦⃦
⃦
1

, (62)

and the two facts: ‖𝜌𝐴 ⊗ 𝜌𝐵 − 𝜌𝐴 ⊗ 𝜌𝐶‖1 = ‖𝜌𝐵 − 𝜌𝐶‖1, ‖Tr𝑖(𝜌𝐴)‖1 ≤ ‖Tr(𝜌𝐴)‖1 for any density
matrix 𝜌𝐴, 𝜌𝐵, 𝜌𝐶 . The above derivation shows that 𝑈 is an 𝜀-approximate local identity on the
𝑖-th qubit, which is a contradiction. Therefore, ‖𝒰 − ℐ‖◇ ≥ 𝜀/2.

Proof of Lemma 3. From Theorem 3.55 in [103], we have

‖𝒰 − ℐ‖◇ =
⃦⃦⃦
𝑈 |𝜓⟩⟨𝜓|𝑈 † − |𝜓⟩⟨𝜓|

⃦⃦⃦
1

(63)

for some 𝑛-qubit state |𝜓⟩. Let ℐ(≤𝑘) be the identity CPTP map acting on the first 𝑘 qubit. We
use a telescoping sum of the form,

𝑈 |𝜓⟩⟨𝜓|𝑈 † − |𝜓⟩⟨𝜓| =
𝑛−1∑︁
𝑘=0

[︁(︁
ℐ(≤𝑘) ⊗ ℰ𝑈>𝑘

)︁
(|𝜓⟩⟨𝜓|)−

(︁
ℐ(≤𝑘+1) ⊗ ℰ𝑈>𝑘+1

)︁
(|𝜓⟩⟨𝜓|)

]︁
. (64)

By triangle inequality, we obtain

‖𝒰 − ℐ‖◇ ≤
𝑛−1∑︁
𝑘=0

⃦⃦⃦(︁
ℐ(≤𝑘) ⊗ ℰ𝑈>𝑘

)︁
(|𝜓⟩⟨𝜓|)−

(︁
ℐ(≤𝑘+1) ⊗ ℰ𝑈>𝑘+1

)︁
(|𝜓⟩⟨𝜓|)

⃦⃦⃦
1
. (65)

In the next step, we will bound each term in the above telescoping sum.
To bound the term corresponding to 𝑘 ∈ {0, . . . , 𝑛−1} in Eq. (65), we consider an (𝑘+(𝑛−𝑘)+𝑘)-

qubit density matrix 𝜌(𝑘). The first 𝑘 qubits of 𝜌(𝑘) is the maximally mixed state 𝐼(1,...,𝑘)

2𝑘
. The next

(𝑛− 𝑘) qubits of 𝜌(𝑘) corresponds to all except the first 𝑘 qubits in |𝜓⟩⟨𝜓|. The last 𝑘 qubits of 𝜌(𝑘)

corresponds to the first 𝑘 qubits in |𝜓⟩⟨𝜓|. Under this definition of 𝜌(𝑘), we have⃦⃦⃦(︁
ℐ(≤𝑘) ⊗ ℰ𝑈>𝑘

)︁
(|𝜓⟩⟨𝜓|)−

(︁
ℐ(≤𝑘+1) ⊗ ℰ𝑈>𝑘+1

)︁
(|𝜓⟩⟨𝜓|)

⃦⃦⃦
1

(66)

=
⃦⃦⃦(︁
𝒰 ⊗ ℐ(>𝑛)

)︁
(𝜌(𝑘))−

(︁
ℐ(𝑘+1) ⊗ ℰ𝑈̸=𝑘+1 ⊗ ℐ(>𝑛)

)︁
(𝜌(𝑘))

⃦⃦⃦
1
, (67)

where
(︁
ℐ(𝑘+1) ⊗ ℰ𝑈̸=𝑘+1 ⊗ ℐ(>𝑛)

)︁
(𝜌(𝑘)) is the output state after applying the (𝑛 − 1)-qubit CPTP

map ℰ𝑈̸=𝑘+1 to the first 𝑛 qubits except the (𝑘 + 1)-th qubit of 𝜌(𝑘). We now use the single-qubit

stabilizer decomposition with 𝑆 = {𝑘 + 1} given in Prop. 2 to obtain 𝜌(𝑘) =
∑︀10

𝑟=1 𝛼𝑟𝜌
(𝑘)
𝑟 with
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∑︀
𝑟 |𝛼𝑟| = 3 and the reduced density matrix of 𝜌(𝑘)𝑟 on the (𝑘+1)-th qubit is a single-qubit stabilizer

state. We can now bound each term by⃦⃦⃦(︁
𝒰 ⊗ ℐ(>𝑛)

)︁
(𝜌(𝑘))−

(︁
ℐ(𝑘+1) ⊗ ℰ𝑈̸=𝑘+1 ⊗ ℐ(>𝑛)

)︁
(𝜌(𝑘))

⃦⃦⃦
1

(68)

≤
10∑︁
𝑟=1

|𝛼𝑟|
⃦⃦⃦(︁
𝒰 ⊗ ℐ(>𝑛)

)︁
(𝜌(𝑘)𝑟 )−

(︁
ℐ(𝑘+1) ⊗ ℰ𝑈̸=𝑘+1 ⊗ ℐ(>𝑛)

)︁
(𝜌(𝑘)𝑟 )

⃦⃦⃦
1

(69)

≤
10∑︁
𝑟=1

|𝛼𝑟|𝜀𝑘+1 = 3𝜀𝑘+1. (70)

The first line is the triangle inequality. The second line uses the assumption that 𝑈 is an 𝜀𝑘+1-
approximate local identity on the (𝑘 + 1)-th qubit. Combining Eq. (65), Eq. (67), Eq. (70),

‖𝒰 − ℐ‖◇ ≤ 3
𝑛−1∑︁
𝑘=0

𝜀𝑘+1, (71)

which establishes the stated result.

4.2 Weak 𝜀-approximate local identity

We next look at another definition of approximate local identity: the reduced channel of 𝑈 on the
𝑖-th qubit is close to the identity map. This definition is very easy to check but only guarantees
that the unitary 𝑈 is close to the identity in the average-case distance (instead of the worst-case
distance, i.e., the diamond distance). Hence, we will refer to this as the weak 𝜀-approximate local
identity. Recall Definition 1 of reduced channel,

ℰ𝒰𝑖 (𝜌𝑖) = Tr ̸=𝑖

(︃
𝑈

(︃
𝐼(̸=𝑖)

2𝑛−1
⊗ 𝜌𝑖

)︃
𝑈 †

)︃
, (72)

where 𝜌𝑖 is a density matrix on the 𝑖-th qubit, 𝐼(̸=𝑖) is the identity on all except the 𝑖-th qubit, and
Tr ̸=𝑖 is the partial trace over all except the 𝑖-th qubit.

Definition 6 (Weak 𝜀-approximate local identity; unitary version). Given 𝑛 > 0, 𝜀 ≥ 0, and
𝑖 ∈ {1, . . . , 𝑛}. An 𝑛-qubit unitary 𝑈 is a weak 𝜀-approximate local identity on the 𝑖-th qubit if

𝒟ave

(︀
ℰ𝒰𝑖 , ℐ

)︀
≤ 𝜀, (73)

where ℐ is a 1-qubit CPTP map that acts as an identity.

In the literature of quantum junta learning [104], one defines the influence of a qubit 𝑖 in an
𝑛-qubit unitary 𝑈 =

∑︀
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛 𝛼𝑃𝑃 , where 𝛼𝑃 ∈ C to be∑︁

𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛

𝑃𝑖 ̸=𝐼

|𝛼𝑃 |2 . (74)

The following lemma shows that weak approximate local identity is equivalent to low influence.
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Lemma 4 (Characterization of weak 𝜀-approximate local identity). Given 𝑛 > 0, 𝜀 ≥ 0, and an
𝑛-qubit unitary 𝑈 . Consider the Pauli representation of 𝑈 =

∑︀
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛 𝛼𝑃𝑃 , where 𝛼𝑃 ∈ C.

𝒰 is a weak 𝜀-approximate local identity on the 𝑖-th qubit if and only if∑︁
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛

𝑃𝑖 ̸=𝐼

|𝛼𝑃 |2 ≤
3

2
𝜀. (75)

From the definition of influence in quantum junta learning [104], we have qubit 𝑖 has influence
bounded above by 1.5𝜀 in the unitary 𝑈 .

Proof. From the definition of the reduced channel, we have

ℰ𝒰𝑖 (𝜌𝑖) =
∑︁

𝑠1,𝑠2∈{𝐼,𝑋,𝑌,𝑍}

⎛⎜⎜⎜⎝ ∑︁
𝑃,𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛

𝑃𝑖=𝑠1,𝑄𝑖=𝑠2,𝑃 ̸=𝑖=𝑄 ̸=𝑖

𝛼*
𝑃𝛼𝑄

⎞⎟⎟⎟⎠ 𝑠1𝜌𝑖𝑠2, (76)

where 𝑃 ̸=𝑖, 𝑄 ̸=𝑖 is an (𝑛 − 1)-qubit Pauli observable equal to 𝑃 , 𝑄 with qubit 𝑖 removed. From
Fact 2 characterizing the average-case distance 𝒟ave, we have

𝒟ave

(︀
ℰ𝒰𝑖 , ℐ

)︀
=

2

3

⎛⎜⎜⎜⎝1−
∑︁

𝑃,𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛

𝑃𝑖=𝐼,𝑄𝑖=𝐼,𝑃 ̸=𝑖=𝑄 ̸=𝑖

𝛼*
𝑃𝛼𝑄

⎞⎟⎟⎟⎠ =
2

3

⎛⎜⎜⎝1−
∑︁

𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛

𝑃𝑖=𝐼

|𝛼𝑃 |2

⎞⎟⎟⎠ . (77)

Furthermore, we note that Tr
(︀
𝑈 †𝑈

)︀
= 2𝑛 = 2𝑛

∑︀
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛 |𝛼𝑃 |2. Hence, we have

1−
∑︁

𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛

𝑃𝑖=𝐼

|𝛼𝑃 |2 =
∑︁

𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛

𝑃𝑖 ̸=𝐼

|𝛼𝑃 |2 . (78)

The lemma follows from the two identities given above.

Weak 𝜀-approximate local identity naturally generalizes to any quantum process (channel) by
using the definition of reduced channels for channels. The formal definition is given below.

Definition 7 (Weak 𝜀-approximate local identity; channel version). Given 𝑛 > 0, 𝜀 ≥ 0, and
𝑖 ∈ {1, . . . , 𝑛}. An 𝑛-qubit CPTP map 𝒞 is a weak 𝜀-approximate local identity on the 𝑖-th qubit if

𝒟ave

(︀
ℰ𝒞𝑖 , ℐ

)︀
≤ 𝜀, (79)

where ℐ is a 1-qubit CPTP map that acts as an identity.

The following two lemmas give the relationships between global and local identity checks. The
basic idea is to check whether a map is close to identity by checking whether the map forms
approximate local identities on all the 𝑛 qubits.

Lemma 5 (Global non-identity check from local non-identity checks). Given an integer 𝑛 > 0
and an 𝑛-qubit CPTP map 𝒞. If there exists 𝜀 > 0 and 𝑖 ∈ {1, . . . , 𝑛}, such that 𝒞 is not a weak
𝜀-approximate local identity on the 𝑖-th qubit, then 𝒟ave(𝒞, ℐ) ≥ 𝜀.
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Lemma 6 (Global identity check from local identity checks). Given an integer 𝑛 > 0 and an 𝑛-qubit
CPTP map 𝒞. If there exists 𝜀1, . . . , 𝜀𝑛 > 0, such that 𝒞 is a weak 𝜀𝑖-approximate local identity on
the 𝑖-th qubit for all 𝑖 ∈ {1, . . . , 𝑛}, then 𝒟ave(𝒞, ℐ) ≤ 3

2

∑︀𝑛
𝑖=1 𝜀𝑖.

Proof of Lemma 5 and 6. Let us define |Ω1⟩ = 1√
2
(|00⟩ + |11⟩), and |Ω𝑛⟩ = |Ω1⟩⊗𝑛. From Fact 2

characterizing the average-case distance 𝒟ave, we have

𝒟ave(𝒞, ℐ) =
2𝑛

2𝑛 + 1
(1− ⟨Ω𝑛| (𝒞 ⊗ ℐ) (|Ω𝑛⟩⟨Ω𝑛|) |Ω𝑛⟩) . (80)

We can think of the term ⟨Ω𝑛| (𝒞 ⊗ ℐ) (|Ω𝑛⟩⟨Ω𝑛|) |Ω𝑛⟩ as the probability of getting |Ω1⟩ on all 𝑛
parallel two-qubit Bell-basis measurements on the 2𝑛-qubit state (𝒞 ⊗ ℐ) (|Ω𝑛⟩⟨Ω𝑛|). From standard
probability theory, we have the following inequality,

1− ⟨Ω𝑛| (ℰ ⊗ ℐ) (|Ω𝑛⟩⟨Ω𝑛|) |Ω𝑛⟩ ≥ 1− Tr
(︁(︁
|Ω1⟩⟨Ω1| ⊗ 𝐼⊗2

̸=𝑖

)︁
(𝒞 ⊗ ℐ) (|Ω𝑛⟩⟨Ω𝑛|)

)︁
, (81)

where |Ω1⟩⟨Ω1| ⊗ 𝐼⊗2
̸=𝑖 is a projection onto |Ω1⟩⟨Ω1| on the 𝑖-th and (𝑛+ 𝑖)-th qubit for any 𝑖. Also,

from union bound, we have

1− ⟨Ω𝑛| (ℰ ⊗ ℐ) (|Ω𝑛⟩⟨Ω𝑛|) |Ω𝑛⟩ ≤ 1−
𝑛∑︁
𝑖=1

(︁
1− Tr

(︁(︁
|Ω1⟩⟨Ω1| ⊗ 𝐼⊗2

̸=𝑖

)︁
(𝒞 ⊗ ℐ) (|Ω𝑛⟩⟨Ω𝑛|)

)︁)︁
. (82)

By reorganizing using the reduced channel of 𝒞 on the 𝑖-th qubit, we have

Tr
(︁(︁
|Ω1⟩⟨Ω1| ⊗ 𝐼⊗2

̸=𝑖

)︁
(𝒞 ⊗ ℐ) (|Ω𝑛⟩⟨Ω𝑛|)

)︁
= ⟨Ω1|

(︀
ℰ𝒞𝑖 ⊗ ℐ

)︀
(|Ω1⟩⟨Ω1|) |Ω1⟩ . (83)

Therefore, we have

3

2
× 2𝑛

2𝑛 + 1

𝑛∑︁
𝑖=1

𝒟ave(ℰ𝒞𝑖 , ℐ) ≥ 𝒟ave(𝒞, ℐ) ≥
3

2
× 2𝑛

2𝑛 + 1
𝒟ave(ℰ𝒞𝑖 , ℐ). (84)

By noting that 3
2 ≥

3
2 ×

2𝑛

2𝑛+1 and 3
2 ×

2𝑛

2𝑛+1 ≥ 1, we obtain Lemma 5 and 6.

5 Learning shallow quantum circuits from a classical dataset

In this section, we present algorithms for learning shallow quantum circuits that achieve a small
diamond distance. All algorithms in this section use a classical dataset obtained from performing
randomized measurements on the unknown shallow quantum circuit (defined below) to classically
reconstruct the unknown circuit. The learning algorithms only require classical computation.

Definition 8 (Randomized measurement dataset for an unknown unitary). The learning algorithm
accesses an unknown 𝑛-qubit unitary 𝑈 via a randomized measurement dataset of the following form,

𝒯𝑈 (𝑁) =

{︃
|𝜓ℓ⟩ =

𝑛⨂︁
𝑖=1

|𝜓ℓ,𝑖⟩ , |𝜑ℓ⟩ =
𝑛⨂︁
𝑖=1

|𝜑ℓ,𝑖⟩

}︃𝑁
ℓ=1

. (85)

A randomized measurement dataset of size 𝑁 is constructed by obtaining 𝑁 samples from the un-
known unitary 𝑈 . One sample is obtained from one experiment given as follows.
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1. Sample an input state |𝜓ℓ⟩ =
⨂︀𝑛

𝑖=1 |𝜓ℓ,𝑖⟩, which is a product state consisting of uniformly
random single-qubit stabilizer states in stab1.

2. Apply the unknown unitary 𝑈 to |𝜓ℓ⟩.

3. Measure every qubit of 𝑈 |𝜓ℓ⟩ under a random Pauli basis. The measurement collapses the
state 𝑈 |𝜓ℓ⟩ to a state |𝜑ℓ⟩ =

⨂︀𝑛
𝑖=1 |𝜑ℓ,𝑖⟩, where |𝜑ℓ,𝑖⟩ is a single-qubit stabilizer state stab1.

Together, 𝑁 queries to 𝑈 construct a dataset 𝒯𝑈 (𝑁) with 𝑁 samples. The dataset can be represented
efficiently on a classical computer with 𝒪(𝑁𝑛) bits.

An interesting question is whether quantum learning algorithms that have access to the unknown
quantum circuit 𝑈 could be much more efficient. In Section 6, we present a quantum learning
algorithm that achieves the optimal scaling in query complexity and computational time for learning
geometrically-local shallow quantum circuits over finite gate sets.

5.1 Results

We present the results for learning general and geometrically-local shallow quantum circuits con-
sisting of two-qubit gates over SU(4) and over a finite gate set using a classical dataset.

5.1.1 Learning general shallow quantum circuits

We consider the problem of learning an 𝑛-qubit unitary 𝑈 created by a general shallow quantum
circuit 𝐶 with arbitrary circuit connectivity, i.e., every qubit can be connected to any other qubit
by a quantum gate, and an arbitrary number 𝑚 of ancilla qubits initialized in |0𝑚⟩ and ended up
in |0𝑚⟩ after 𝐶. Formally, we have the following identity for 𝑈 ,

𝑈 ⊗ |0𝑚⟩ = 𝐶(𝐼𝑛 ⊗ |0𝑚⟩), (86)

where 𝐼𝑛 is an identity on 𝑛 qubits.
We have the following theorems for learning the unknown unitary 𝑈 . We can see that the

sample/query complexity is very similar to learning geometric-local circuits. However, the compu-
tational complexity becomes higher, and we can only guarantee a polynomial scaling with system
size 𝑛. The learning algorithm and proof are given in Section 5.3.

Theorem 5 (Learning general shallow quantum circuits). Given a failure probability 𝛿, an approx-
imation error 𝜀, and an unknown 𝑛-qubit unitary 𝑈 generated by a constant-depth circuit over any
two-qubit gates in SU(4) with an arbitrary number of ancilla qubits. With a randomized measurement
dataset 𝒯𝑈 (𝑁) of size

𝑁 = 𝒪
(︂
𝑛2 log(𝑛/𝛿)

𝜀2

)︂
, (87)

we can learn an 𝑛-qubit quantum channel ℰ̂ that can be implemented by a constant-depth quantum
circuit over 2𝑛 qubits, such that ⃦⃦⃦

ℰ̂ − 𝒰
⃦⃦⃦
◇
≤ 𝜀, (88)

with probability at least 1− 𝛿. The classical computational time to learn ℰ̂ is poly(𝑛) log(1/𝛿)/𝜀2.
In addition, if each two-qubit gate in the unknown circuit is chosen from a finite gate set of a

constant size, then the algorithm learns an exact description ℰ̂ = 𝒰 with probability 1 − 𝛿, using
𝑁 = 𝒪(log(𝑛/𝛿)) samples and 𝒪(poly(𝑛) log(1/𝛿)) time.

Remark 1 (Implementation of learned 𝑛-qubit channel). The 𝑛-qubit channel ℰ̂ is the reduced
channel ℰ𝑉≤𝑛 of the constant-depth 2𝑛-qubit circuit 𝑉 on the first 𝑛 qubits.
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(a) Original geometry (b) Learned geometry

Figure 1: Learning geometrically-local shallow quantum circuits. (a) In this example, the geometry
is a 2D lattice where each vertex has a degree at most 4. The lightcone of the blue qubit (for depth
𝑑 = 2) is the union of the blue and orange qubits. (b) The learned circuit acts on an extended
geometry with 2𝑛 qubits, where each system qubit (black) is attached to an ancilla qubit (red).
Note that each ancilla qubit is connected only with its corresponding system qubit (red edges).

5.1.2 Learning geometrically-local shallow quantum circuits

We consider the problem of learning geometrically-local shallow quantum circuits. Here, we consider
a generalized definition of geometric locality, which includes quantum circuits over 1D, 2D, and
3D geometry. The generalization enables more exotic geometry over the qubits and is formally
represented by a fixed constant-degree graph. See Fig. 1(a) for an illustration of the definitions.

Definition 9 (Geometric locality). A geometry over 𝑛 qubits is defined by a graph 𝐺 = (𝑉,𝐸)
with 𝑛 = |𝑉 | vertices, and each vertex has a degree of at most 𝜅 = 𝑂(1). A geometrically-local
two-qubit gate can only act on an edge of 𝐺. A geometrically-local quantum circuit is a circuit with
only geometrically-local two-qubit quantum gates. A depth-𝑑 geometrically-local quantum circuit has
𝑑 layers, where each layer consists of non-overlapping geometrically-local two-qubit gates.

Definition 10 (Lightcone in a geometry). Given a geometry over 𝑛 qubits represented by a graph
𝐺 = (𝑉,𝐸) with degree 𝜅 and an integer 𝑑. The lightcone 𝐿𝑑(𝑖) of a qubit 𝑖 with depth 𝑑 is the set
of qubits with distance at most 𝑑 from qubit 𝑖 in the graph 𝐺. We have |𝐿𝑑(𝑖)| ≤ (𝜅+ 1)𝑑.

Definition 11 (Geometrically-local set). Given a geometry over 𝑛 qubits represented by a graph
𝐺 = (𝑉,𝐸). A set 𝑆 of qubits is geometrically local if all qubits in 𝑆 are of 𝒪(1) distance in 𝐺.

Under this more general definition of geometry, our proposed algorithm can still learn very
efficiently. The following theorem quantifies the efficiency in terms of both the query complexity
and the computational complexity. The learning algorithm and proof are given in Section 6.2.

Theorem 6 (Learning geometrically-local shallow quantum circuits). Given an unknown geomet-
rically local constant-depth 𝑛-qubit circuit 𝑈 over any two-qubit gates in SU(4). With a randomized
measurement dataset 𝒯𝑈 (𝑁) of size

𝑁 = 𝒪
(︂
𝑛2 log(𝑛/𝛿)

𝜀2

)︂
, (89)
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we can learn an 𝑛-qubit quantum channel ℰ̂ that can be implemented by a geometrically local constant-
depth quantum circuit over 2𝑛 qubits, such that⃦⃦⃦

ℰ̂ − 𝒰
⃦⃦⃦
◇
≤ 𝜀, (90)

with probability at least 1− 𝛿. The computational time to learn ℰ̂ is 𝒪(𝑛3 log(𝑛/𝛿)/𝜀2).
In addition, if each two-qubit gate in the unknown circuit is chosen from a finite gate set of a

constant size, then the algorithm learns an exact description ℰ̂ = 𝒰 with probability 1 − 𝛿, using
𝑁 = 𝒪(log(𝑛/𝛿)) samples and 𝒪(𝑛 log(𝑛/𝛿)) time.

Remark 2 (Implementation of learned 𝑛-qubit channel). The 𝑛-qubit channel ℰ̂ is equal to the
reduced channel ℰ𝑉≤𝑛 of the geometrically-local constant-depth 2𝑛-qubit circuit 𝑉 on the first 𝑛 qubits.

Next, we look at a result, where we optimize the circuit depth in the learned circuit for imple-
menting ℰ̂ . While the depth in the learned circuit can be controlled, the computational complexity
becomes substantially worse. The learning algorithm and proof are given in Section 5.5.

Theorem 7 (Learning geometrically-local shallow circuits on 𝑘-dimensional lattice with optimized
circuit depth). Given an unknown 𝑛-qubit circuit 𝑈 over any two-qubit gates in SU(4) with circuit
depth 𝑑 = 𝒪(1) acting on a 𝑘-dimensional lattice with 𝑘 = 𝒪(1). With a randomized measurement
dataset 𝒯𝑈 (𝑁) of size

𝑁 = 2𝒪((8𝑘𝑑)𝑘)𝑛
2 log(𝑛/𝛿)

𝜀2
, (91)

we can learn an 𝑛-qubit quantum channel ℰ̂ that can be implemented by a quantum circuit over 2𝑛
qubits on an extended 𝑘-dimensional lattice (see Fig. 1(b)), such that⃦⃦⃦

ℰ̂ − 𝒰
⃦⃦⃦
◇
≤ 𝜀, (92)

with probability at least 1− 𝛿.

• With computational time 𝒪(𝑛) ·𝑁 , the learned circuit has depth at most

(𝑘 + 1)44(8𝑘𝑑)
𝑘
+ 1. (93)

• With computational time 𝒪(𝑛) ·𝑁 + (𝑛/𝜀)𝒪((8𝑘𝑑)𝑘+1), the learned circuit has depth at most

(𝑘 + 1)(2𝑑+ 1) + 1. (94)

In addition, if each two-qubit gate in the unknown circuit is chosen from a finite gate set of a
constant size, then the algorithm learns an exact description ℰ̂ = 𝒰 with probability 1 − 𝛿, using
𝑁 = 𝒪(log(𝑛/𝛿)) samples, 𝒪(𝑛 log(𝑛/𝛿)) time, and a learned circuit of depth (𝑘 + 1)(2𝑑+ 1) + 1.

Remark 3 (The geometry in the doubled system). In the two theorems given above, we mentioned
geometrically-local circuits over 2𝑛 qubits, while the geometry is defined over 𝑛 qubits. Given the
geometry represented as a graph 𝐺 = (𝑉,𝐸) over 𝑛 qubits with 𝑉 = {1, . . . , 𝑛}. We extend the graph
to 2𝑛 qubits 𝐺ext = (𝑉ext, 𝐸ext) as follows.

𝑉ext = {1, . . . , 𝑛, 𝑛+ 1, . . . , 2𝑛}, 𝐸ext = 𝐸 ∪ {(𝑖, 𝑛+ 𝑖)|1 ≤ 𝑖 ≤ 𝑛}. (95)

Each qubit 𝑛+𝑖 in the added system is connected only to qubit 𝑖 in the original system; See Fig. 1(b).
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5.2 Techniques

We present two sets of closely related techniques for learning an 𝑛-qubit unitary 𝑈 . The first set
in Section 5.2.1 uses an idea called local inversion unitary, which follows from the concept of strong
approximate local identity given in Section 4. As we have shown earlier, strong local identity checks
can be performed by using Heisenberg-evolved single-qubit Pauli observables 𝑈 †𝑃𝑖𝑈 . The second
set in Section 5.2.2 directly uses the Heisenberg-evolved Pauli observables 𝑈 †𝑃𝑖𝑈 .

5.2.1 Learning using local inversion

We begin by defining the concept of an approximate local inversion unitary.

Definition 12 (Strong 𝜀-approximate local inversion). Given 𝑛 ∈ N, 𝜀 ∈ (0, 1), 𝑖 ∈ {1, . . . , 𝑛}, and
𝑛-qubit unitaries 𝑈 and 𝑉𝑖. We say 𝑉𝑖 is a strong 𝜀-approximate local inversion of 𝑈 on the 𝑖-th
qubit if 𝒰𝒱𝑖 is a strong 𝜀-approximate local identity on the 𝑖-th qubit.

Corollary 2 (Local inversion from Heisenberg-evolved Pauli observables). Given 𝑛 ∈ N, 𝜀 ∈ (0, 1),
𝑖 ∈ {1, . . . , 𝑛}, and 𝑛-qubit unitaries 𝑈 and 𝑉𝑖. If 𝑉𝑖 satisfies∑︁

𝑃∈{𝑋,𝑌,𝑍}

⃦⃦⃦
𝑉 †
𝑖 𝑈

†𝑃𝑖𝑈𝑉𝑖 − 𝑃𝑖
⃦⃦⃦
∞
≤ 𝜀, (96)

where 𝑃𝑖 acts as 𝑃 ∈ {𝑋,𝑌, 𝑍} on the 𝑖-th qubit and as identity on the rest of the qubits, then 𝑉𝑖 is
a strong 𝜀-approximate local inversion of 𝑈 on the 𝑖-th qubit.

Proof. This corollary follows from Lemma 1, which characterizes the strong 𝜀-approximate local
identity with Heisenberg evolution of single-qubit Pauli observables.

Instead of learning the unitary 𝑈 alone, we consider learning the 𝑛 local inversion unitaries
𝑉1, . . . , 𝑉𝑛. From the corollary given above, a straightforward way to learn 𝑉𝑖 is to first learn the
Heisenberg-evolved single-qubit Pauli observable 𝑈 †𝑃𝑖𝑈 for all 𝑃 = 𝑋,𝑌, 𝑍, then try to find a
unitary 𝑉𝑖 that evolves 𝑈 †𝑃𝑖𝑈 approximately back to 𝑃𝑖. This could be a much simpler task than
learning the entire 𝑛-qubit unitary altogether.

While local inversion could potentially make the learning easier, it is a priori unclear if learning
these local inversions is sufficient to learn 𝑈 . In the following, we define a formalism for sewing
these local inversion unitaries into a 2𝑛-qubit unitary (instead of 𝑛 qubits).

Definition 13 (Sewing the local inversions). Given 𝑛 ∈ N and 𝑛-qubit unitaries 𝑉1, . . . , 𝑉𝑛. We
define the sewed 2𝑛-qubit unitary consisting of two sets of 𝑛 qubits to be the following,

𝑈sew(𝑉1, . . . , 𝑉𝑛) := 𝑆

[︃
𝑛∏︁
𝑖=1

(︁
𝑉

(1)
𝑖

)︁
𝑆𝑖

(︁
𝑉

(1)
𝑖

)︁†]︃
, (97)

where 𝑉 (1)
𝑖 corresponds to applying the 𝑛-qubit unitary 𝑉𝑖 on the first 𝑛 qubits, 𝑆𝑖 is the swap operator

for the 𝑖-th qubit between the two sets of 𝑛 qubits, 𝑆 is the swap operator for all 𝑛 qubits.

Remark 4 (Sewing order). The order for
(︁
𝑉

(1)
𝑖

)︁
S𝑖

(︁
𝑉

(1)
𝑖

)︁†
in sewing the local inversions does not

matter. We can choose the order to optimize the resulting circuit, e.g., to minimize the circuit depth.

25



Lemma 7 (Form of the sewed local inversions). Given 𝑛 ∈ N and 𝑛-qubit unitaries 𝑈, 𝑉1, . . . , 𝑉𝑛.
Assume 𝑉𝑖 is a strong 𝜀𝑖-approximate local inversion of 𝑈 on the 𝑖-th qubit. Let 𝑈sew = 𝑈sew(𝑉1, . . . , 𝑉𝑛).

𝒟◇(𝒰sew,𝒰 ⊗ 𝒰†) =
1

2

⃦⃦⃦
𝒰sew − 𝒰 ⊗ 𝒰†

⃦⃦⃦
◇
≤

𝑛∑︁
𝑖=1

𝜀𝑖, (98)

where the first/second set of 𝑛 qubits is on the left/right of the tensor product.

Proof. From Theorem 3.55 in [103], we have⃦⃦⃦
𝒰sew − 𝒰 ⊗ 𝒰†

⃦⃦⃦
◇
=
⃦⃦⃦
(𝑈 † ⊗ 𝑈)𝑈sew |𝜓⟩⟨𝜓|𝑈 †

sew(𝑈 ⊗ 𝑈 †)− |𝜓⟩⟨𝜓|
⃦⃦⃦
1

(99)

for some 2𝑛-qubit state |𝜓⟩. We define the following mathematical object,

|𝜓𝑖⟩⟨𝜓𝑖| :=
[︂
(𝒰† ⊗ ℐ) (𝒮1 . . .𝒮𝑖) (ℐ ⊗ 𝒰)𝒮

(︂(︁
𝒱(1)𝑖+1

)︁
𝒮𝑖+1

(︁
𝒱(1)𝑖+1

)︁†
. . .
(︁
𝒱(1)𝑛

)︁
𝒮𝑛
(︁
𝒱(1)𝑛

)︁†)︂]︂
(|𝜓⟩⟨𝜓|)

(100)
for each 𝑖 = 0, . . . , 𝑛. Note that we have the following identities,

|𝜓0⟩⟨𝜓0| = (𝑈 † ⊗ 𝑈)𝑈sew |𝜓⟩⟨𝜓|𝑈 †
sew(𝑈 ⊗ 𝑈 †), (101)

|𝜓𝑛⟩⟨𝜓𝑛| =
[︁
(𝒰† ⊗ ℐ)𝒮(ℐ ⊗ 𝒰)𝒮

]︁
(|𝜓⟩⟨𝜓|) = |𝜓⟩⟨𝜓| . (102)

By the triangle inequality, we can obtain the following telescoping sum,⃦⃦⃦
𝒰sew − 𝒰 ⊗ 𝒰†

⃦⃦⃦
◇
= ‖|𝜓0⟩⟨𝜓0| − |𝜓𝑛⟩⟨𝜓𝑛|‖1 ≤

𝑛∑︁
𝑖=1

‖|𝜓𝑖⟩⟨𝜓𝑖| − |𝜓𝑖−1⟩⟨𝜓𝑖−1|‖1. (103)

Each summand can be bounded as follows,

‖|𝜓𝑖⟩⟨𝜓𝑖| − |𝜓𝑖−1⟩⟨𝜓𝑖−1|‖1 ≤
⃦⃦⃦
𝒮𝑖(ℐ ⊗ 𝒰)𝒮 − (ℐ ⊗ 𝒰)𝒮 (𝒱𝑖 ⊗ ℐ)𝒮𝑖 (𝒱𝑖 ⊗ ℐ)†

⃦⃦⃦
◇

(104)

=
⃦⃦⃦
𝒮𝒮𝑖(𝒰 ⊗ ℐ)− 𝒮(𝒰 ⊗ ℐ) (𝒱𝑖 ⊗ ℐ)𝒮𝑖 (𝒱𝑖 ⊗ ℐ)†

⃦⃦⃦
◇

(105)

≤
⃦⃦⃦
𝒮𝑖(𝒰 ⊗ ℐ)−

(︁(︁
ℐ𝑖 ⊗ ℰ𝒰𝒱𝑖

̸=𝑖

)︁
⊗ ℐ

)︁
𝒮𝑖 (𝒱𝑖 ⊗ ℐ)†

⃦⃦⃦
◇
+ 𝜀𝑖 (106)

=
⃦⃦⃦
𝒮𝑖(𝒰 ⊗ ℐ)− 𝒮𝑖

(︁(︁
ℐ𝑖 ⊗ ℰ𝒰𝒱𝑖

̸=𝑖

)︁
⊗ ℐ

)︁
(𝒱𝑖 ⊗ ℐ)†

⃦⃦⃦
◇
+ 𝜀𝑖 (107)

=
⃦⃦⃦
(𝒰𝒱𝑖 ⊗ ℐ)−

(︁(︁
ℐ𝑖 ⊗ ℰ𝒰𝒱𝑖

̸=𝑖

)︁
⊗ ℐ

)︁⃦⃦⃦
◇
+ 𝜀𝑖 ≤ 2𝜀𝑖. (108)

Together, we obtain the desired statement.

Remark 5 (A basic identity for 𝑈 ⊗𝑈 †). A trivial example of an exact local inversion of 𝑈 on the
𝑖-th qubit is 𝑉𝑖 = 𝑈 †. In this case, Lemma 7 yields the following basic identity,

𝑈 ⊗ 𝑈 † = 𝑆

[︃
𝑛∏︁
𝑖=1

(︁
𝑈 † ⊗ 𝐼

)︁
𝑆𝑖 (𝑈 ⊗ 𝐼)

]︃
, (109)

which can also be shown by canceling all the intermediate (𝑈 ⊗ 𝐼)
(︀
𝑈 † ⊗ 𝐼

)︀
.
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5.2.2 Learning using Heisenberg-evolved Pauli observables

We have seen earlier that one direct approach to learning local inversion is to first learn the
Heisenberg-evolved single-qubit Pauli observables 𝑈 †𝑃𝑖𝑈 . In the following, we define an alternative
formalism that directly sews the Heisenberg-evolved Pauli observables into a 2𝑛-qubit unitary (in-
stead of 𝑛 qubits) that approximates 𝑈 ⊗ 𝑈 †. One can flexibly choose either approach. Typically,
learning the Heisenberg-evolved Pauli observables is computationally simpler, but yields higher
depth in the learned circuit.

Definition 14 (Approximate Heisenberg-evolved Paui observables). Given 𝑛 ∈ N, 𝜀 ∈ (0, 1), 𝑖 ∈
{1, . . . , 𝑛}, 𝑃 ∈ {𝑋,𝑌, 𝑍}, an 𝑛-qubit unitary 𝑈 , and an 𝑛-qubit observable 𝑂𝑖,𝑃 . We say 𝑂𝑖,𝑃 is an
𝜀-approximate Heisenberg-evolved Pauli observable 𝑃 on qubit 𝑖 under 𝑈 if

⃦⃦
𝑂𝑖,𝑃 − 𝑈 †𝑃𝑖𝑈

⃦⃦
∞ ≤ 𝜀.

Given a set of 3𝑛 Heisenberg-evolved Pauli observables, we use the following definition to sew
them into a 2𝑛-qubit unitary.

Definition 15 (Sewing the Heisenberg-evolved observables). Given 𝑛 ∈ N and 3×𝑛 𝑛-qubit observ-
ables 𝑂𝑖,𝑃 , ∀𝑖 = 1, . . . , 𝑛, 𝑃 ∈ {𝑋,𝑌, 𝑍}. Let ProjU(𝐴) be the projection of a matrix 𝐴 to a unitary
matrix minimizing the operator norm ‖·‖∞, i.e.,

ProjU(𝐴) := argmin
𝐵:unitary

‖𝐴−𝐵‖∞. (110)

We define the sewed 2𝑛-qubit unitary consisting of two sets of 𝑛 qubits to be the following,

𝑈sew({𝑂𝑖,𝑃 }𝑖,𝑃 ) := 𝑆
𝑛∏︁
𝑖=1

⎡⎣ProjU
⎛⎝1

2
𝐼 ⊗ 𝐼 + 1

2

∑︁
𝑃∈{𝑋,𝑌,𝑍}

𝑂𝑖,𝑃 ⊗ 𝑃𝑖

⎞⎠⎤⎦ , (111)

where 𝑉 (1)
𝑖 corresponds to applying the 𝑛-qubit unitary 𝑉𝑖 on the first 𝑛 qubits, 𝑆𝑖 is the swap operator

for the 𝑖-th qubit between the two sets of 𝑛 qubits, 𝑆 is the swap operator for all 𝑛 qubits.

Remark 6 (Sewing order). The order for sewing ProjU
(︀
1
2 𝐼 ⊗ 𝐼 +

1
2

∑︀
𝑃 𝑂𝑖,𝑃 ⊗ 𝑃𝑖

)︀
is arbitrary.

In the above, we have utilized the projection function ProjU. In the following lemma, we show
that this function can be computed efficiently on a classical computer.

Lemma 8 (Projection onto unitary matrices). Consider the singular value decomposition 𝐴 =
𝑈Σ𝑉 †, where Σ is diagonal, nonnegative, and 𝑈, 𝑉 is unitary. The projection can be defined as

ProjU(𝐴) = 𝑈𝑉 †. (112)

The computational time is polynomial in the dimension of 𝐴.

Proof. Consider any unitary 𝐵. We have ‖𝐴−𝐵‖∞ =
⃦⃦
Σ− 𝑈 †𝐵𝑉

⃦⃦
∞. Let 𝑊 be the unitary

𝑈 †𝐵𝑉 . We can use the definition of ‖𝑀‖∞ = sup𝑣 ‖𝑀𝑣‖2/‖𝑣‖2 to see that

‖Σ−𝑊‖∞ ≥ max
𝑖
‖Σ𝑖𝑖𝑒𝑖 −𝑊𝑒𝑖‖2 ≥ max

𝑖

√︁
1 + Σ2

𝑖𝑖 − 2Σ𝑖𝑖Re[𝑒𝑇𝑖 𝑊𝑒𝑖] ≥ max
𝑖
|1− Σ𝑖𝑖| = ‖Σ− 𝐼‖∞,

(113)
where 𝑒𝑖 is the unit vector with a nonzero entry on the 𝑖-th coordinate. Because ‖Σ− 𝐼‖∞ =⃦⃦
𝐴− 𝑈𝑉 †⃦⃦

∞, we have obtained ‖𝐴−𝐵‖∞ ≥
⃦⃦
𝐴− 𝑈𝑉 †⃦⃦

∞.

Similar to sewing local inversions, the sewed unitary accurately approximates 𝑈 ⊗ 𝑈 †.
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Lemma 9 (Form of the sewed Heisenberg-evolved observables). Given 𝑛 ∈ N, an 𝑛-qubit unitary 𝑈 ,
and 3×𝑛 𝑛-qubit observables 𝑂𝑖,𝑃 , ∀𝑖 = 1, . . . , 𝑛, 𝑃 ∈ {𝑋,𝑌, 𝑍}. Assume 𝑂𝑖,𝑃 is an 𝜀𝑖,𝑃 -approximate
Heisenberg-evolved Pauli observable 𝑃 on qubit 𝑖 under 𝑈 . Let 𝑈sew = 𝑈sew({𝑂𝑖,𝑃 }𝑖,𝑃 ). Then

𝒟◇(𝒰sew,𝒰 ⊗ 𝒰†) =
1

2

⃦⃦⃦
𝒰sew − 𝒰 ⊗ 𝒰†

⃦⃦⃦
◇
≤

𝑛∑︁
𝑖=1

∑︁
𝑃∈{𝑋,𝑌,𝑍}

𝜀𝑖,𝑃 , (114)

where the first/second set of 𝑛 qubits is on the left/right of the tensor product.

Proof. From Eq. (109), we have the following identity,

𝑈 ⊗ 𝑈 † = 𝑆

[︃
𝑛∏︁
𝑖=1

(𝑈 † ⊗ 𝐼)𝑆𝑖(𝑈 ⊗ 𝐼)

]︃
. (115)

Using the fact that 𝑆𝑖 = 1
2𝐼 ⊗ 𝐼 +

1
2

∑︀
𝑃∈{𝑋,𝑌,𝑍} 𝑃𝑖 ⊗ 𝑃𝑖, we can rewrite the above identity as

𝑈 ⊗ 𝑈 † = 𝑆
𝑛∏︁
𝑖=1

⎡⎣1
2
𝐼 ⊗ 𝐼 + 1

2

∑︁
𝑃∈{𝑋,𝑌,𝑍}

(𝑈 †𝑃𝑖𝑈)⊗ 𝑃𝑖

⎤⎦ . (116)

Let us denote the following unitaries,

𝑉𝑖 :=
1

2
𝐼 ⊗ 𝐼 + 1

2

∑︁
𝑃∈{𝑋,𝑌,𝑍}

(𝑈 †𝑃𝑖𝑈)⊗ 𝑃𝑖, (117)

̃︁𝑊𝑖 :=
1

2
𝐼 ⊗ 𝐼 + 1

2

∑︁
𝑃∈{𝑋,𝑌,𝑍}

𝑂𝑖,𝑃 ⊗ 𝑃𝑖 (118)

𝑊𝑖 := ProjU

(︁̃︁𝑊𝑖

)︁
. (119)

We can upper bound the diamond distance as follows,⃦⃦⃦
𝒰sew − 𝒰 ⊗ 𝒰†

⃦⃦⃦
◇
= ‖𝒱𝑛 . . .𝒱1 −𝒲𝑛 . . .𝒲1‖◇ (120)

≤
𝑛∑︁
𝑖=1

‖𝒱𝑛 . . .𝒱𝑖+1𝒲𝑖 . . .𝒲1 − 𝒱𝑛 . . .𝒱𝑖𝒲𝑖−1 . . .𝒲1‖◇ (121)

≤
𝑛∑︁
𝑖=1

‖𝒱𝑛 . . .𝒱𝑖+1𝒲𝑖 . . .𝒲1 − 𝒱𝑛 . . .𝒱𝑖𝒲𝑖−1 . . .𝒲1‖◇ (122)

=
𝑛∑︁
𝑖=1

‖𝒲𝑖 − 𝒱𝑖‖◇ ≤ 2
𝑛∑︁
𝑖=1

‖𝑊𝑖 − 𝑉𝑖‖∞. (123)

The last inequality uses the fact that 𝒲𝑖 and 𝒱𝑖 are unitary channels. From triangle inequality and
the definition of ProjU(·), we have the following inequality,

‖𝑊𝑖 − 𝑉𝑖‖∞ ≤
⃦⃦⃦
𝑊𝑖 −̃︁𝑊𝑖

⃦⃦⃦
∞

+
⃦⃦⃦̃︁𝑊𝑖 − 𝑉𝑖

⃦⃦⃦
∞

= min
𝑉 :unitary

⃦⃦⃦̃︁𝑊𝑖 − 𝑉
⃦⃦⃦
∞

+
⃦⃦⃦̃︁𝑊𝑖 − 𝑉𝑖

⃦⃦⃦
∞

≤ 2
⃦⃦⃦̃︁𝑊𝑖 − 𝑉𝑖

⃦⃦⃦
∞
.

(124)
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We now use the specific form of ̃︁𝑊𝑖, 𝑉𝑖 to upper bound the summand,

‖𝑊𝑖 − 𝑉𝑖‖∞ ≤
∑︁

𝑃∈{𝑋,𝑌,𝑍}

⃦⃦⃦
𝑂𝑖,𝑃 − 𝑈 †𝑃𝑖𝑈

⃦⃦⃦
∞
≤
∑︁
𝑃

𝜀𝑖,𝑃 . (125)

Together with Eq. (123), we can obtain the desired statement.

Given an 𝑛-qubit observable 𝑂, we define supp(𝑂) to be the set of qubits that the observable
𝑂 acts on. We also define |𝑂| to be the size of supp(𝑂). We have the following lemma for learning
a few-body observable. The learned observable 𝑂̂ has the property that it only acts on qubits that
𝑂 acts on, hence supp(𝑂̂) ⊆ supp(𝑂).

Lemma 10 (Learning a few-body observable with an unknown support). Given an error 𝜀, failure
probability 𝛿, an unknown 𝑛-qubit observable 𝑂 with ‖𝑂‖∞ ≤ 1 that acts on an unknown set of 𝑘
qubits, and a dataset 𝒯𝑂(𝑁) = {|𝜓ℓ⟩ =

⨂︀𝑛
𝑖=1 |𝜓ℓ,𝑖⟩ , 𝑣ℓ}

𝑁
ℓ=1, where |𝜓ℓ,𝑖⟩ is sampled uniformly from

stab1 and 𝑣ℓ is a random variable with E[𝑣ℓ] = ⟨𝜓ℓ|𝑂 |𝜓ℓ⟩, |𝑣ℓ| = 𝒪(1). Given a dataset size of

𝑁 =
2𝒪(𝑘) log(𝑛/𝛿)

𝜀2
, (126)

with probability at least 1−𝛿, we can learn an observable 𝑂̂ such that
⃦⃦⃦
𝑂̂ −𝑂

⃦⃦⃦
∞
≤ 𝜀 and supp(𝑂̂) ⊆

supp(𝑂). The computational complexity is 𝒪(𝑛𝑘 log(𝑛/𝛿)/𝜀2).

Proof. Consider the observable 𝑂 under the Pauli basis, 𝑂 =
∑︀

𝑃 𝛼𝑃𝑃 . The 𝛼𝑃 coefficients satisfy

𝛼𝑃 = 3|𝑃 | E
|𝜓⟩∼stab⊗𝑛

1

⟨𝜓|𝑂|𝜓⟩ ⟨𝜓|𝑃 |𝜓⟩ , (127)

which can be learned by replacing the expectation with averaging over the dataset.
We begin by defining the learned observable 𝑂̂.

𝛼̂𝑃 :=
3|𝑃 |

𝑁

𝑁∑︁
ℓ=1

𝑣ℓ ⟨𝜓ℓ|𝑃 |𝜓ℓ⟩ , ∀𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 : |𝑃 | ≤ 𝑘, (128)

𝛽𝑃 :=

{︃
𝛼̂𝑃 , |𝛼̂𝑃 | ≥ 0.5𝜀/(2

√
2)𝑘,

0, |𝛼̂𝑃 | < 0.5𝜀/(2
√
2)𝑘,

(129)

𝑂̂ :=
∑︁

𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛:|𝑃 |≤𝑘

𝛽𝑃𝑃. (130)

Because 𝑂 acts on at most 𝑘 qubits, 𝛼𝑃 = 0 for |𝑃 | > 𝑘. From Bernstein’s inequality, given a
dataset size of

𝑁 =
2𝒪(𝑘) log(𝑛/𝛿)

𝜀2
, (131)

with probability at least 1− 𝛿, we have

|𝛼𝑃 − 𝛼̂𝑃 | < 0.5𝜀/(2
√
2)𝑘, ∀𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 : |𝑃 | ≤ 𝑘. (132)

In the following, we assume the above event holds, which happens with probability at least 1 − 𝛿.
We separately prove the following two statements.
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supp(𝑂̂) ⊆ supp(𝑂) : For a Pauli observable 𝑃 with 𝛼𝑃 = 0, we have |𝛼̂𝑃 | < 0.5𝜀/(2
√
2)𝑘 from

Eq. (132). Hence, 𝛽𝑃 = 0. As a result, the set of qubits acted by 𝑂̂ is a subset of supp(𝑂).

⃦⃦⃦
𝑂̂ −𝑂

⃦⃦⃦
∞
≤ 𝜀 : From the fact that 𝛼𝑃 = 0 implies 𝛽𝑃 = 0, we have

𝑂̂ −𝑂 =
∑︁

𝑃∈{𝐼,𝑋,𝑌 𝑍}⊗𝑛:supp(𝑃 )⊆supp(𝑂)

(︁
𝛽𝑃 − 𝛼𝑃

)︁
𝑃 (133)

=
∑︁

𝑄∈{𝐼,𝑋,𝑌 𝑍}⊗𝑘

(︁
𝛽𝑃 (𝑄) − 𝛼𝑃 (𝑄)

)︁
𝑃 (𝑄), (134)

where 𝑃 (𝑄) := 𝑄⊗ 𝐼{1,...,𝑛}∖supp(𝑂) and 𝑘 = |supp(𝑂)|. Therefore, we can upper bound the spectral
norm by

⃦⃦⃦
𝑂̂ −𝑂

⃦⃦⃦
∞
≤

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑄∈{𝐼,𝑋,𝑌 𝑍}⊗𝑘

(︁
𝛽𝑃 (𝑄) − 𝛼𝑃 (𝑄)

)︁
𝑃 (𝑄)

⃦⃦⃦⃦
⃦⃦
∞

=

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑄∈{𝐼,𝑋,𝑌 𝑍}⊗𝑘

(︁
𝛽𝑃 (𝑄) − 𝛼𝑃 (𝑄)

)︁
𝑄

⃦⃦⃦⃦
⃦⃦
∞

.

(135)
Recall that ‖𝐴‖∞ ≤

√︀
Tr(𝐴2) for any Hermitian matrix 𝐴, we have

⃦⃦⃦
𝑂̂ −𝑂

⃦⃦⃦
∞
≤

⎯⎸⎸⎷ ∑︁
𝑄∈{𝐼,𝑋,𝑌 𝑍}⊗𝑘

(︁
𝛽𝑃 (𝑄) − 𝛼𝑃 (𝑄)

)︁2
Tr(𝑄2) ≤ (2

√
2)𝑘 max

|𝑃 |≤𝑘

⃒⃒⃒
𝛽𝑃 − 𝛼𝑃

⃒⃒⃒
. (136)

By the triangle inequality and Eq. (132), we have⃒⃒⃒
𝛽𝑃 − 𝛼𝑃

⃒⃒⃒
≤
⃒⃒⃒
𝛽𝑃 − 𝛼̂𝑃

⃒⃒⃒
+ |𝛼̂𝑃 − 𝛼𝑃 | < 𝜀/(2

√
2)𝑘, ∀|𝑃 | ≤ 𝑘. (137)

Therefore, we have obtained the desired inequality
⃦⃦⃦
𝑂̂ −𝑂

⃦⃦⃦
∞
≤ 𝜀.

Lemma 11 (Learning a few-body observable with a known support). Given an error 𝜀, failure
probability 𝛿, an unknown 𝑛-qubit observable 𝑂 with ‖𝑂‖∞ ≤ 1 that acts on an known set 𝑆 of 𝑘
qubits, and a dataset 𝒯𝑂(𝑁) = {|𝜓ℓ⟩ =

⨂︀𝑛
𝑖=1 |𝜓ℓ,𝑖⟩ , 𝑣ℓ}

𝑁
ℓ=1, where |𝜓ℓ,𝑖⟩ is sampled uniformly from

stab1 and 𝑣ℓ is a random variable with E[𝑣ℓ] = ⟨𝜓ℓ|𝑂 |𝜓ℓ⟩, |𝑣ℓ| = 𝒪(1). Given a dataset size of

𝑁 =
2𝒪(𝑘) log(1/𝛿)

𝜀2
, (138)

with probability at least 1−𝛿, we can learn an observable 𝑂̂ such that
⃦⃦⃦
𝑂̂ −𝑂

⃦⃦⃦
∞
≤ 𝜀 and supp(𝑂̂) ⊆

𝑆. The computational complexity is 𝒪(2𝒪(𝑘) log(1/𝛿)/𝜀2).

Proof. We begin by defining the learned observable 𝑂̂.

𝛼̂𝑃 :=
3|𝑃 |

𝑁

𝑁∑︁
ℓ=1

𝑣ℓ ⟨𝜓ℓ|𝑃 |𝜓ℓ⟩ , ∀𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 : supp(𝑃 ) ⊆ 𝑆, (139)

𝑂̂ :=
∑︁

𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛: supp(𝑃 )⊆𝑆

𝛼̂𝑃𝑃. (140)
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By definition, we can see that supp(𝑂̂) ⊆ 𝑆. Consider the observable 𝑂 under the Pauli basis,
𝑂 =

∑︀
𝑃 𝛼𝑃𝑃 . Because 𝑂 acts on the qubits in the set 𝑆, 𝛼𝑃 = 0 for supp(𝑃 ) ̸⊆ 𝑆. From

Bernstein’s inequality, given a dataset of size

𝑁 =
2𝒪(𝑘) log(1/𝛿)

𝜀2
, (141)

with probability at least 1− 𝛿, we have

|𝛼𝑃 − 𝛼̂𝑃 | < 𝜀/(2
√
2)𝑘, ∀𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 : supp(𝑃 ) ⊆ 𝑆. (142)

In the following, we assume the above event holds, which happens with probability at least 1 − 𝛿.
Using the same derivation as in Eq. (133) to Eq. (136) for the proof of Lemma 10, we have⃦⃦⃦

𝑂̂ −𝑂
⃦⃦⃦
∞
≤ (2
√
2)𝑘 max

𝑃 :supp(𝑃 )⊆𝑆
|𝛼̂𝑃 − 𝛼𝑃 | < 𝜀, (143)

hence we have arrived at the desired statement.

Remark 7 (Relation to learning quantum juntas). The two lemmas given above are related to
quantum junta learning [104] but consider a much weaker access model. [104] requires that the
unknown observable 𝑂 be a unitary, and the learning algorithm can access the unitary coherently.
In particular, [104] requires inputting half of the maximally entangled state to the unitary. Here,
we consider access to 𝑂 through a simple classical dataset consisting of random product input states
and the outcome when measuring the input states with observable 𝑂. When the lemmas are used as
a subroutine in learning algorithms given in Section 5, we do not have access to 𝑂 as a unitary, so
[104] cannot be used.

5.3 Learning general shallow circuits (Proof of Theorem 5)

We present the algorithm for learning an unknown 𝑛-qubit unitary 𝑈 generated by an arbitrary
constant-depth quantum circuit 𝐶 with arbitrarily many ancilla qubits. We separate the proof into
two-qubit gates over SU(4) and over a finite gate set.

5.3.1 Arbitrary SU(4) gates

The algorithm utilizes a randomized measurement dataset 𝒯𝑈 (𝑁). The key ideas are using Lemma 10
to learn approximate Heisenberg-evolved Pauli observables, using Lemma 13 to sew the Heisenberg-
evolved Pauli observables into a constant-depth quantum circuit, and using Lemma 9 to obtain the
rigorous performance guarantee.

The following lemma shows how to reuse the randomized measurement dataset 𝒯𝑈 (𝑁) to create
the datasets needed to learn approximate Heisenberg-evolved Pauli observables using Lemma 10.

Lemma 12 (Reusing the randomized measurement dataset). Given an unknown 𝑛-qubit unitary
𝑈 , and a randomized measurement dataset 𝒯𝑈 (𝑁) given in Eq. (85). We can create 3𝑛 datasets
𝒯𝑈†𝑃𝑖𝑈 (𝑁), for each Pauli observable 𝑃 ∈ {𝑋,𝑌, 𝑍} and each qubit 𝑖,

𝒯𝑈†𝑃𝑖𝑈 (𝑁) :=

⎧⎨⎩|𝜓ℓ⟩ =
𝑛⨂︁
𝑗=1

|𝜓ℓ,𝑗⟩ , 𝑣𝑈
†𝑃𝑖𝑈

ℓ

⎫⎬⎭
𝑁

ℓ=1

, (144)

where |𝜓ℓ,𝑖⟩ is sampled uniformly and independently from stab1 and 𝑣𝑈
†𝑃𝑖𝑈

ℓ is a random variable
with E[𝑣𝑈

†𝑃𝑖𝑈
ℓ ] = ⟨𝜓ℓ|𝑈 †𝑃𝑖𝑈 |𝜓ℓ⟩ and |𝑣𝑈

†𝑃𝑖𝑈
ℓ | = 𝒪(1).
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Proof. Recall that from Eq. (85), we have

𝒯𝑈 (𝑁) =

{︃
|𝜓ℓ⟩ =

𝑛⨂︁
𝑖=1

|𝜓ℓ,𝑖⟩ , |𝜑ℓ⟩ =
𝑛⨂︁
𝑖=1

|𝜑ℓ,𝑖⟩

}︃𝑁
ℓ=1

. (145)

The input states are reused over the 3𝑛 datasets. For each Pauli observable 𝑃 ∈ {𝑋,𝑌, 𝑍} and each
qubit 𝑖, we define the output value to be

𝑣𝑈
†𝑃𝑖𝑈

ℓ := 3 ⟨𝜑ℓ,𝑖|𝑃 |𝜑ℓ,𝑖⟩ . (146)

We have |𝑣𝑈
†𝑃𝑖𝑈

ℓ | = |3 ⟨𝜑ℓ,𝑖|𝑃 |𝜑ℓ,𝑖⟩ | ≤ 3 = 𝒪(1). Now, recall how |𝜑ℓ,𝑖⟩ is defined. |𝜑ℓ,𝑖⟩ is the
measurement outcome when we measure the 𝑖-th qubit of the 𝑛-qubit state 𝑈 |𝜓ℓ⟩ in a random Pauli
basis: 𝑋 basis gives |𝑋, 0⟩ := |+⟩ , |𝑋, 1⟩ := |−⟩; 𝑌 basis gives |𝑌, 0⟩ := |𝑦+⟩ , |𝑌, 1⟩ := |𝑦−⟩; 𝑍 basis
gives |𝑍, 0⟩ := |0⟩ , |𝑍, 1⟩ := |1⟩. Using the fact that

0 = ⟨𝑄, 𝑏|𝑃 |𝑄, 𝑏⟩ , ∀𝑃 ̸= 𝑄 ∈ {𝑋,𝑌, 𝑍}, 𝑏 ∈ {0, 1}, (147)

𝑃 =
∑︁

𝑏∈{0,1}

(−1)𝑏 |𝑃, 𝑏⟩⟨𝑃, 𝑏| , ∀𝑃 ∈ {𝑋,𝑌, 𝑍}. (148)

and that the randomized measurement measures 𝑋,𝑌, 𝑍 bases equally likely, we have

E [3 ⟨𝜑ℓ,𝑖|𝑃 |𝜑ℓ,𝑖⟩] = ⟨𝜓ℓ|𝑈 †𝑃𝑖𝑈 |𝜓ℓ⟩ . (149)

This concludes the proof.

From Lemma 14 and the fact that supp
(︀
𝑈 †𝑃𝑖𝑈

)︀
⊆ 𝐴(𝑖) =

⋃︀
𝑃∈{𝑋,𝑌,𝑍} supp

(︀
𝑈 †𝑃𝑖𝑈

)︀
, we have⃒⃒⃒

supp
(︁
𝑈 †𝑃𝑖𝑈

)︁⃒⃒⃒
≤ |𝐴(𝑖)| = 𝒪(1). (150)

This enables us to combine Lemma 12 for constructing 𝒯𝑈†𝑃𝑖𝑈 (𝑁), ∀𝑖, 𝑃 from 𝒯𝑈 (𝑁) and Lemma 10
for learning few-body observables with unknown supports (since 𝐴(𝑖) is unknown) to show the
following. For any constant value 𝜀 = 𝒪(1), given a dataset size of

𝑁 = 𝒪
(︂
𝑛2 log(𝑛/𝛿)

𝜀2

)︂
, (151)

we can learn 𝑂̂𝑖,𝑃 , ∀𝑖, 𝑃 , such that with probability at least 1 − 𝛿, for all 𝑖 ∈ {1, . . . , 𝑛} and Pauli
observable 𝑃 ∈ {𝑋,𝑌, 𝑍}, we have⃦⃦⃦

𝑂̂𝑖,𝑃 − 𝑈 †𝑃𝑖𝑈
⃦⃦⃦
∞
≤ 𝜀

6𝑛
, and supp(𝑂̂𝑖,𝑃 ) ⊆ supp(𝑈 †𝑃𝑖𝑈) ⊆ 𝐴(𝑖). (152)

The computational time for learning all 𝑂̂𝑖,𝑃 is 𝒪(𝑛𝒪(1) log(𝑛/𝛿)/𝜀2) = poly(𝑛) log
(︀
1/𝛿/𝜀2

)︀
. From

Lemma 14, we can characterize supp(𝑂̂𝑖,𝑃 ) ⊆ supp(𝑈 †𝑃𝑖𝑈) to apply Lemma 13.

Lemma 13 (Sewing into a constant-depth quantum circuit). Given 3𝑛 𝑛-qubit observables 𝑂̂𝑖,𝑃 , ∀𝑖 ∈
{1, . . . , 𝑛}, 𝑃 ∈ {𝑋,𝑌, 𝑍}, such that for any qubit 𝑖,

⃒⃒⃒⋃︀
𝑃 supp

(︁
𝑂̂𝑖,𝑃

)︁⃒⃒⃒
= 𝒪(1) and there is only a

constant number of qubit 𝑗 with(︃⋃︁
𝑃

supp
(︁
𝑂̂𝑖,𝑃

)︁)︃
∩

(︃⋃︁
𝑃

supp
(︁
𝑂̂𝑗,𝑃

)︁)︃
̸= ∅. (153)
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There exists a sewing ordering for 𝑈sew({𝑂̂𝑖,𝑃 }𝑖,𝑃 ) given in Definition 15, such that 𝑈sew({𝑂̂𝑖,𝑃 }𝑖,𝑃 )
can be implemented by a constant-depth quantum circuit. The constant-depth quantum circuit is
geometrically-local (see Definition 9) if

⋃︀
𝑃 supp

(︁
𝑂̂𝑖,𝑃

)︁
, ∀𝑖 are geometrically-local sets (see Defini-

tion 11). The computational time for finding the circuit implementation is 𝒪(𝑛).

Proof. For simplicity of notations, we define 𝐴(𝑖) :=
⋃︀
𝑃 supp

(︁
𝑂̂𝑖,𝑃

)︁
. We can see that

supp

⎛⎝ProjU

⎛⎝1

2
𝐼 ⊗ 𝐼 + 1

2

∑︁
𝑃∈{𝑋,𝑌,𝑍}

𝑂̂𝑖,𝑃 ⊗ 𝑃𝑖

⎞⎠⎞⎠ ⊆ 𝐴(𝑖) ∪ {𝑛+ 𝑖}, (154)

Because |𝐴(𝑖)| =
⃒⃒⃒⋃︀

𝑃 supp
(︁
𝑂̂𝑖,𝑃

)︁⃒⃒⃒
= 𝒪(1) and ProjU can be implemented in time polynomial in

2|𝐴(𝑖)∪{𝑛+𝑖}| = 𝒪(1) as shown in Lemma 8, the following unitary

ProjU

⎛⎝1

2
𝐼 ⊗ 𝐼 + 1

2

∑︁
𝑃∈{𝑋,𝑌,𝑍}

𝑂̂𝑖,𝑃 ⊗ 𝑃𝑖

⎞⎠ (155)

can be implemented by a constant-depth circuit acting only on qubits in 𝐴(𝑖) ∪ {𝑛+ 𝑖}; see Fact 4
for exact unitary synthesis. Furthermore, if 𝐴(𝑖) =

⋃︀
𝑃 supp

(︁
𝑂̂𝑖,𝑃

)︁
is a geometrically-local set,

the constant-depth circuit is geometrically-local; see Corollary 1 for exact unitary synthesis given a
connectivity graph. The geometric locality for the 2𝑛-qubit system is defined in Remark 3.

Consider an 𝑛-node graph (equivalently, an 𝑛-qubit graph), where each pair (𝑖, 𝑗) of nodes
(qubits) is connected by an edge if

𝐴(𝑖) ∩𝐴(𝑗) ̸= ∅. (156)

The graph only has 𝒪(𝑛) edges and can be constructed as an adjacency list in time 𝒪(𝑛). Because
the graph has a constant degree, we can use a 𝒪(𝑛)-time greedy graph coloring algorithm to color
the 𝑛-qubit graph using only a constant number 𝜒 = 𝒪(1) of colors. For each node/qubit 𝑖, we
consider 𝑐(𝑖) to be the color labeled from 1 to 𝜒. The sewing order for the 3𝑛 observables 𝑂̂𝑖,𝑃 in
Definition 15 are given by the greedy graph coloring, where we order from the smallest color to the
largest color. By the definition of graph coloring, for any pair 𝑖, 𝑗 of qubits with the same color, we
have

𝐴(𝑖) ∩𝐴(𝑗) = ∅. (157)

Therefore, for any color 𝑐′, we can find an implementation of the 2𝑛-qubit unitary

∏︁
𝑖:𝑐(𝑖)=𝑐′

⎡⎣ProjU
⎛⎝1

2
𝐼 ⊗ 𝐼 + 1

2

∑︁
𝑃∈{𝑋,𝑌,𝑍}

𝑂𝑖,𝑃 ⊗ 𝑃𝑖

⎞⎠⎤⎦ (158)

with a constant-depth (and geometrically-local if 𝐴(𝑖), ∀𝑖 are geometrically-local) quantum circuit
in time𝒪(𝑛). Since there is only a constant number of colors, the 2𝑛-qubit unitary 𝑈sew({𝑂̂𝑖,𝑃 }𝑖,𝑃 ) in
Eq. (111) with the color-based ordering can be implemented with a constant-depth (and geometrically-
local if 𝐴(𝑖), ∀𝑖 are geometrically-local) quantum circuit in time 𝒪(𝑛).

Lemma 13 shows that there exists an ordering for sewing the approximate Heisenberg-evolved
Pauli observables 𝑂̂𝑖,𝑃 to create 𝑈sew({𝑂̂𝑖,𝑃 }𝑖,𝑃 ) given in Definition 15, such that 𝑈sew({𝑂̂𝑖,𝑃 }𝑖,𝑃 )
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can be implemented by a constant-depth quantum circuit. Given Eq. (152), we can use Lemma 9
on the form of the sewed Heisenberg-evolved Pauli observables to yield⃦⃦⃦

𝒰sew({𝑂̂𝑖,𝑃 }𝑖,𝑃 )− 𝒰 ⊗ 𝒰†
⃦⃦⃦
◇
≤ 𝜀. (159)

Finally, define an 𝑛-qubit channel ℰ̂ as follows,

ℰ̂(𝜌) := Tr>𝑛

(︁
𝒰sew({𝑂̂𝑖,𝑃 }𝑖,𝑃 )(𝜌⊗ |0𝑛⟩⟨0𝑛|)

)︁
, (160)

which can be implemented as a constant-depth quantum circuit over 2𝑛 qubits. Because Eq. (152)
holds with probability at least 1− 𝛿, we have⃦⃦⃦

ℰ̂ − 𝒰
⃦⃦⃦
◇
≤ 𝜀 (161)

with probability at least 1− 𝛿. This concludes the proof of the first part of Theorem 5.

5.3.2 Finite gate sets

Let the circuit depth be 𝑑 = 𝒪(1), the finite gate set be 𝒢 with |𝒢| = 𝒪(1), and the number of
ancilla qubits be 𝑚. The ancilla qubits are initialized as |0⟩ and end up at |0⟩ after applying 𝐶, i.e.,

𝑈 ⊗ |0𝑚⟩ = 𝐶(𝐼𝑛 ⊗ |0𝑚⟩). (162)

The Schrodinger evolution of an 𝑛-qubit state 𝜌 under 𝑈 is

𝑈𝜌𝑈 † = Tr>𝑛(𝐶(𝜌⊗ |0𝑚⟩⟨0𝑚|)𝐶†), (163)

where 𝐶 is a shallow quantum circuit over 𝑛+𝑚 qubits and Tr>𝑛 traces out the ancilla qubits. The
Heisenberg evolution of an 𝑛-qubit observable 𝑂 under 𝑈 is

𝑈 †𝑂𝑈 = (𝐼𝑛 ⊗ ⟨0𝑚|)𝐶†(𝑂 ⊗ 𝐼𝑚)𝐶(𝐼𝑛 ⊗ |0𝑚⟩), (164)

where 𝐼𝑛 is an identity on 𝑛 qubits and 𝐼𝑚 is an identity on 𝑚 qubits.
The algorithm utilizes a randomized measurement dataset 𝒯𝑈 (𝑁). The key ideas are using

Lemma 10 and a brute-force search algorithm over a constant number of choices to find the exact
Heisenberg-evolved Pauli observables, using Lemma 13 to sew the Heisenberg-evolved Pauli observ-
ables into a constant-depth quantum circuit, and using Lemma 9 to obtain the rigorous guarantee.

Lemma 14 (Characterizing the support). Given an 𝑛-qubit unitary 𝑈 generated by a constant-
depth quantum circuit 𝐶 with 𝑚 ancilla qubits. For each qubit 𝑖 ∈ {1, . . . , 𝑛}, let us define a set of
qubits

𝐴(𝑖) :=
⋃︁

𝑃∈{𝑋,𝑌,𝑍}

supp
(︁
𝑈 †𝑃𝑖𝑈

)︁
. (165)

We have |𝐴(𝑖)| = 𝒪(1) and the number of qubits 𝑗 such that 𝐴(𝑖)∩𝐴(𝑗) ̸= ∅ is at most a constant.

Proof. From the definition of 𝑈 , 𝑈 ⊗ |0𝑚⟩ = 𝐶(𝐼𝑛 ⊗ |0𝑚⟩), we have

𝐴(𝑖) ⊆
⋃︁

𝑃∈{𝑋,𝑌,𝑍}

supp
(︁
𝐶†𝑃𝑖𝐶

)︁
. (166)
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Let 𝑑 = 𝒪(1) be the depth of the circuit 𝐶. We say qubit 𝑖 is connected to qubit 𝑗 in the circuit 𝐶
if there is a sequence of gates in 𝐶 with strictly decreasing layers, such that each pair of consecutive
gates share a qubit and the first gate acts on qubit 𝑖 and the last gate acts on qubit 𝑗. Let 𝐵(𝑖) be
the set of qubits connected to 𝑖. Because each pair of consecutive two-qubit gates share a qubit, the
number of possible gate sequences for a fixed 𝑖 grows at most twice as large at every step. Hence,
|𝐵(𝑖)| ≤ 2𝑑. Furthermore, for any Pauli operator 𝑃 , supp

(︀
𝐶†𝑃𝑖𝐶

)︀
only contains qubits connected

to 𝑖, so 𝐴(𝑖) ⊆ 𝐵(𝑖). Together, |𝐴(𝑖)| ≤ |𝐵(𝑖)| ≤ 2𝑑 = 𝒪(1). This establishes the first claim.
Now, we show that for any 𝑖, the number of 𝑗 such that 𝐵(𝑖)∩𝐵(𝑗) ̸= ∅ is at most a constant.

If 𝐵(𝑖) ∩ 𝐵(𝑗) ̸= ∅, we know that there is a sequence of gates in 𝐶 with strictly decreasing layers
and then strictly increasing layers, such that each pair of consecutive gates share a qubit and the
first gate acts on qubit 𝑖 and the last gate acts on qubit 𝑗. Similar to before, The number of possible
gate sequences for a fixed 𝑖 grows at most twice as large at every step. Hence the number of 𝑗 with
𝐵(𝑖) ∩𝐵(𝑗) ̸= ∅ is at most 22𝑑 = 𝒪(1). Because 𝐴(𝑖) ⊆ 𝐵(𝑖), any 𝑗 with 𝐴(𝑖) ∩𝐴(𝑗) ̸= ∅ satisfies
𝐵(𝑖)∩𝐵(𝑗) ̸= ∅. Therefore, the number of qubits 𝑗 such that 𝐴(𝑖)∩𝐴(𝑗) ̸= ∅ is at most a constant.
This establishes the second claim of the lemma.

From the above lemma and the fact that supp
(︀
𝑈 †𝑃𝑖𝑈

)︀
⊆ 𝐴(𝑖), we have⃒⃒⃒

supp
(︁
𝑈 †𝑃𝑖𝑈

)︁⃒⃒⃒
≤ |𝐴(𝑖)| = 𝒪(1). (167)

This enables us to combine Lemma 12 for constructing 𝒯𝑈†𝑃𝑖𝑈 (𝑁), ∀𝑖, 𝑃 from 𝒯𝑈 (𝑁) and Lemma 10
for learning few-body observables with unknown supports (since 𝐴(𝑖) is unknown) to show the
following. For any constant value 𝜀 = 𝒪(1), given a dataset size of

𝑁 = 𝒪 (log(𝑛/𝛿)) , (168)

we can learn 𝑂̂𝑖,𝑃 , ∀𝑖, 𝑃 , such that with probability at least 1 − 𝛿, for all 𝑖 ∈ {1, . . . , 𝑛} and Pauli
observable 𝑃 ∈ {𝑋,𝑌, 𝑍}, we have⃦⃦⃦

𝑂̂𝑖,𝑃 − 𝑈 †𝑃𝑖𝑈
⃦⃦⃦
∞
≤ 𝜀, and supp(𝑂̂𝑖,𝑃 ) ⊆ supp(𝑈 †𝑃𝑖𝑈). (169)

The computational time for learning all 𝑂̂𝑖,𝑃 is 𝒪(𝑛𝒪(1) log(𝑛/𝛿)) = poly(𝑛) log(1/𝛿).
Our goal now is to find 𝑈 †𝑃𝑖𝑈 exactly using the approximate observable 𝑂̂𝑖,𝑃 satisfying Eq. (169)

by choosing a sufficiently small 𝜀 that is constant in system size 𝑛. To do so, we need to consider
the backward lightcone of qubit 𝑖 in circuit 𝐶 defined below.

Definition 16 (Backward lightcone in a circuit). We say a gate 𝑔 in circuit 𝑈 is in the backward
lightcone of qubit 𝑖 in 𝐶 if there is a sequence of gates in 𝐶 with strictly decreasing layers, such that
each pair of consecutive gates share a qubit, the first gate acts on qubit 𝑖, and the last gate is 𝑔.

The circuit 𝐶𝑖 corresponding to the backward lightcone of qubit 𝑖 in circuit 𝐶 is the circuit with
all gates in the backward lightcone of qubit 𝑖 in circuit 𝐶.

The set 𝑆𝑖 of qubits corresponding to the backward lightcone of qubit 𝑖 in circuit 𝐶 is the set of
all qubits acted by at least one of the gates in the backward lightcone of qubit 𝑖 in circuit 𝐶.

From the definition of 𝐶𝑖, 𝑆𝑖 corresponding to the backward lightcones given above, we have

supp(𝑈 †𝑃𝑖𝑈) ⊆ supp(𝐶†𝑃𝑖𝐶) ⊆ 𝑆𝑖 and 𝑈 †𝑃𝑖𝑈 = (𝐼𝑛 ⊗ ⟨0𝑚|)𝐶†
𝑖 𝑃𝑖𝐶𝑖(𝐼𝑛 ⊗ |0

𝑚⟩). (170)

Note one cannot guarantee 𝑆𝑖 = supp(𝑈 †𝑃𝑖𝑈). By a counting argument similar to the proof of
Lemma 14, we have the following fact.
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Fact 5 (Size of backward lightcone). Given a depth-𝑑 circuit 𝐶. The circuit 𝐶𝑖 corresponding to the
backward lightcone of qubit 𝑖 in 𝐶 consists of at most 2𝑑−1 gates. The set 𝑆𝑖 of qubits corresponding
to the backward lightcone of qubit 𝑖 in 𝐶 contains at most 2𝑑 qubits.

Recall that the depth of 𝐶 is 𝑑 = 𝒪(1), and the gate set is 𝒢 with |𝒢| = 𝒪(1). Because 𝑑 = 𝒪(1),
|𝑆𝑖| ≤ 2𝑑 = 𝒪(1). For any (𝑛+𝑚)-qubit constant-depth circuit 𝐶 over a finite gate set, given a fixed
set 𝑆𝑖 of qubits corresponding to the backward lightcone of qubit 𝑖 in 𝐶, the number of possible
circuit 𝐶𝑖 corresponding to the backward lightcone of qubit 𝑖 in circuit 𝐶 is a constant independent
of 𝑛,𝑚 and 1/𝛿. Hence, there is a constant number of 𝐶†

𝑖 𝑃𝑖𝐶𝑖 = 𝐶†𝑃𝑖𝐶. We denote the possible
choices of the 𝑛-qubit observable given the set 𝑆𝑖 and qubit 𝑖 ∈ {1, . . . , 𝑛} to be 𝒮obs(𝑖, 𝑆𝑖),

𝒮obs(𝑖, 𝑆𝑖) :=
{︁
(𝐼𝑛 ⊗ ⟨0𝑚|)𝐶†𝑃𝑖𝐶(𝐼𝑛 ⊗ |0𝑚⟩)

⃒⃒⃒
𝐶 is a depth-𝑑 circuit over gate set 𝒢, (171)

such that 𝑆𝑖 is the set of qubits corresponding to the backward lightcone of qubit 𝑖 in 𝐶
}︁

(172)

We have |𝒮obs(𝑖, 𝑆𝑖)| = 𝒪(1). Furthermore, we can always consider a permutation Π𝑖,𝑆𝑖
over the

qubits that implements the following permutation mapping,

1→Π𝑖,𝑆𝑖
𝑖, {1, . . . , |𝑆𝑖|} →Π𝑖,𝑆𝑖

𝑆𝑖, (173)

and Π𝑖,𝑆𝑖
acts as identity on the 𝑚 ancilla qubits. Given a permutation Π𝑖,𝑆𝑖

over the qubits (which
is itself a unitary), we have

𝒮obs(𝑖, 𝑆𝑖) =
{︁
Π𝑖,𝑆𝑖

𝑂Π𝑖,𝑆𝑖

⃒⃒⃒
𝑂 ∈ 𝒮obs(1, {1, . . . , |𝑆𝑖|})

}︁
. (174)

We note that 𝑂 acts on 𝑛 qubits, while Π𝑖,𝑆𝑖
acts on 𝑛+𝑚 qubits; hence, we implicitly extend 𝑂 to

𝑛+𝑚 qubits by acting as identity on the 𝑚 ancilla qubits. The set 𝒮obs(1, {1, . . . , |𝑆𝑖|}) contains all
the possible observables (up to permutation of the qubits) with |𝑆𝑖| qubits in the backward lightcone
of qubit 𝑖 ∈ {1, . . . , 𝑛} in a depth-𝑑 circuit.

Recall from Fact 5 that the set 𝑆𝑖 of qubits corresponding to the backward lightcone of qubit
𝑖 in a depth-𝑑 circuit satisfies 1 ≤ |𝑆𝑖| ≤ 2𝑑. We take the union over all possible values of |𝑆𝑖| to
define

𝒮*obs :=
2𝑑⋃︁
𝑘=1

𝒮obs(1, {1, . . . , 𝑘}). (175)

Because 2𝑑 = 𝒪(1) and for all 𝑘 = 𝒪(1), |𝒮obs(1, {1, . . . , 𝑘}| = 𝒪(1), we have |𝒮*obs| = 𝒪(1). We
define the minimum distance between every pair of distinct observables in 𝒮*obs as follows,

𝜀dist := min
𝑂1 ̸=𝑂2∈𝒮*

obs

‖𝑂1 −𝑂2‖∞. (176)

The minimum distance 𝜀dist depends on the depth 𝑑 = 𝒪(1) and the finite gate set 𝒢 with |𝒢| = 𝒪(1),
so 𝜀* is a constant independent of the system size 𝑛 and failure probability 𝛿. We also define the
minimum distance to an observable with a strictly smaller support.

𝜀supp := min
𝑂1∈𝒮*

obs

min
𝑂2, such that

supp(𝑂2)⊆supp(𝑂1)
supp(𝑂2)̸=supp(𝑂1)

‖𝑂1 −𝑂2‖∞. (177)

Because the support of 𝑂2 is strictly contained in the support of 𝑂1, we have ‖𝑂1 −𝑂2‖∞ > 0.
And since |𝒮*obs| = 𝒪(1), we have 𝜀supp is a constant independent of 𝑛 and 𝛿.
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Let 𝜀 = min(𝜀dist, 𝜀supp)/3 in Eq. (169), and define 𝑆𝑖 := {𝑖} ∪ supp(𝑂̂𝑖,𝑃 ). Consider any
permutation Π𝑖,𝑆𝑖

over 𝑛 qubits that implements the following permutation mapping,

1→Π𝑖,𝑆𝑖
𝑖, {1, . . . , |𝑆𝑖|} →Π𝑖,𝑆𝑖

𝑆𝑖. (178)

We consider the following observable

𝑂*
𝑖,𝑃 := Π𝑖,𝑆𝑖

(︃
argmin
𝑂∈𝒮*

obs

⃦⃦⃦
Π−1

𝑖,𝑆𝑖
𝑂̂𝑖,𝑃Π

−1

𝑖,𝑆𝑖
−𝑂

⃦⃦⃦
∞

)︃
Π𝑖,𝑆𝑖

. (179)

Because |𝒮*obs| = 𝒪(1) and the dimension of 𝑂 ∈ 𝒮*obs is a constant, the brute-force minimum over
𝒮*obs takes 𝒪(1) time. Because there are 3𝑛 observables 𝑂*

𝑖,𝑃 , the computational time to find all
3𝑛 observables 𝑂*

𝑖,𝑃 is 𝒪(𝑛). The following lemma shows that 𝑂*
𝑖,𝑃 is exactly equal to the desired

Heisenberg-evolved Pauli observable 𝑈 †𝑃𝑖𝑈 .

Lemma 15 (Exact reconstruction). Given the definitions above, with probability at least 1− 𝛿, we
have 𝑂*

𝑖,𝑃 = 𝑈 †𝑃𝑖𝑈 for all qubits 𝑖 and Pauli observable 𝑃 .

Proof. We condition on the event that Eq. (169) is true, which happens with probability at least
1 − 𝛿. Recall that supp(𝑂̂𝑖,𝑃 ) ⊆ supp(𝑈 †𝑃𝑖𝑈) and

⃦⃦⃦
𝑂̂𝑖,𝑃 − 𝑈 †𝑃𝑖𝑈

⃦⃦⃦
∞
≤ 𝜀 ≤ 𝜀supp/3. From the

definition of 𝜀supp, we have supp(𝑂̂𝑖,𝑃 ) = supp(𝑈 †𝑃𝑖𝑈). Hence,

𝑆𝑖 =
(︁
{𝑖} ∪ supp(𝑈 †𝑃𝑖𝑈)

)︁
⊆ 𝑆𝑖, (180)

where 𝑆𝑖 is the set of qubits corresponding to the backward lightcone of qubit 𝑖 in circuit 𝐶. Consider
any permutation Π𝑖,𝑆𝑖,𝑆𝑖

over 𝑛 qubits that is equal to Π𝑖,𝑆𝑖
for inputs 1, . . . , |𝑆𝑖| and implements

the following permutation mapping,{︁
|𝑆𝑖|+ 1, . . . , |𝑆𝑖|

}︁
→Π𝑖,𝑆𝑖,𝑆𝑖

𝑆𝑖 ∖ 𝑆𝑖, (181)

and Π𝑖,𝑆𝑖,𝑆𝑖
acts as identity on the 𝑚 ancilla qubits. Because supp(𝑈 †𝑃𝑖𝑈) ⊆ 𝑆𝑖, we have

Π−1

𝑖,𝑆𝑖
𝑈 †𝑃𝑖𝑈Π−1

𝑖,𝑆𝑖
= Π−1

𝑖,𝑆𝑖
(𝐼𝑛 ⊗ ⟨0𝑚|)𝐶†(𝑃𝑖 ⊗ 𝐼𝑚)𝐶(𝐼𝑛 ⊗ |0𝑚⟩)Π−1

𝑖,𝑆𝑖

= (𝐼𝑛 ⊗ ⟨0𝑚|)
(︁
Π−1

𝑖,𝑆𝑖,𝑆𝑖
𝐶†Π−1

𝑖,𝑆𝑖,𝑆𝑖

)︁
𝑃1

(︁
Π−1

𝑖,𝑆𝑖,𝑆𝑖
𝐶Π−1

𝑖,𝑆𝑖,𝑆𝑖

)︁
(𝐼𝑛 ⊗ |0𝑚⟩). (182)

By the definition of the permutation Π−1

𝑖,𝑆𝑖,𝑆𝑖
, {1, . . . , |𝑆𝑖|} is the set of qubits corresponding to the

backward lightcone of qubit 1 in the circuit Π−1

𝑖,𝑆𝑖,𝑆𝑖
𝐶Π−1

𝑖,𝑆𝑖,𝑆𝑖
. As a result, we have

𝑂* := (𝐼𝑛 ⊗ ⟨0𝑚|)
(︁
Π−1

𝑖,𝑆𝑖,𝑆𝑖
𝐶†Π−1

𝑖,𝑆𝑖,𝑆𝑖

)︁
𝑃1

(︁
Π−1

𝑖,𝑆𝑖,𝑆𝑖
𝐶Π−1

𝑖,𝑆𝑖,𝑆𝑖

)︁
(𝐼𝑛 ⊗ |0𝑚⟩) (183)

∈ 𝒮obs(1, {1, . . . , |𝑆𝑖|}) ⊆ 𝒮*obs. (184)

The last ⊆ follows from the fact that |𝑆𝑖| ≤ 2𝑑 in Fact 5. We can use Eq. (182) and⃦⃦⃦
𝑂̂𝑖,𝑃 − 𝑈 †𝑃𝑖𝑈

⃦⃦⃦
∞
≤ 𝜀 ≤ 𝜀dist/3 (185)

to see that ⃦⃦⃦
Π−1

𝑖,𝑆𝑖
𝑂̂𝑖,𝑃Π

−1

𝑖,𝑆𝑖
−𝑂*

⃦⃦⃦
∞
≤ 𝜀dist/3. (186)
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For any 𝑂 ∈ 𝒮*obs with 𝑂 ̸= 𝑂*, we have ‖𝑂 −𝑂*‖∞ ≥ 𝜀dist. By the triangle inequality, we have⃦⃦⃦
Π−1

𝑖,𝑆𝑖
𝑂̂𝑖,𝑃Π

−1

𝑖,𝑆𝑖
−𝑂

⃦⃦⃦
∞
≥ ‖𝑂 −𝑂*‖∞ −

⃦⃦⃦
Π−1

𝑖,𝑆𝑖
𝑂̂𝑖,𝑃Π

−1

𝑖,𝑆𝑖
−𝑂*

⃦⃦⃦
∞
≥ 2𝜀dist/3. (187)

Together, we can show that 𝑂* is the unique global minimum,

𝑂* = argmin
𝑂∈𝒮*

obs

⃦⃦⃦
Π−1

𝑖,𝑆𝑖
𝑂̂𝑖,𝑃Π

−1

𝑖,𝑆𝑖
−𝑂

⃦⃦⃦
∞
. (188)

Using Eq. (182) again shows that

𝑂*
𝑖,𝑃 = Π𝑖,𝑆𝑖

(︃
argmin
𝑂∈𝒮*

obs

⃦⃦⃦
Π−1

𝑖,𝑆𝑖
𝑂̂𝑖,𝑃Π

−1

𝑖,𝑆𝑖
−𝑂

⃦⃦⃦
∞

)︃
Π𝑖,𝑆𝑖

= 𝑈 †𝑃𝑖𝑈. (189)

This concludes the proof.

From Lemma 14, we can characterize the support of 𝑂*
𝑖,𝑃 = 𝑈 †𝑃𝑖𝑈 to apply Lemma 13.

Lemma 13 shows that there exists an ordering for sewing the Heisenberg-evolved Pauli observ-
ables 𝑂*

𝑖,𝑃 = 𝑈 †𝑃𝑖𝑈 to create 𝑈sew({𝑂*
𝑖,𝑃 }𝑖,𝑃 ) given in Definition 15, such that 𝑈sew({𝑂*

𝑖,𝑃 }𝑖,𝑃 ) can
be implemented by a constant-depth quantum circuit. Under the event that 𝑂*

𝑖,𝑃 = 𝑈 †𝑃𝑖𝑈 (think
of 𝑂*

𝑖,𝑃 as 0-approximate Heisenberg-evolved Pauli observable 𝑃 on qubit 𝑖 under 𝑈) for all Pauli
observable 𝑃 and qubit 𝑖, Lemma 9 shows that

𝑈sew({𝑂*
𝑖,𝑃 }𝑖,𝑃 ) = 𝑈 ⊗ 𝑈 †. (190)

Finally, define an 𝑛-qubit channel ℰ̂ as follows,

ℰ̂(𝜌) := Tr>𝑛
(︀
𝒰sew({𝑂*

𝑖,𝑃 }𝑖,𝑃 )(𝜌⊗ |0𝑛⟩⟨0𝑛|)
)︀
, (191)

which can be implemented as a constant-depth 2𝑛 qubits circuit. Using Lemma 15, we have

ℰ̂ = 𝒰 (192)

with probability at least 1− 𝛿. This concludes the proof of Theorem 5.

5.4 Learning geometrically-local shallow circuits (Proof of Theorem 6)

We present the algorithm for learning an unknown geometrically-local shallow quantum circuit 𝑈 .
We separate the proof into two-qubit gates over SU(4) and over a finite gate set.

5.4.1 Arbitrary SU(4) gates

We present the algorithm for learning an unknown geometrically-local shallow quantum circuit 𝑈
over any two-qubit gate in SU(4). The algorithm uses the randomized measurement dataset 𝒯𝑈 (𝑁).
The key ideas are constructing a superset of the support of the Heisenberg-evolved Pauli observables
using Lemma 16, finding the Heisenberg-evolved Pauli observables for every qubit using Lemma 11,
and sewing the Heisenberg-evolved Pauli observables together using Definition 15 and Lemma 9.

Consider the lightcones 𝐿𝑑(𝑖) for each qubit 𝑖 with depth 𝑑 as given in Definition 10. We have
the following lemma for characterizing the properties of 𝐿𝑑(𝑖).
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Lemma 16 (Properties of lightcones). Given a geometry over 𝑛 qubits represented by a graph
𝐺 = (𝑉,𝐸) with a degree 𝜅 = 𝒪(1), a depth-𝑑 geometrically-local circuit 𝑈 as given in Definition 9
with 𝑑 = 𝒪(1), and the lightcones 𝐿𝑑(𝑖) for each qubit 𝑖 with depth 𝑑 as given in Definition 10. For
each qubit 𝑖, we have

supp
(︁
𝑈 †𝑃𝑖𝑈

)︁
⊆ 𝐿𝑑(𝑖), (193)

for any Pauli operator 𝑃 ∈ {𝑋,𝑌, 𝑍}. Furthermore, 𝐿𝑑(𝑖) is geometrically local (see Definition 11),
|𝐿𝑑(𝑖)| = 𝒪(1), 𝐿𝑑(𝑖) is known, and the number of qubits 𝑗 such that 𝐿𝑑(𝑖) ∩ 𝐿𝑑(𝑗) ̸= ∅ is at most
a constant.

Proof. Because 𝑈 is of depth 𝑑 and 𝑃𝑖 acts only on qubit 𝑖, 𝑈 †𝑃𝑖𝑈 only acts only on qubits that
are distance 𝑑 away from qubit 𝑖 according to the graph 𝐺. By the definition of 𝐿𝑑(𝑖), we have
supp

(︀
𝑈 †𝑃𝑖𝑈

)︀
⊆ 𝐿𝑑(𝑖). Recall that |𝐿𝑑(𝑖)| ≤ (𝜅 + 1)𝑑 = 𝒪(1). Furthermore, since 𝐺 is known,

𝐿𝑑(𝑖) is known. Now, consider a qubit 𝑗 such that 𝐿𝑑(𝑖) ∩ 𝐿𝑑(𝑗) ̸= ∅. This condition shows that
qubit 𝑗 must be of distance at most 2𝑑 from qubit 𝑖 in the graph 𝐺. Hence, the number of such 𝑗
is bounded above by (𝜅+ 1)2𝑑 = 𝒪(1). This concludes the proof of the lemma.

Lemma 16 shows that 𝐿𝑑(𝑖) is a geometrically-local set, |𝐿𝑑(𝑖)| = 𝒪(1), 𝐿𝑑(𝑖) is known, and the
number of qubits 𝑗 such that 𝐿𝑑(𝑖) ∩ 𝐿𝑑(𝑗) ̸= ∅ is at most a constant.

Recall that we can use Lemma 12 to constructing 𝒯𝑈†𝑃𝑖𝑈 (𝑁), ∀𝑖, 𝑃 from the classical dataset
𝒯𝑈 (𝑁) given in Definition 8. Because |𝐿𝑑(𝑖)| = 𝒪(1) and 𝐿𝑑(𝑖) is known, from Lemma 11, with a
dataset size of

𝑁 = 𝒪
(︂
𝑛2 log(3𝑛/𝛿)

𝜀2

)︂
, (194)

we can use 𝒯𝑈†𝑃𝑖𝑈 (𝑁), ∀𝑖, 𝑃 constructed from 𝒯𝑈 (𝑁) to learn 𝑂̂𝑖,𝑃 , ∀𝑖, 𝑃 such that, with probability
at least 1− 𝛿, for all 𝑖 ∈ {1, . . . , 𝑛} and Pauli observable 𝑃 ∈ {𝑋,𝑌, 𝑍}, we have⃦⃦⃦

𝑂̂𝑖,𝑃 − 𝑈 †𝑃𝑖𝑈
⃦⃦⃦
∞
≤ 𝜀

6𝑛
and supp(𝑂̂𝑖,𝑃 ) ⊆ supp

(︁
𝑈 †𝑃𝑖𝑈

)︁
⊆ 𝐿𝑑(𝑖). (195)

The computational time for learning all 𝑂̂𝑖,𝑃 is 𝒪(𝑛3 log(𝑛/𝛿)/𝜀2).
We now utilize Lemm 13 to sew the learned observables into a geometrically-local constant-depth

quantum circuit. To use the lemma, we note the following relations from Eq. (195),

𝐴(𝑖) :=
⋃︁
𝑃

supp(𝑂̂𝑖,𝑃 ) ⊆
⋃︁
𝑃

supp(𝑈 †𝑃𝑖𝑈) ⊆ 𝐿𝑑(𝑖). (196)

Because 𝐿𝑑(𝑖) is a geometrically-local set, |𝐿𝑑(𝑖)| = 𝒪(1) and the number of qubits 𝑗 such that
𝐿𝑑(𝑖) ∩ 𝐿𝑑(𝑗) ̸= ∅ is at most a constant, we have 𝐴(𝑖) is a geometrically-local set, |𝐴(𝑖)| = 𝒪(1)
and the number of qubits 𝑗 such that 𝐴(𝑖) ∩ 𝐴(𝑗) ̸= ∅ is at most a constant. Hence Lemma 13
given above shows that we can find an implementation of 𝑈sew({𝑂̂𝑖,𝑃 }𝑖,𝑃 ) as a geometrically-local
constant-depth 2𝑛-qubit circuit in time 𝒪(𝑛). Given Eq. (195), we can use Lemma 9 on the form
of the sewed Heisenberg-evolved Pauli observables to yield⃦⃦⃦

𝒰sew({𝑂̂𝑖,𝑃 }𝑖,𝑃 )− 𝒰 ⊗ 𝒰†
⃦⃦⃦
◇
≤ 𝜀. (197)

Finally, define an 𝑛-qubit channel ℰ̂ as follows,

ℰ̂(𝜌) := Tr>𝑛

(︁
𝒰sew({𝑂̂𝑖,𝑃 }𝑖,𝑃 )(𝜌⊗ |0𝑛⟩⟨0𝑛|)

)︁
, (198)
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which can be implemented as a geometrically-local constant-depth quantum circuit over 2𝑛 qubits.
Because Eq. (195) holds with probability at least 1− 𝛿, we have⃦⃦⃦

ℰ̂ − 𝒰
⃦⃦⃦
◇
≤ 𝜀 (199)

with probability at least 1− 𝛿. This concludes the proof of the first part of Theorem 6.

5.4.2 Finite gate sets

We present the algorithm for learning an unknown geometrically-local shallow quantum circuit
𝑈 over a finite gate set. Let the depth of the unknown shallow quantum circuit be 𝑑 = 𝒪(1)
and the finite gate set be 𝒢 with |𝒢| = 𝒪(1). The algorithm uses the randomized measurement
dataset 𝒯𝑈 (𝑁). The algorithm constructs a superset of the support of the Heisenberg-evolved Pauli
observables using Lemma 16, finds the Heisenberg-evolved Pauli observables for every qubit exactly
using Lemma 11 and the information about the finite gate set 𝒢, and sew the Heisenberg-evolved
Pauli observables together using Definition 15 and Lemma 9.

Consider the lightcones 𝐿𝑑(𝑖) for each qubit 𝑖 with depth 𝑑 as given in Definition 10. Lemma 16
shows that 𝐿𝑑(𝑖) is a geometrically-local set, |𝐿𝑑(𝑖)| = 𝒪(1), 𝐿𝑑(𝑖) is known, and the number of
qubits 𝑗 such that 𝐿𝑑(𝑖) ∩ 𝐿𝑑(𝑗) ̸= ∅ is at most a constant. The algorithm and the proof proceed
similarly to the case of having arbitrary two-qubit gates in SU(4). The main difference is in defining
the following set 𝒮obs(𝑃𝑖) for all 𝑖 ∈ {1, . . . , 𝑛} and Pauli observable 𝑃 ∈ {𝑋,𝑌, 𝑍},

𝒮obs(𝑃𝑖) :=
{︁
𝑈 †𝑃𝑖𝑈 | 𝑈 is a geometrically-local depth-𝑑 circuit over the gate set 𝒢

}︁
. (200)

Because |𝒢| = 𝒪(1) and 𝑑 = 𝒪(1), the set 𝒮obs(𝑃𝑖) contains a constant number of observables that
only act on qubits in 𝐿𝑑(𝑖). We can define the minimum distance to be

𝜀0(𝑃𝑖) := min { ‖𝑂1 −𝑂2‖∞ | 𝑂1 ̸= 𝑂2 ∈ 𝒮obs(𝑃𝑖) } = Ω(1). (201)

We also define 𝜀0 = min𝑖,𝑃 𝜀0(𝑃𝑖) = Ω(1), which is a constant.
Recall that we can use Lemma 12 to constructing 𝒯𝑈†𝑃𝑖𝑈 (𝑁), ∀𝑖, 𝑃 from the classical dataset

𝒯𝑈 (𝑁) given in Definition 8. Because |𝐿𝑑(𝑖)| = 𝒪(1) and 𝐿𝑑(𝑖) is known, from Lemma 11, with a
dataset size of

𝑁 = 𝒪
(︂
log(3𝑛/𝛿)

𝜀20

)︂
= 𝒪(log(𝑛/𝛿)), (202)

we can use 𝒯𝑈†𝑃𝑖𝑈 (𝑁), ∀𝑖, 𝑃 constructed from 𝒯𝑈 (𝑁) to learn 𝑂̂𝑖,𝑃 , ∀𝑖, 𝑃 such that, with probability
at least 1− 𝛿, for all 𝑖 ∈ {1, . . . , 𝑛} and Pauli observable 𝑃 ∈ {𝑋,𝑌, 𝑍}, we have⃦⃦⃦

𝑂̂𝑖,𝑃 − 𝑈 †𝑃𝑖𝑈
⃦⃦⃦
∞
≤ 𝜀0

3
and supp(𝑂̂𝑖,𝑃 ) ⊆ supp

(︁
𝑈 †𝑃𝑖𝑈

)︁
⊆ 𝐿𝑑(𝑖). (203)

The computational time for learning all 𝑂̂𝑖,𝑃 is𝒪(𝑛 log(𝑛/𝛿)/𝜀20) = 𝒪(𝑛 log(𝑛/𝛿)). Because 𝑈 †𝑃𝑖𝑈 ∈
𝒮obs(𝑃𝑖) only has a constant number of possibilities, we can find

𝑂*
𝑖,𝑃 := argmin

𝑂∈𝒮obs(𝑃𝑖)

⃦⃦⃦
𝑂 − 𝑂̂𝑖,𝑃

⃦⃦⃦
∞

(204)

in time 𝒪(𝑛). Because the pairwise distance in 𝒮obs(𝑃𝑖) is at least 𝜀0 and 𝑈 †𝑃𝑖𝑈 ∈ 𝒮obs(𝑃𝑖),

𝑂*
𝑖,𝑃 = 𝑈 †𝑃𝑖𝑈, ∀𝑖 ∈ {1, . . . , 𝑛}, 𝑃 ∈ {𝑋,𝑌, 𝑍} (205)
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with probability at least 1− 𝛿.
We now utilize Lemm 13 to sew the learned observables into a geometrically-local constant-depth

quantum circuit. To use the lemma, we note the following relations from Eq. (195),

𝐴(𝑖) :=
⋃︁
𝑃

supp(𝑂*
𝑖,𝑃 ) ⊆

⋃︁
𝑃

supp(𝑈 †𝑃𝑖𝑈) ⊆ 𝐿𝑑(𝑖). (206)

Because 𝐿𝑑(𝑖) is a geometrically-local set, |𝐿𝑑(𝑖)| = 𝒪(1) and the number of qubits 𝑗 such that
𝐿𝑑(𝑖) ∩ 𝐿𝑑(𝑗) ̸= ∅ is at most a constant, we have 𝐴(𝑖) is a geometrically-local set, |𝐴(𝑖)| = 𝒪(1)
and the number of qubits 𝑗 such that 𝐴(𝑖) ∩ 𝐴(𝑗) ̸= ∅ is at most a constant. Hence Lemma 13
given above shows that we can find an implementation of 𝑈sew({𝑂*

𝑖,𝑃 }𝑖,𝑃 ) as a geometrically-local
constant-depth 2𝑛-qubit circuit in time 𝒪(𝑛). Given Eq. (205), we can use Lemma 9 on the form
of the sewed Heisenberg-evolved Pauli observables to yield

𝒰sew({𝑂*
𝑖,𝑃 }𝑖,𝑃 ) = 𝒰 ⊗ 𝒰†. (207)

Finally, define an 𝑛-qubit channel ℰ̂ as follows,

ℰ̂(𝜌) := Tr>𝑛
(︀
𝒰sew({𝑂*

𝑖,𝑃 }𝑖,𝑃 )(𝜌⊗ |0𝑛⟩⟨0𝑛|)
)︀
, (208)

which can be implemented as a geometrically-local constant-depth quantum circuit over 2𝑛 qubits.
Because Eq. (195) holds with probability at least 1− 𝛿, we have

ℰ̂ = 𝒰 (209)

with probability at least 1− 𝛿. This concludes the proof of Theorem 6.

5.5 Learning shallow circuits on 𝑘-dimensional lattice with optimized circuit
depth (Proof of Theorem 7)

Here we develop an approach to optimize the depth of the learned circuit. The main idea is to
design a coloring scheme for the 𝑘-dimensional lattice with the fewest colors possible, such that
gates supported on the same color can be implemented simultaneously.

Definition 17 (𝑘+1-coloring of 𝑘-dimensional lattice with distance 𝑅). Consider a graph represent-
ing a 𝑘-dimensional lattice (Fig. 1(a) shows 𝑘 = 2). Each vertex is assigned a color, and the entire
lattice is divided into many small regions with different colors. A 𝑘 + 1-coloring of 𝑘-dimensional
lattice with distance 𝑅 satisfies the following properties:

1. There are 𝑘 + 1 colors in total;

2. Each small region has constant size;

3. The distance between two regions with the same color is at least 𝑅.

Here we give a construction of the above coloring (see Fig. 2). Similar approaches have been used
in e.g. [105], although explicit constructions in 3D or above are not provided. The construction is
based on “fattening” different 𝑡-cells in the lattice, from small to large 𝑡.1 Consider a 𝑘-dimensional
cube of length 2𝑘𝑅 (the volume of the cube is (2𝑘𝑅)𝑘). Then we do the following:

• Fatten each 0-cell (vertices) to length 𝑘𝑅, assign color 1.
1We thank Jeongwan Haah for teaching this argument at PCMI 2023 Graduate Summer School.
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Figure 2: A coloring of 𝑘-dimensional lattice with 𝑘 + 1 colors, where different regions of the same
color are separated by distance at least 𝑅. (a) A coloring of 2-dimensional lattice. (b) A coloring
of 3-dimensional lattice (the fourth color is not shown).

• Fatten each 1-cell (edges) to length (𝑘 − 1)𝑅, assign color 2.

• Fatten each 2-cell (faces) to length (𝑘 − 2)𝑅, assign color 3.

• . . .

• Fill in the remaining 𝑘-cell with color 𝑘 + 1.

This is repeated in a translation-invariant way across the entire lattice.
This construction is illustrated in Fig. 2 for 𝑘 = 2, 3. First, consider 𝑘 = 2. A 2-dimensional

square of size 4𝑅×4𝑅 is shown in the top left corner (thick black box) of Fig. 2(a). In the first step,
we fatten each of the 4 vertices into red squares of size 2𝑅× 2𝑅. Only a quarter of each red square
remains within the original square. Next, we fatten each of the 4 edges into purple rectangles of
size 𝑅 × 2𝑅. This can be viewed as “growing” the edge until it has thickness 𝑅, but the regions
that were colored red remain unchanged. Note the fact that the purple edges have a thickness of
𝑅, while the red vertices have a thickness of 2𝑅. This is crucial as it ensures that different purple
regions are separated by a distance of at least 𝑅. Finally, the remaining regions are colored orange.
Note that different orange regions are also separated by a distance of at least 𝑅 due to the thickness
of the purple edges.

The coloring of 3-dimensional lattices is shown in Fig. 2(b). Here we assign colors to a 3-
dimensional cube of size 6𝑅 × 6𝑅 × 6𝑅, and Fig. 2(b) illustrates one of the six faces of that cube,
which is the result of fattening the red vertices, green edges, and the blue face (the final coloring of
the 3-cell is not shown in the figure). The thickness of the red vertices is larger than the thickness of
the green edges, which guarantees that different green edges are separated by distance 𝑅. Similarly,
the decrease in the thickness of the blue faces relative to the green edges guarantees the separation
of different blue faces.
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Choose 𝑅 = 3𝑑 in the above coloring scheme, and suppose the system is divided into 𝐿 small
regions 𝐴1, . . . , 𝐴𝐿 (

∑︀
𝑖 |𝐴𝑖| = 𝑛). Two regions 𝐴𝑖, 𝐴𝑗 that have the same color are separated by

distance at least 3𝑑. Let 𝐴′
𝑖 be the ancilla system associated with 𝐴𝑖 (see Fig. 1), and let 𝑆𝐴𝑖 be

the SWAP operator across 𝐴𝑖 and 𝐴′
𝑖. Let 𝑆 =

∏︀𝐿
𝑖=1 𝑆𝐴𝑖 be the global swap between system and

ancilla. We are now ready to describe the learning algorithm. We separate the proof into two-qubit
gates over SU(4) and over a finite gate set.

5.5.1 Arbitrary SU(4) gates

The learning algorithm proceeds in the same way as in Theorem 6; the only difference is that we
need to learn Heisenberg-evolved Pauli operator 𝑈 †𝑃𝑈 for 𝑃 supported on each small regions in
the coloring scheme instead of on each of the single qubits.

Our goal is to learn to implement the unitary

𝑈 ⊗ 𝑈 † = 𝑆

[︃
𝐿∏︁
𝑖=1

(𝑈 † ⊗ 𝐼)𝑆𝐴𝑖(𝑈 ⊗ 𝐼)

]︃
. (210)

The algorithm learns each of the operators 𝑊𝐴𝑖 := (𝑈 † ⊗ 𝐼)𝑆𝐴𝑖(𝑈 ⊗ 𝐼) and then multiply them
together, followed by the global swap. The key idea to optimize the circuit depth of the learned
circuit is to utilize the coloring scheme in the following sense:

Lemma 17 (Disjointness of supports). Let 𝐴𝑖, 𝐴𝑗 be two regions with the same color. Then 𝑊𝐴𝑖

and 𝑊𝐴𝑗 have disjoint support.

Proof. Recall that the operator 𝑊𝐴𝑖 is supported on 𝐿(𝐴𝑖) ∪ 𝐴′
𝑖, where 𝐿(𝐴𝑖) is the lightcone of

𝐴𝑖 according to Definition 10. Therefore, 𝑊𝐴𝑖 does not overlap with 𝑊𝐴𝑗 when the lightcones
𝐿(𝐴𝑖) and 𝐿(𝐴𝑗) do not overlap. The coloring scheme has the property that 𝐴𝑖, 𝐴𝑗 are separated
by distance at least 3𝑑. Note that the lightcone of a region spreads the region by distance 𝑑.
This implies that 𝐿(𝐴𝑖) and 𝐿(𝐴𝑗) are still separated by distance at least 𝑑 and therefore do not
overlap.

Using the above lemma, we can construct the learned circuit by applying the learned operators
{𝑊𝐴𝑖} with the same color simultaneously.

Lemma 18. There is an implementation of 𝑈 ⊗𝑈 † via applying the operators {𝑊𝐴𝑖} in an appro-
priate order, such that the total circuit depth is (𝑘 + 1)(2𝑑+ 1) + 1.

Proof. We would like to implement

𝑈 ⊗ 𝑈 † = 𝑆
𝐿∏︁
𝑖=1

𝑊𝐴𝑖 . (211)

Note that the operators {𝑊𝐴𝑖} pairwise commute, and we apply them in the following order: for
each color 𝑗 ∈ {1, 2, . . . , 𝑘 + 1}, apply all operators 𝑊𝐴𝑖 that has color 𝑗 simultaneously. Finally,
apply the global swap 𝑆.

Note that by definition, 𝑊𝐴𝑖 = (𝑈 † ⊗ 𝐼)𝑆𝐴𝑖(𝑈 ⊗ 𝐼) can be viewed as a depth-(2𝑑 + 1) circuit
acting on 𝐿(𝐴𝑖) ∪ 𝐴′

𝑖. The total circuit depth is therefore (𝑘 + 1)(2𝑑 + 1) + 1 (the final +1 comes
from the global swap).

The learning algorithm has two steps: learning and compiling.
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1. (Learning) Learn an approximate classical description 𝑊̂𝐴𝑖 for each 𝑊𝐴𝑖 , such that ‖𝑊̂𝐴𝑖 −
𝑊𝐴𝑖‖∞ ≤ 𝜀1 for all 𝑖 with high probability.

2. (Compiling) Compile the learned unitaries 𝑊̂𝐴𝑖 from step one into depth-(2𝑑 + 1) circuits
𝑊̂ ′
𝐴𝑖

, such that ‖𝑊̂𝐴𝑖 − 𝑊̂ ′
𝐴𝑖
‖∞ ≤ 2𝜀1 for all 𝑖.

The diamond distance between the learned circuit and the true circuit is at most 3𝐿𝜀1 ≤ 3𝑛𝜀1.

Step 1: Learning. The goal is to learn an approximation 𝑂̂𝑖,𝑃𝐴𝑖
of each operator 𝑈 †𝑃𝐴𝑖𝑈 , such

that the following,⃦⃦⃦
𝑂̂𝑖,𝑃𝐴𝑖

− 𝑈 †𝑃𝐴𝑖𝑈
⃦⃦⃦
∞
≤ 𝜀1

2|𝐴𝑖|+1
, ∀𝑖 ∈ {1, 2, . . . , 𝐿}, 𝑃𝐴𝑖 ∈ {𝐼,𝑋, 𝑌, 𝑍}|𝐴𝑖|, (212)

holds with probability at least 1− 𝛿.
Using the fact that 𝑆𝐴𝑖 =

1
2|𝐴𝑖|

∑︀
𝑃∈{𝐼,𝑋,𝑌,𝑍}|𝐴𝑖| 𝑃 ⊗ 𝑃 , we have

𝑊𝐴𝑖 =
1

2|𝐴𝑖|

∑︁
𝑃∈{𝐼,𝑋,𝑌,𝑍}|𝐴𝑖|

𝑈 †𝑃𝑈 ⊗ 𝑃. (213)

Meanwhile, let

𝑊̂𝐴𝑖 := ProjU

⎛⎝ 1

2|𝐴𝑖|

∑︁
𝑃∈{𝐼,𝑋,𝑌,𝑍}|𝐴𝑖|

𝑂̂𝑖,𝑃𝐴𝑖
⊗ 𝑃𝐴𝑖

⎞⎠ . (214)

From the lattice coloring scheme, we have |𝐿(𝐴𝑖)| + |𝐴𝑖| ≤ 2(8𝑘𝑑)𝑘. Hence, using Corollary 1 on
exact unitary synthesis with geometrically-local circuits, we can implement 𝑊̂𝐴𝑖 by a geometrically-
local circuit with a circuit depth of

4(8𝑘𝑑)𝑘42(8𝑘𝑑)
𝑘 ≤ 43(8𝑘𝑑)

𝑘+1 ≤ 44(8𝑘𝑑)
𝑘
. (215)

Conditioned on Eq. (212) succeeds, the approximation error is bounded as follows:

⃦⃦⃦
𝑊̂𝐴𝑖 −𝑊𝐴𝑖

⃦⃦⃦
∞
≤ 2

⃦⃦⃦⃦
⃦⃦ 1

2|𝐴𝑖|

∑︁
𝑃∈{𝐼,𝑋,𝑌,𝑍}|𝐴𝑖|

(︁
𝑂̂𝑖,𝑃𝐴𝑖

− 𝑈 †𝑃𝐴𝑖𝑈
)︁
⊗ 𝑃𝐴𝑖

⃦⃦⃦⃦
⃦⃦
∞

≤ 2

2|𝐴𝑖|

∑︁
𝑃∈{𝐼,𝑋,𝑌,𝑍}|𝐴𝑖|

⃦⃦⃦
𝑂̂𝑖,𝑃𝐴𝑖

− 𝑈 †𝑃𝐴𝑖𝑈
⃦⃦⃦
∞

≤ 𝜀1.

(216)

Here in the first line we use the same argument as in Eq. (124).
It remains to bound the time and query complexity to achieve the learning guarantee in Eq. (212).

Given a randomized measurement dataset

𝒯𝑈 (𝑁) =

{︃
|𝜓ℓ⟩ =

𝑛⨂︁
𝑖=1

|𝜓ℓ,𝑖⟩ , |𝜑ℓ⟩ =
𝑛⨂︁
𝑖=1

|𝜑ℓ,𝑖⟩

}︃𝑁
ℓ=1

, (217)

for a Pauli operator 𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}|𝐴𝑖| with weight 𝑤 ≤ |𝐴𝑖| (the weight of a Pauli operator is the
number of non-identity elements), let

𝑣
𝑈†𝑃𝐴𝑖

𝑈

ℓ := 3𝑤 ⟨𝜑ℓ,𝐴𝑖
|𝑃 |𝜑ℓ,𝐴𝑖

⟩ , (218)
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where we let |𝜑ℓ,𝐴𝑖
⟩ := ⊗𝑗∈𝐴𝑖 |𝜑ℓ,𝑗⟩. The same argument in Lemma 12 shows that

E
[︂
𝑣
𝑈†𝑃𝐴𝑖

𝑈

ℓ

]︂
= ⟨𝜓ℓ|𝑈 †𝑃𝐴𝑖𝑈 |𝜓ℓ⟩ . (219)

Let 𝑚 := max𝑖 |𝐿(𝐴𝑖)| ≤ (8𝑘𝑑)𝑘 be the maximum support of the operators 𝑈 †𝑃𝐴𝑖𝑈 . Using
Lemma 11, with a dataset size of

𝑁 =
2𝒪(𝑚) log(𝑛/𝛿)

𝜀21
, (220)

Eq. (212) is achieved with success probability at least 1− 𝛿.

Step 2: Compiling. Given a classical description of 𝑊̂𝐴𝑖 as unitary acting on 𝐿(𝐴𝑖) ∪ 𝐴′
𝑖, which

can be implemented with a circuit depth of at most 44(8𝑘𝑑)
𝑘 , we would like to find a depth-(2𝑑+ 1)

circuit 𝑊̂ ′
𝐴𝑖

that is close to 𝑊̂𝐴𝑖 . To do this, we construct an 𝜀-net for the circuit lightcone and
perform a brute force search.

Definition 18 (𝜀-net for circuits). Consider a graph 𝐺 = (𝑉,𝐸). Let 𝑈 be some unitary generated
by 𝑑 layers of 2-qubit gates where each gate is chosen from SU(4) and acts on an edge in 𝐸. An
𝜀-net for circuits is a set of depth-𝑑 circuits defined on 𝐺, denoted as 𝒩𝜀(𝐺), such that for any
choice of 𝑈 , there exists 𝑉 ∈ 𝒩𝜀(𝐺), such that ‖𝑉 − 𝑈‖∞ ≤ 𝜀.

Lemma 19. Let 𝐺 = (𝑉,𝐸) be a graph with 𝑠 = |𝑉 | vertices and maximum degree 𝜅. An 𝜀-net for
depth-𝑑 circuits defined on 𝐺, denoted as 𝒩𝜀(𝐺), can be constructed with size at most

(︀
𝜅𝑠𝑑
𝜀

)︀𝒪(𝑠𝑑)

and in time
(︀
𝜅𝑠𝑑
𝜀

)︀𝒪(𝑠𝑑).

Proof. There are at most 𝑠𝑑/2 2-qubit gates in the circuit. We construct the 𝜀-net by first enu-
merating all possible circuit architectures and then enumerate each 2-qubit gate using a 2𝜀

𝑠𝑑 -net for
SU(4). In each layer, each qubit can interact with one of the 𝜅 neighboring qubits. This implies
that the number of possible circuit architectures in one layer is at most 𝜅𝑠. Therefore, the number
of possible circuit architectures with depth 𝑑 is at most 𝜅𝑠𝑑.

An 𝜀1-net for SU(4) can be constructed with
(︁
𝑐0
𝜀1

)︁𝑐1
elements, where 𝑐0, 𝑐1 are absolute constants.

Plugging in 𝜀1 = 2𝜀
𝑠𝑑 , the size of 𝒩𝜀(𝐺) is at most

𝜅𝑠𝑑 ·
(︂
𝒪(1) · 𝑠𝑑

𝜀

)︂𝒪(1)·𝑠𝑑
=

(︂
𝜅𝑠𝑑

𝜀

)︂𝒪(𝑠𝑑)

. (221)

This concludes the proof.

Let 𝐺𝐿(𝐴𝑖) be the subgraph of 𝑘-dimensional lattice induced by vertices in 𝐿(𝐴𝑖). The lattice
coloring scheme guarantees that the size of 𝐿(𝐴𝑖) is at most (8𝑘𝑑)𝑘. Let 𝒩𝜀2(𝐺𝐿(𝐴𝑖)) be an 𝜀2-net
for depth-𝑑 circuits acting on 𝐿(𝐴𝑖), which has size at most(︂

(8𝑘𝑑)𝑘+1

𝜀2

)︂𝒪(1)·(8𝑘𝑑)𝑘+1

. (222)

By definition, there is an element 𝑉 ∈ 𝒩𝜀2(𝐺𝐿(𝐴𝑖)) which is a depth-𝑑 circuit acting on 𝐿(𝐴𝑖), such
that

‖(𝑈 † ⊗ 𝐼)𝑆𝐴𝑖(𝑈 ⊗ 𝐼)− (𝑉 † ⊗ 𝐼)𝑆𝐴𝑖(𝑉 ⊗ 𝐼)‖∞ ≤ 2𝜀2, (223)
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which implies that
‖𝑊̂𝐴𝑖 − (𝑉 † ⊗ 𝐼)𝑆𝐴𝑖(𝑉 ⊗ 𝐼)‖∞ ≤ 𝜀1 + 2𝜀2. (224)

Therefore, enumerating over all elements in 𝒩𝜀2(𝐺𝐿(𝐴𝑖)), we are guaranteed to find one element 𝑉
that satisfies

‖𝑊̂𝐴𝑖 − (𝑉 † ⊗ 𝐼)𝑆𝐴𝑖(𝑉 ⊗ 𝐼)‖∞ ≤ 𝜀1 + 2𝜀2. (225)

Let 𝜀2 = 𝜀1/2 and define 𝑊̂ ′
𝐴𝑖

:= (𝑉 † ⊗ 𝐼)𝑆𝐴𝑖(𝑉 ⊗ 𝐼), we have ‖𝑊̂𝐴𝑖 − 𝑊̂ ′
𝐴𝑖
‖∞ ≤ 2𝜀1.

Putting everything together. To achieve diamond distance 𝜀 between the learned circuit
𝑆
∏︀𝐿
𝑖=1 𝑊̂

′
𝐴𝑖

and the true circuit 𝑈 ⊗ 𝑈 †, it suffices to choose 𝜀1 = 𝜀
3𝑛 . With probability at least

1− 𝛿, we can learn all operators 𝑊̂𝐴𝑖 within sufficient precision, using a dataset size of

𝑁 =
2𝒪((8𝑘𝑑)𝑘)𝑛2 log(𝑛/𝛿)

𝜀2
. (226)

Next, each 𝑊̂𝐴𝑖 is classically compiled into a circuit, and they are combined together according to
the order in Lemma 18, such that the learned circuit has total depth (𝑘 + 1)(2𝑑 + 1) + 1. This
classical postprocessing procedure takes a total time of

𝒪(𝑛𝑁) + (𝑛/𝜀)𝒪(8𝑘𝑑)𝑘+1) , (227)

which is polynomial in 𝑛 and 1/𝜀. If we do not compile 𝑊̂𝐴𝑖 to the shorter-depth circuit 𝑊̂ ′
𝐴𝑖

and
use 𝑊̂𝐴𝑖 directly, then the classical postprocessing procedure only requires a computational time of

𝒪(𝑛𝑁), (228)

but the learned circuit will have a total depth of (𝑘 + 1)44(8𝑘𝑑)
𝑘
+ 1. This concludes the proof of

the first part of Theorem 7.

5.5.2 Finite gate sets

The algorithm and the proof closely follow that of arbitrary SU(4) gates. When one considers a
finite gate set with a constant size, a key simplification is the following: for any given 𝑖 ∈ {1, . . . , 𝐿}
and 𝑃𝐴𝑖 ∈ {𝐼,𝑋, 𝑌, 𝑍}|𝐴𝑖|, 𝑈 †𝑃𝐴𝑖𝑈 only takes on a constant number of options. Let 𝜀𝑖,𝑃𝐴𝑖

= Ω(1)

be the minimum distance in spectral norm between any pair of distinct 𝑈 †𝑃𝐴𝑖𝑈 .
From the same algorithm and proof in Step 1: Learning, we can ensure that⃦⃦⃦

𝑂̂𝑖,𝑃𝐴𝑖
− 𝑈 †𝑃𝐴𝑖𝑈

⃦⃦⃦
∞
≤
𝜀𝑖,𝑃𝐴𝑖

3
, ∀𝑖 ∈ {1, 2, . . . , 𝐿}, 𝑃𝐴𝑖 ∈ {𝐼,𝑋, 𝑌, 𝑍}|𝐴𝑖|, (229)

holds with probability at least 1− 𝛿 using a sample complexity of

𝑁 = 𝒪

(︃
log(𝑛/𝛿)

𝜀2𝑖,𝑃𝐴𝑖

)︃
= 𝒪 (log(𝑛/𝛿)) . (230)

From the definition of 𝜀𝑖,𝑃𝐴𝑖
, we can identify 𝑈 †𝑃𝐴𝑖𝑈 exactly from 𝑂̂𝑖,𝑃𝐴𝑖

. This enables us to exactly
reconstruct

𝑊𝐴𝑖 =
1

2|𝐴𝑖|

∑︁
𝑃∈{𝐼,𝑋,𝑌,𝑍}|𝐴𝑖|

𝑈 †𝑃𝑈 ⊗ 𝑃 = 𝑈 †𝑆𝐴𝑖𝑈. (231)
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Because 𝑈 is a quantum circuit of depth 𝑑 = 𝒪(1) on a constant-dimensional lattice over a finite
gate set of a constant size, we can perform a constant-time brute-force search to find a (2𝑑+1)-depth
circuit implementation for 𝑊𝐴𝑖 instead of searching through the 𝜀-net as in Step 2: Compiling. The
computational time of the compiling step is improved from (𝑛/𝜀)𝒪(8𝑘𝑑)𝑘+1) to 𝒪(𝑛). Following the
rest of the proof for the case of SU(4) gates, we can learn 𝑈 exactly with a learned circuit of depth
(𝑘 + 1)(2𝑑 + 1) + 1. The sample complexity is given in Eq. (230), and the computational time is
dominated by reading the classical dataset, which is of 𝒪(𝑛𝑁) = 𝒪(𝑛 log(𝑛/𝛿)). This concludes the
proof of Theorem 7.

6 Learning shallow quantum circuits from quantum queries

We consider quantum learning algorithms that can access an unknown 𝑛-qubit unitary 𝑈 through
coherent quantum queries, which interleave the unitary 𝑈 with quantum computation.

Definition 19 (Coherent quantum queries). The learning algorithm is a quantum algorithm with
general coherent query access to the unknown unitary 𝑈 . The quantum learning algorithm can
interleave multiple accesses to the unknown unitary 𝑈 with polynomial-size quantum circuits.

We show the following result for learning geometrically-local shallow quantum circuits over
finite gate sets with asymptotically optimal query complexity and time complexity. We only need
to consider proving the matching upper bounds. The matching lower bounds to the query and
time complexity are trivial: learning anything about 𝑈 requires Ω(1) queries to 𝑈 ; writing down 𝑈
requires Ω(𝑛) time.

Theorem 8 (Learning geometrically-local shallow quantum circuits over a finite gate set). Given
an unknown geometrically-local constant-depth 𝑛-qubit circuit 𝑈 over a finite gate set. From

𝑁 = Θ(1) (232)

queries to 𝑈 , we can learn an 𝑛-qubit quantum channel ℰ̂ that can be implemented by a geometrically-
local constant-depth 2𝑛-qubit circuit, such that

ℰ̂ = 𝒰 , (233)

with probability 1. The computational time to learn ℰ̂ is Θ(𝑛).

6.1 Learning local inversion using coherent quantum queries

When there is only a finite choice of possible unitaries, we can find the local inversion perfectly with
𝒪(1) queries, even if there is incoherent noise coming from the environment. This lemma is useful
for showing the 𝒪(1) query complexity for learning 𝑛-qubit shallow quantum circuits with a finite
gate set and a fixed geometric structure. The idea is to store multiple output quantum states in a
quantum memory and utilize entangled quantum data processing. The formal statement is given
below. We use the subscript on identity 𝐼 or ℐ to denote the number of qubits the identity acts on.

Lemma 20 (Perfect local inversion among finite choices). Consider 𝑘, 𝑙,𝑚 = 𝒪(1), unitaries
𝑈1, . . . , 𝑈𝑚 over 𝑘 qubits, and unitaries 𝑊1, . . .𝑊𝑚 over (𝑘 − 1) + 𝑙 qubits. Let CPTP maps ℰ𝑥
from 𝑘 to 𝑘 + 𝑙 qubits be

ℰ𝑥(𝜌) := (ℐ1 ⊗𝒲𝑥)(𝒰𝑥 ⊗ ℐ𝑙)(𝜌⊗ 𝐼/2𝑙), ∀𝑥 = 1, . . . ,𝑚. (234)

Given an unknown ℰ𝑥. Using 𝒪(1) queries to ℰ𝑥, we can find a perfect local inversion 𝑉𝑥 of 𝑈𝑥 on
the first qubit. Furthermore, 𝑉𝑥 = 𝑈 †

𝑖 for some 𝑖.
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In order to prove the above lemma, we use a perfect local identity check for two choices given
in Lemma 21. The proof of Lemma 20 is given after the proof of Lemma 21.

Lemma 21 (Perfect local identity check among two choices). Consider 𝑘, 𝑙 ≥ 1, two unitaries
𝑈1, 𝑈2 over 𝑘 qubits, and two unitaries 𝑉1, 𝑉2 over 𝑘+ 𝑙−1 qubits. Given CPTP maps from 𝑘 qubits
to 𝑘 + 𝑙 qubits,

ℰ𝑥(𝜌) := (ℐ1 ⊗ 𝒱𝑥)(𝒰𝑥 ⊗ ℐ𝑙)(𝜌⊗ 𝐼/2𝑙), ∀𝑥 = 1, 2. (235)

Assume that 𝑘, 𝑙 are constants, 𝑈1 acts as identity on the first qubit 𝑈1 = 𝐼1⊗𝑈̃1, and 𝑈2 is constant
far from CPTP maps that act as an identity on the first qubit,

𝑐 := min
ℰ
‖𝒰2 − ℐ1 ⊗ ℰ‖◇ = Ω(1). (236)

Given an unknown ℰ𝑥. Using 𝒪(1) queries to ℰ𝑥, we can perfectly distinguish between ℰ1 and ℰ2.

Proof. Let |Ω𝑘⟩ be the maximally entangled state over two copies of a 𝑘-qubit system. We define
the following density matrices over (𝑘 + 𝑙) + 𝑘 qubits,

𝜌𝑥 := (ℐ𝑘 ⊗ ℰ𝑥)(|Ω𝑘⟩⟨Ω𝑘|), ∀𝑥 = 1, 2. (237)

The support of a density matrix 𝜌 is defined as

supp(𝜌) :=
{︀
|𝜓⟩
⃒⃒
⟨𝜓| 𝜌 |𝜓⟩ > 0

}︀
. (238)

From the definition of 𝜌𝑥, we have

supp(𝜌𝑥) = {(𝐼𝑘+1 ⊗ 𝑉𝑥)(𝐼𝑘 ⊗ 𝑈𝑥 ⊗ 𝐼𝑙)(|Ω𝑘⟩ ⊗ |𝜓⟩), ∀ |𝜓⟩} . (239)

The maximal fidelity between two density matrices is defined as

𝐹 (𝜌1, 𝜌2) := max
(︀
| ⟨𝜑1|𝜑2⟩ |

⃒⃒
|𝜑𝑥⟩ ∈ supp(𝜌𝑥), 𝑥 = 1, 2

)︀
. (240)

The maximal fidelity behaves similarly to fidelity and is multiplicative under tensor product

𝐹 (𝜌1 ⊗ 𝜎1, 𝜌2 ⊗ 𝜎2) = 𝐹 (𝜌1, 𝜌2)𝐹 (𝜎2, 𝜎2). (241)

From the above definition, we see that there exists |𝜓1⟩ , |𝜓2⟩ such that

𝐹 (𝜌1, 𝜌2)
2 =

⃒⃒⃒
(⟨Ω𝑘| ⊗ ⟨𝜓1|)(𝐼𝑘 ⊗ 𝑈 †

2 ⊗ 𝐼𝑙)(𝐼𝑘+1 ⊗ (𝑉 †
2 𝑉1(𝑈̃1 ⊗ 𝐼𝑙)))(|Ω𝑘⟩ ⊗ |𝜓2⟩)

⃒⃒⃒2
. (242)

We now consider two states associated with the above,

𝜎1 := (𝐼𝑘+1 ⊗ (𝑉 †
2 𝑉1(𝑈̃1 ⊗ 𝐼𝑙)))(|Ω𝑘⟩⟨Ω𝑘| ⊗ |𝜓2⟩⟨𝜓2|)(𝐼𝑘+1 ⊗ ((𝑈̃ †

1 ⊗ 𝐼𝑙)𝑉
†
1 𝑉2)) (243)

𝜎2 := (𝐼𝑘 ⊗ 𝑈2 ⊗ 𝐼𝑙)(|Ω𝑘⟩⟨Ω𝑘| ⊗ |𝜓1⟩⟨𝜓1|)(𝐼𝑘 ⊗ 𝑈 †
2 ⊗ 𝐼𝑙) (244)

The Fuchs–van de Graaf inequalities show that 𝐹 (𝜌1, 𝜌2)2 = Tr(𝜎1𝜎2) ≤ 1− 1
4‖𝜎1 − 𝜎2‖

2
1. We now

consider a lower bound of the trace norm ‖𝜎1 − 𝜎2‖1 by tracing out the last 𝑙 qubits,

‖𝜎1 − 𝜎2‖1 ≥ ‖(ℐ𝑘 ⊗ ℐ1 ⊗ ℰ)(|Ω𝑘⟩⟨Ω𝑘|)− (ℐ𝑘 ⊗ 𝒰2)(|Ω𝑘⟩⟨Ω𝑘|)‖1, (245)

where ℰ is a CPTP map that acts on the last 𝑘 − 1 qubits. Recall that the 1-norm distance in
the Choi states upper bounds the diamond distance in the CPTP maps up to the dimension factor
1/2𝑘. From the definition of 𝑐 in Eq. (236), we have the following inequality,

‖𝜎1 − 𝜎2‖1 ≥
1

2𝑘
‖ℐ1 ⊗ ℰ − 𝒰2‖◇ ≥

𝑐

2𝑘
. (246)
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Therefore, we have

𝐹 (𝜌1, 𝜌2) ≤
√︁
1− (𝑐/2𝑘+2)2 < 1, (247)

which is a key result that will be used later.
We need to consider another pair of states. Consider the Pauli decomposition of 𝑈2 on the first

qubit,
𝑈2 =

∑︁
𝑃∈{𝐼,𝑋,𝑌,𝑍}

𝑃 ⊗ 𝑈̃2,𝑃 , (248)

where 𝑈̃2,𝑃 is a complex matrix of dimension 2𝑘−1. Because 𝑈2 does not act as identity on the first
qubit, we have 𝑐′ :=

∑︀
𝑃 ̸=𝐼 Tr

(︁
𝑈̃ †
2,𝑃 𝑈̃2,𝑃

)︁
> 0 is a positive constant. Consider the following matrix,

𝑀 :=
∑︁

𝑃∈{𝑋,𝑌,𝑍}

𝑃 ⊗ 𝑈̃2,𝑃 , (249)

and define two 2𝑘-qubit pure states,

|𝜓1⟩ := |Ω𝑘⟩ , (250)

|𝜓2⟩ := 𝐼𝑘 ⊗

(︃
𝑈 †
2

𝑀√︀
Tr(𝑀 †𝑀)/2𝑘

)︃
|Ω𝑘⟩ . (251)

By the definition of 𝑐′ and 𝑀 , we have Tr
(︀
𝑀 †𝑀

)︀
= 2𝑐′ > 0 and

𝐹 (|𝜓1⟩⟨𝜓1| , |𝜓2⟩⟨𝜓2|) = | ⟨𝜓1|𝜓2⟩ |2 = 2𝑐′/2𝑘 > 0. (252)

Furthermore, the overlap between ℰ𝑥(|𝜓𝑥⟩⟨𝜓𝑥|) satisfies

Tr (ℰ1(|𝜓1⟩⟨𝜓1|)ℰ2(|𝜓2⟩⟨𝜓2|)) =
1

2𝑐′/2𝑘
· 1
2𝑘
· 1
2𝑘
· (253)∑︁

𝑃,𝑄∈{𝑋,𝑌,𝑍}

Tr
(︁
Tr≤𝑘(𝑃 ⊗ ((𝑈̃ †

2,𝑃 ⊗ 𝐼𝑙)𝑉
†
2 𝑉1(𝑈̃1 ⊗ 𝐼𝑙))) Tr≤𝑘(𝑄⊗ ((𝑈̃ †

1 ⊗ 𝐼𝑙)𝑉
†
1 𝑉2(𝑈̃2,𝑄 ⊗ 𝐼𝑙)))

)︁
= 0,

(254)

which implies that there exists a two-outcome projective measurement ℳ that could perfectly
distinguish between the two states ℰ1(|𝜓1⟩⟨𝜓1|) and ℰ2(|𝜓2⟩⟨𝜓2|).

Consider 𝑁 queries to ℰ𝑥 to obtain 𝜌⊗𝑁𝑥 , where the number of queries is

𝑁 := max

⎛⎝1,

⎡⎢⎢⎢ log
(︀
(2𝑐′/2𝑘)

)︀
log
(︁√︀

1− (𝑐/2𝑘+2)2
)︁
⎤⎥⎥⎥
⎞⎠ = 𝒪(1). (255)

Using Eq. (241), (247), and (252), we have

𝐹 (𝜌⊗𝑁1 , 𝜌⊗𝑁2 ) = 𝐹 (𝜌1, 𝜌2)
𝑁 ≤

√︁
1− (𝑐/2𝑘+2)2

𝑁

≤ (2𝑐′/2𝑘) = 𝐹 (|𝜓1⟩⟨𝜓1| , |𝜓2⟩⟨𝜓2|). (256)

From Lemma 1 of [98], there exists a CPTP map 𝒯 that takes 𝜌𝑥 to |𝜓𝑥⟩⟨𝜓𝑥| for 𝑥 = 1, 2. We
apply 𝒯 to 𝜌𝑥. And we evoke one additional query to ℰ𝑥 to obtain ℰ𝑥(|𝜓𝑥⟩⟨𝜓𝑥|). Finally, we
perform the two-outcome projective measurement ℳ to perfectly distinguish between ℰ1(|𝜓1⟩⟨𝜓1|)
and ℰ2(|𝜓2⟩⟨𝜓2|). Together, with 𝑁 + 1 = 𝒪(1) queries to ℰ𝑥, we can perfectly distinguish between
ℰ1 and ℰ2.
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We are now ready to prove Lemma 20. The central idea is a bipartite tournament with a
potential local inversion on one side and all possible non-local inversion on the other side.

Proof of Lemma 20. Each query to ℰ𝑥 allows us to create 1 query to any one of the following CPTP
maps,

ℰ𝑥,𝑖 = (ℰ𝑥 ∘ 𝒰†
𝑖 ), ∀𝑖 = 1, . . . ,𝑚. (257)

The algorithm proceeds by going through all of 𝑖 one by one. For each 𝑖, the algorithm creates two
sets,

𝑆𝑖 :=
{︁
𝑦 ∈ {1, . . . ,𝑚} | 𝑈𝑦𝑈 †

𝑖 acts as identity on the first qubit
}︁
, (258)

𝑇𝑖 := {1, . . . ,𝑚} ∖ 𝑆𝑖. (259)

Note that by definition, 𝑖 ∈ 𝑆𝑖 and 𝑖 ̸∈ 𝑇𝑖. For each 𝑦 ∈ 𝑇𝑖, the algorithm uses the algorithm given
in the proof of Lemma 21 to test whether ℰ𝑥,𝑖 is equal to ℰ𝑦,𝑖 or ℰ𝑖,𝑖. If ℰ𝑥,𝑖 is indeed equal to one
of them, then the algorithm in Lemma 21 is guaranteed to output the one that is equal to ℰ𝑥,𝑖. If
not, then the algorithm in Lemma 21 will output ℰ𝑦,𝑖 or ℰ𝑖,𝑖 arbitrarily. After going through all
𝑦 ∈ 𝑇𝑖, if between ℰ𝑦,𝑖 and ℰ𝑖,𝑖, ℰ𝑖,𝑖 is always chosen for all 𝑦 ∈ 𝑇𝑖, then the algorithm sets 𝑖* := 𝑖

and terminates the for-loop over 𝑖. The algorithm outputs 𝑈 †
𝑖* as the claimed perfect local inversion

of 𝑈𝑥 on the first qubit.
By construction, the total number of queries to ℰ𝑥 in the above algorithm is a constant. We now

prove that (a) 𝑖* can always be found by the above algorithm and (b) 𝑈 †
𝑖* is a perfect local inversion

of 𝑈𝑥 on the first qubit. The proof is separated into the following two paragraphs addressing each
claim.

𝑖* can always be found. When 𝑖 = 𝑥, for each 𝑦 ∈ 𝑇𝑖, we are testing whether ℰ𝑥,𝑥 is equal to
ℰ𝑦,𝑥 or ℰ𝑥,𝑥. Because 𝑈𝑦𝑈

†
𝑥 does not act as identity on the first qubit by definition of 𝑇𝑥, Lemma 21

shows that the algorithm will always return ℰ𝑥,𝑥 when deciding between ℰ𝑦,𝑥 and ℰ𝑥,𝑥. Hence when
𝑖 = 𝑥, the algorithm will set 𝑖* := 𝑖 and terminate the for-loop over 𝑖. The algorithm could also
terminate earlier for some 𝑖 < 𝑥 but will always terminate when 𝑖 = 𝑥. Therefore, 𝑖*, as defined by
the algorithm previously, can always be found.

𝑈 †
𝑖* is a perfect local inversion of 𝑈𝑥 on the first qubit. We first show by contradiction that

𝑥 ̸∈ 𝑇𝑖* . Suppose that 𝑥 ∈ 𝑇𝑖* . For 𝑦 = 𝑥 ∈ 𝑇𝑖* , we would be testing whether ℰ𝑥,𝑖* is equal to ℰ𝑥,𝑖*
or ℰ𝑖*,𝑖* . Recall that 𝑖* ̸∈ 𝑇𝑖* , thus 𝑥 ̸= 𝑖*. Lemma 21 thus implies that the algorithm will always
return ℰ𝑥,𝑖* when deciding between ℰ𝑥,𝑖* and ℰ𝑖*,𝑖* . As a result, the condition defining 𝑖* is not
satisfied, which is a contradiction. Because 𝑆𝑖* ∪ 𝑇𝑖* = {1, . . . ,𝑚}, we have 𝑥 ∈ 𝑆𝑖* . which means
have 𝑈𝑥𝑈

†
𝑖* acts as identity on the first qubit. As a result, 𝑈 †

𝑖* is a perfect local inversion of 𝑈𝑥 on
the first qubit.

6.2 Learning geometrically-local shallow circuits over a finite gate set (Proof of
Theorem 8)

We present the algorithm for learning an unknown geometrically-local shallow quantum circuit 𝑈
over a finite gate set. Let the geometry over 𝑛 qubits be represented by a graph 𝐺 = (𝑉,𝐸) with
degree 𝜅 = 𝒪(1), the depth of 𝑈 be 𝑑 = 𝒪(1), and the finite gate set be 𝒢 with |𝒢| = 𝒪(1).
This algorithm requires coherent quantum queries to the unknown unitary 𝑈 . The key ideas are
constructing 𝑛 CPTP maps ℰ𝑈𝑖 , ∀𝑖 ∈ {1, . . . , 𝑛} from 𝒪(1) queries to 𝑈 , utilizing Lemma 20 to find
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perfect local inversion among finite choices, and using Definition 13 and Lemma 7 to sew the local
inversion unitaries together.

We consider the lightcone 𝐿𝑑(𝑖) of the geometry for qubit 𝑖 under the unknown depth-𝑑 geometrically-
local circuit 𝑈 in Definition 10 and the properties of the lightcones given in Lemma 16.

For each qubit 𝑖 in the 𝑛-qubit system, we can always decompose the depth-𝑑 geometrically-local
quantum circuit 𝑈 as the following,

𝑈 =
(︁
𝐼𝑖 ⊗𝑊 (𝑖) ⊗ 𝐼/∈𝐿2𝑑(𝑖)

)︁(︁
𝑈 (𝑖) ⊗ 𝑊̃ (𝑖)

)︁
, (260)

where 𝑈 (𝑖) acts on qubits in the set 𝐿𝑑(𝑖), 𝑊̃ (𝑖) acts on qubits not in the set 𝐿𝑑(𝑖), 𝑊 (𝑖) acts on
qubits in the set 𝐿2𝑑(𝑖) ∖ {𝑖}, and 𝐼𝑖, 𝐼/∈𝐿3𝑑(𝑖) are identity matrices acting on qubit 𝑖 and qubits not
in 𝐿3𝑑(𝑖), respectively. Furthermore, 𝑈 (𝑖),𝑊 (𝑖), 𝑊̃ (𝑖) are all subcircuits (circuits containing a subset
of gates) of the unknown depth-𝑑 geometrically-local circuits 𝑈 . We define the CPTP map ℰ𝑈𝑖 ,

ℰ𝑈𝑖 (𝜌) := Tr/∈𝐿2𝑑(𝑖)

(︂
𝑈

(︂
𝜌⊗

𝐼/∈𝐿𝑑(𝑖)

2𝑛−|𝐿𝑑(𝑖)|

)︂
𝑈 †
)︂

(261)

=
(︁
ℐ𝑖 ⊗𝒲(𝑖)

)︁(︁
𝒰 (𝑖) ⊗ ℐ𝐿2𝑑(𝑖)∖𝐿𝑑(𝑖)

)︁(︂
𝜌⊗

𝐼𝐿2𝑑(𝑖)∖𝐿𝑑(𝑖)

2|𝐿2𝑑(𝑖)|−|𝐿𝑑(𝑖)|

)︂
, (262)

where 𝜌 is a density matrix for qubits in 𝐿𝑑(𝑖), 𝐼/∈𝐿𝑑(𝑖) is the identity matrix over qubits not in
𝐿𝑑(𝑖), 𝐼/∈𝐿𝑑(𝑖)/2

𝑛−|𝐿𝑑(𝑖)| is the maximally mixed state for qubits not in 𝐿𝑑(𝑖), and Tr/∈𝐿2𝑑(𝑖) traces
out all qubits not in 𝐿2𝑑(𝑖). Because ℰ𝑈𝑖 (𝜌) uses a single query to 𝑈 , naively, one would expect that
to obtain a query to ℰ𝑈𝑖 for every qubit 𝑖 requires 𝑛 queries to 𝑈 . The following lemma shows that
we can do much more efficiently than what one would naively expect.

Lemma 22 (Queries to every ℰ𝑈𝑖 from only 𝒪(1) queries to 𝑈). We can construct a query to every
ℰ𝑈𝑖 , 1 ≤ 𝑖 ≤ 𝑛 from only 𝒪(1) queries to the unknown constant-depth geometrically-local circuit 𝑈 .

Proof. Let 𝑑 = 𝒪(1) be the depth of the circuit 𝑈 . We consider a graph 𝐺(3𝑑) over 𝑛 qubits, where
each pair of qubits is connected by an edge if their distance in 𝐺 is at most 3𝑑. The degree of
𝐺(3𝑑) is at most (𝜅 + 1)3𝑑 = 𝒪(1). The graph only has 𝒪(𝑛) edges and can be constructed as an
adjacency list in time 𝒪(𝑛). Let us define a coloring of the graph 𝐺(3𝑑). By the standard greedy
coloring algorithm, we can find a color 𝑐(3𝑑)(𝑖) for each qubit 𝑖 in graph 𝐺(3𝑑), where no adjacent
vertices can have the same color, and there are only 𝜒(3𝑑) distinct colors with

𝜒(3𝑑) ≤ (𝜅+ 1)3𝑑 + 1 = 𝒪(1). (263)

The greedy coloring algorithm runs in time linear in the number of edges in 𝐺(3𝑑), which is linear
in the number 𝑛 of qubits.

For each color 𝑐 = 1, . . . , 𝜒(3𝑑), we consider the set of qubits with color 𝑐. We can construct one
query to every ℰ𝑈𝑖 for qubits 𝑖 with color 𝑐(3𝑑)(𝑖) = 𝑐 from only one query to 𝑈 . By the construction
of the graph coloring, for two distinct qubits 𝑖 ̸= 𝑗 with the same color 𝑐, 𝐿3𝑑(𝑖) ∩ 𝐿3𝑑(𝑗) = ∅. We
now define the following sets of qubits for the color 𝑐,

𝐴(𝑐) :=
{︁
𝑖 ∈ {1, . . . , 𝑛}

⃒⃒
𝑐(3𝑑)(𝑖) = 𝑐

}︁
, 𝐵𝑞(𝑐) :=

⋃︁
𝑖:𝑐(3𝑑)(𝑖)=𝑐

𝐿𝑞(𝑖), (264)

for any integer 𝑞 ≥ 1. Given the definition of 𝑈 (𝑖),𝑊 (𝑖) in Eq. (260) for each qubit 𝑖. We can further
decompose the shallow circuit 𝑈 as

𝑈 =

⎡⎣⎛⎝𝐼𝐴(𝑐) ⊗ ⨂︁
𝑖:𝑐(3𝑑)(𝑖)=𝑐

𝑊 (𝑖)

⎞⎠⊗ 𝐼/∈𝐵2𝑑(𝑐)

⎤⎦⎡⎣⎛⎝ ⨂︁
𝑖:𝑐(3𝑑)(𝑖)=𝑐

𝑈 (𝑖)

⎞⎠⊗ 𝑊̃ (𝑐)

⎤⎦ , (265)
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where 𝑊̃ (𝑐) acts on qubits not in 𝐵𝑑(𝑐). Consider initializing the qubits not in 𝐵𝑑(𝑐) as the maxi-
mally mixed state, evolving under 𝑈 , and tracing out any qubits not in 𝐵2𝑑(𝑐). The resulting CPTP
map ℰ𝑈𝑐 from qubits in 𝐵𝑑(𝑐) to qubits in 𝐵2𝑑(𝑐) can be written as

ℰ𝑈𝑐 (𝜌) =

⎛⎝ℐ𝐴(𝑐) ⊗ ⨂︁
𝑖:𝑐(3𝑑)(𝑖)=𝑐

𝒲(𝑖)

⎞⎠⎛⎝ ⨂︁
𝑖:𝑐(3𝑑)(𝑖)=𝑐

𝒰 (𝑖) ⊗ ℐ𝐵2𝑑(𝑖)∖𝐵𝑑(𝑖)

⎞⎠(︂𝜌⊗ 𝐼𝐵2𝑑(𝑐)∖𝐵𝑑(𝑐)

2|𝐵2𝑑(𝑐)|−|𝐵𝑑(𝑐)|

)︂
, (266)

where 𝜌 is a density matrix over qubits in 𝐵𝑑(𝑐). It is not hard to see that

ℰ𝑈𝑐 =
⨂︁

𝑖:𝑐(3𝑑)(𝑖)=𝑐

ℰ𝑈𝑖 . (267)

Because ℰ𝑈𝑐 only requires one query to 𝑈 , we can create ℰ𝑈𝑖 for all qubit 𝑖 with color 𝑐 from one
query to 𝑈 . Since there is only 𝜒(3𝑑) = 𝒪(1) colors, we can create a query to every ℰ𝑈𝑖 , 1 ≤ 𝑖 ≤ 𝑛
from only 𝒪(1) queries to the unknown circuit 𝑈 .

Because 𝑈 is over a finite gate set with size 𝒪(1), we have 𝑈 (𝑖) and 𝑊 (𝑖) only have a constant
number of choices. Furthermore, both 𝑈 (𝑖) and 𝑊 (𝑖) act on a constant number of qubits because
|𝐿𝑑(𝑖)| = 𝒪(1), |𝐿2𝑑(𝑖)| = 𝒪(1) for a constant depth 𝑑. From Lemma 20, for each qubit 𝑖, through
𝒪(1) queries to ℰ𝑈𝑖 , we can learn a perfect local inversion 𝑉𝑖 of 𝑈 (𝑖) on qubit 𝑖 with no failure
probability. The local inversion unitary 𝑉𝑖 is the inverse of one of the possible choices for 𝑈 (𝑖).
Hence, 𝑉𝑖 is a geometrically-local depth-𝑑 circuit that only acts on qubits in 𝐿𝑑(𝑖). Combining with
Lemma 22, from only 𝒪(1) queries to 𝑈 , we can learn 𝑉 (𝑖), ∀𝑖 = 1, . . . , 𝑛, such that

𝒰 (𝑖)𝒱𝑖 = ℐ(𝑖) ⊗ ℰ𝒰
(𝑖)𝒱𝑖

̸=𝑖 , (268)

where ℐ(𝑖) is the identity map on qubit 𝑖 and ℰ𝒰
(𝑖)𝒱𝑖

̸=𝑖 is the reduced channel of 𝒰 (𝑖)𝒱𝑖 with qubit
𝑖 removed. The quantum computational time is given by 𝒪(𝑛). We now show that 𝑉𝑖 is also the
perfect local inversion unitary for 𝑈 on qubit 𝑖. To see this, recall the decomposition in Eq. (260),
we have

𝒰𝒱𝑖 =
(︁
ℐ𝑖 ⊗𝒲(𝑖) ⊗ ℐ/∈𝐿2𝑑(𝑖)

)︁(︁
𝒰 (𝑖)𝒱𝑖 ⊗ 𝒲̃(𝑖)

)︁
(269)

= ℐ(𝑖) ⊗
(︁(︁
𝒲(𝑖) ⊗ ℐ/∈𝐿2𝑑(𝑖)

)︁(︁
ℰ𝒰

(𝑖)𝒱𝑖
̸=𝑖 ⊗ 𝒲̃(𝑖)

)︁)︁
(270)

= ℐ(𝑖) ⊗ ℰ𝒰𝒱𝑖
̸=𝑖 . (271)

We can now use Definition 13 and Lemma 7 to sew the perfect local inversion unitaries together.
This gives the following 2𝑛-qubit unitary,

𝑈sew(𝑉1, . . . , 𝑉𝑛) = 𝑆

[︃
𝑛∏︁
𝑖=1

(︁
𝑉

(1)
𝑖

)︁
𝑆𝑖

(︁
𝑉

(1)
𝑖

)︁†]︃
= 𝑈 ⊗ 𝑈 †, (272)

where 𝑉 (1)
𝑖 is the unitary 𝑉𝑖 acting on the first set of 𝑛 qubits.

We now show that there exists a sewing ordering such that 𝑈sew(𝑉1, . . . , 𝑉𝑛) is a constant-depth
geometrically-local circuit. Given the geometry over 𝑛 qubits represented by a graph 𝐺 = (𝑉,𝐸).
Consider a graph 𝐺(2𝑑) over 𝑛 qubits, where each pair (𝑖, 𝑗) of qubits are connected by an edge if 𝑖, 𝑗
is of distance at most 2𝑑 in the geometric graph 𝐺. Hence, equivalently, for all (𝑖, 𝑗) not connected
by an edge in 𝐺(2𝑑), we have

𝐿𝑑(𝑖) ∩ 𝐿𝑑(𝑗) = ∅. (273)
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The degree of 𝐺(2𝑑) is bounded above by (𝜅+ 1)2𝑑. And 𝐺(2𝑑) can be constructed as an adjacency
list in time 𝒪(𝑛). Because the graph has a constant degree, we can use a 𝒪(𝑛)-time greedy graph
coloring algorithm to color the 𝑛-qubit graph 𝐺(2𝑑) using only a constant number of colors. For
each node/qubit 𝑖, we consider 𝑐(𝑖) to be the color. The sewing order for the 𝑛 local inversion
unitaries 𝑉𝑖 is given by the greedy graph coloring, where we order from the smallest color to the
largest color. By the definition of graph coloring, for any pair 𝑖, 𝑗 of qubits with the same color, we
have 𝐿𝑑(𝑖) ∩ 𝐿𝑑(𝑗) = ∅. Furthermore, 𝑉𝑖 is a constant-depth geometrically-local circuit that only
acts on a constant number of qubits. Therefore, for any color 𝑐′, we can find an implementation of
the 2𝑛-qubit unitary ∏︁

𝑖:𝑐(𝑖)=𝑐′

(︁
𝑉

(1)
𝑖

)︁
𝑆𝑖

(︁
𝑉

(1)
𝑖

)︁†
(274)

with a constant-depth geometrically-local quantum circuit in time 𝒪(𝑛). Since there is only a
constant number of colors, the 2𝑛-qubit unitary 𝑈sew(𝑉1, . . . , 𝑉𝑛) in Eq. (272) with the color-based
ordering can be implemented with a constant-depth geometrically-local quantum circuit in time
𝒪(𝑛). Finally, define an 𝑛-qubit channel ℰ̂ as follows,

ℰ̂(𝜌) := Tr>𝑛 (𝒰sew(𝑉1, . . . , 𝑉𝑛)(𝜌⊗ |0𝑛⟩⟨0𝑛|)) , (275)

which can be implemented as a geometrically-local constant-depth quantum circuit over 2𝑛 qubits.
Because 𝑈sew(𝑉1, . . . , 𝑉𝑛) = 𝑈 ⊗ 𝑈 † from Eq. (272), we have

ℰ = 𝒰 (276)

with probability one. This concludes the proof of Theorem 8.

7 Hardness for learning log-depth quantum circuits

We have seen from the previous appendices that learning general constant-depth quantum circuits
can be done efficiently. A natural follow-up question is whether one could efficiently learn log-depth
quantum circuits. In the following, we show that learning log-depth quantum circuits to a constant
diamond distance is exponentially hard, even when we allow coherent quantum queries to 𝑈 . Hence,
the problem of learning quantum circuits transitions from being polynomially easy to exponentially
hard when we go from 𝒪(1)-depth to 𝒪(log 𝑛)-depth.

Proposition 3 (Hardness for learning log-depth circuits). Consider an unknown 𝑛-qubit unitary 𝑈
generated by a 𝒪(log 𝑛)-depth circuit over arbitrary two-qubit gates with 𝑛 ancilla qubits. We have

• Learning 𝑈 to 1/3 diamond distance with high probability requires exp(Ω(𝑛)) queries.

• Distinguishing whether 𝑈 equals to the identity 𝐼 or is 1/3-far from the identity 𝐼 in diamond
distance with high probability requires exp(Ω(𝑛)) queries.

Proof. Without loss of generality, we consider 𝑛 to be 2𝑘 for an integer 𝑘. Consider the unknown
unitary 𝑈 to be 𝐼 or one of 𝑈𝑥, ∀𝑥 ∈ {0, 1}𝑛. The unitary 𝑈𝑥 is defined to be

𝑈𝑥 |𝑦⟩ =

{︃
1, 𝑥 = 𝑦,

−1, 𝑥 ̸= 𝑦,
(277)
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for any 𝑦 ∈ {0, 1}𝑛. The 𝑛-qubit unitary 𝑈𝑥 can be constructed as follows,

𝑈𝑥 =

⎛⎜⎜⎝ ∏︁
1≤𝑖≤𝑛
𝑥𝑖=0

𝑋𝑖

⎞⎟⎟⎠𝐶𝑛𝑍

⎛⎜⎜⎝ ∏︁
1≤𝑖≤𝑛
𝑥𝑖=0

𝑋𝑖

⎞⎟⎟⎠ , (278)

where 𝑋𝑖 is the 𝑋 gate on the 𝑖-th qubit, and 𝐶𝑛𝑍 is a controlled-Z gate controlled on all qubits.
The circuit

∏︀
𝑖:𝑥𝑖=0𝑋𝑖 can be implemented in one layer. We can implement 𝐶𝑛𝑍 using 𝑛 ancilla

qubits in depth 𝒪(log 𝑛). To see this, we first construct a (2𝑘 +2𝑘 − 1)-qubit unitary 𝑉 recursively
as follows:

1. Set the 𝑛 = 2𝑘 qubits to be the first set of control qubits. Set 𝑗 ← 𝑘.

2. Consider the 2𝑗 control qubits as 2𝑗−1 pairs of two control qubits. Include 2𝑗−1 new ancilla
qubits initialized at |0⟩𝑛.

3. For each pair of control qubits, implement a CCX gate on each newly added ancilla qubit
controlled on the two control qubits.

4. Set the new 2𝑗−1 ancilla qubits as the set of control qubits. Set 𝑗 ← 𝑗 − 1.

5. If 𝑗 > 0, repeat Step 2.

We can compile the CCX gate acting on three qubits to be a sequence with a constant number of
two-qubit gates. The depth of 𝑉 is 𝒪(log 𝑛). The unitary 𝑉 computes whether all 𝑛 qubits are
one and stores the result in the 2𝑛− 1 qubit. We can implement the 𝑛-qubit unitary 𝐶𝑛𝑍 using a
2𝑛-qubit 𝒪(log 𝑛)-depth circuit with 𝑛 ancilla qubits,

𝐶𝑛𝑍 ⊗ |0𝑛⟩ = (𝑉 ⊗ 𝐼)†𝑋2𝑛CZ2𝑛−1,2𝑛𝑋2𝑛 (𝑉 ⊗ 𝐼) (𝐼𝑛 ⊗ |0𝑛⟩), (279)

where 𝑋2𝑛 is the NOT gate on the one ancilla qubit not acted by 𝑉 , 𝐼 is a single-qubit identity, 𝐼𝑛
is an 𝑛-qubit identity, and CZ2𝑛−1,2𝑛 is controlled on the last ancilla qubit added in the recursive
construction of 𝑉 and acts on the one ancilla qubit not acted by 𝑉 .

If one could learn 𝑈 up to 1/3 error in the diamond distance with high probability or if one
could distinguish whether 𝑈 equals to the identity 𝐼 or is 1/3-far from the identity 𝐼 in the diamond
distance with high probability, then one could successfully distinguish between the identity map 𝐼
and the unitary 𝑈𝑥. Distinguishing 𝐼 or one of 𝑈𝑥, ∀𝑥 ∈ {0, 1}𝑛 is the well-known Grover search
problem. Hence, from the well-known Grover lower bound [106], we have the number of queries
must be at least Ω(2𝑛/2) = exp(Ω(𝑛)). This concludes the proof.

8 Learning quantum states generated by shallow circuits in 2D

Given copies of an unknown quantum state |𝜓⟩ = 𝑈 |0𝑛⟩, with the promise that 𝑈 is a depth-𝑑 circuit
acting on a 2-dimensional lattice. In this section, we present an algorithm to learn a description of
a shallow circuit that prepares |𝜓⟩ up to a desired precision. The algorithm can be viewed as first
collecting a sufficiently large randomized measurement dataset [84, 88] from the unknown state and
then classically reconstructing the circuit based on the dataset.
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Definition 20 (Randomized measurement dataset for an unknown state). The learning algorithm
accesses the unknown state via a randomized measurement dataset of the following form,

𝒯|𝜓⟩(𝑁) =

{︃
|𝜑ℓ⟩ =

𝑛⨂︁
𝑖=1

|𝜑ℓ,𝑖⟩

}︃𝑁
ℓ=1

. (280)

A randomized measurement dataset of size 𝑁 is constructed by obtaining 𝑁 samples from the un-
known state |𝜓⟩. One sample is obtained from one experiment given as follows: measure every
qubit of |𝜓⟩ under a random Pauli basis. The measurement collapses the state |𝜓⟩ to a state
|𝜑ℓ⟩ =

⨂︀𝑛
𝑖=1 |𝜑ℓ,𝑖⟩, where |𝜑ℓ,𝑖⟩ is a single-qubit stabilizer state in stab1.

Together, 𝑁 copies of |𝜓⟩ construct a dataset 𝒯|𝜓⟩(𝑁) with 𝑁 samples. The dataset can be
represented efficiently on a classical computer with 𝒪(𝑁𝑛) bits.

Theorem 9 (Learning quantum states generated by shallow circuits in 2D). Given copies of an
unknown state |𝜓⟩, with the promise that |𝜓⟩ = 𝑈 |0𝑛⟩ for an unknown 𝑛-qubit circuit 𝑈 with circuit
depth 𝑑 acting on a 2-dimensional lattice, then the following holds.

1. Suppose each two-qubit gate in 𝑈 is chosen from SU(4). With a randomized measurement
dataset 𝒯|𝜓⟩(𝑁) of size

𝑁 =
2𝒪(𝑑2)𝑛50

𝜀64
log

𝑛

𝛿
, (281)

we can learn a quantum circuit 𝑉 with depth 3𝑑 acting on 𝑛 + 𝑚 qubits on an extended
2-dimensional lattice, such that

1

2

⃦⃦⃦
Tr𝐵

(︁
𝑉 |0𝑛⟩⟨0𝑛|𝐴 ⊗ |0

𝑚⟩⟨0𝑚|𝐵 𝑉
†
)︁
− |𝜓⟩⟨𝜓|

⃦⃦⃦
1
≤ 𝜀, (282)

with probability at least 1− 𝛿. The computational time to learn 𝑉 is
(︁
𝑛𝑑3

𝜀

)︁𝒪(𝑑3)
. The number

of ancilla qubits can be chosen as 𝑚 = 𝑡𝑛 for an arbitrarily small constant 𝑡 > 0.

2. In addition, if each two-qubit gate in 𝑈 is chosen from a finite gateset of constant size and
𝑑 = 𝒪(1), then there is an algorithm that learns an exact preparation circuit 𝑉 with depth
3𝑑 acting on 𝑛 +𝑚 qubits, such that 𝑉 |0𝑛⟩𝐴 |0𝑚⟩𝐵 = |𝜓⟩𝐴 ⊗ |junk⟩𝐵 with probability 1 − 𝛿,
with sample complexity 𝑁 = 𝒪(log(𝑛/𝛿)) and time complexity 𝒪(𝑛 log(𝑛/𝛿)). The number of
ancilla qubits can be chosen as 𝑚 = 𝑡𝑛 for an arbitrarily small constant 𝑡 > 0.

3. In addition, if each two-qubit gate in 𝑈 is chosen from a finite gateset of constant size and
𝑑 = 𝒪(1), then there is an algorithm that learns a circuit 𝑉 with depth 2𝑐·𝑑

2 (for some universal
constant 𝑐) acting on 𝑛 qubits (without using any ancilla), such that

⃒⃒
⟨0𝑛|𝑉 † |𝜓⟩

⃒⃒2 ≥ 1 − 𝜀
with probability 1− 𝛿, with query complexity 𝑁 = 𝒪(log(𝑛/𝛿)) and time complexity (𝑛/𝜀)𝒪(1).

Remark 8. The first claim in Theorem 9 holds for any gateset and any circuit depth 𝑑 (which may
not be a constant), while the second and third claims are specialized to the simpler setting of finite
gateset and constant depth.

In particular, the first claim implies that when 𝑑 = polylog(𝑛), the state |𝜓⟩ can be learned
within 𝜀 trace distance with sample complexity 𝑁 = 2polylog(𝑛)

𝜀𝒪(1) log 𝑛
𝛿 , in time (𝑛/𝜀)polylog(𝑛).

We prove Theorem 9 in the remainder of this section. Next we give a detailed presentation of the
argument outlined in Section 2.2.1 and 2.2.2. We start by assuming a finite gate set, and address
general SU(4) gates in Section 8.4.
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𝑑

𝑑

3𝑑

𝐴 𝐵 𝐶

Figure 3: Efficient learning of quantum states generated by a shallow circuit in 1D. For each local
region 𝐴,𝐵,𝐶, . . . we find a list of local inversion circuits, and merge them together by solving a
constraint satisfaction problem.

8.1 Learning 1D states by solving a constraint satisfaction problem

We start by assuming 𝑈 is a depth-𝑑 circuit acting on a 1D lattice, for some constant 𝑑 = 𝒪(1). The
learning problem is equivalent to finding a low-depth circuit 𝑉 such that 𝑉 |𝜓⟩ = |0𝑛⟩. Consider
Fig. 3 where 𝐴, 𝐵, 𝐶 are contiguous regions of size 3𝑑. Suppose we want to locally invert the qubits
in region 𝐴 back to |0⟩𝐴. We can do so by undoing the gates within the lightcone of 𝐴, i.e. apply a
depth-𝑑 circuit of the blue shape (that acts on 4𝑑 qubits) on top of |𝜓⟩. As we do not know what is
the correct circuit to apply, we enumerate over all possible circuits of the blue shape (we can do it
because its size is small). There are 2𝒪(𝑑2) such circuits in total, and for each circuit we apply it to
|𝜓⟩ and test if the state on 𝐴 actually equals to |0⟩𝐴 (we can do it by measuring many copies, and
seeing the outcome all-0 with high probability). For now we assume that all local inversion circuits
can be found exactly; this is addressed in more detail later.

At the end of this procedure, we end up with a list of candidate circuits 𝒞𝐴 of the blue shape, such
that each of them is a valid local inversion of 𝐴, i.e., for all 𝑉𝐴 ∈ 𝒞𝐴 we have 𝑉𝐴 |𝜓⟩ = |0⟩𝐴 ⊗ |𝜓′⟩.
The inverse of the lightcone of 𝐴 in the unknown circuit 𝑈 is among them, but we don’t know which
one. We repeat the same procedure for each region 𝐴, 𝐵, 𝐶, ... and get a list of candidate local
inversions 𝒞𝐴, 𝒞𝐵, 𝒞𝐶 , ... for each region.

Note that in this construction shown in Fig. 3, only the local inversions acting on neighboring
regions could overlap. For example, the blue and green circuit does not overlap because 𝐴 and 𝐶
are separated by distance 3𝑑, and each circuit could “spread” into region 𝐵 for distance at most 𝑑.

The next observation is that there are certain blue circuits in 𝒞𝐴 that share the same overlapping
region with certain red circuits in 𝒞𝐵, i.e. they share the same gates in the overlapping triangle of
blue and red. For example, the inverse of the lightcone of 𝐴 in 𝑈 and the inverse of the lightcone of
𝐵 in 𝑈 share the same overlap. We call such circuits “consistent” with each other. Note that if two
circuits are consistent, they can be merged into a bigger one. For example, take a blue circuit and
a red circuit that are consistent, then they can be merged by considering the union of the gates,
and applying the merged circuit to |𝜓⟩ will simultaneously invert both regions 𝐴 and 𝐵. If we can
find a local inversion for each region such that all nearest neighbors are consistent, then they can
be merged into a depth-𝑑 circuit 𝑉 that satisfies 𝑉 |𝜓⟩ = |0𝑛⟩.

Now the task can be viewed as a constraint satisfaction problem: for each region, find a local
inversion circuit among all candidate local inversions (there are at most 2𝒪(𝑑2) choices), such that
each pair of nearest neighbor circuits are consistent. This can be solved efficiently by a simple
dynamic programming algorithm in time 𝑛 · 2𝒪(𝑑2).

To be more specific, suppose the system is divided into 𝐿 = 𝑛
3𝑑 regions of size 3𝑑 as in Fig. 3,

and suppose we have found at most 𝑀 = 2𝒪(𝑑2) local inversions for each region. These circuits are
stored in an array 𝐶, where 𝐶[𝑖][𝑗] denotes the 𝑗th local inversion circuit for the 𝑖th region. Define
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an arrays 𝑐𝑜𝑠𝑡, where 𝑐𝑜𝑠𝑡[𝑖][𝑗] = 0 if there exists a consistent assignment at locations 1, 2, . . . , 𝑖
where 𝐶[𝑖][𝑗] is used at location 𝑖; and 𝑐𝑜𝑠𝑡[𝑖][𝑗] ≥ 1 otherwise (let 𝑐𝑜𝑠𝑡[0][𝑗] = 0 for all 𝑗). Also
define an array 𝑝𝑟𝑒𝑣, where 𝑝𝑟𝑒𝑣[𝑖][𝑗] is an index 𝑘, such that there exists a consistent assignment
at locations 1, 2, . . . , 𝑖 where 𝐶[𝑖][𝑗] is used at location 𝑖 and 𝐶[𝑖 − 1][𝑘] is used at location 𝑖 − 1.
𝑝𝑟𝑒𝑣[𝑖][𝑗] is not defined when 𝑐𝑜𝑠𝑡[𝑖][𝑗] ≥ 1.

Once these arrays are constructed, we can take any circuit 𝑗 such that 𝑐𝑜𝑠𝑡[𝐿][𝑗] = 0, and
construct a consistent assignment by tracing back through the 𝑝𝑟𝑒𝑣 array. Let 𝑡𝑒𝑚𝑝 be an array of
size 𝑀 . The following pseudocode shows how to construct these arrays in time 𝒪(𝐿𝑀2).

1 for 𝑖 = 1, 2, . . . , 𝐿 do
2 for 𝑗 = 1, 2, . . . ,𝑀 do
3 for 𝑘 = 1, 2, . . . ,𝑀 do
4 𝑡𝑒𝑚𝑝[𝑘] = 𝑐𝑜𝑠𝑡[𝑖− 1][𝑘] + 1 [𝐶[𝑖][𝑗] is not consistent with 𝐶[𝑖− 1][𝑘]]

5 𝑐𝑜𝑠𝑡[𝑖][𝑗] = min𝑘 𝑡𝑒𝑚𝑝[𝑘]
6 if 𝑐𝑜𝑠𝑡[𝑖][𝑗] = 0 then
7 𝑝𝑟𝑒𝑣[𝑖][𝑗] = argmin𝑘 𝑡𝑒𝑚𝑝[𝑘]

Finally, note that the above procedure can be implemented by a two-step process:

1. Learn reduced density matrices of |𝜓⟩ supported on the lightcone of each small region 𝐴,𝐵,𝐶, . . . .

2. Find local inversions classically using the learned classical descriptions of the reduced density
matrices, and then solve the constraint satisfaction problem.

This is because to find local inversions, say for the 𝐵 region, we only need access to the reduced
density matrix of |𝜓⟩ on the lightcone of 𝐵, which has 5𝑑 qubits, since the local inversion only acts
on the reduced density matrix.

We need to learn 𝑛
3𝑑 reduced density matrices of size at most 5𝑑. The following general lemma

shows the complexity for learning reduced density matrices which we use throughout this section.

Lemma 23 (Learning reduced density matrices). Let 𝜌 be an unknown 𝑛-qubit mixed state. Suppose
we would like to learn its reduced density matrices 𝜌𝐴1 , . . . , 𝜌𝐴𝑚 where 𝐴𝑖 are subsystems of size at
most 𝑘. Given a randomized measurement dataset 𝒯𝜌(𝑁) of size 𝑁 = 2𝒪(𝑘)

𝜀2
log 𝑚

𝛿 , we can learn a
list of Hermitian matrices (not necessarily density matrices) {𝜎𝐴𝑖} such that with probability at least
1− 𝛿, we have ‖𝜌𝐴𝑖 − 𝜎𝐴𝑖‖1 ≤ 𝜀 for all 𝑖.

Proof. Fix some 𝑖, we can write 𝜌𝐴𝑖 =
∑︀

𝑃∈{𝐼,𝑋,𝑌,𝑍}|𝐴𝑖| 𝛼𝑃𝑃 . It suffices to learn the Pauli coefficients
𝛼𝑃 = 1

2|𝐴𝑖|
Tr(𝜌𝐴𝑖𝑃 ) =

1
2|𝐴𝑖|

Tr(𝜌𝑃 ). Suppose we have learned these coefficients (denote as {𝛽𝑃 }) to
within 𝜀1 precision. Let 𝜎𝐴𝑖 :=

∑︀
𝑃∈{𝐼,𝑋,𝑌,𝑍}|𝐴𝑖| 𝛽𝑃𝑃 , then

‖𝜌𝐴𝑖 − 𝜎𝐴𝑖‖
2
1 ≤ 2|𝐴𝑖|Tr(𝜌− 𝜎)2 = 22|𝐴𝑖|

∑︁
𝑃

(𝛼𝑃 − 𝛽𝑃 )2 ≤ 24𝑘𝜀21, (283)

which gives ‖𝜌𝐴𝑖 − 𝜎𝐴𝑖‖1 ≤ 22𝑘𝜀1. Thus to achieve ‖𝜌𝐴𝑖 − 𝜎𝐴𝑖‖1 ≤ 𝜀 it suffices to learn {Tr(𝜌𝑃 )}
within accuracy 𝜀/2𝑘; there are at most 𝑚 · 4𝑘 𝑘-local Pauli operators that we need to learn.

By the main result of [84], given a randomized measurement dataset of size

𝑁 =
2𝒪(𝑘)

𝜀2
log

𝑚

𝛿
, (284)

with probability at least 1 − 𝛿, we can learn all observables Tr(𝜌𝑃 ) for the 𝑚 · 4𝑘 𝑘-local Pauli
operators within accuracy 𝜀/2𝑘; this is sufficient to obtain Hermitian matrices {𝜎𝐴𝑖} that satisfy
‖𝜌𝐴𝑖 − 𝜎𝐴𝑖‖1 ≤ 𝜀 for all 𝑖.
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(b)

Figure 4: Learning to disentangle a quantum state generated by a shallow circuit in 2D. (a) The
middle region 𝑀 can be inverted by solving a similar 1D constraint satisfaction problem as in Fig. 3.
(b) After inverting all the gray 𝐵𝑖 regions, the remaining white 𝐴𝑖 regions are disentangled into a
tensor product of pure states.

Note that when the gates in the unknown circuit are assumed to come from a constant-size gate
set, the reduced density matrices only have 2𝒪(𝑑2) = 𝒪(1) choices. Therefore, choosing 𝜀 to be some
small constant in Lemma 23 suffices to learn all the reduced density matrices exactly. This allows
us to find the exact local inversions by classically processing the reduced density matrices.

In summary, we have shown an algorithm that learns a depth-𝑑 circuit 𝑉 that satisfies |𝜓⟩ =
𝑉 † |0𝑛⟩ with success probability 1 − 𝛿, using a randomized measurement dataset of size 𝑁 =
𝒪(log(𝑛/𝛿)), in time 𝒪(𝑛).

8.2 Disentangling a 2D state

Next we use the 1D techniques developed above to disentangle a state |𝜓⟩ = 𝑈 |0𝑛⟩, where 𝑈 is a
depth-𝑑 circuit acting on a 2D lattice, for some constant 𝑑 = 𝒪(1).

For this purpose we need to introduce a general property for quantum states generated by low
depth circuits, that is they have finite correlation length.

Lemma 24 (Finite correlation length). Let |𝜓⟩ be a state generated by a depth-𝑑 geometrically-local
circuit (Definition 9). Let 𝐴, 𝐵 be two regions that are separated by distance at least 2𝑑 in the
connectivity graph. Then 𝐼(𝐴 : 𝐵)𝜓 = 0. In other words, let 𝜌𝐴𝐵, 𝜌𝐴, 𝜌𝐵 be the reduced density
matrices of |𝜓⟩ on 𝐴𝐵, 𝐴 and 𝐵, then 𝜌𝐴𝐵 = 𝜌𝐴 ⊗ 𝜌𝐵.

Proof. As 𝐴 and 𝐵 are separated by distance 2𝑑, their lightcones 𝐿(𝐴) and 𝐿(𝐵) are disjoint.
𝜌𝐴𝐵 = 𝜌𝐴⊗𝜌𝐵 follows from the fact that 𝜌𝐴𝐵 is generated by the gates in 𝐿(𝐴𝐵), which is a tensor
product between 𝐿(𝐴) and 𝐿(𝐵).

Fig. 4 (a) shows a quantum state |𝜓⟩ (let 𝜌 = |𝜓⟩⟨𝜓|) prepared by a depth-𝑑 circuit on a 2D
lattice, divided into three regions 𝐿,𝑀,𝑅. Since 𝐿 and 𝑅 are separated by distance 5𝑑, Lemma 24
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implies that 𝜌𝐿𝑅 = 𝜌𝐿⊗𝜌𝑅. Although subsystems 𝐿 and 𝑅 are not entangled with each other, they
both could be entangled with 𝑀 . Therefore we develop an argument to invert the qubits in 𝑀 , so
that the state on 𝐿 and 𝑅 could become a tensor product of pure states.

Note that 𝑀 is a 1D-like region. Our goal is to find a depth-𝑑 circuit 𝑉 acting on a slightly
wider strip (of width 7𝑑) around 𝑀 , such that 𝑉 |𝜓⟩ = |0⟩𝑀 ⊗ |𝜓′⟩. Such a circuit exists since we
can undo the lightcone of 𝑀 , and we can find such a circuit using the same argument as in the
previous section. In Fig. 4 (a), the blue, red and green regions play the same role as in Fig. 3. For
example, we can find a set of local inversions 𝒞𝐴 for the shaded blue region 𝐴, by first learning the
reduced density matrix on the dotted blue region, and then enumerating over all depth-𝑑 circuits
acting on the dotted blue region. After learning a set of local inversions for each local region, we
can find a desired depth-𝑑 circuit that inverts 𝑀 by solving a 1D constraint satisfaction problem.

Now, we have effectively reduced the problem of learning |𝜓⟩ to the following problem: given
copies of a state |𝜓1⟩ with the promise that

1. it is prepared by a depth-2𝑑 circuit (defined on a 2D lattice) acting on |0𝑛⟩;

2. its reduced density matrix on 𝑀 equals |0⟩⟨0|𝑀 .

The goal is to learn the state |𝜓1⟩. Note that in this new state 𝜎 = |𝜓1⟩⟨𝜓1|, even though its circuit
depth has increased from 𝑑 to 2𝑑, the reduced state on 𝐿 and 𝑅 is still in tensor product, i.e.
𝜎𝐿𝑅 = 𝜎𝐿 ⊗ 𝜎𝑅, due to the fact that 𝑀 (with width 5𝑑) is sufficiently wide. The main purpose of
inverting the 𝑀 region is that now 𝜎𝐿 and 𝜎𝑅 are guaranteed to be pure states, as shown by the
following.

Lemma 25. Let 𝜌𝐴𝐵𝐶 be a pure state such that the following two properties hold:

1. 𝜌𝐵 = |0⟩⟨0|𝐵,

2. 𝜌𝐴𝐶 = 𝜌𝐴 ⊗ 𝜌𝐶 .

Then 𝜌𝐴 and 𝜌𝐶 are both pure states.

Proof. This is a special case of Lemma 29.

Next, we apply the above argument across the entire system. In Fig. 4 (b), the system is divided
into many vertical strips of width 5𝑑. By repeating the above argument, we can learn a inverting
circuit 𝑉𝑖 for each shaded 𝐵𝑖 region. Note that each 𝑉𝑖 acts on a width-7𝑑 strip around 𝐵𝑖 and
therefore different 𝑉𝑖s do not overlap. By combining these different inverting circuits, overall we
have learned a depth-𝑑 circuit 𝑉 such that 𝑉 |𝜓⟩ = |0⟩𝐵 ⊗ |𝜓′⟩ where 𝐵 denotes the union of 𝐵𝑖.

Finally, by repeatedly applying Lemma 25, we know that the reduced density matrix of 𝑉 |𝜓⟩
on each region 𝐴𝑖 is a pure state. This means that overall the state can be written as 𝑉 |𝜓⟩ =
|0⟩𝐵 ⊗ (⊗𝑖 |𝜑⟩𝐴𝑖

) for some pure states |𝜑⟩𝐴𝑖
.

Now, we have disentangled the state |𝜓⟩ into a tensor product of many 1D-like pure states, and
the problem of learning |𝜓⟩ is reduced to the following problem:

Problem 1. We are given copies of a state |𝜓2⟩ with the promise that

1. it is prepared by a depth-2𝑑 circuit (defined on a 2D lattice) acting on |0𝑛⟩;

2. its reduced density matrix on each of the 𝐵𝑖 regions in Fig. 4 (b) equals |0⟩⟨0|𝐵𝑖
; in particular,

this implies that |𝜓2⟩ = |0⟩𝐵 ⊗ (⊗𝑖 |𝜑⟩𝐴𝑖
) for some pure states |𝜑⟩𝐴𝑖

.

The goal is to learn the state |𝜓2⟩, and it suffices to learn each of the individual states |𝜑⟩𝐴𝑖
.
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𝐴𝐿𝑖 𝐴𝑖 𝐴𝑅𝑖

Figure 5: Each of the states on the white 𝐴𝑖 regions in Fig. 4 (b) can be viewed as being prepared
by a depth-2𝑑 circuit acting on 𝐴𝑖 (white) as well as ancilla qubits 𝐴𝐿𝑖 and 𝐴𝑅𝑖 (blue).

8.3 Learning finite correlated states in 1D

Next we show how to learn a state |𝜑⟩ (abbreviating the subscript 𝐴𝑖) on a specific region 𝐴𝑖 that
came from Problem 1. Besides the fact that |𝜑⟩ is a pure state, the learning algorithm heavily relies
on the property that |𝜑⟩ is part of a larger state that is prepared by a depth-2𝑑 circuit. Note that
this does not imply that |𝜑⟩ itself can be prepared by a depth-2𝑑 circuit acting on 𝐴𝑖. Instead, we
will use this property to derive useful facts about |𝜑⟩, presented as two different viewpoints. Each
of them leads to a learning algorithm that is similar to the approach in Section 8.1.

Viewpoint 1. By Lemma 24, the state |𝜑⟩ is a finite correlated state with correlation length ℓ = 4𝑑.
That is, let 𝜎 = |𝜑⟩⟨𝜑| and let 𝑅1, 𝑅2 ⊆ 𝐴𝑖 be two regions that are separated by distance at least
4𝑑, then 𝜎𝑅1𝑅2 = 𝜎𝑅1 ⊗ 𝜎𝑅2 .

Viewpoint 2. |𝜑⟩ can be prepared by a depth-2𝑑 circuit acting on 𝐴𝑖 as well as some ancilla qubits
𝐴𝐿𝑖 and 𝐴𝑅𝑖 , shown in Fig. 5. To see this, recall that |𝜑⟩ is part of a state that is prepared by a
depth-2𝑑 circuit. Now, imagine that we undo all the gates in that circuit, except for those in the
backward lightcone of 𝐴𝑖. This procedure does not affect the state on 𝐴𝑖, and the resulting circuit
(denote as 𝑊𝑖) has exactly the same shape as in Fig. 5, where 𝐴𝐿𝑖 , 𝐴𝑅𝑖 both has width 2𝑑. Moreover,
since |𝜑⟩ is a pure state, it is disentangled with the ancilla qubits, which means

𝑊𝑖 |0⟩𝐴𝐿
𝑖
|0⟩𝐴𝑖

|0⟩𝐴𝑅
𝑖
= |junk⟩𝐴𝐿

𝑖
⊗ |𝜑⟩ ⊗ |junk′⟩𝐴𝑅

𝑖
. (285)

Clearly, Viewpoint 2 is a much stronger characterization of |𝜑⟩ and derives Viewpoint 1 as a
corollary; however, it involves additional ancilla qubits. In the following, we show that each of these
Viewpoints itself is sufficient to derive a learning algorithm; in particular,

• Using Viewpoint 1, we show that the state |𝜑⟩ can be prepared by a depth-2𝒪(𝑑2) circuit acting
on 𝐴𝑖 (without ancilla), therefore it can be learned using the techniques in Section 8.1.

• Using Viewpoint 2, we show how to learn a depth-2𝑑 circuit 𝑊𝑖 that prepares the state |𝜑⟩
using ancilla qubits, according to Eq. (285).

Central to both of these results is a technique that allows us to disentangle a finite correlated
state in 1D. For simplicity, below we present this technique for a 1D system on a line with no width.

Lemma 26 (Disentangling finite correlated states in 1D). Let |𝜑⟩ be a state defined on a line
with correlation length ℓ, that is, every two regions 𝑅1, 𝑅2 that are separated by distance at least ℓ
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=
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Figure 6: Disentangling a finite correlated state in 1D.

have zero mutual information, i.e. 𝜌𝑅1𝑅2 = 𝜌𝑅1 ⊗ 𝜌𝑅2 , where 𝜌 = |𝜑⟩⟨𝜑|. Divide the 1D line into
contiguous regions of size ℓ, denote as 𝐴1, 𝐵1, 𝐴2, 𝐵2, . . . , 𝐵𝐿−1, 𝐴𝐿 (Fig. 6). Then for each 𝑖 there
exists a unitary 𝑈𝑖 acting on the 𝐵𝑖 region, such that

∏︀𝐿−1
𝑖=1 𝑈𝑖 |𝜑⟩ is a tensor product of 𝐿 pure

states.

Proof. We start with three subsystems 𝐴,𝐵,𝐶 (first line of Fig. 6), where 𝐵 has size ℓ. Then we
have

rank(𝜌𝐵) = rank(𝜌𝐴𝐶) = rank(𝜌𝐴 ⊗ 𝜌𝐶) = rank(𝜌𝐴) · rank(𝜌𝐶) ≤ dim(𝐵). (286)

Purifying the state 𝜌𝐴 (𝜌𝐶) requires an ancilla system with dimension rank(𝜌𝐴) (rank(𝜌𝐶)). There-
fore we can partition 𝐵 into two systems 𝐵1, 𝐵2, such that there exists pure states |𝜑1⟩𝐴𝐵1

and
|𝜑2⟩𝐵2𝐶

, such that |𝜑1⟩𝐴𝐵1
is a purification of 𝜌𝐴, and |𝜑2⟩𝐵2𝐶

is a purification of 𝜌𝐶 . This implies
that |𝜑1⟩𝐴𝐵1

⊗ |𝜑2⟩𝐵2𝐶
is a purification of 𝜌𝐴𝐶 . Since |𝜑⟩𝐴𝐵𝐶 is also a purification of 𝜌𝐴𝐶 , by

Uhlmann’s theorem there exists a unitary 𝑈𝐵 such that |𝜑⟩𝐴𝐵𝐶 = 𝑈𝐵 |𝜑1⟩𝐴𝐵1
⊗ |𝜑2⟩𝐵2𝐶

.
Applying this argument independently at different 𝐵𝑖 regions (bottom line of Fig. 6), we have

that for each 𝑖 = 1, 2, . . . , 𝐿 − 1, there exists a partition of the system 𝐵𝑖 as two systems 𝐵𝐿
𝑖 and

𝐵𝑅
𝑖 , as well as a unitary 𝑈𝑖 acting on 𝐵𝑖 = 𝐵𝐿

𝑖 ∪𝐵𝑅
𝑖 , such that

|𝜑⟩ = 𝑈𝑖 |𝜑1⟩𝐴1...𝐵𝐿
𝑖
⊗ |𝜑2⟩𝐵𝑅

𝑖 𝐴𝑖+1···𝐴𝐿
, (287)

or equivalently, 𝑈 †
𝑖 |𝜑⟩ = |𝜑1⟩𝐴1...𝐵𝐿

𝑖
⊗ |𝜑2⟩𝐵𝑅

𝑖 𝐴𝑖+1···𝐴𝐿
, for some pure states |𝜑1⟩ and |𝜑2⟩. Next, we

relabel the systems according to
𝑅𝑖 := 𝐵𝑅

𝑖−1 ∪𝐴𝑖 ∪𝐵𝐿
𝑖 . (288)

Intuitively, after applying all 𝑈 †
𝑖 s, the system must be disentangled across all the 𝑅𝑖 regions.

To prove this we use a simple argument based on the strong subadditivity of quantum entropy
(Lemma 27).

Let 𝜎 :=
(︁∏︀𝐿−1

𝑖=1 𝑈
†
𝑖

)︁
|𝜑⟩⟨𝜑|

(︁∏︀𝐿−1
𝑖=1 𝑈𝑖

)︁
be the final (pure) state. Fix some 𝑖, our goal is to prove

that 𝜎𝑅𝑖 is pure, i.e., 𝑆(𝜎𝑅𝑖) = 0. The strong subadditivity of quantum entropy gives

𝑆(𝜎𝑅𝑖) ≤ 𝑆(𝜎𝑅1...𝑅𝑖) + 𝑆(𝜎𝑅𝑖...𝑅𝐿
)− 𝑆(𝜎) = 𝑆(𝜎𝑅1...𝑅𝑖) + 𝑆(𝜎𝑅𝑖...𝑅𝐿

). (289)

Note that when calculating 𝑆(𝜎𝑅1...𝑅𝑖) we can undo all the unitaries 𝑈 †
𝑗 for 𝑗 < 𝑖 due to the

invariance of entropy under unitary. Then 𝑆(𝜎𝑅1...𝑅𝑖) = 0 immediately follows from Eq. (287), and
a similar argument shows 𝑆(𝜎𝑅𝑖...𝑅𝐿

) = 0, which concludes the proof.

61



𝐴𝐿𝑖 𝐴𝑖 𝐴𝑅𝑖

4𝑑

12𝑑

Figure 7: Learning a quantum state generated by a depth-2𝑑 circuit with ancilla.

Lemma 27 (Strong subadditivity of quantum entropy [107]). Let 𝜌 be a mixed state defined on
three systems 𝐴,𝐵,𝐶. Let 𝑆(𝜌) := −Tr(𝜌 log 𝜌) be the von Neumann entropy. Then we have

𝑆(𝜌𝐴𝐵𝐶) + 𝑆(𝜌𝐵) ≤ 𝑆(𝜌𝐴𝐵) + 𝑆(𝜌𝐵𝐶). (290)

Learning under Viewpoint 1. A corollary of Lemma 26 is that any finite correlated state in 1D
can be prepared by a low-depth circuit, because each of the small pure state on the 𝑅𝑖 regions in
the bottom line of Fig. 6 can be prepared by a local unitary acting on 𝒪(ℓ) qubits. Applying this
argument to the state |𝜑⟩𝐴𝑖

shown in Fig. 5, we conclude that it can be prepared by two layers of
unitaries acting on 𝒪(𝑑2) qubits, acting on the 𝐴𝑖 region only. This implies that the state |𝜑⟩𝐴𝑖

can be prepared by a depth-2𝒪(𝑑2) circuit acting on 𝐴𝑖, and thus can be learned by applying the
argument in Section 8.1.

Learning under Viewpoint 2. The main drawback of the above argument is that the learned
circuit depth has an exponential blowup. To reduce this blowup we use additional structure of
the state |𝜑⟩𝐴𝑖

, described in Viewpoint 2 and Fig. 5. Note that there is a key difference between
learning the state |𝜑⟩𝐴𝑖

and learning 1D states discussed in Section 8.1. Here, while the state |𝜑⟩𝐴𝑖

has a low-depth property shown in Fig. 5, this property relies on ancilla qubits (the |junk⟩ states
in Eq. (285)) that we do not have access to. Therefore we cannot directly apply the techniques in
Section 8.1, which requires access to all qubits prepared by the low-depth circuit.

The main idea is to learn a mixed state 𝜌 that is locally consistent with the state |𝜑⟩⟨𝜑|, i.e.,
they have the same local reduced density matrices, and then show that this forces the two states to
be globally the same.

The argument is illustrated in Fig. 7, where we learn to locally prepare the state instead of invert
the state. Consider the state |𝜑⟩ on the 𝐴𝑖 region shown in Fig. 7, and suppose we have learned
its reduced density matrix 𝜌blue on the solid blue region. Due to the fact that |𝜑⟩ is prepared by a
depth-2𝑑 circuit acting on 𝐴𝐿𝑖 , 𝐴𝑖, 𝐴

𝑅
𝑖 , we know that there exists a depth-2𝑑 circuit acting on the
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dotted blue region that prepares 𝜌blue (the circuit looks like a small piece of Fig. 5), by undoing
all the gates except for those in the backward lightcone of the solid blue region. We can perform a
brute force search over all depth-2𝑑 circuits acting on the dotted blue region, and for each of them
we can test whether it prepares 𝜌blue. In this way we obtain a list of depth-2𝑑 circuits acting on the
dotted blue region that prepares 𝜌blue.

By repeating the above procedure we can obtain a list of local preparation circuits for each of the
solid colored regions. A key point here is that the neighboring colored regions overlap by distance
4𝑑. Moreover, the local preparation circuits for the blue and green regions do not overlap, since the
red region is sufficiently big. This enables us to solve a constraint satisfaction problem of the same
nature as in Section 8.1, where we can choose a local preparation circuit for each region, such that
neighboring circuits are consistent and can be merged together. Overall we have learned a depth-2𝑑
circuit 𝑊 acting on 𝐴𝐿𝑖 , 𝐴𝑖, 𝐴

𝑅
𝑖 , that simultaneously prepares all the local reduced density matrices.

Let 𝜌 := Tr𝐴𝐿
𝑖 𝐴

𝑅
𝑖
(𝑊 |0⟩⟨0|𝐴𝐿

𝑖 𝐴𝑖𝐴𝑅
𝑖
𝑊 †) be the learned density matrix on 𝐴𝑖. At this point we

know that 𝜌 and |𝜑⟩⟨𝜑| are locally the same on the solid blue, red, and green regions (and so on),
but this does not directly imply that 𝜌 = |𝜑⟩⟨𝜑|. For example, a Haar random pure state and the
maximally mixed state are locally very close but globally very far. Next, we show that the finite
correlation property forces 𝜌 and |𝜑⟩⟨𝜑| to be globally equal.

Lemma 28 (Local consistency implies global consistency). Let |𝜓⟩ be a state defined on a 1D line
with correlation length ℓ and let 𝜎 = |𝜓⟩⟨𝜓|. Suppose the system is partitioned into contiguous
regions 𝐴1, . . . , 𝐴𝐿 where |𝐴𝑖| ≥ ℓ. Suppose 𝜌 is a mixed state that satisfies 𝜌𝐴𝑖𝐴𝑖+1 = 𝜎𝐴𝑖𝐴𝑖+1 for
all 𝑖, then 𝜌 = 𝜎.

Proof. We show this for 3 subsystems; generalizing to more subsystems is straightforward. Let 𝜌
be a mixed state satisfying 𝜌𝐴1𝐴2 = 𝜎𝐴1𝐴2 and 𝜌𝐴2𝐴3 = 𝜎𝐴2𝐴3 . Following the proof of Lemma 26,
there exists a unitary 𝑈 acting on 𝐴2 such that

𝑈𝐴2 |𝜓⟩𝐴1𝐴2𝐴3
= |𝜑1⟩𝐴1𝐴21

⊗ |𝜑2⟩𝐴22𝐴3
, (291)

where 𝐴21, 𝐴22 is a partition of 𝐴2, and |𝜑1⟩𝐴1𝐴21
, |𝜑2⟩𝐴22𝐴3

are some pure states. Equivalently, we
have

𝑈𝐴2𝜎𝑈
†
𝐴2

= |𝜑1⟩⟨𝜑1|𝐴1𝐴21
⊗ |𝜑2⟩⟨𝜑2|𝐴22𝐴3

. (292)

Let 𝜏 := 𝑈𝐴2𝜌𝑈
†
𝐴2

, we will show that 𝜏 = |𝜑1⟩⟨𝜑1|𝐴1𝐴21
⊗ |𝜑2⟩⟨𝜑2|𝐴22𝐴3

, which implies 𝜌 = 𝜎.
First, taking the partial trace over 𝐴3 on both sides of Eq. (292), we have

𝑈𝜎𝐴1𝐴2𝑈
† = |𝜑1⟩⟨𝜑1|𝐴1𝐴21

⊗ Tr𝐴3 |𝜑2⟩⟨𝜑2| . (293)

Then, notice that

𝜏𝐴1𝐴2 = 𝑈𝜌𝐴1𝐴2𝑈
† = 𝑈𝜎𝐴1𝐴2𝑈

† = |𝜑1⟩⟨𝜑1|𝐴1𝐴21
⊗ Tr𝐴3 |𝜑2⟩⟨𝜑2| . (294)

Tracing out 𝐴22 on both sides, we have 𝜏𝐴1𝐴21 = |𝜑1⟩⟨𝜑1|𝐴1𝐴21
; similarly, 𝜏𝐴22𝐴3 = |𝜑2⟩⟨𝜑2|𝐴22𝐴3

.
Since 𝜏𝐴1𝐴21 and 𝜏𝐴22𝐴3 are both pure states, this implies that the global state 𝜏 is a tensor product

𝜏 = 𝜏𝐴1𝐴21 ⊗ 𝜏𝐴22𝐴3 = |𝜑1⟩⟨𝜑1|𝐴1𝐴21
⊗ |𝜑2⟩⟨𝜑2|𝐴22𝐴3

. (295)

Thus we have 𝜏 = 𝑈𝜎𝑈 †, which implies 𝜌 = 𝜎.

63



Summary of our progress so far. So far we have developed all technical ingredients for learning
a quantum state |𝜓⟩ = 𝑈 |0𝑛⟩, under the simplified setting that 𝑈 is a depth 𝑑 = 𝒪(1) circuit acting
on a 2D lattice, and each gate in 𝑈 is from a constant size gate set.

Note that all the above arguments can be viewed as first learning the local reduced density
matrices of |𝜓⟩ followed by classically reconstructing the circuit. As we have discussed before in
Section 8.1, a reduced density matrix of constant size can be learned exactly as it only has a constant
number of choices. In the disentangling step shown in Fig. 4, we can learn 𝒪(𝑛) reduced density
matrices on the dotted regions of size 𝒪(𝑑2), and then classically reconstruct a depth-𝑑 circuit 𝑉 in
time 𝒪(𝑛), such that 𝑉 |𝜓⟩ = |0⟩𝐵⊗ (⊗𝑖 |𝜑⟩𝐴𝑖

) where the pure states |𝜑⟩𝐴𝑖
live on the white regions

of Fig. 4 (b).

Proof of second claim of Theorem 9. Next, we start with Viewpoint 2. As shown in Fig. 7,
learning a state |𝜑⟩𝐴𝑖

requires learning its reduced density matrices of size 5𝑑 × 16𝑑. This can
be achieved by experimentally applying 𝑉 to |𝜓⟩ and then learning the reduced density matrices.
Equivalently, say we want to learn the reduced density matrix of |𝜑⟩𝐴𝑖

on a region 𝑀 of size 5𝑑×16𝑑,
then it suffices to learn a reduced density matrix of |𝜓⟩ of size 7𝑑× 18𝑑 on a region surrounding 𝑀 ,
then classically apply the gates of 𝑉 within the backward lightcone of 𝑀 , and then classically trace
out the qubits outside 𝑀 . In other words, the reduced density matrices of |𝜑⟩𝐴𝑖

can be simulated
by slightly larger reduced density matrices of |𝜓⟩. Using these reduced density matrices, for each 𝑖
we can learn a depth-2𝑑 circuit 𝑊𝑖 such that

𝑊𝑖 |0⟩𝐴𝐿
𝑖 𝐴𝑖𝐴𝑅

𝑖
= |𝜑⟩𝐴𝑖

⊗ |junk⟩𝐴𝐿
𝑖 𝐴

𝑅
𝑖
, (296)

which takes total time 𝒪(𝑛). The entire process requires 𝒪(𝑛) reduced density matrices of |𝜓⟩
of size 𝒪(𝑑2), which can be learned exactly with probability at least 1 − 𝛿, using a randomized
measurement dataset of size 𝑁 = 𝒪(log(𝑛/𝛿)).

The state |𝜓⟩ can be prepared as follows:

1. Initialize registers 𝐴𝑖, 𝐵𝑖, 𝐴𝐿𝑖 , 𝐴
𝑅
𝑖 in the state |0⟩. Let 𝐴 = ∪𝑖𝐴𝑖 and 𝐵 = ∪𝑖𝐵𝑖.

2. For each 𝑖, apply the depth-2𝑑 circuit 𝑊𝑖 to 𝐴𝐿𝑖 𝐴𝑖𝐴
𝑅
𝑖 .

3. Apply the depth-𝑑 circuit 𝑉 † to 𝐴𝐵, and the state |𝜓⟩ lives on 𝐴𝐵.

Overall the learned circuit has depth 3𝑑 and can be implemented on an extended 2D lattice, where
the qubits in 𝐴𝑖 can interact with its ancilla qubits 𝐴𝐿𝑖 , 𝐴

𝑅
𝑖 as well as neighboring 𝐵𝑖 regions.

In Fig. 7 we have chosen the width of 𝐴𝑖 to be 5𝑑. Note that the width of 𝐴𝐿𝑖 and 𝐴𝑅𝑖 are both
2𝑑, regardless of the width of 𝐴𝑖. In fact we could have chosen the width of 𝐴𝑖 to be 𝐶𝑑 for some
large constant 𝐶, and the number of ancilla qubits is at most 𝑛/(𝐶𝑑) ·4𝑑 = 4

𝐶𝑛, which can be made
arbitrarily small.

Proof of third claim of Theorem 9. Using Viewpoint 1, the state |𝜑⟩𝐴𝑖
can be prepared by a

depth-2𝒪(𝑑2) circuit acting on 𝐴𝑖, and thus can be learned by applying the argument in Section 8.1.
Let |𝜑⟩𝐴𝑖

=𝑊 |0⟩𝐴𝑖
for some depth-2𝒪(𝑑2) circuit 𝑊 acting on 𝐴𝑖. A technical issue here is that we

no longer have the guarantee that 𝑊 consists of gates from a finite gate set as in 𝑈 , because the
existence of 𝑊 comes from the disentangling argument in Lemma 26, instead of coming from the
original circuit 𝑈 as in Viewpoint 2. Below we discuss how to find this circuit 𝑊 .

Let 𝑑′ = 2𝒪(𝑑2) be the circuit depth of 𝑊 . Following Section 8.1, we can learn reduced density
matrices of 𝜎 := |𝜑⟩⟨𝜑|𝐴𝑖

of size 5𝑑× 5𝑑′ (which can be done exactly, as discussed above) and then
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classically find local inversions for regions of size 5𝑑 × 3𝑑′. Following Fig. 3, let 𝐴 be a region of
size 5𝑑× 3𝑑′, and let 𝐴𝐴1 be the lightcone of 𝐴 with size 5𝑑× 4𝑑′. Then there is a depth-𝑑′ circuit
𝑊𝐴𝐴1 acting on 𝐴𝐴1 such that

Tr𝐴1

(︁
𝑊𝐴𝐴1𝜎𝐴𝐴1𝑊

†
𝐴𝐴1

)︁
= |0⟩⟨0|𝐴 . (297)

To find the local inversion 𝑊𝐴𝐴1 we use an 𝜀0-net over depth-𝑑′ circuits acting on 𝐴𝐴1, denoted as
𝒩𝜀0(𝐴𝐴1) (see Definition 18 and Lemma 19), which has size at most

𝑆 =

(︂
𝑑′3

𝜀0

)︂𝒪(𝑑′3)

. (298)

By definition, there exists 𝑊̂𝐴𝐴1 ∈ 𝒩𝜀0(𝐴𝐴1) such that ‖𝑊̂𝐴𝐴1 −𝑊𝐴𝐴1‖∞ ≤ 𝜀0, which gives

⟨0𝐴|Tr𝐴1

(︁
𝑊̂𝐴𝐴1𝜎𝐴𝐴1𝑊̂

†
𝐴𝐴1

)︁
|0𝐴⟩ ≥ 1− 2𝜀0. (299)

By enumerating over every element in 𝒩𝜀0(𝐴𝐴1), we can find a list of circuits which satisfy the
above equation. Following the argument in Section 8.1, we repeat the same procedure for each local
region and merge the local circuits into a global depth-𝑑′ circuit 𝑊̂𝑖, which approximately inverts
each local region up to 1− 2𝜀0 fidelity. By union bound, we have⃒⃒⃒

⟨0𝐴𝑖 | 𝑊̂𝑖 |𝜑⟩𝐴𝑖

⃒⃒⃒2
≥ 1− 2

√
𝑛𝜀0. (300)

After learning each region 𝐴𝑖, the state |𝜓⟩ can be approximately prepared as follows:

1. Initialize registers 𝐴𝑖, 𝐵𝑖 in the state |0⟩. Let 𝐴 = ∪𝑖𝐴𝑖 and 𝐵 = ∪𝑖𝐵𝑖.

2. For each 𝑖, apply the depth-𝑑′ circuit 𝑊̂ †
𝑖 to 𝐴𝑖.

3. Apply the depth-𝑑 circuit 𝑉 † to 𝐴𝐵, and the state on 𝐴𝐵, which is |𝜓⟩ = 𝑉 †(⊗𝑖𝑊̂ †
𝑖 ) |0𝑛⟩,

approximately equals to |𝜓⟩.

We bound the approximation error as follows.⃒⃒⃒
⟨𝜓|𝜓⟩

⃒⃒⃒2
=
⃒⃒⃒
⟨0𝑛| (⊗𝑖𝑊̂𝑖)𝑉 |𝜓⟩

⃒⃒⃒2
=
∏︁
𝑖

⃒⃒⃒
⟨0𝐴𝑖 | 𝑊̂𝑖 |𝜑⟩𝐴𝑖

⃒⃒⃒2
≥ 1− 2𝑛𝜀0. (301)

Therefore to achieve 1 − 𝜀 fidelity it suffices to choose 𝜀0 = 𝜀
2𝑛 , which gives total running time

𝑛 · 𝑆 = (𝑛/𝜀)𝒪(1).

8.4 Robustness to imprecision

In the previous sections we have been focusing on a finite gateset, which allows us to learn reduced
density matrices exactly, and therefore the disentangling procedure in Fig. 4 can be performed
exactly. However, it’s not clear that this argument still works for general SU(4) gates, because in
this case each step can only be performed approximately. In particular, we can only approximately
disentangle the state using the procedure in Fig. 4, and learning the remaining 1D states poses new
technical challenges as they are no longer pure.

In this section we address this issue. In the following we first outline the argument and develop
key technical lemmas, before going into the full proof of the first claim in Theorem 9.
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We start with the disentangling step in Fig. 4. Here, instead of exhaustively enumerating small
circuits acting on local regions, we can only enumerate over an 𝜀-net of the circuit. Therefore, we
are only able to find circuits that approximately invert each 𝐵𝑖 region shown in Fig. 4 (b). This
means that after the disentangling step, the reduced density matrix on 𝐵 will be close to |0⟩⟨0|𝐵,
instead of being exactly equal to |0⟩⟨0|𝐵.

Now the question is what happens to the remaining 𝐴𝑖 regions. Note that the state is still
in tensor product across different 𝐴𝑖 regions due to the finite correlation length property, but the
reduced density matrices on each 𝐴𝑖 region will not be pure. The following lemma shows that these
states are approximately pure.

Lemma 29. Let 𝜌𝐴1𝐴2...𝐴𝐿𝐵 be a pure state such that the following two properties hold:

1. ⟨0𝐵|𝜌𝐵|0𝐵⟩ ≥ 1− 𝜀,

2. 𝜌𝐴1𝐴2...𝐴𝐿
= 𝜌𝐴1 ⊗ · · · ⊗ 𝜌𝐴𝐿

.

Then for each 𝑖 = 1, . . . , 𝐿 there exists a pure state |𝜑⟩𝐴𝑖
such that ⟨𝜑𝐴𝑖 |𝜌𝐴𝑖 |𝜑𝐴𝑖⟩ ≥ 1− 𝜀.

Proof. Consider the operator norm ‖𝜌‖∞ := 𝜆max(𝜌) = max|𝜓⟩ ⟨𝜓|𝜌|𝜓⟩. Condition 1 gives ‖𝜌𝐵‖∞ ≥
1− 𝜀. Using condition 2 we have

‖𝜌𝐵‖∞ = ‖𝜌𝐴1...𝐴𝐿
‖∞ = ‖𝜌𝐴1 ⊗ · · · ⊗ 𝜌𝐴𝐿

‖∞ =
𝐿∏︁
𝑖=1

‖𝜌𝐴𝑖‖∞ ≥ 1− 𝜀, (302)

which implies that 𝜆max(𝜌𝐴𝑖) ≥ 1− 𝜀 for any 𝑖.

Next, we discuss how to learn these states {𝜌𝐴𝑖} that are approximately pure. Again, we still have
the property that each 𝜌𝐴𝑖 is a 1D-like state with finite correlation length. However, our previous
techniques developed in Section 8.3 only work for exactly pure states. We develop new techniques
by examining the robustness of the key technical lemma developed in Section 8.3, Lemma 26.

There are two key ingredients in the proof of Lemma 26:

1. The use of Uhlmann’s theorem to prove the existence of a local disentangling unitary;

2. The use to entropy inequalities (in particular, strong subadditivity) to prove that the state
is disentangled into many local pieces after applying Uhlmann’s unitaries across the entire
system.

Fortunately, both ingredients are robust. First, Uhlmann’s theorem says that if two mixed
states are close, then there exists a unitary (acting on the purifying system) that approximately
maps between their purifications. Second, entropy inequalities are robust, thanks to the continuity
of entropy given below.

Lemma 30 (Fannes–Audenaert inequality). Let 𝜌, 𝜎 be two 𝑛-qubit density matrices, and let 𝜀 :=
1
2‖𝜌− 𝜎‖1. Then

|𝑆(𝜌)− 𝑆(𝜎)| ≤ 𝑛𝜀+ ℎ(𝜀), (303)

where ℎ(·) is the binary entropy function and can be upper bounded as ℎ(𝜀) ≤ 2
√
𝜀.

We formalize the above intuitions as the following main technical lemma, which is a robust
version of Lemma 28.
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Lemma 31. Let 𝜌 be an 𝑛-qubit mixed state defined on systems 𝐴1, . . . , 𝐴𝐿, with the following
properties:

1. there exists an 𝑛-qubit pure state |𝜓⟩, such that ⟨𝜓|𝜌|𝜓⟩ ≥ 1− 𝜀.

2. for any 𝑖 = 2, 3, . . . , 𝐿− 1, it holds that 𝐼(𝐴1 · · ·𝐴𝑖−1 : 𝐴𝑖+1 · · ·𝐴𝐿)𝜌 = 0.

For simplicity we assume that 𝐿 is odd. Let 𝜎 be another 𝑛-qubit mixed state that satisfies

1

2
‖𝜎𝐴2𝑖𝐴2𝑖+1𝐴2𝑖+2 − 𝜌𝐴2𝑖𝐴2𝑖+1𝐴2𝑖+2‖1 ≤ 𝛿, ∀𝑖 = 0, 1, . . . , (𝐿− 1)/2, (304)

Then
1

2
‖𝜎 − 𝜌‖1 ≤ 13𝑛𝜀1/16 + 4𝑛𝛿1/4. (305)

Proof. The above condition says that 𝜌 and 𝜎 are close on local regions 𝐴1𝐴2, 𝐴2𝐴3𝐴4, 𝐴4𝐴5𝐴6, . . . , 𝐴𝐿−1𝐴𝐿.
The goal is to prove that they are globally close.

Let 𝜏 := |𝜓⟩⟨𝜓| denote the density matrix of |𝜓⟩. For any 𝑗 ∈ {1, 2, . . . , (𝐿− 1)/2}, define three
regions 𝐿(𝑗) := 𝐴≤2𝑗−1, 𝑀 (𝑗) := 𝐴2𝑗 , 𝑅(𝑗) := 𝐴≥2𝑗+1 (the superscript (𝑗) is abbreviated when there
is no confusion).

Note that for any subsystem 𝑊 , we have

1

2
‖𝜏𝑊 − 𝜌𝑊 ‖1 ≤

1

2
‖𝜏 − 𝜌‖1 ≤

√︀
1− ⟨𝜓|𝜌|𝜓⟩ ≤

√
𝜀. (306)

Therefore,

‖𝜏𝐿𝑅 − 𝜏𝐿 ⊗ 𝜏𝑅‖1 ≤ ‖𝜏𝐿𝑅 − 𝜌𝐿𝑅‖1 + ‖𝜌𝐿𝑅 − 𝜌𝐿 ⊗ 𝜌𝑅‖1 + ‖𝜌𝐿 ⊗ 𝜌𝑅 − 𝜏𝐿 ⊗ 𝜏𝑅‖1
≤ ‖𝜏𝐿𝑅 − 𝜌𝐿𝑅‖1 + ‖𝜌𝐿 − 𝜏𝐿‖1 + ‖𝜌𝑅 − 𝜏𝑅‖1
≤ 𝜀1

(307)

where we let 𝜀1 := 6
√
𝜀. Then, the relationship between fidelity and trace distance implies that

𝐹 (𝜏𝐿𝑅, 𝜏𝐿 ⊗ 𝜏𝑅) ≥ 1− ‖𝜏𝐿𝑅 − 𝜏𝐿 ⊗ 𝜏𝑅‖1 ≥ 1− 𝜀1. (308)

Let |𝜑1⟩𝐿𝑀(𝑗)
1

be a purification of 𝜏𝐿, and let |𝜑2⟩𝑀(𝑗)
2 𝑅

be a purification of 𝜏𝑅. Note that dim(𝑀
(𝑗)
1 ) ≤

dim(𝐿) and dim(𝑀
(𝑗)
2 ) ≤ dim(𝑅). Let𝑀 ′(𝑗) be an ancilla space with dimension dim(𝑀

(𝑗)
1 ) dim(𝑀

(𝑗)
2 )/ dim(𝑀 (𝑗)).

Here 𝑀 ′(𝑗) is needed in case 𝑀 (𝑗) is smaller than 𝑀 (𝑗)
1 𝑀

(𝑗)
2 . Now, |𝜓⟩𝐿𝑀𝑅 |0⟩𝑀 ′(𝑗) is a purification

of the state 𝜏𝐿𝑅, while |𝜑1⟩𝐿𝑀(𝑗)
1

⊗|𝜑2⟩𝑀(𝑗)
2 𝑅

is a purification of the state 𝜏𝐿⊗ 𝜏𝑅, and they have the

same dimension. Then by Uhlmann’s theorem, there exists a unitary 𝑈 (𝑗) :𝑀 (𝑗)𝑀 ′(𝑗) →𝑀
(𝑗)
1 𝑀

(𝑗)
2 ,

such that
𝑈

(𝑗)

𝑀(𝑗)𝑀 ′(𝑗) |𝜓⟩𝐿𝑀(𝑗)𝑅 |0⟩𝑀 ′(𝑗) ≈𝜀1 |𝜑1⟩𝐿𝑀(𝑗)
1

⊗ |𝜑2⟩𝑀(𝑗)
2 𝑅

. (309)

Here, |𝑢⟩ ≈𝜀 |𝑣⟩ means | ⟨𝑢|𝑣⟩ |2 ≥ 1− 𝜀.
The above argument shows the existence of a unitary 𝑈 (𝑗) acting on 𝑀 (𝑗) = 𝐴2𝑗 (as well as an

ancilla system 𝑀 ′(𝑗)), that approximately disentangles the state |𝜓⟩ into a tensor product between
𝐿𝑀

(𝑗)
1 and 𝑀

(𝑗)
2 𝑅, where 𝑀 (𝑗)

1 , 𝑀 (𝑗)
2 are ancilla systems associated with 𝐴2𝑗 . We apply all such

unitaries 𝑈 (𝑗) (𝑗 ∈ {1, 2, . . . , (𝐿− 1)/2}) to |𝜓⟩, and obtain

𝜂 :=

⎛⎝(𝐿−1)/2∏︁
𝑗=1

𝑈 (𝑗)

⎞⎠ |𝜓⟩⟨𝜓| ⊗ |0⟩⟨0|𝑀 ′

⎛⎝(𝐿−1)/2∏︁
𝑗=1

𝑈 (𝑗)†

⎞⎠ , (310)
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where 𝑀 ′ represents the union of all 𝑀 ′(𝑗). Note that 𝜂 supports on 𝐴1, 𝐴3, 𝐴5, . . . , 𝐴𝐿 as well as
𝑀

(𝑗)
1 ,𝑀

(𝑗)
2 for 𝑗 ∈ {1, 2, . . . , (𝐿− 1)/2}. Now, we relabel the systems according to

𝐵𝑗 :=𝑀
(𝑗−1)
2 ∪𝐴2𝑗−1 ∪𝑀 (𝑗)

1 , 𝑗 ∈ {1, 2, . . . , (𝐿+ 1)/2}, (311)

and the state 𝜂 supports on 𝐵𝑗 , 𝑗 ∈ {1, 2, . . . , (𝐿+ 1)/2}, and we want to prove that it is approxi-
mately a tensor product across all 𝐵𝑗 regions via upper bounding the relative entropy

𝐷(𝜂|| ⊗𝑗 𝜂𝐵𝑗 ) =
∑︁
𝑗

𝑆(𝜂𝐵𝑗 )− 𝑆(𝜂) =
∑︁
𝑗

𝑆(𝜂𝐵𝑗 ). (312)

By the strong subadditivity of quantum entropy,

𝑆(𝜂𝐵𝑗 ) ≤ 𝑆(𝜂𝐵≤𝑗
) + 𝑆(𝜂𝐵≥𝑗

)− 𝑆(𝜂) = 𝑆(𝜂𝐵≤𝑗
) + 𝑆(𝜂𝐵≥𝑗

). (313)

Focusing on the entropy of 𝑆(𝜂𝐵≤𝑗
), we can ignore the unitaries that are applied on regions other

than 𝐴2𝑗 . Note that Eq. (309) implies that

1

2

⃦⃦⃦
Tr

𝑀
(𝑗)
2 𝑅

(𝑈 (𝑗) |𝜓⟩⟨𝜓| ⊗ |0⟩⟨0|𝑀 ′(𝑗) 𝑈 (𝑗)†)− |𝜑1⟩⟨𝜑1|𝐿𝑀(𝑗)
1

⃦⃦⃦
1
≤
√
𝜀1. (314)

Therefore by the Fannes-Audenaert inequality,

𝑆(𝜂𝐵≤𝑗
) = 𝑆(Tr

𝑀
(𝑗)
2 𝑅

(𝑈 (𝑗) |𝜓⟩⟨𝜓| ⊗ |0⟩⟨0|𝑀 ′(𝑗) 𝑈 (𝑗)†)) ≤ 2|𝐿|
√
𝜀1 + 2𝜀

1/4
1 ≤ 2𝑛

√
𝜀1 + 2𝜀

1/4
1 . (315)

A similar argument holds for 𝑆(𝜂𝐵≥𝑗
). Therefore we have

𝑆(𝜂𝐵𝑗 ) ≤ 4𝑛
√
𝜀1 + 4𝜀

1/4
1 , ∀𝑗 ∈ {1, 2, . . . , (𝐿+ 1)/2}. (316)

Let

𝜔 :=

⎛⎝(𝐿−1)/2∏︁
𝑗=1

𝑈 (𝑗)

⎞⎠𝜎 ⊗ |0⟩⟨0|𝑀 ′

⎛⎝(𝐿−1)/2∏︁
𝑗=1

𝑈 (𝑗)†

⎞⎠ , (317)

then ‖𝜎 − |𝜓⟩⟨𝜓|‖1 = ‖𝜔 − 𝜂‖1. Note that for any 𝑗, 𝜂𝐵𝑗 only depends on the reduced density
matrix 𝜏𝐴2𝑗−2𝐴2𝑗−1𝐴2𝑗 ; similarly, 𝜔𝐵𝑗 only depends on the reduced density matrix 𝜎𝐴2𝑗−2𝐴2𝑗−1𝐴2𝑗 .
Therefore,⃦⃦

𝜔𝐵𝑗 − 𝜂𝐵𝑗

⃦⃦
1
≤
⃦⃦
𝜎𝐴2𝑗−2𝐴2𝑗−1𝐴2𝑗 − 𝜏𝐴2𝑗−2𝐴2𝑗−1𝐴2𝑗

⃦⃦
1

≤
⃦⃦
𝜎𝐴2𝑗−2𝐴2𝑗−1𝐴2𝑗 − 𝜌𝐴2𝑗−2𝐴2𝑗−1𝐴2𝑗

⃦⃦
1
+
⃦⃦
𝜌𝐴2𝑗−2𝐴2𝑗−1𝐴2𝑗 − 𝜏𝐴2𝑗−2𝐴2𝑗−1𝐴2𝑗

⃦⃦
1

≤ 2𝛿 + 2
√
𝜀.

(318)

Note that |𝐵𝑗 | ≤ 3𝑛, by the Fannes-Audenaert inequality,

𝑆(𝜔𝐵𝑗 ) ≤ 𝑆(𝜂𝐵𝑗 ) + 3𝑛(𝛿 +
√
𝜀) + 2

√︁
𝛿 +
√
𝜀. (319)

This implies that

𝐷(𝜔|| ⊗𝑗 𝜔𝐵𝑗 ) =
∑︁
𝑗

𝑆(𝜔𝐵𝑗 )− 𝑆(𝜔)

≤
∑︁
𝑗

𝑆(𝜔𝐵𝑗 )

≤
∑︁
𝑗

𝑆(𝜂𝐵𝑗 ) + 3𝑛2(𝛿 +
√
𝜀) + 2𝑛

√︁
𝛿 +
√
𝜀.

(320)
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Then
‖𝜎 − 𝜌‖1 ≤ ‖𝜎 − 𝜏‖1 + ‖𝜏 − 𝜌‖1

≤ ‖𝜔 − 𝜂‖1 + 2
√
𝜀

≤
⃦⃦
𝜔 −⊗𝑗𝜔𝐵𝑗

⃦⃦
1
+
⃦⃦
⊗𝑗𝜔𝐵𝑗 −⊗𝑗𝜂𝐵𝑗

⃦⃦
1
+
⃦⃦
⊗𝑗𝜂𝐵𝑗 − 𝜂

⃦⃦
1
+ 2
√
𝜀

≤
√︁
2𝐷(𝜔|| ⊗𝑗 𝜔𝐵𝑗 ) + 2𝑛𝛿 + 2𝑛

√
𝜀+

√︁
2𝐷(𝜂|| ⊗𝑗 𝜂𝐵𝑗 ) + 2

√
𝜀

≤
√︂
8𝑛(𝑛

√
𝜀1 + 𝜀

1/4
1 ) + 6𝑛2(𝛿 +

√
𝜀) + 4𝑛

√︁
𝛿 +
√
𝜀

+

√︁
8𝑛(𝑛

√
𝜀1 + 𝜀

1/4
1 ) + 2𝑛𝛿 + 2(𝑛+ 1)

√
𝜀.

(321)

Here in the fourth line we use the quantum Pinsker inequality, which says that ‖𝜌−𝜎‖1 ≤
√︀
2𝐷(𝜌‖𝜎)

for two density matrices 𝜌, 𝜎. Using the fact that 𝜀1 = 6
√
𝜀, we have

1

2
‖𝜎 − 𝜌‖1 ≤ 𝑛𝛿 + 2𝑛

√
𝜀+
√
8𝑛𝜀

1/4
1 +

√
8
√
𝑛𝜀

1/8
1 +

√
6

2
𝑛
√
𝛿 +

√
6

2
𝑛𝜀1/4 +

√
𝑛𝛿1/4 +

√
𝑛𝜀1/8

≤
√
8𝑛𝜀

1/4
1 +

√
8
√
𝑛𝜀

1/8
1 + 5𝑛𝜀1/8 + 4𝑛𝛿1/4

≤ 13𝑛𝜀1/16 + 4𝑛𝛿1/4.

(322)

Finally, the next technical lemma bounds the distance between the learned state and the un-
known state |𝜓⟩.

Lemma 32. Let |𝜓⟩𝐴1...𝐴𝐿𝐵
be a pure state, and let 𝜌𝐴1...𝐴𝐿𝐵 = |𝜓⟩⟨𝜓|𝐴1...𝐴𝐿𝐵

. Suppose the follow-
ing two properties hold:

1. ⟨0𝐵|𝜌𝐵|0𝐵⟩ = 1− 𝜀,

2. 𝜌𝐴1...𝐴𝐿
= 𝜌𝐴1 ⊗ · · · ⊗ 𝜌𝐴𝐿

.

Suppose {𝜎𝐴𝑖} are density matrices that satisfies 1
2 ‖𝜌𝐴𝑖 − 𝜎𝐴𝑖‖1 ≤ 𝛿 for any 𝑖. Then

1

2

⃦⃦
(⊗𝐿𝑖=1𝜎𝐴𝑖)⊗ |0⟩⟨0|𝐵 − |𝜓⟩⟨𝜓|

⃦⃦
1
≤
√
2𝜀+ 𝐿𝛿. (323)

Proof. The state |𝜓⟩𝐴1...𝐴𝐿𝐵
can be written as

|𝜓⟩𝐴1...𝐴𝐿𝐵
=
√
1− 𝜀 |0⟩𝐵 |𝜑⟩𝐴1...𝐴𝐿

+
√
𝜀 |else⟩𝐴1...𝐴𝐿𝐵

, (324)

where ⟨0|𝐵 |else⟩𝐴1...𝐴𝐿𝐵
= 0. This implies that

𝜌𝐴1...𝐴𝐿
= Tr𝐵 𝜌𝐴1...𝐴𝐿𝐵 = (1− 𝜀) |𝜑⟩⟨𝜑|𝐴1...𝐴𝐿

+ 𝜀Tr𝐵 |else⟩⟨else| . (325)

Note that

1

2
‖𝜌𝐴1...𝐴𝐿

− 𝜎𝐴1 ⊗ · · · ⊗ 𝜎𝐴𝐿
‖1 =

1

2
‖𝜌𝐴1 ⊗ · · · ⊗ 𝜌𝐴𝐿

− 𝜎𝐴1 ⊗ · · · ⊗ 𝜎𝐴𝐿
‖1

≤ 1

2

𝐿∑︁
𝑖=1

‖𝜌𝐴𝑖 − 𝜎𝐴𝑖‖1

≤ 𝐿𝛿.

(326)

69



Therefore,

⟨𝜓|𝐴1...𝐴𝐿𝐵
𝜎𝐴1 ⊗ · · · ⊗ 𝜎𝐴𝐿

⊗ |0⟩⟨0|𝐵 |𝜓⟩𝐴1...𝐴𝐿𝐵
≥ ⟨𝜓| 𝜌𝐴1...𝐴𝐿

⊗ |0⟩⟨0|𝐵 |𝜓⟩ − 𝐿𝛿
≥ (1− 𝜀)2 − 𝐿𝛿
≥ 1− 2𝜀− 𝐿𝛿.

(327)

This implies that
1

2

⃦⃦
(⊗𝐿𝑖=1𝜎𝐴𝑖)⊗ |0⟩⟨0|𝐵 − |𝜓⟩⟨𝜓|

⃦⃦
1
≤
√
2𝜀+ 𝐿𝛿. (328)

Proof of first claim of Theorem 9. Next we show how to use the above techniques to learn an
unknown quantum state |𝜓⟩ = 𝑈 |0𝑛⟩, with the promise that 𝑈 is a depth-𝑑 circuit acting on a 2D
lattice (here 𝑑 is treated as a generic parameter which is not necessarily a constant) with arbitrary
SU(4) gates.

We work with Viewpoint 2 described in Section 8.3. As discussed at the end of Section 8.3, the
learning process requires 𝒪(𝑛) reduced density matrices of |𝜓⟩ of size 𝒪(𝑑2). Suppose all of these
reduced density matrices are learned to within 𝜀0 trace distance with probability 1 − 𝛿, then by
Lemma 23 it suffices to take a randomized measurement dataset 𝒯|𝜓⟩(𝑁) of size

𝑁 =
2𝒪(𝑑2)

𝜀20
log

𝑛

𝛿
. (329)

Next we proceed with the disentangling step shown in Fig. 4. We have learned the reduced
density matrices on the dotted regions shown in Fig. 4 (a) to within 𝜀0 trace distance. Denote the
dotted blue region as 𝐴𝐴1 where 𝐴 is the colored blue region, and let 𝜌𝐴𝐴1 be the reduced density
matrix of |𝜓⟩ on 𝐴𝐴1. We know that there exists a depth-2𝑑 circuit 𝑉𝐴𝐴1 such that

𝑉𝐴𝐴1𝜌𝐴𝐴1𝑉
†
𝐴𝐴1

= |0⟩⟨0|𝐴 ⊗ 𝜎𝐴1 (330)

for some density matrix 𝜎𝐴1 . We have learned a density matrix 𝜌𝐴𝐴1 such that ‖𝜌𝐴𝐴1−𝜌𝐴𝐴1‖1 ≤ 𝜀0.
To find an approximate local inversion for the region 𝐴, we perform a brute force search over an 𝜀0-
net for depth-2𝑑 circuits acting on 𝐴𝐴1, denoted as 𝒩𝜀0(𝐴𝐴1), which is constructed by discretizing
each SU(4) gate (see Definition 18 and Lemma 19), which has size at most

𝑆 =

(︂
𝑑3

𝜀0

)︂𝒪(𝑑3)

. (331)

Note that Eq. (330) together with ‖𝜌𝐴𝐴1 − 𝜌𝐴𝐴1‖1 ≤ 𝜀0 implies that

Tr
(︁
⟨0|𝐴 𝑉𝐴𝐴1𝜌𝐴𝐴1𝑉

†
𝐴𝐴1
|0⟩𝐴

)︁
≥ 1− 𝜀0. (332)

By definition of 𝜀0-net, there exists a unitary 𝑉𝐴𝐴1 ∈ 𝒩𝜀0(𝐴𝐴1) that satisfies ‖𝑉𝐴𝐴1−𝑉𝐴𝐴1‖∞ ≤ 𝜀0,
which gives

Tr
(︁
⟨0|𝐴 𝑉𝐴𝐴1𝜌𝐴𝐴1𝑉

†
𝐴𝐴1
|0⟩𝐴

)︁
≥ 1− 2𝜀0. (333)

The algorithm is to enumerate over all elements in 𝒩𝜀0(𝐴𝐴1) and find the ones which satisfy the
above equation. Each of these circuits is an approximate local inversion in the sense that

Tr
(︁
⟨0|𝐴 𝑉𝐴𝐴1𝜌𝐴𝐴1𝑉

†
𝐴𝐴1
|0⟩𝐴

)︁
≥ 1− 3𝜀0. (334)
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Using the same argument as in Section 8.2, in Fig. 4 (a) we can find a depth-𝑑 circuit 𝑉 acting on
the width-7𝑑 strip around 𝑀 , such that Eq. (334) is satisfied for all local colored regions. There are
at most

√
𝑛 such regions. Let 𝜌 = |𝜓⟩⟨𝜓|, by union bound,

Tr
(︁
⟨0|𝑀 𝑉 𝜌𝑉 † |0⟩𝑀

)︁
≥ 1− 3

√
𝑛𝜀0. (335)

Repeat the same procedure for all vertical 𝐵𝑖 strips shown in Fig. 4 (b). There are at most
√
𝑛

different vertical strips. Let 𝐵 = ∪𝑖𝐵𝑖, and let 𝑉 denote the union of all learned inversion circuits
across different regions, we have

Tr
(︁
⟨0|𝐵 𝑉 𝜌𝑉

† |0⟩𝐵
)︁
≥ 1− 3𝑛𝜀0. (336)

Now, the problem reduces to learning the state 𝑉 |𝜓⟩, which can be formulated as follows.

Problem 2. We are given copies of a state 𝜎 = |𝜑⟩⟨𝜑| with the promise that

1. it is prepared by a depth-2𝑑 circuit (defined on a 2D lattice) acting on |0𝑛⟩;

2. its reduced density matrix on each of the 𝐵𝑖 regions in Fig. 4 (b) is close |0⟩⟨0|𝐵𝑖
, i.e.

⟨0𝐵|𝜎𝐵|0𝐵⟩ ≥ 1− 𝜀1.

The goal is to (approximately) learn the state |𝜑⟩.

Let |𝜑⟩ := 𝑉 |𝜓⟩ and let 𝜀1 := 3𝑛𝜀0. Consider dividing the state 𝜎 = |𝜑⟩⟨𝜑| into regions
𝐴1, 𝐴2, . . . , 𝐴𝐿 and 𝐵 = ∪𝑖𝐵𝑖 as in Fig. 4 (b). As the regions {𝐴𝑖} are sufficiently far from
each other, the reduced density matrix on 𝐴 = ∪𝑖𝐴𝑖 is a tensor product across each region, i.e.,
𝜎𝐴1...𝐴𝐿

= 𝜎𝐴1 ⊗ · · · ⊗ 𝜎𝐴𝐿
. By Eq. (336), we have ⟨0𝐵|𝜎𝐵|0𝐵⟩ ≥ 1 − 𝜀1. By Lemma 29, for each

𝑖 = 1, . . . , 𝐿 there exists a pure state |𝜑⟩𝐴𝑖
such that ⟨𝜑𝐴𝑖 |𝜎𝐴𝑖 |𝜑𝐴𝑖⟩ ≥ 1− 𝜀1.

Next we discuss how to learn the state 𝜎𝐴𝑖 for a fixed 𝑖. This is similar to the earlier situation in
Viewpoint 2, but with the critical difference that here 𝜎𝐴𝑖 is no longer pure. So we list the updated
Viewpoint below.

Viewpoint 2’. 𝜎𝐴𝑖 can be prepared by a depth-2𝑑 circuit acting on 𝐴𝑖 as well as some ancilla
qubits 𝐴𝐿𝑖 and 𝐴𝑅𝑖 , shown in Fig. 5. To see this, recall that 𝜎𝐴𝑖 is part of a state that is prepared by
a depth-2𝑑 circuit. Now, imagine that we undo all the gates in that circuit, except for those in the
backward lightcone of 𝐴𝑖. This procedure does not affect the state on 𝐴𝑖, and the resulting circuit
(denote as 𝑊𝑖) has exactly the same shape as in Fig. 5, where 𝐴𝐿𝑖 , 𝐴𝑅𝑖 both has width 2𝑑. Note
that here 𝜎𝐴𝑖 could be entangled with the ancilla qubits, and we have

Tr𝐴𝐿
𝑖 𝐴

𝑅
𝑖

(︁
𝑊𝑖 |0⟩⟨0|𝐴𝐿

𝑖 𝐴𝑖𝐴𝑅
𝑖
𝑊 †
𝑖

)︁
= 𝜎𝐴𝑖 . (337)

Using the same argument as the end of Section 8.3, the reduced density matrices of 𝜎𝐴𝑖 can be
simulated by reduced density matrices of |𝜓⟩⟨𝜓| on slightly larger regions. Therefore we can obtain
reduced density matrices of 𝜎𝐴𝑖 within trace distance 𝜀0. Let 𝐶 be the solid blue region in Fig. 7,
and let 𝐶𝐶1 be the dotted blue region. We have learned a reduced density matrix 𝜎̂𝐶 such that
‖𝜎̂𝐶 − 𝜎𝐶‖1 ≤ 𝜀0. From Viewpoint 2’, we know that there is a depth-2𝑑 circuit 𝑊𝐶𝐶1 acting on
𝐶𝐶1, such that

Tr𝐶1

(︁
𝑊𝐶𝐶1 |0⟩⟨0|𝐶𝐶1

𝑊 †
𝐶𝐶1

)︁
= 𝜎𝐶 . (338)
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Consider an 𝜀0-net for depth-2𝑑 circuits acting on 𝐶𝐶1, denoted as 𝒩𝜀0(𝐶𝐶1). By definition, there
exists a unitary 𝑊̂𝐶𝐶1 that satisfies ‖𝑊̂𝐶𝐶1 −𝑊𝐶𝐶1‖∞ ≤ 𝜀0, which means that⃦⃦⃦

Tr𝐶1

(︁
𝑊̂𝐶𝐶1 |0⟩⟨0|𝐶𝐶1

𝑊̂ †
𝐶𝐶1

)︁
− 𝜎̂𝐶

⃦⃦⃦
1

≤
⃦⃦⃦
Tr𝐶1

(︁
𝑊̂𝐶𝐶1 |0⟩⟨0|𝐶𝐶1

𝑊̂ †
𝐶𝐶1

)︁
− 𝜎𝐶

⃦⃦⃦
1
+ ‖𝜎𝐶 − 𝜎̂𝐶‖1

≤2𝜀0.

(339)

By enumerating over every element in 𝒩𝜀0(𝐶𝐶1), we can find a list of circuits {𝑊̂ ′
𝐶𝐶1
} that satisfy⃦⃦⃦

Tr𝐶1

(︁
𝑊̂ ′
𝐶𝐶1
|0⟩⟨0|𝐶𝐶1

𝑊̂ ′†
𝐶𝐶1

)︁
− 𝜎̂𝐶

⃦⃦⃦
1
≤ 2𝜀0. Any such circuit 𝑊̂ ′

𝐶𝐶1
will also satisfy⃦⃦⃦

Tr𝐶1

(︁
𝑊̂ ′
𝐶𝐶1
|0⟩⟨0|𝐶𝐶1

𝑊̂ ′†
𝐶𝐶1

)︁
− 𝜎𝐶

⃦⃦⃦
1
≤ 3𝜀0. (340)

Using the same argument as in Section 8.3, we can merge these learned local circuits into
a global depth-2𝑑 circuit 𝑊̂𝑖. Let 𝜎̂𝐴𝑖 := Tr𝐴𝐿

𝑖 𝐴
𝑅
𝑖

(︁
𝑊̂𝑖 |0⟩⟨0|𝐴𝐿

𝑖 𝐴𝑖𝐴𝑅
𝑖
𝑊̂ †
𝑖

)︁
be the learned reduced

density matrix on 𝐴𝑖, then the local reduced density matrices of 𝜎̂𝐴𝑖 and 𝜎𝐴𝑖 are 3𝜀0 close in trace
distance on solid colored regions in Fig. 7. This allows us to invoke the main technical lemma,
Lemma 31, which gives

1

2
‖𝜎̂𝐴𝑖 − 𝜎𝐴𝑖‖1 ≤ 13𝑛𝜀

1/16
1 + 8𝑛𝜀

1/4
0 ≤ 22𝑛17/16𝜀

1/16
0 . (341)

The state |𝜓⟩ can be approximately prepared as follows:

1. Initialize registers 𝐴𝑖, 𝐵𝑖, 𝐴𝐿𝑖 , 𝐴
𝑅
𝑖 in the state |0⟩. Let 𝐴 = ∪𝑖𝐴𝑖 and 𝐵 = ∪𝑖𝐵𝑖.

2. For each 𝑖, apply the depth-2𝑑 circuit 𝑊̂𝑖 to 𝐴𝐿𝑖 𝐴𝑖𝐴
𝑅
𝑖 . The reduced density matrix on 𝐴𝐵

equals (⊗𝑖𝜎̂𝐴𝑖)⊗ |0⟩⟨0|𝐵
3. Apply the depth-𝑑 circuit 𝑉 † to 𝐴𝐵, and the reduced density matrix on 𝐴𝐵 is 𝜌 = 𝑉 †(⊗𝑖𝜎̂𝐴𝑖)⊗
|0⟩⟨0|𝐵 𝑉 , which approximately equals to |𝜓⟩⟨𝜓|.

Similar to the proof of second claim of Theorem 9 at the end of Section 8.3, we can choose the 𝐴𝑖
regions to be sufficiently wide, such that the number of ancilla qubits equals to 𝑡𝑛 for an arbitrarily
small constant 𝑡.

The final task is to bound the error between the learned density matrix and |𝜓⟩⟨𝜓|. Using
Lemma 32, the trace distance can be bounded as

1

2

⃦⃦⃦
𝑉 †(⊗𝑖𝜎̂𝐴𝑖)⊗ |0⟩⟨0|𝐵 𝑉 − |𝜓⟩⟨𝜓|

⃦⃦⃦
1
=

1

2

⃦⃦⃦
(⊗𝑖𝜎̂𝐴𝑖)⊗ |0⟩⟨0|𝐵 − 𝑉 |𝜓⟩⟨𝜓|𝑉

†
⃦⃦⃦
1

≤
√︁

2 · 3𝑛𝜀0 +
√
𝑛 · 22𝑛17/16𝜀1/160

≤ 6𝑛25/32𝜀
1/32
0 .

(342)

Therefore, to achieve trace distance 𝜀, it suffices to choose 𝜀0 = 𝒪( 𝜀
32

𝑛25 ). The total sample complexity
is

𝑁 =
2𝒪(𝑑2)

𝜀20
log

𝑛

𝛿
=

2𝒪(𝑑2)𝑛50

𝜀64
log

𝑛

𝛿
. (343)

The total running time is

𝑛 · 𝑆 =

(︂
𝑛𝑑3

𝜀

)︂𝒪(𝑑3)

. (344)
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9 Verifying learned shallow circuits under average-case distance

From the previous appendices, we have seen that given an 𝑛-qubit CPTP map 𝒞 promised to be a
unitary 𝑈 generated by a constant-depth quantum circuit, we can learn a constant-depth 2𝑛-qubit
circuit 𝑉 , such that 𝑉 is close to 𝑈 ⊗ 𝑈 †, and the reduced channel ℰ̂ := ℰ𝑉≤𝑛 of 𝑉 on the first 𝑛
qubits is close to 𝒞 = 𝑈(·)𝑈 † = 𝒰 in the diamond distance. In this section, we answer the question:
What happens if there is no promise that 𝒞 is a unitary generated by a shallow quantum circuit,
and, furthermore, 𝒞 may not even be unitary?

Given an arbitrary CPTP map 𝒞, the proposed algorithm can still learn a constant-depth 2𝑛-
qubit circuit 𝑉 with an associated 𝑛-qubit CPTP map ℰ̂ := ℰ𝑉≤𝑛. However, without the promise on
𝒞, the learned map ℰ̂ could be arbitrary. This raises the question: can we verify that ℰ̂ is close to
𝒞? From the previous section on the hardness for learning log-depth circuits, we see that even if 𝒞
is an 𝑛-qubit unitary 𝑈 generated by a log-depth circuit, one already needs exp(Ω(𝑛)) queries to
check if 𝑈 is close to 𝐼 in the diamond distance or not. Hence, when the learning algorithm outputs
ℰ̂ = ℐ, which is very likely in this case as the unitary 𝑈𝑥 in Eq. (277) is almost identity, we cannot
efficiently check if ℰ̂ is close to 𝒞 in the diamond distance. The exponential hardness stems from
the definition of diamond distance, which considers the worst case over all possible input states.

To circumvent the exponential hardness, we consider closeness under the average-case distance
𝒟ave (see Definition 3) instead of the worst-case distance 𝒟◇. We give a verification algorithm that
verifies the learned map ℰ̂ by outputting pass or fail as follows:

1. the verification algorithm outputs fail with high probability if the learned map ℰ̂ is not close
to 𝒞 under the average-case distance 𝒟ave;

2. the verification algorithm outputs pass with high probability if the learned map ℰ̂ is close to
𝒞 under the average-case distance 𝒟ave and the unknown map 𝒞 is close to a unitary.

The verification algorithm only needs access to a randomized measurement dataset 𝒯𝒞(𝑁) gener-
alizing Definition 8 by replacing the unitary 𝑈 with the map 𝒞. Formally, we have the following
theorem.

Theorem 10 (Verifying the learned shallow circuit). Given a failure probability 𝛿, a verification
error 𝜀, a learned constant-depth 2𝑛-qubit circuit 𝑉 , the associated 𝑛-qubit CPTP map ℰ̂ = ℰ𝑉≤𝑛,
and an unknown 𝑛-qubit CPTP map 𝒞. With a randomized measurement dataset 𝒯𝒞(𝑁) of size

𝑁 = 𝒪
(︂
𝑛2 log(𝑛/𝛿)

𝜀2

)︂
, (345)

the verification algorithm outputs pass or fail such that

1. if 𝒟ave(ℰ̂ , 𝒞) > 𝜀, the output is fail with probability ≥ 1− 𝛿.

2. if 𝒟ave(ℰ̂ , 𝒞) ≤ 𝜀
12𝑛 and

⃦⃦
𝒞†𝒞 − ℐ

⃦⃦
◇ ≤

𝜀
12𝑛 , the output is pass with probability ≥ 1− 𝛿;

The computational time of the verification algorithm is 𝒪(𝑛𝑁).

Proof. The verification algorithm is based on the concept of weak approximate local identity pre-
sented in Section 4.2. Let us define the 𝑛-qubit CPTP map

ℐ̂ := ℰ̂†𝒞. (346)
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Note that ℰ̂†(𝜌) can be implemented by appending 𝑛-qubit maximally mixed state to 𝜌, evolving
𝜌⊗ (𝐼𝑛/2

𝑛) under the unitary 𝑉 †, then tracing out the appended 𝑛 ancilla qubits, i.e.,

ℰ̂†(𝜌) = Tr>𝑛

(︁
𝑉 †(𝜌⊗ 𝐼𝑛/2𝑛)𝑉

)︁
, (347)

where 𝐼𝑛 is an 𝑛-qubit identity. The verification algorithm uses the randomized measurement
dataset 𝒯𝒞(𝑁) to estimate 𝑜𝑖 approximating 𝒟ave(ℰ ℐ̂𝑖 , ℐ) up to 𝜀/(3𝑛) error for all 𝑖 from 1 to 𝑛 with
probability at least 1− 𝛿. Then the verification algorithm outputs{︃

pass, if 3
2

∑︀𝑛
𝑖=1 𝑜𝑖 ≤ 𝜀/2,

fail, if 3
2

∑︀𝑛
𝑖=1 𝑜𝑖 > 𝜀/2.

(348)

From Lemma 33 presented at the end of this section, we can show that the dataset size 𝑁 stated
in Eq. (345) is sufficient to guarantee the desired property on 𝑜𝑖 and the computational time to
estimate 𝑜𝑖 for all 𝑖 is 𝒪(𝑛𝑁). We define the event that⃒⃒⃒

𝑜𝑖 −𝒟ave(ℰ ℐ̂𝑖 , ℐ)
⃒⃒⃒
≤ 𝜀

6𝑛
, ∀𝑖 = 1, . . . , 𝑛 (349)

to be event 𝐸*. Conditioning on event 𝐸*, we show that the desired outputs, fail and pass, must
be given by the verification algorithm in the two scenarios stated in the theorem, respectively.

Case 1: 𝒟ave(ℰ̂ , 𝒞) > 𝜀. When conditioning on event 𝐸*, we claim that the algorithm always
outputs fail. We prove this claim by contradiction. Assume that the algorithm outputs pass.

From the definition of fidelity 𝐹 (𝜌, 𝜎) = Tr
(︁√︀√

𝜎𝜌
√
𝜎
)︁2

given in Definition 2, we can see that
𝐹 (𝜌, 𝜎) ≥ Tr(𝜌𝜎). Hence, from Definition 3 on 𝒟ave, we have

𝜀 < 𝒟ave(ℰ̂ , 𝒞) ≤ 𝒟ave(ℰ̂†𝒞, ℐ) = 𝒟ave(ℐ̂, ℐ). (350)

If the algorithm outputs pass, we have

3

2

𝑛∑︁
𝑖=1

𝑜𝑖 ≤
𝜀

2
. (351)

Because in the event 𝐸*, Eq. (349) ensures⃒⃒⃒
𝑜𝑖 −𝒟ave(ℰ ℐ̂𝑖 , ℐ)

⃒⃒⃒
≤ 𝜀

6𝑛
, (352)

we can conclude that
3

2

𝑛∑︁
𝑖=1

𝒟ave(ℰ ℐ̂𝑖 , ℐ) ≤
3

4
𝜀. (353)

Using Lemma 6 on global identity check from weak local identity check, we have

𝒟ave(ℐ̂, ℐ) ≤
3

2

𝑛∑︁
𝑖=1

𝒟ave(ℰ ℐ̂𝑖 , ℐ) ≤
3

4
𝜀. (354)

This inequality contradicts the one in Eq. (350). Hence, if 𝒟ave(ℰ̂ , 𝒞) > 𝜀, the output of the
verification algorithm is fail with probability at least 1− 𝛿.
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Case 2: 𝒟ave(ℰ̂ , 𝒞) ≤ 𝜀/(24𝑛) and
⃦⃦
𝒞†𝒞 − ℐ

⃦⃦
◇ ≤ 𝜀/(12𝑛). When conditioning on event 𝐸*, we

claim that the algorithm always outputs pass. We begin by noting that the fidelity 𝐹 (𝜌, 𝜎) ≤
𝐹 (ℰ(𝜌), ℰ(𝜎)) for any CPTP map ℰ from Fact 1. Therefore, we have

𝒟ave(𝒞†ℰ̂ , 𝒞†𝒞) ≤ 𝒟ave(ℰ̂ , 𝒞) ≤
𝜀

24𝑛
. (355)

We now consider the following derivations,

𝒟ave(ℐ̂, ℐ) = 𝒟ave(ℰ̂†𝒞, ℐ) (356)

= E
|𝜓⟩:Unif

[︀
1−ℱ((ℰ̂†𝒞)(|𝜓⟩⟨𝜓|), |𝜓⟩⟨𝜓|)

]︀
(357)

= E
|𝜓⟩:Unif

[︀
1− Tr

(︁
𝒞(|𝜓⟩⟨𝜓|)ℰ̂(|𝜓⟩⟨𝜓|)

)︁]︀
(358)

= E
|𝜓⟩:Unif

[︀
1− 𝐹 ((𝒞†ℰ̂)(|𝜓⟩⟨𝜓|), |𝜓⟩⟨𝜓|)

]︀
. (359)

Using the triangle inequality for Fubini-Study metric Θ from Fact 1, we have√︁
1− 𝐹 ((𝒞†ℰ̂)(|𝜓⟩⟨𝜓|), |𝜓⟩⟨𝜓|) (360)

≤ sin
(︁
Θ
(︁
(𝒞†ℰ̂)(|𝜓⟩⟨𝜓|), (𝒞†𝒞)(|𝜓⟩⟨𝜓|)

)︁
+Θ

(︁
(𝒞†𝒞)(|𝜓⟩⟨𝜓|), |𝜓⟩⟨𝜓|

)︁)︁
(361)

≤ sin
(︁
Θ
(︁
(𝒞†ℰ̂)(|𝜓⟩⟨𝜓|), (𝒞†𝒞)(|𝜓⟩⟨𝜓|)

)︁)︁
+ sin

(︁
Θ
(︁
(𝒞†𝒞)(|𝜓⟩⟨𝜓|), |𝜓⟩⟨𝜓|

)︁)︁
(362)

≤
√︁
1− 𝐹 ((𝒞†ℰ̂)(|𝜓⟩⟨𝜓|), (𝒞†𝒞)(|𝜓⟩⟨𝜓|)) +

√︁
1− 𝐹 ((𝒞†𝒞)(|𝜓⟩⟨𝜓|), |𝜓⟩⟨𝜓|). (363)

From 1− 𝐹 (𝜌, 𝜓) ≤ 1
2‖𝜌− 𝜓‖1 for any state 𝜌 and pure state 𝜓 from Fact 1, we have

1− 𝐹 ((𝒞†𝒞)(|𝜓⟩⟨𝜓|), |𝜓⟩⟨𝜓|) ≤ 1

2

⃦⃦⃦
(𝒞†𝒞)(|𝜓⟩⟨𝜓|)− |𝜓⟩⟨𝜓|

⃦⃦⃦
tr
≤ 𝜀

24𝑛
. (364)

From the two inequalities above, we see that√︁
1− 𝐹 ((𝒞†ℰ̂)(|𝜓⟩⟨𝜓|), |𝜓⟩⟨𝜓|) ≤

√︁
1− 𝐹 ((𝒞†ℰ̂)(|𝜓⟩⟨𝜓|), (𝒞†𝒞)(|𝜓⟩⟨𝜓|)) +

√︂
𝜀

24𝑛
. (365)

Using Jensen’s inequality, the above inequality, and Eq. (356), we obtain

𝒟ave(𝐼, 𝐼) (366)

= E
|𝜓⟩:Unif

[︀
1− 𝐹 ((𝒞†ℰ̂)(|𝜓⟩⟨𝜓|), |𝜓⟩⟨𝜓|)

]︀
(367)

≤ E
|𝜓⟩:Unif

[︀
1− 𝐹 ((𝒞†ℰ̂)(|𝜓⟩⟨𝜓|), (𝒞†𝒞)(|𝜓⟩⟨𝜓|))

]︀
+

𝜀

24𝑛
(368)

+ 2

√︂
𝜀

24𝑛

√︂
E

|𝜓⟩:Unif

[︀
1− 𝐹 ((𝒞†ℰ̂)(|𝜓⟩⟨𝜓|), (𝒞†𝒞)(|𝜓⟩⟨𝜓|))

]︀
(369)

= 𝒟ave(𝒞†ℰ̂ , 𝒞†𝒞) +
𝜀

24𝑛
+ 2

√︂
𝜀

24𝑛

√︁
𝒟ave(𝒞†ℰ̂ , 𝒞†𝒞) ≤

𝜀

6𝑛
. (370)

The last inequality follows from Eq. (355). Using Lemma 5 on weak local identity from global
identity check through average-case distance, we have

𝒟ave(ℰ ℐ̂𝑖 , ℐ) ≤
𝜀

6𝑛
(371)
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for all 𝑖 from 1 to 𝑛. When event 𝐸* occurs, we can combine the above with Eq. (349) to show that

𝑜𝑖 ≤
𝜀

3𝑛
, ∀𝑖 = 1, . . . , 𝑛. (372)

As a result, we can see that 3
2

∑︀𝑛
𝑖=1 𝑜𝑖 ≤ 𝜀/2. Hence, in this case, the output of the verification

algorithm is pass with probability at least 1− 𝛿.

From the theorem, the verification algorithm outputs pass with high probability if the promise on 𝒞
is satisfied, and one uses our proposed learning algorithm to learn ℰ̂ . Furthermore, whenever the
verification algorithm outputs pass, we can be certain that ℰ̂ is close to 𝒞 (under the average-case
distance). Together, our proposed learning algorithm and verification algorithm enable one to learn
a verifiable shallow quantum circuit approximation to an arbitrary unknown CPTP map 𝒞.

Lemma 33 (Checking weak approximate local identity). Given a failure probability 𝛿, a verification
error 𝜀, a learned constant-depth 2𝑛-qubit circuit 𝑉 , the associated 𝑛-qubit CPTP map ℰ̂ = ℰ𝑉≤𝑛,
and an unknown 𝑛-qubit CPTP map 𝒞. With a randomized measurement dataset 𝒯𝒞(𝑁) of size

𝑁 = 𝒪
(︂
𝑛2 log(𝑛/𝛿)

𝜀2

)︂
, (373)

we can estimate 𝑜𝑖, ∀𝑖 in time 𝒪(𝑛𝑁) such that⃒⃒⃒
𝑜𝑖 −𝒟ave(ℰ ℰ̂

†𝒞
𝑖 , ℐ)

⃒⃒⃒
≤ 𝜀

3𝑛
, ∀𝑖 = 1, . . . , 𝑛, (374)

with probability at least 1− 𝛿.

Proof. Recall from Eq. (347) that the CPTP map 𝐸̂† is given by

ℰ̂†(𝜌) = Tr>𝑛

(︁
𝑉 †(𝜌⊗ 𝐼𝑛/2𝑛)𝑉

)︁
. (375)

Hence, we have the following identity for the single-qubit CPTP map,

ℰ ℰ̂†𝒞
𝑖 (𝜌𝑖) = Tr ̸=𝑖

(︁
𝑉 †(𝒞(𝜌𝑖 ⊗ 𝐼𝑛−1/2

𝑛−1)⊗ 𝐼𝑛/2𝑛)𝑉
)︁
, (376)

where 𝜌𝑖 is a single-qubit density matrix, 𝜌𝑖 ⊗ 𝐼𝑛−1/2
𝑛−1 is an 𝑛-qubit density matrix equal to 𝜌𝑖

on the 𝑖-th qubit and maximally mixed on all other qubits, and Tr ̸=𝑖 traces out all qubits except
for the 𝑖-th qubit. Because 𝑉 is a constant-depth quantum circuit, ℰ ℰ̂†𝒞

𝑖 depends only on a reduced
channel ℰ𝒞𝑆𝑖

of 𝒞 on a subset 𝑆𝑖 of qubits with |𝑆𝑖| = 𝒪(1) and 𝑖 ∈ 𝑆𝑖, i.e.,

ℰ ℰ̂†𝒞
𝑖 (𝜌𝑖) = Tr ̸=𝑖

(︁
𝑉 † (︀(︀ℰ𝒞𝑆𝑖

⊗ ℐ[𝑛]∖𝑆𝑖

)︀
(𝜌𝑖 ⊗ 𝐼𝑛−1/2

𝑛−1)⊗ 𝐼𝑛/2𝑛
)︀
𝑉
)︁
, (377)

where ℐ[𝑛]∖𝑆𝑖
is the identity CPTP map over qubit 1 to qubit 𝑛 not in set 𝑆𝑖. For any 𝑖 = 1, . . . , 𝑛,

from the results in [85–87, 108], one could use 𝒯𝒞(𝑁) with the specified size to learn ℰ̂𝒞𝑆𝑖
such that⃦⃦⃦

ℰ̂𝒞𝑆𝑖
− ℰ𝒞𝑆𝑖

⃦⃦⃦
◇
≤ 𝜀

3𝑛
, (378)

with probability at least 1− (𝛿/𝑛). By the union bound, we have⃦⃦⃦
ℰ̂𝒞𝑆𝑖
− ℰ𝒞𝑆𝑖

⃦⃦⃦
◇
≤ 𝜀

3𝑛
, ∀𝑖 = 1, . . . , 𝑛, (379)
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with probability at least 1− 𝛿. Hence, from Eq. (377), we can learn ℰ̂ ℰ̂†𝒞
𝑖 for all 𝑖 such that⃦⃦⃦

ℰ̂ ℰ̂†𝒞
𝑖 − ℰ ℰ̂†𝒞

𝑖

⃦⃦⃦
◇
≤ 𝜀

3𝑛
, ∀𝑖 = 1, . . . , 𝑛, (380)

with probability at least 1− 𝛿. By defining

𝑜𝑖 := 𝒟ave

(︁
ℰ̂ ℰ̂†𝒞
𝑖 , ℐ

)︁
= E

|𝜓⟩:Unif

[︁
1− ⟨𝜓| ℰ̂ ℰ̂†𝒞

𝑖 (|𝜓⟩⟨𝜓|) |𝜓⟩
]︁
, ∀𝑖 = 1, . . . , 𝑛, (381)

we can obtain the desired claim.

10 Exponentially many local minima in parameterized shallow quan-
tum circuits

In this section, we study the optimization landscape of training 1D shallow parameterized quantum
circuits to learn an unknown unitary. In particular, we will show that there are exponentially many
strictly suboptimal local minima, where each local minimum is the minimum over an exponentially
sized neighborhood. Consider a simple 1D shallow parameterized quantum circuit,

𝑈(𝜃) :=
∏︁
𝑗

exp(𝑖𝜃1,𝑗 SWAP2𝑗+1,2𝑗+2)
∏︁
𝑗

exp(𝑖𝜃2,𝑗 SWAP2𝑗,2𝑗+1)
∏︁
𝑗

exp(𝑖𝜃3,𝑗 SWAP2𝑗+1,2𝑗+2),

(382)
where 𝜃 = (𝜃1,𝑗 , 𝜃2,𝑗 , 𝜃3,𝑗) is a vector of all the real-valued parameters. We consider an unknown
unitary 𝑈 over 𝑛 qubits to be given by the tensor product of SWAP operators over some pairs of
qubits, i.e.,

𝑈𝑆 =
∏︁
𝑖∈𝑆

SWAP𝑖,𝑖+3, (383)

for some subset 𝑆 ⊆ {0, 1, 2, . . . , ⌊𝑛/4⌋−1} of qubits with |𝑆| = Θ(𝑛). For any such subset 𝑆, there
exists a parameter vector 𝜃 such that 𝑈𝑆 = 𝑈(𝜃).

To avoid barren plateaus in the optimization landscape, we consider the local cost function [17],

𝐶𝑆(𝜃) := E
|𝜓⟩=

⨂︀𝑛
𝑖=1|𝜓𝑖⟩∈stab⊗𝑛

1

𝑛∑︁
𝑖=1

(︁
1− Tr

(︁
⟨𝜓𝑖|𝑈(𝜃)†𝑈𝑆 |𝜓⟩⟨𝜓|𝑈 †

𝑆𝑈(𝜃) |𝜓𝑖⟩
)︁)︁
≥ 0. (384)

It is well known that the local cost function is faithful [17, 109], i.e., if the local cost function is
at most 𝜀, then 𝑈 is close to 𝑈(𝜃) up to average-case distance (equiv. to normalized Frobenius
norm; See Prop. 1) of 𝒪(𝜀), and when 𝑈𝑆 is 𝜀-close to 𝑈(𝜃) in the average-case distance, the local
cost function is bounded above by 𝒪(𝑛𝜀). The local cost function does not suffer from the barren
plateau problem when 𝑈(𝜃) and 𝑈𝑆 can both be implemented by shallow quantum circuits. For
those unfamiliar with barren plateau, it is an overwhelmingly large region in the parameter space
with a large cost function and a near-zero gradient [17, 28]. When a barren plateau is present, one
can easily randomly initialize on the barren plateau and cannot escape the plateau.

While no barren plateau is present in training shallow parameterized circuits, we show that there
are exponentially many strictly suboptimal local minima in the optimization landscape. Further-
more, these suboptimal local minima are minima over neighborhoods with an exponentially large
volume (2𝜋/4)𝒪(𝑛) ≈ 1.57𝒪(𝑛). This is formally stated below.
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Proposition 4 (Exponentially many strictly suboptimal local minima). Consider

𝑆 ⊆ {0, 1, 2, . . . , ⌊𝑛/4⌋ − 1} (385)

with |𝑆| = Θ(𝑛). For the cost function 𝐶𝑆(𝜃) in Eq. (384), there are exponentially many strictly
suboptimal local minima {𝜃𝑥}2

|𝑆|−2
𝑥=0 , i.e.,

𝐶𝑆(𝜃𝑥) ≥ 1 + min
𝜃
𝐶𝑆(𝜃), (strictly suboptimal) (386)

𝐶𝑆(𝜃𝑥) ≤ 𝐶𝑆(𝜃), ∀
⃦⃦⃦
𝜃 − 𝜃𝑥

⃦⃦⃦
∞
< 𝜋/4, (local minimum) (387)

for all 𝑥 = 0, . . . , 2|𝑆| − 2.

Proof. Without loss of generality, we consider 𝑛 to be divisible by 4. If 𝑛 is not divisible by 4, we
neglect the last 𝑛mod4 qubits. For convenience, we group and name the parameters 𝜃 as follows.

𝜃𝐵,𝑗 := (𝜃1,2𝑗+1, 𝜃1,2𝑗+2, 𝜃2,2𝑗+1, 𝜃3,2𝑗+1, 𝜃3,2𝑗+2), ∀𝑗 = 0, . . . , (𝑛/4)− 1, (388)
𝜃𝐿,𝑗 := 𝜃2,2𝑗+2, ∀𝑗 = 0, . . . , (𝑛/4)− 2. (389)

Here, 𝜃𝐵,𝑗 corresponds to a block of 5 gates acting on 4 qubits. And, 𝜃𝐿,𝑗 corresponds to a single
gate linking two blocks. Each integer 𝑥 ∈ {0, . . . , 2|𝑆| − 1} corresponds to a local minimum 𝜃𝑥. Let
𝑏0(𝑥), . . . , 𝑏|𝑆|−1(𝑥) be the binary representation of the integer 𝑥 using |𝑆| bits. We sort the set 𝑆
from small to large and consider a mapping id from 𝑗 ∈ 𝑆 to the index in 𝑆, which is between 0 to
|𝑆| − 1. The local minimum 𝜃𝑥 is defined as follows. For each 𝑗 = 0, . . . , (𝑛/4)− 1,

𝜃𝑥,𝐵,𝑗 := (𝜋/2)×

{︃
(1, 1, 1, 1, 1) if 𝑗 ∈ 𝑆 and 𝑏id(𝑗)(𝑥) = 1

(0, 0, 0, 0, 0) else
(390)

And for all 𝑗 = 0, . . . , (𝑛/4)− 2, 𝜃𝑥,𝐿,𝑗 := 0. It is not hard to verify that

𝐶𝑆(𝜃𝑥) = 0, for 𝑥 = 2|𝑆| − 1, (391)

𝐶𝑆(𝜃𝑥) = 𝑛−
(︀
𝑏0(𝑥) + . . .+ 𝑏|𝑆|−1(𝑥)

)︀
≥ 1, for 𝑥 = 0, . . . 2|𝑆| − 2. (392)

Hence, 𝜃2|𝑆|−1 is the global minimum. And for all 𝑥 = 0, . . . , 2|𝑆| − 2, 𝜃𝑥 is suboptimal. This
establishes the first statement of this proposition.

We are now ready to prove the statement that 𝜃𝑥 is a local minimum for all 𝑥 = 0, . . . , 2|𝑆| − 2.
Consider 𝜃 such that

⃦⃦⃦
𝜃 − 𝜃𝑥

⃦⃦⃦
∞
< 𝜋/4. We now consider the cost function for each four-qubit

block. For block 𝑗 ∈ {0, . . . , (𝑛/4)− 1}, we have a block of qubits

𝑎 := 4𝑗 + 1, 𝑏 := 4𝑗 + 2, 𝑐 := 4𝑗 + 3, 𝑑 := 4𝑗 + 4. (393)

The associated cost function is

𝐶𝑆,𝑗(𝜃) := E
|𝜓⟩=

⨂︀𝑛
𝑖=1|𝜓𝑖⟩∈stab⊗𝑛

1

∑︁
𝑖∈{𝑎,𝑏,𝑐,𝑑}

(︁
1− Tr

(︁
⟨𝜓𝑖|𝑈(𝜃)†𝑈𝑆 |𝜓⟩⟨𝜓|𝑈 †

𝑆𝑈(𝜃) |𝜓𝑖⟩
)︁)︁
≥ 0. (394)

If 𝑗 /∈ 𝑆, or 𝑗 ∈ 𝑆 and 𝑏id(𝑗)(𝑥) = 1, we have

𝐶𝑆,𝑗(𝜃𝑥) = 0 ≤ 𝐶𝑆,𝑗(𝜃). (395)
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So we only need to consider the case when 𝑗 ∈ 𝑆 and 𝑏id(𝑗)(𝑥) = 0, which is the case when 𝑈(𝜃𝑥)
acts as identity on block 𝑗 and 𝑈𝑆 acts as a SWAP gate between the first and fourth qubits in block
𝑗. In this case, we have the following cost function at 𝜃𝑥,

𝐶𝑆,𝑗(𝜃𝑥) = 1. (396)

For each qubit 𝑖, we have the following identity,

E
|𝜓⟩=

⨂︀𝑛
𝑖=1|𝜓𝑖⟩∈stab⊗𝑛

1

(︁
1− Tr

(︁
⟨𝜓𝑖|𝑈(𝜃)†𝑈𝑆 |𝜓⟩⟨𝜓|𝑈 †

𝑆𝑈(𝜃) |𝜓𝑖⟩
)︁)︁

(397)

=
2

3

(︂
1− 1

4
Tr ̸=𝑖

(︂
Tr𝑖

(︁
𝑈(𝜃)𝑈𝑆

)︁†(︂ 𝐼𝑛−1

2𝑛−1

)︂
Tr𝑖

(︁
𝑈(𝜃)†𝑈𝑆

)︁†)︂)︂
, (398)

where 𝐼𝑛−1

2𝑛−1 is the maximally mixed state over 𝑛 − 1 qubits. By the definition of 𝑈𝑆 and 𝑈(𝜃),
𝑈(𝜃)†𝑈𝑆 is a linear combination of permutation operators with complex-valued weights. For 𝑖 = 𝑎,
we can rewrite the tensor contractions in Eq. (398) using the three gates associated with parameters
𝜃𝐵,𝑗,2, 𝜃𝐵,𝑗,3, 𝜃𝐵,𝑗,4. By first treating the maximally mixed states and the tracing operation Tr ̸=𝑖, we
can rewrite the three gates as depolarizing channels, which gives rise to the following identity.

1

4
Tr ̸=𝑎

(︂
Tr𝑎

(︁
𝑈(𝜃)𝑈𝑆

)︁†(︂ 𝐼𝑛−1

2𝑛−1

)︂
Tr𝑎

(︁
𝑈(𝜃)†𝑈𝑆

)︁†)︂
= 𝜆𝑎 + (1− 𝜆𝑎)

1

4
, (399)

where 𝜆𝑎 := sin(𝜃𝐵,𝑗,2)
2 sin(𝜃𝐵,𝑗,3)

2 sin(𝜃𝐵,𝑗,4)
2. Similarly, for 𝑖 = 𝑑, we have

1

4
Tr ̸=𝑑

(︂
Tr𝑑

(︁
𝑈(𝜃)𝑈𝑆

)︁†(︂ 𝐼𝑛−1

2𝑛−1

)︂
Tr𝑑

(︁
𝑈(𝜃)†𝑈𝑆

)︁†)︂
= 𝜆𝑑 + (1− 𝜆𝑑)

1

4
, (400)

where 𝜆𝑑 := sin(𝜃𝐵,𝑗,1)
2 sin(𝜃𝐵,𝑗,3)

2 sin(𝜃𝐵,𝑗,5)
2. For 𝑖 = 𝑏, the tensor contractions in in Eq. (398)

using the four gates associated with parameters 𝜃𝐵,𝑗,1, 𝜃𝐵,𝑗,3, 𝜃𝐵,𝑗,4, 𝜃𝐿,𝑗−1. We can rewrite the two
gates associated with 𝜃𝐿,𝑗−1 and 𝜃𝐵,𝑗,3 in terms of depolarizing channels on qubit 𝑎, 𝑏, respectively.
By enumerating all possible terms, we have

1

4
Tr ̸=𝑏

(︂
Tr𝑏

(︁
𝑈(𝜃)𝑈𝑆

)︁†(︂ 𝐼𝑛−1

2𝑛−1

)︂
Tr𝑏

(︁
𝑈(𝜃)†𝑈𝑆

)︁†)︂
(401)

= cos(𝜃𝐵,𝑗,1)
2 cos(𝜃𝐵,𝑗,4)

2

(︂
cos(𝜃𝐵,𝑗,3)

2 +
1

4
sin(𝜃𝐵,𝑗,3)

2

)︂
(402)

+ sin(𝜃𝐵,𝑗,1)
2 sin(𝜃𝐵,𝑗,4)

2

(︂
cos(𝜃𝐿,𝑗−1)

2 +
1

4
sin(𝜃𝐿,𝑗−1)

2

)︂
(403)

+
1

4

(︁
cos(𝜃𝐵,𝑗,1)

2 sin(𝜃𝐵,𝑗,4)
2 + sin(𝜃𝐵,𝑗,1)

2 cos(𝜃𝐵,𝑗,4)
2
)︁

(404)

− 3

2
cos(𝜃𝐵,𝑗,1) sin(𝜃𝐵,𝑗,1) cos(𝜃𝐵,𝑗,4) sin(𝜃𝐵,𝑗,4) cos(𝜃𝐿,𝑗−1)

2 cos(𝜃𝐵,𝑗,3)
2 (405)

≤ cos(𝜃𝐵,𝑗,1)
2 cos(𝜃𝐵,𝑗,4)

2

(︂
1− 3

4
sin(𝜃𝐵,𝑗,3)

2

)︂
+ sin(𝜃𝐵,𝑗,1)

2 sin(𝜃𝐵,𝑗,4)
2 (406)

+
1

4

(︁
cos(𝜃𝐵,𝑗,1)

2 sin(𝜃𝐵,𝑗,4)
2 + sin(𝜃𝐵,𝑗,1)

2 cos(𝜃𝐵,𝑗,4)
2
)︁

(407)

+
3

2
|cos(𝜃𝐵,𝑗,1) sin(𝜃𝐵,𝑗,1) cos(𝜃𝐵,𝑗,4) sin(𝜃𝐵,𝑗,4)|

(︁
1− sin(𝜃𝐵,𝑗,3)

2
)︁
. (408)
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Because
⃦⃦⃦
𝜃 − 𝜃𝑥

⃦⃦⃦
∞
< 𝜋/4, we have cos(𝜃𝐵,𝑗,1) ≥ 0, cos(𝜃𝐵,𝑗,4) ≥ 0 and

| sin(𝜃𝐵,𝑗,1)| = sin(|𝜃𝐵,𝑗,1|), | sin(𝜃𝐵,𝑗,4)| = sin(|𝜃𝐵,𝑗,4|). (409)

We can use trigonometric identities to obtain

1

4
Tr ̸=𝑏

(︂
Tr𝑏

(︁
𝑈(𝜃)𝑈𝑆

)︁†(︂ 𝐼𝑛−1

2𝑛−1

)︂
Tr𝑏

(︁
𝑈(𝜃)†𝑈𝑆

)︁†)︂
(410)

≤ 1− 3

4
sin (|𝜃𝐵,𝑗,1| − |𝜃𝐵,𝑗,4|)2 −

3

4
cos(𝜃𝐵,𝑗,1)

2 cos(𝜃𝐵,𝑗,4)
2 sin(𝜃𝐵,𝑗,3)

2 (411)

− 3

2
|cos(𝜃𝐵,𝑗,1) sin(𝜃𝐵,𝑗,1) cos(𝜃𝐵,𝑗,4) sin(𝜃𝐵,𝑗,4)| sin(𝜃𝐵,𝑗,3)2 (412)

≤ 1− 3

4
sin(𝜃𝐵,𝑗,3)

2 cos(𝜃𝐵,𝑗,1)
2 cos(𝜃𝐵,𝑗,4)

2. (413)

Similarly, we have

1

4
Tr ̸=𝑐

(︂
Tr𝑐

(︁
𝑈(𝜃)𝑈𝑆

)︁†(︂ 𝐼𝑛−1

2𝑛−1

)︂
Tr𝑐

(︁
𝑈(𝜃)†𝑈𝑆

)︁†)︂
(414)

≤ 1− 3

4
sin(𝜃𝐵,𝑗,3)

2 cos(𝜃𝐵,𝑗,2)
2 cos(𝜃𝐵,𝑗,5)

2. (415)

Combining all four upper bounds on

1

4
Tr ̸=𝑖

(︂
Tr𝑖

(︁
𝑈(𝜃)𝑈𝑆

)︁†(︂ 𝐼𝑛−1

2𝑛−1

)︂
Tr𝑖

(︁
𝑈(𝜃)†𝑈𝑆

)︁†)︂
(416)

for 𝑖 = 𝑎, 𝑏, 𝑐, 𝑑, we can obtain the cost function associated to this block,

𝐶𝑆,𝑗(𝜃) ≥ 1− 1

2
sin(𝜃𝐵,𝑗,2)

2 sin(𝜃𝐵,𝑗,3)
2 sin(𝜃𝐵,𝑗,4)

2 − 1

2
sin(𝜃𝐵,𝑗,1)

2 sin(𝜃𝐵,𝑗,3)
2 sin(𝜃𝐵,𝑗,5)

2 (417)

+
1

2
sin(𝜃𝐵,𝑗,3)

2 cos(𝜃𝐵,𝑗,1)
2 cos(𝜃𝐵,𝑗,4)

2 +
1

2
sin(𝜃𝐵,𝑗,3)

2 cos(𝜃𝐵,𝑗,2)
2 cos(𝜃𝐵,𝑗,5)

2. (418)

From
⃦⃦⃦
𝜃 − 𝜃𝑥

⃦⃦⃦
∞
< 𝜋/4, we have

| sin(𝜃𝐵,𝑗,𝑘)| < 0.5, ∀𝑘 = 1, 2, 3, 4, 5, (419)
| cos(𝜃𝐵,𝑗,𝑘)| > 0.5, ∀𝑘 = 1, 2, 3, 4, 5. (420)

Hence, 𝐶𝑆,𝑗(𝜃) ≥ 1 = 𝐶𝑆,𝑗(𝜃𝑥). Together with the fact that

𝐶𝑆(𝜃) =

(𝑛/4)−1∑︁
𝑗=0

𝐶𝑆,𝑗(𝜃), (421)

we have established the claim 𝐶𝑆(𝜃𝑥) ≤ 𝐶𝑆(𝜃).
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