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Abstract

We define a map from an arbitrary quantum circuit to a local Hamiltonian whose ground state
encodes the quantum computation. All previous maps relied on the Feynman-Kitaev construction, which
introduces an ancillary ‘clock register’ to track the computational steps. Our construction, on the other
hand, relies on injective tensor networks with associated parent Hamiltonians, avoiding the introduction
of a clock register. This comes at the cost of the ground state containing only a noisy version of the
quantum computation, with independent stochastic noise. We can remedy this - making our construction
robust - by using quantum fault tolerance. In addition to the stochastic noise, we show that any state
with energy density exponentially small in the circuit depth encodes a noisy version of the quantum
computation with adversarial noise. We also show that any ‘combinatorial state’ with energy density
polynomially small in depth encodes the quantum computation with adversarial noise. This serves as
evidence that any state with energy density polynomially small in depth has a similar property.

As an application, we show that contracting injective tensor networks to additive error is BQP-hard.
We also discuss the implication of our construction to the quantum PCP conjecture, combining with an
observation that QMA verification can be done in logarithmic depth.

1 Introduction
The Feynman-Kitaev ‘clock based’ mapping [1] from quantum circuits to local Hamiltonians is the central
tool bridging quantum complexity theory and quantum many-body physics. The mapping and its variants
have been used to justify the hardness of computing the ground energy of natural local Hamiltonians [2,
3, 4, 5, 6, 7]. It has been used to construct explicit local Hamiltonians with ‘complex’ ground states -
in terms of large entanglement entropy [8, 9] or circuit depth [10]. Other important applications include
the equivalence of adiabatic and circuit models [11], delegation of quantum computing [12] etc. However,
a well known limitation of the Feynman-Kitaev mapping is the soundness. While quantum computations
that output ‘accept’ with probability (near) 1 get mapped to (near) frustration-free local Hamiltonians, the
quantum computations that output ‘reject’ with high probability get mapped to local Hamiltonians with
ground energy density 1/ poly(number of gates). This serves as the main bottleneck to the quantum PCP
conjecture [13, 14], which seeks a constant energy density in the rejecting case.

An alternative mapping of quantum computation to many-body systems was laid out in [15] by using
measurement-based quantum computing (MBQC). It was shown that running MBQC and post-selecting on
‘no correction’ led to a tensor network which encoded the result of the quantum computation. However, this
technique does not yield a desired circuit-to-Hamiltonian mapping due to two issues. First, the encoding
tensor network may not be the ground state of any local Hamiltonian. Second, the tensor networks also
capture quantum computation with post-selection, which leads to a class much larger than QMA.

Our starting point is the observation that both the issues no longer exist if we consider the class of
injective tensor networks. Injectivity prevents us from post-selecting on events of very small probability.
The injective tensor networks also have a natural parent Hamiltonian. The price we pay is that the tensor
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Feynman-Kitaev construction [1] Present construction
Ground state: superposition over partial compu-
tations of W

Ground state: tensor network encoding a noisy
version of W with i.i.d noise per wire

States with energy density O(1)
|W |3 encode W

Combinatorial states with O(1)
D fraction violations

encode a noisy version of W with adversarial noise
(Theorem 4.4).

• States with energy density e−Ω(D logD) (for
D = o(log |W |)) encode a noisy version of
W with adversarial noise (Theorem 4.3).

There exists a combinatorial state with O(1)
|W |

fraction of violations containing no information
about W (see a Note in the proof of Claim 5.1).

There exists a combinatorial state with O(1)
D

fraction of violations contain no information
about W .

Table 1: A comparison between Feynman-Kitaev and our construction for a QMA verification circuit W .
Above, D is the depth of the circuit. Our main open question is that any state with energy density 1

poly(D)
encode noisy version of W with adversarial noise. Since we can choose D = O(log |W |) in QMA protocols
(Section 5), this serves as a link between polylog weaker quantum PCP and adversarial quantum fault
tolerance.

network now represents a noisy version of the quantum circuit. This is handled by considering a fault-tolerant
version of the circuit.

The details of the construction appear in Section 2, where we use standard teleportation instead of
measurement-based quantum computing. A high level overview is as follows, using a simple circuit U2U1 |0⟩
involving 1 qubit gates on |0⟩. Introduce 5 qubits in the state |0⟩ ⊗ (I ⊗ U1) |ΦI⟩ ⊗ (I ⊗ U2) |ΦI⟩, where
|ΦI⟩ = 1√

2 (|00⟩ + |11⟩). Projecting qubits 1,2 and 3,4 with |ΦI⟩⟨ΦI| would lead to the desired state U2U1 |0⟩
on qubit 5. However, this is not an injective tensor network as the map |ΦI⟩⟨ΦI| is not injective. Instead, we
project with the map |ΦI⟩⟨ΦI| + δ(I − |ΦI⟩⟨ΦI|). It can be verified that the last qubit is now a noisy version
of the original circuit (with depolarizing noise of strength O(δ2)) and qubits 1,2 and 3,4 record the Pauli
errors.

This scheme applies to general quantum circuits. Our main technical contribution is a characterization of
low energy states of the parent Hamiltonian of the above tensor network. We exhibit the following properties
for a quantum circuit W of depth D (that may be, for examples, a QMA verification circuit or a BQP circuit).

• Any state with energy density e−Ω(D logD) and D = o(log |W |) can be viewed as the output of the circuit
with O(δ2) fraction of adversarial noise. See Section 4.3 for the proof idea as well as the detailed proof.

• Any combinatorial state with energy density (equal to the fraction of violated constraints) 1
poly(D) can

be viewed as the output of the circuit with O(δ2) fraction of adversarial noise. See Section 4.2 for the
proof idea as well as the detailed proof.

• The ground state is a noisy version with stochastic iid noise with strength O(δ2) per wire. See Sec-
tion 2.3.

We choose δ = 1
poly(D) to keep the fraction of adversarial noise 1

poly(D) , which keeps the error budget
low enough that the adversary can not stop the whole computation. The main open question is that any
1/ poly(D) energy state can be viewed as the output of adversarial noisy version. The second result above
(on combinatorial states) is evidence in its favor.

Application to quantum PCP conjecture: The quantum PCP conjecture [13, 14] states that it is QMA-
hard to decide if the ground energy density of a local Hamiltonian problem is less than a given number a or
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more than a+ ∆ for a constant ∆. A ‘polylog weaker’ version of this conjecture - QMA hardness of deciding
that ground energy density is ≤ a or > a+ 1

polylog(n) - is also open.1
Our attempt in this work is to link adversarial quantum fault tolerance with the above ‘polylog weaker’

quantum PCP. At a high level, we expect such a connection due to the correspondence between Hamiltonians
and quantum circuits [1] and the view that quantum PCP conjecture is about adversarial violations of local
Hamiltonian terms. An issue with this is that quantum PCP conjecture expects soundness against constant
fraction of violations, but in a depth D quantum circuit we can at most expect O( 1

D ) adversarial errors.
However, as shown in Section 5, QMA verification can be achieved in logarithmic depth (D = O(log n); n
is the number of qubits in the QMA verifier circuit). Thus, if we seek the ‘polylog weaker’ quantum PCP,
connection with adversarial quantum fault tolerance can be more transparent.

Our result takes a step towards this connection by showing that combinatorial states with 1
poly(D) fraction

violations encode a circuit with adversarial errors. Suppose 1
poly(D) energy density states in our construction

also encode a circuit with adversarial error, which is our main open question. And suppose any O(log(n))-
depth QMA verifier can be transformed into a polylog(n)-depth QMA verifier that is sound against 1

polylog(n)
fraction of adversarial errors in the circuit.2 Then the ‘polylog weaker’ version of quantum PCP holds.

Classical analogue of this line of argument is similar, which we discuss in Appendix A.

Complexity of injective tensor networks: Injective tensor networks constitute a more physical family
of quantum states and have been shown to be efficiently preparable on a quantum computer [17, 18] or
contractable in classical quasi-polynomial time [19] under assumptions on the parent Hamiltonian spectral
gap. However, the lack of the postselection ability makes it less clear how to characterize injective TN from
a complexity-theoretic point of view.

Combining our construction with existing quantum fault-tolerance schemes for local stochastic noise [20],
we conclude that preparing injective TN states on a quantum computer is BQP-hard. This can be seen
as a complement to prior works [17, 18], that showed preparing injective TN states under spectral gap
assumptions is in BQP. Compared with the PostBQP-hardness shown in [15], the BQP-hardness naturally
reflects the non-postselecting nature of injective TN. Regarding the classical complexity of injective TN,
our construction also implies that evaluating local observable expectation values on injective-TN states is
BQP-hard to O(1)-additive error. In addition, we show the same task for a non-local observable is #P-hard
to O(1)-multiplicative error.

2 The Model
Let us first outline the general idea behind the construction: given a quantum circuit W , we consider a tensor
network associated with the implementation of W (Section 2.2). We make the tensor network injective by
perturbing each of its projectors Pi by some small amount δ, so that we can associate it with a parent
Hamiltonian (Section 2.3). However, these local perturbations are unwanted. Crucially, we observe that
they can be interpreted as Pauli-errors occurring during the execution of W . Hence, we have to consider a
fault-tolerant version of W , which requires us to implement a quantum error correction protocol within the
model itself.

2.1 Notations
Let the EPR states be |ΦI⟩ = 1√

2 (|00⟩ + |11⟩), |ΦX⟩ = (I ⊗ X) |ΦI⟩ , |ΦXZ⟩ = (I ⊗ XZ) |ΦI⟩ , |ΦZ⟩ =
(I ⊗Z) |ΦI⟩. Denote P = {I,X,XZ,Z}. For an operator A in a Hilbert space with tensor product structure
H = (Cd)⊗n, we denote by supp(A) the span of eigenvectors of A with nonzero eigenvalues and by loc(A)
the set of subsystems on which A acts nontrivially.

1It is QMA hard to decide that ground energy density is ≤ a or > a + 1
nc for any constant c > 0, by a simple modification

of the Feynman-Kitaev clock [16].
2Note that we also need soundness against a superposition over adversarial errors - see Section 4.
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2.2 Quantum circuit to tensor network
We will now discuss the definition of the tensor network T associated to the circuit W . Let n be the total
number of qubits on which W operates and D its depth. For simplicity and without loss of generality, let us
assume that W consists of 2-qubit gates arranged in a brickwork layout, see Figure 1. The generalization to
arbitrary circuits is straightforward. Consider a 2-qubit gate U (ℓ)

p,q acting one qubits p and q at layer ℓ, we

Figure 1: The circuit W consisting of a collection of gates (black boxes). This layout suffices to implement
an arbitrary quantum circuit. However, our construction applies to general circuit layouts.

assign a 4-qubit state |ΦU ⟩ encoding the gate as follows∣∣∣Φ(ℓ)
p,q

〉
= [I1,2 ⊗ (U (ℓ)

p,q)3,4]
(

|00⟩1,3 + |11⟩1,3

)
⊗
(

|00⟩2,4 + |11⟩2,4

)
/2. (1)

See Figure 2 for a diagrammatic representation of this state.

U
(ℓ)
p,q

2

1

4

3

Figure 2: Representation of the state
∣∣∣Φ(ℓ)
p,q

〉
. Qubits 1 and 3, as well as 2 and 4, are in the Bell state |ΦI⟩,

which is indicated by the blue wavy lines. The unitary U
(ℓ)
p,q is applied to qubits 3 and 4 (black box).

Our starting point is that the state
∣∣∣Φ(ℓ)
p,q

〉
allows implementing the gate U

(ℓ)
p,q via teleportation and

postselection. For example, the application of gate U (1)
p,q on an input state |ξ⟩ is simulated by projecting the

joint system |ξp,q⟩ ⊗
∣∣∣Φ(1)
p,q

〉
1,2

onto the EPR state |ΦI⟩ = (|00⟩ + |11⟩) ⊗ (|00⟩ + |11⟩) /2. More generally, a

gate U (t)
p,q can be effected by applying the projector

P = |ΦI⟩ ⟨ΦI | (2)

onto qubits p, q of the input state to the gate and qubits 1, 2 of
∣∣∣Φ(ℓ)
p,q

〉
, see Figure 3.

For brevity we will often denote |ΦU ⟩ = (I ⊗U) |ΦI⟩⊗2, where U is a two-qubit gate acting on the second
qubits of |ΦI⟩, leaving the location in spacetime of U implicit.

Extending the previous idea to the entire circuit, we can encode any n-qubit quantum circuit W into a
tensor network. In particular, we have n qubits in the first column of the tensor network storing the input
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Figure 3: The circuit W (Figure 1) converted into a tensor network. We introduce a Bell pair for every
position in the circuit (black dots connected by a wavy line) and apply the unitary operation corresponding
to the location in the circuit (cf. Figure 2). We then apply projectors on pairs of qubits (gray boxes).

state, and the other columns storing the EPR encoding of the gates. The total number of qubits of the
tensor network is (2D + 1)n. Define the (2D + 1)n-qubit product state

|ΦW,ξ⟩ = |ξ⟩ ⊗
⊗
ℓ,p,q

∣∣∣Φ(ℓ)
p,q

〉
, (3)

where |ξ⟩ is the n-qubit input state of the circuit W . For example, let |ξ⟩ = |0⟩⊗n. Then applying the EPR
projector ΠW ≜

⊗
ℓ,p,q P

(ℓ)
p,q on |ΦW,ξ⟩ results in the output state in the last column

ΠW |ΦW,ξ⟩ = |ΦI⟩⊗nD ⊗
(
W |0⟩⊗n

)
. (4)

Tensor networks of this form are in general termed projected entangled pair states (PEPS).

2.3 Making the tensor network injective
We say that a tensor network is δ-injective when its local maps have singular values lower bounded by δ. The
tensor network defined in the previous section is non-injective since the projectors are singular. To make the
tensor network injective, we follow the procedure in [21] and replace the projectors P by a δ-perturbation

Q = |ΦI⟩ ⟨ΦI | + δ
∑

P∈{X,XZ,Z}

|ΦP ⟩ ⟨ΦP | . (5)

Applying the invertible map Q on every other pair of row-adjacent qubits in |ΦW,ξ⟩ = |ξ⟩
⊗

ℓ∈[D],p,q

∣∣∣Φ(ℓ)
p,q

〉
we obtain the injective PEPS state

|ΨW,ξ⟩ ≜ Q⊗nD |ΦW,ξ⟩ . (6)

We introduce several notations. Let T = nD be the number of gates, let
∣∣ΦP⃗ 〉 =

⊗T
i=1 |ΦPi

⟩ for P⃗ ∈ P⊗T

and let |P⃗ | denote the number of nontrivial operators in P⃗ . Let Wℓ = ⊗i∈ layer ℓUi and P̃ℓ = ⊗i∈ layer ℓPi
be the unitaries and the errors in the ℓ-th layer of W . Abusing notation, we sometimes denote Ui ∈ Wℓ and
Pi ∈ P̃ℓ to mean that the unitaries and Pauli errors are in layer ℓ.

The key observation is that the injective tensor network represents a noisy version of the quantum
computation.

Claim 2.1. The state |ΨW,ξ⟩ can be expanded as |ΨW,ξ⟩ =
∑
P⃗∈P⊗T δ|P⃗ |

∣∣ΦP⃗ 〉⊗ (UTPT . . . U1P1 |0a⟩ |ξ⟩).
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Proof. Expanding Q we have

|ΨW,ξ⟩ =
∑

P⃗∈P⊗T

δ|P⃗ | ∣∣ΦP⃗ 〉 〈ΦP⃗ ∣∣ΦW,ξ〉 . (7)

Performing teleportation for each term in the summand, we find
〈
ΦP⃗
∣∣ΦW,ξ〉 = UTPT . . . U1P1 |0a⟩ |ξ⟩ as the

state in the rightmost column of the tensor network.

In other words, |ΨW,ξ⟩, up to normalization, contains a noisy quantum computation with purified local
depolarizing channels. The local i.i.d. depolarizing noise rate is p = δ2/(1 + 3δ2). Here ‘purified’ means that
the EPR states in the bulk of the tensor network record the occurred errors.

Claim 2.1 can be alternatively written as |ΨW,ξ⟩ ∝
∑
P⃗∈P⊗T δ|P⃗ |

∣∣ΦP⃗ 〉⊗ (WDP̃D . . .W1P̃1 |ξ⟩).
We can define a unitary

V =
∑

P⃗∈P⊗nD

∣∣ΦP⃗ 〉 〈ΦP⃗ ∣∣⊗ (WDP̃D . . .W1P̃1), (8)

such that
V † |ΨW,ξ⟩ =

∑
P⃗∈P⊗T

δ|P⃗ | ∣∣ΦP⃗ 〉⊗ |ξ⟩ .

Note that the state
∑
P⃗∈P⊗T δ|P⃗ |

∣∣ΦP⃗ 〉 is a tensor product of T i.i.d pure states. Thus, when |ξ⟩ = |0⟩⊗n

(which arises for computations in BQP), the state |ΨW,ξ⟩ can be prepared by a quantum circuit. This is
similar to the history state [1], which can be prepared efficiently for quantum computations in BQP.

2.4 The parent Hamiltonian
The nice property of the injective tensor network state |ΨW,ξ⟩ is that it is the unique ground state of a local
Hamiltonian. In particular, we consider the n(2D+1)-qubit Hilbert space containing the PEPS state |ΨW,ξ⟩
corresponding to a circuit W .

Let Λ = δ |ΦI⟩ ⟨ΦI | +
∑
p∈{X,XZ,Z} |Φp⟩ ⟨Φp|, such that Q ∝ Λ−1.

Definition 2.2 (Parent Hamiltonian). Associate for each gate two-qubit gate U in the circuit an 8-qubit
Hamiltonian term hU = Λ⊗4(I − |ΦU ⟩ ⟨ΦU |)Λ⊗4. Furthermore, suppose the initial state |ξ⟩ is the unique
ground state of a frustration-free local Hamiltonian Hξ =

∑
j gj. Then the unnormalized state ΦW,ξ is the

unique ground state of the frustration-free Hamiltonian Hparent =
∑
j Λ⊗N(j)gjΛ⊗N(j) +

∑
U∈W hU , where

N(j) is the set of EPRs that have intersecting support with gj. We refer to the first term as Hin and the
second term as Hprop.

An example of Hξ is H|0n⟩ =
∑n
i=1 |1⟩ ⟨1|i which ensures the input state is |ξ⟩ = |0⟩⊗n.

In a QMA protocol, we relax the condition that the initial state is unique. Instead, the initial state is of the
form |0a⟩ |ξ⟩, where |ξ⟩ is any (n−a)-qubit witness coming from the prover. So Hin = Λ⊗n(

∑a
j=1 |1⟩ ⟨1|inj )Λ⊗n

has a ground space of degeneracy 2n−a and so does Hparent. See Figure 4 for an example of an injective
PEPS and its parent Hamiltonian. Later when we work with states of this form, we will continue referring
to the ground states as |ΨW,ξ⟩, leaving the ancillas |0a⟩ in the initial state implicit. As long as δ is chosen
such that the noise rate is smaller than the fault tolerance threshold, see Theorem 3.9, the ground states of
Hparent contain the desired quantum computation when W is replaced by its fault-tolerant version WFT in
the basic noise model (e.g., using the scheme in [20]).

Finally, similar to the Feynman-Kitaev construction, we can use an output check term Hout ≜ |1⟩ ⟨1|out
j

to verify qubit j in the output.
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2.5 Connection with prior works
A scheme related to ours is that of Ref. [22] in which the authors give a construction of quantum error-
correcting subsystem codes with almost linear distance. Their construction can be understood as a map
from fault-tolerant Clifford circuits that facilitate check measurements to a set of non-commuting Pauli-
check operators. More concretely, each location in the circuit is associated with a qubit and each Clifford
gate is associated with a Pauli operator that stabilizes the gate. For example, the idling gate (wire) is
stabilized by XX and ZZ operating on the in- and out-locations. The main difference with our setting
is that we do not need to assume Clifford circuit. Furthermore, our Hamiltonian remains frustration-free,
whereas the Hamiltonian in Ref [22] is frustrated. Another difference is that we associate two qubits per
circuit location that are projected onto an EPR state, cf. Figure 3.

In Ref. [23] Bartlett and Rudolph show using PEPS that a fault-tolerant cluster state, which is a universal
resource state for MBQC, can be robustly encoded into the ground state of a Hamiltonian consisting of planar,
2-local interaction terms. They also note that the approximation error can be interpreted as stochastic
Pauli-noise and that the energy gap of their construction is independent of system size. The difference to
our approach is that Bartlett and Rudolph use tensor networks to obtain a resource state that can be used
for quantum computation via MBQC, whereas our scheme encodes a quantum computation into a tensor
network.

In [24] Aharonov and Irani consider a mapping of classical computation into a CSP, which we may
think of as a classical local Hamiltonian. More concretely, they consider a two-dimensional L× L grid with
translation invariant constraints and show that approximating the ground state energy to an additive Θ( 4

√
L)

is NEXP-complete. They do so by encoding a computation into a tiling problem. The computation is fault
tolerant by running the same computation several times in parallel to enforce a large cost for an incorrect
computation. In contrast, our model is fully quantum and thus requires the quantum fault tolerance theorem
of Ref. [20].

3 Background
3.1 Hamiltonian complexity
Here, we give a brief introduction to the complexity class QMA and main lemmas used in this work.

Definition 3.1. The class QMAw[c, s] is the class of promise problems A = (Ayes, Ano) with the property
that, for every instance x, there exists a uniformly generated verifier quantum circuit Vx with the following
properties: Vx is of size poly(|x|) and acts on an input state |0⊗m⟩ together with a witness state |ξ⟩ of size
w supplied by an all-powerful prover, with both m,w = poly(|x|). Upon measuring the decision qubit o, the
verifier accepts if o = 1, and rejects otherwise. If x ∈ Ayes, then ∃ |ξ⟩ such that Pr[o = 1] ≥ c (completeness).
If x ∈ Ano, then ∀ |ξ⟩, Pr[o = 1] ≤ s (soundness), such that c− s ≥ 1/ poly(|x|).

It is well-known that the parameters c, s can be amplified, even without increasing the witness size.

Lemma 3.2 (Weak QMA amplification [1]). For any r = poly(|x|), QMAw[2/3, 1/3] = QMAw′ [1 − 2−r, 2−r]
where w′ = poly(w).

Lemma 3.3 (Strong QMA amplification [25]). For any r = poly(|x|), QMAw[2/3, 1/3] = QMAw[1−2−r, 2−r].

Definition 3.4 (k-Local Hamiltonian problem). Input: H1, H2, . . . ,HT set of T = poly(n) Hermitian
matrices with bounded spectral norm ∥Hi∥ ≤ 1 acting on the Hilbert space of n qubits. In addition, each term
acts nontrivially on at most k qubits and is described by poly(n) bits. Furthermore, we are given two real
numbers a, b (described by poly(n) bits) such that b− a > 1/ poly(n). Output: Promised either the smallest
eigenvalue of H = H1 +H2 + . . . HT is smaller than a or all eigenvalues are larger than b, decide which case
it is. We denote this problem by k-LH[a, b].

7



The k-LH is in QMA for any k = O(log n) (see e.g., Theorem 1 in [13]). Furthermore, Kitaev showed in
his seminal work [1] that 5-LH is QMA-complete.

Theorem 3.5 (Kitaev [1]). Any QMAw[c, s] protocol involving an n-qubit verifier circuit with T = poly(n)
gates can be turned into a 5-LH[a, b] on poly(n) qubits with a = O((1 − c)/T ) and b = Ω((1 −

√
s)/T 3).

We will often simply write QMA, LH when the parameters are unimportant or clear from context.
Next, we need the following lemmas in this work.

Lemma 3.6 (Detectability lemma [26]). Let {Q1, . . . , Qm} be a set of projectors and H =
∑m
i=1 Qi. Assume

that each Qi commutes with all but g others. Given a state |ψ⟩, define |ϕ⟩ :=
∏m
i=1(I − Qi) |ψ⟩, where the

product is taken in any order, and let eϕ = ⟨ϕ|H |ϕ⟩ /∥ϕ∥2. Then

∥ϕ∥2 ≤ 1
eϕ/g2 + 1 .

Lemma 3.7 (Quantum union bound [27]). Consider the same setting as in Lemma 3.6, but this time we do
not require each Qi to commute with at most g others. It holds that

∥ϕ∥2 ≥ 1 − 4 ⟨ψ|H |ψ⟩ .

Lemma 3.8 (Jordan’s lemma [28]). Given two projectors Π1, Π2 acting on a d-dimensional complex vector
space H, there exists a change of basis such that H is decomposed as a direct sum of one- or two-dimensional
mutually orthogonal subspaces H =

⊕
i Hi, such that both the projectors leave the subspaces invariant. In

other words, we can write Π1 =
∑
i ai |ui⟩ ⟨ui| and Π2 =

∑
i bi |vi⟩ ⟨vi|, with |ui⟩ , |vi⟩ ∈ Hi and ai, bi ∈ {0, 1}.

3.2 Fault tolerance
When defining our model in Section 2, we introduced perturbations to make the tensor network injective. This
ensures the existence of an associated Hamiltonian and avoids the model from becoming too powerful [15].
Remarkably, the perturbations can be interpreted as undesired Pauli errors, see Claim 2.1. These ‘errors’
disturb our computation, leading to a degradation of the output, just as they would in a physical device.
We can remedy this problem by substituting the circuit W with a fault-tolerant version of itself W̃ , thereby
guaranteeing robustness against the errors. In this section we will briefly summarize some results of fault-
tolerant quantum computing that we require for our construction.

3.2.1 Quantum error correcting codes

Quantum error correcting codes are subspaces of the full Hilbert space of n bits. Each quantum code has
three parameters: The number of logical qubits k tells us that the code protects a state vector of k qubits.
The number of physical qubits n refers to the number of qubits into which the k logical qubits are being
encoded. Finally, the distance d refers to the minimum number of single-qubit Pauli errors that are needed to
map one encoded state onto another. In particular, a quantum code of distance d can correct any error acting
on less than d/2 of the physical qubits. We will not review constructions and error correction procedures of
different quantum codes, as we do not explicitly use them, and refer to Ref. [29] for details.

We note that the existence of quantum codes does not guarantee that quantum computing can be made
robust against noise. Manipulating the encoded states via an error prone process leads to errors spreading
and it is this spread of errors that needs to be controlled.

8



3.2.2 Quantum fault tolerance

In a seminal result, Shor showed that when any component of a quantum circuit, such as state preparation,
gates and measurements, is replaced by a fault-tolerant version, it is possible to reduce errors under the
assumption that the error rate per time step is polylogarithmically small in the length of the computation.
Aharonov and Ben-Or [20] and Knill, Laflamme and Zurek [30] extended Shor’s approach with a concate-
nation scheme. The main idea is as follows: At the top level each qubit is encoded into a quantum code C1
using n1 physical qubits and with distance d1. Next, each physical qubit of C1 is encoded further into a
second code C2 using n2 physical qubits and with distance d2. This way, we have effectively a new code
using n1n2 physical qubits and which has distance d1d2. Assuming that C1 and C2 come with a fault-tolerant
set of circuit components, so does the concatenated code. Crucially, taking C1 = C2 the failure probability
of any circuit component in the top level is now bounded by c

(
cp2)2 = c3p4. Continuing this process, if

we concatenate the same code a times, the probability of failure of any top level component is bounded by
c−1(cp)2a . Let sa be the the circuit size at the ath level of concatenation. While the size of the circuit grows
exponentially, the error is reduced double exponentially. Hence, fixing some desired error rate ϵ = c−1(cp)2a

leads to sa = Θ
(
polylog

( 1
ϵ

))
. In summary, concatenation allows us to simulate a quantum circuit with

component failure rate bounded by an arbitrarily small ϵ using components with error rate bounded by some
constant error rate p, as long as the initial error rate is below a threshold value set by the combinatorial
factor c.

Theorem 3.9 ([20], Theorem 12). There exists a noise threshold ηc > 0 such that for any η < ηc, ε > 0
the following holds. For any n-qubit quantum circuit C with s gates, ℓ locations, and depth D, there exists
a quantum circuit C̃ of size s polylog(ℓ/ε) (no measurements or classical operations are required) and depth
D polylog(ℓ/ε) operating on n polylog(ℓ/ε) qubits such that in the presence of local depolarizing noise with
error rate η < ηc, the encoded output of C̃ is ε-close to that of C.

The theorem above does assume all-to-all connectivity, i.e. gates can be applied on arbitrary sets of
qubits. We can also constrain the circuit to only operate locally on a d-dimensional grid of qubits, so that
two qubit gates are only applied between neighbours on the grid. Note that an arbitrary circuit can be
turned into a d-dimensional circuit by introducing SWAP gates and ancilla qubits, leading to the following
result for any d ≥ 1.

Corollary 3.10 ([20], Theorem 13). There exists a noise threshold ηc > 0 such that for any η < ηc, ε > 0,
and d ≥ 1 the following holds. For any d-dimensional n-qubit quantum circuit C with s gates, ℓ locations,
and depth D, there exists a d-dimensional quantum circuit C̃ of size s polylog(ℓ/ε) (no measurements or
classical operations are required) and depth D polylog(ℓ/ε) operating on n polylog(ℓ/ε) qubits such that in
the presence of local depolarizing noise with error rate η < ηc, the encoded output of C̃ is ε-close to that
of C.

4 Soundness of the parent Hamiltonian
Our construction naturally gives rise to a mapping from a circuit to a Hamiltonian by considering the parent
Hamiltonian of the injective tensor network, which we analyze in this section.

4.1 Adversarially noisy states
In the remainder of this section, we investigate the properties of combinatorial or low-energy states of
Hparent = Hin + Hprop (defined in Definition 2.2). Informally, local terms in Hparent that are violated by
these states can be converted into errors in the quantum circuit. These errors, however, are adversarial in
the sense that the faulty locations are chosen arbitrarily by the adversary. Informally, the violated terms
in Hin correspond to errors at a set of locations S0 in the initialization step, the violated terms in the first
layer of Hprop correspond to gate errors at locations S1 in the circuit’s first layer, and so on. For this, let us
define the notion of adversarially noisy states.
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Definition 4.1. Suppose S = {S0, . . . , SD}, where Sℓ ⊆ [n] for 0 ≤ ℓ ≤ D, is a set of locations in a depth-D
n-qubit circuit. We define err(S) = {E⃗ ∈ P⊗n(D+1) : loc(Ẽℓ) ⊆ Sℓ, 0 ≤ ℓ ≤ D} to be the set of Pauli errors
supported within the set of locations S.

Definition 4.2 (Noisy states). For any sets of locations Sℓ ⊆ [n], for 0 ≤ ℓ ≤ D, a pure state |ψ⟩ is said to
be an adversarially noisy state at locations S = {S0, S1, . . . , SD} if

|ψ⟩ ∈ adv(W,S) ≜ span{ẼDWD . . . Ẽ1W1Ẽ0 |0a⟩ |ξ⟩ : ∀ |ξ⟩ , E⃗ ∈ err(S)}.

We consider noisy states such that at most εn adversarial errors are present in the circuit. In particular, we
say a pure state |ψ⟩ is an ε-noisy state if

|ψ⟩ ∈ advε(W ) ≜ span{adv(W,S) :
D∑
ℓ=0

|Sℓ| ≤ εn}.

A mixed state ρ is ε-noisy if it is a convex combination of ε-noisy pure states.

Our main theorems are the following soundness results.

Theorem 4.3 (Soundness). Suppose the depth D = o(log n) and consider any injectivity parameter δ =
O(D−0.51). For any state |ψ⟩ with energy density δ200D

D+1 with respect to Hparent, the reduced ψout in the
output column is 1

10 -close in trace distance to a 400δ2D-noisy mixed state.

We also prove a “combinatorial” version.

Theorem 4.4 (Combinatorial soundness). There exists a constant ε0 such that the following holds. Consider
any injectivity parameter δ = O(D−0.51) and any 10δ

√
D < ε < ε0. Then for any state |ψ⟩ that satisfies all

but ε
D+1 fraction of terms in Hparent, the reduced state ψout in the output column is e−99n-close in infidelity

to an 8ε-noisy mixed state.

Remark 4.5. The theorem statements and proofs below are presented assuming all n qubits are intialized
at the beginning of the computation for simplicity. However, they can be readily adapted to the setting where
qubits are initialized at varying times such as in quantum fault tolerance. In this case, D is defined to be the
longest elapse time between an output qubit and the initialization of any qubit causally connected to it.

4.2 Proof of Theorem 4.4 (Combinatorial soundness)
Consider a ε

D+1 -combinatorial state |ψ⟩ and let S = {S0, S1, . . . , SD} be the sets of faulty locations in each
layer of the circuit corresponding to the violated Hamiltonian terms in Hparent = Hin +Hprop. Since Hprop
consists of at most nD terms and Hin consists of a ≤ n terms, it holds that

∑
ℓ |Sℓ| ≤ 2εn (assuming circuit

consists of two-qubit gates). Below, we refer to the last column of qubits in the tensor network as the output
column, the first two columns as the first layer, the next two columns as the second layer, and so on. Given
a n(2D+ 1)-qubit PEPS state |ψ⟩, we denote by ψ(ℓ)

j the two-qubit reduced state on the j-th row of the ℓ-th
layer and by ψout

j the one-qubit reduced state on the j-th row of the output column.

Proof idea: The combinatorial state |ψ⟩ has the property that the (unnormalized) state Λ⊗nD |ψ⟩ has a
nice form -

(⊗
i/∈S0

|0⟩i
) (⊗

loc(U)/∈S |ΦU ⟩
)

⊗ |ψ′′⟩. This means that we have the correct state |0⟩ or |ΦU ⟩
corresponding to the satisfied Hamiltonian terms and an arbitrary state |ψ′′⟩ at the violated terms. If |ψ′′⟩
were of the form

⊗
j∈S

∣∣ΦUj

〉
for some 2-qubit unitaries Uj , then we could simply view the state |ψ⟩ as

encoding the circuit with iid noise on non-faulty locations, and adversarial noise at faulty locations. This
would be a perfectly fine combination of stochastic error and small number of adversarial errors. But |ψ′′⟩
can be a superposition of the states of above form, which can arbitrarily correlate the noise at non-faulty
locations! We appeal to the injectivity of the local maps Λ to argue that despite this possible correlation of
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noise at non-faulty locations, the fraction of errors stays at O(δ2) (with high probability). Thus a damaging
situation, for example all the non-faulty locations experiencing a Pauli error, continues to occurs with very
small probability.

Proof: We first prove the following lemma which asserts that the reduced state on the output column of
the combinatorial state |ψ⟩ contains the result of a quantum computation with both stochastic noise and
adversarial noise. Later we will combine these two noise models into just adversarial noise.

Claim 4.6. Let W̃P⃗ ,E⃗ = ẼDWDP̃D . . . Ẽ1W1P̃1Ẽ0 denote the erroneous circuit with Pauli errors P⃗ and E⃗.
Suppose |ψ⟩ is a normalized state which satisfies all but terms at locations S in Hparent. Then the reduced
state on the output column is

ψout ∝
∑

P⃗∈P⊗nD

δ2|P⃗ |

 ∑
E⃗∈err(S)

cE⃗W̃P⃗ ,E⃗(|0a⟩ ⊗
∣∣ξE⃗〉)

 ∑
E⃗∈err(S)

cE⃗(⟨0a| ⊗
〈
ξE⃗
∣∣)W̃ †

P⃗ ,E⃗

 , (9)

where
∣∣ξE⃗〉 are normalized states and the real coefficients cE⃗ satisfy

∑
E⃗∈err(S) c

2
E⃗

= 1. In other words, the
state |ψ⟩ encodes a noisy computation where the errors come from two sources: (1) stochastic noise coming
from the tensor network injectivity and (2) adversarial errors coming from the energy violations.

Proof. Let us analyze the terms in each of Hin and Hprop. Consider the state |ψ′⟩ ≜ Λ⊗nD|ψ⟩
∥Λ⊗nD|ψ⟩∥ , where we

recall that
Λ = δ |ΦI⟩ ⟨ΦI | +

∑
p∈{X,XZ,Z}

|Φp⟩ ⟨Φp| . (10)

Consider a satisfied initialization term hin
j = Λ(|1⟩ ⟨1|j)Λ (which acts on the j-th qubits of the first and

second columns) in Hin. Since hin
j |ψ⟩ = 0, the reduced state of |ψ′⟩ on the first column’s qubit i is |0⟩i.

Similarly, for a satisfied propagation term hU = Λ⊗4(I − |ΦU ⟩ ⟨ΦU |)Λ⊗4 corresponding to a gate U acting on
qubits i, j at time t, the reduced state of |ψ′⟩ on the 4 qubits of loc(U ) must exactly be |ΦU ⟩. So it holds
that

|ψ′⟩ =

⊗
i/∈S0

|0⟩i

 ⊗
loc(U)/∈S

|ΦU ⟩

⊗ |ψ′′⟩ , (11)

where |ψ′′⟩ is an arbitrary state supported on the remaining qubits (corresponding to the faulty locations in
the circuit, including initialization, and the arbitrary witness state). The state |ψ′′⟩ can be further expressed
in the orthonormal bases {|0⟩ , X |0⟩} on the input qubits and {|ΦU ⟩ , I ⊗X |ΦU ⟩ , I ⊗XZ |ΦU ⟩ , I ⊗ Z |ΦU ⟩}
on the qubit pairs in the “bulk”, such that

|ψ′⟩ =
∑

E⃗∈err(S)

cE⃗
(
Ẽ0 |0a⟩

∣∣ξE⃗〉)⊗
ℓ∈D

(
(I ⊗ Ẽℓ)

⊗
U∈Wℓ

|ΦU ⟩

)
, (12)

where
∣∣ξE⃗〉 are normalized states and the coefficients cE⃗ are real (w.l.o.g) and satisfy

∑
E⃗∈err(S) c

2
E⃗

= 1.
Note that cE⃗ is nonzero only when Ẽ0 consists of only the Pauli operators I and X.

Next, we undo the maps Λ to obtain the original combinatorial state by applying the map Q = |ΦI⟩ ⟨ΦI |+
δ
∑
p∈{X,XZ,Z} |Φp⟩ ⟨Φp| ∝ Λ−1 (see Equation (5)) on |ψ′⟩. We have that

|ψ⟩ ∝ |χ⟩ = Q⊗nD |ψ′⟩ (13)

=
∑

P⃗∈P⊗nD

δ|P⃗ | ∣∣ΦP⃗ 〉⊗
 ∑
E⃗∈err(S)

ẼDWDP̃D . . . Ẽ1W1P̃1Ẽ0 |0a⟩
∣∣ξE⃗〉

 , (14)

where the last equality follows from linearly extending Claim 2.1.
Tracing out the bulk EPR states

∣∣ΦP⃗ 〉 we obtain the statement of the claim.
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Figure 4: An injective PEPS encoding noisy quantum computation shown with n = 6 qubits (black dots), of
which a = 3 are ancillas, and D = 3 layers of two-qubit gates in the brickwork architecture. The computation
goes from left to right, with qubits on column 1 being the input. Gates: encoded in rotated 4-qubit EPR
states (see Figure 2) placed on columns (2,3), (4,5), and so on. Applying the invertible map Q (gray box)
as defined in Equation (5) generates a noisy computation on the last column (indexed 7). The qubit pairs
where Q is applied are called shifted EPR locations. We refer to the last column of qubits in the PEPS as the
output column. Noisy computation: After Q is applied, the output column can be interpreted as a noisy
computation where for each layer of the circuit, the present noise pattern is specified by the EPR states at
the shifted EPR locations. Due to this correspondence, we refer to the first two columns (indexed 1,2) as
the first layer, the next two columns (indexed 3,4) as the second layer, and so on. Parent Hamiltonian:
A propagation term (dashed green) acts on 8 qubits, while an initialization term (dashed yellow) acts on the
first 2 qubits and only on each ancilla row (indexed 1,2,3).
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We now show that the normalized state ψout is exponentially close to an (α + 2ε)-noisy (mixed) state ρ
which is obtained by removing from |χ⟩ the summands P⃗ whose weight is larger than αn and then normalizing
properly, for some constant α to be specified shortly.

Claim 4.7. Let Π be the projector onto the hight-weight EPR-basis states in the bulk which contains at least
αn nontrivial EPR states

Π =
∑

P⃗∈P⊗nD :|P⃗ |≥αn

∣∣ΦP⃗ 〉 〈ΦP⃗ ∣∣ . (15)

If δ = O(D−0.51), then choosing α = 6ε we can get the following bound as long as ε = Ω(D−0.01)

⟨ψ| Π |ψ⟩ ≤ e−Ω(n). (16)

In other words, |ψ⟩ is e−Ω(n)-close in fidelity to a 8ε-noisy mixed state.

Proof. Note that the distribution over P⃗ is not simply the i.i.d. distribution δ|P⃗ | since the linear combination
over the adversarial error E⃗ in Equation (14) can change the norm of the state in the output column. So we
need a more careful analysis.

With a slight abuse of notation, we use {S1, S2, . . . , SD} to denote the locations of the non-shifted EPR
states (which encode the gates) and S0 to denote input column qubits (which are ancilla qubits) that
correspond to the violated Hamiltonian terms (see Figure 4). Recall that |S| ≤ 2εn by assumption. Let Rc
be the shifted EPR locations that do not overlap with S and let R be the rest of shifted EPR locations.
Note that |R| ≤ 2|S| ≤ 4εn and |R| + |Rc| = nD. Consider the “partially undone” state |χ′⟩ = QRc |ψ′⟩,
in which we only apply Q on Rc, such that |χ⟩ = QR |χ′⟩. Let Π′ be the projector onto the high-weight
(shifted) EPR-basis states in Rc defined as

Π′ =
∑

P⃗∈PRc :|P⃗ |≥(α−4ε)n

∣∣ΦP⃗ 〉 〈ΦP⃗ ∣∣ . (17)

Note that Π ⪯ Π′ and δ · I ⪯ Q ⪯ I. Furthermore, Π′ and Q (and Λ) commute for being both diagonal in
the EPR basis. So we have that

⟨ψ| Π |ψ⟩ ≤ ⟨ψ| Π′ |ψ⟩ = ⟨χ′|QRΠ′QR |χ′⟩
⟨χ′|QRQR |χ′⟩

≤ 1
δ2|R|

⟨χ′| Π′ |χ′⟩
⟨χ′|χ′⟩

. (18)

Substituting |χ′⟩ = QRc |ψ′⟩ into the RHS we get

⟨ψ| Π |ψ⟩ ≤ 1
δ2|R|

∑
P⃗∈PRc :|P⃗ |≥(α−4ε)n δ

2|P⃗ |∥(IR ⊗
〈
ΦP⃗
∣∣) |ψ′⟩ ∥2∑

P⃗∈PRc δ2|P⃗ |∥(IR ⊗
〈
ΦP⃗
∣∣) |ψ′⟩ ∥2

, (19)

where |ψ′⟩ is defined in Equation (11) and repeated here for convenience

|ψ′⟩ =

⊗
i/∈S0

|0⟩i

 ⊗
loc(U)/∈S

|ΦU ⟩

⊗ |ψ′′⟩ . (20)

However, observe that (IR ⊗
〈
ΦP⃗
∣∣) |ψ′⟩ is a unit vector since

〈
ΦP⃗
∣∣ does not act on |ψ′′⟩.

Therefore,

⟨ψ| Π |ψ⟩ ≤ 1
δ2|R|

∑
P⃗∈PRc :|P⃗ |≥(α−4ε)n δ

2|P⃗ |∑
P⃗∈PRc δ2|P⃗ |

. (21)

The RHS can now be straightforwardly bounded by the Chernoff bound.

Fact 4.8. Let X = X1 + . . . + XN where Xi ∈ {0, 1} are i.i.d. binary random variables with E[Xi] = µ.
Then Pr[X ≥ (1 + η)µN ] ≤ 2e−η2µN/3.
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We apply the Chernoff’s bound with N = |Rc|, µ = 3δ2/(1 + 3δ2), and η = (α− 4ε)/µD − 1. Note that
|R| ≤ 4εn. Choosing α = 6ε, assuming ε ≪ 1 so that nD/2 ≤ |Rc| ≤ nD and δ is sufficiently small such
that η ≈ 2ε/µD, we obtain the following bound on the RHS of Equation (21)

RHS of Equation (21) ≤ 2e8 log(1/δ)εne−ε2n/δ2D. (22)

The above bound to decays exponentially when ε > 8 log(1/δ)δ2D. We can choose, say, δ = O(D−0.51).
Then for any ε > 10δ

√
D, we obtain a bound of e−99n on ⟨ψ| Π |ψ⟩.

4.3 Proof of Theorem 4.3 (Soundness)
We assume depth D = o(log n) here.

Proof idea: We take inspiration from Kitaev’s analysis where the clock Hamiltonian is analyzed in a
suitable rotated basis. Here as well, we will carry out the proof in a “rotated” basis, which is defined by the
n(2D+1)-qubit unitary V in Equation (8). In particular, we analyze the properties of a low-energy state |ψ⟩
of Hparent = Hin + Hprop and its rotated version |ψ′⟩ = V † |ψ⟩. Note that in the rotated basis, the ground
states (Claim 2.1) are of the form

V † |ΨW,ξ⟩ ∝

|ΦI⟩ + δ
∑

p∈{X,XZ,Z}

|Φp⟩

⊗nD

|0a⟩ |ξ⟩ . (23)

Our starting observation is based on a surprising effect - despite the fact that Hin enforces |0⟩⊗n on the
first column, the state |0⟩⊗n appears on the last column in V † |ΨW,ξ⟩. We view this as a teleportation of
Hin, highlighting that its a noiseless teleportation under ‘zero energy’ constraint, despite the tensor network
performing noisy gate-by-gate teleportation. Given this, we focus on establishing two properties for low
energy states:

• Robust teleportation of Hin: Upon rotating with V , the low energy states should look like |0⟩ in most
of the qubits (that do not include witness qubits) in the last column. This amounts to Hin effectively
acting on the last column under the constraint of low energy.

• The number of Pauli errors is small enough in a low energy state.

The proof below carries both these properties.

Proof: We refer to the last column of qubits in the PEPS as the output column and note that the layers
of shifted EPR locations have a correspondence with circuit layers. In particular, the first two columns as
the first layer, the next two columns as the second layer, and so on (see Figure 4). The unitary V can be
interpreted as applying a noisy circuit on the output column conditioned on the noise pattern in the bulk.

Definition 4.9. Given a n(2D + 1)-qubit PEPS state |ψ⟩, we denote by ψ(ℓ)
j the two-qubit reduced state on

the j-th row of the ℓ-th layer and by ψout
j the one-qubit reduced state on the j-th row of the output column.

The advantage of working in the rotated basis is that we can employ the following lemmas, whose proofs
are provided in Section 4.4.

Remark 4.10. W.l.o.g., we assume the last layer of the circuit consists of single-qubit identity gates.

Lemma 4.11 (Last layer). For each j ∈ [n], let h(D)
j be the 3-qubit term in Hprop corresponding to the

identity gate on qubit j. Furthermore, let |ϕ0⟩ = 1√
1+3δ2 (|ΦI⟩ + δ

∑
p∈{X,XZ,Z} |Φp⟩). If ⟨ψ|h(D)

j |ψ⟩ ≤ α,
then it holds that

Tr
(
ψ

′(D)
j |ϕ0⟩ ⟨ϕ0|

)
≥ 1 − 4α. (24)
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Figure 5: Propagation term h
(D)
j = ΛAB(I − |ΦI⟩ ⟨ΦI |BC)ΛAB corresponding to a single-qubit identity gate

in the last layer. If a global state |ψ⟩ has low energy with restpect to h(D)
j , then Lemma 4.11 asserts that

V † |ψ⟩ is locally close to |ϕ0⟩ (Equation (26)) on qubits A,B.

In the proof of Lemma 4.11, we will show that V †h
(D)
j V is in fact a local Hamiltonian term, despite V

being global. In particular, denoting h(D)
j = ΛAB(I −|ΦI⟩ ⟨ΦI |BC)ΛAB where A,B, and C denote the qubits

acted upon by h(D)
j (see Figure 5), then V †h

(D)
j V is a 2-local term acting on qubits A,B in the rotated basis

V †(h(D)
j )ABCV = ΛAB

∑
p∈P

|Φp⟩ ⟨Φp|AB − 1
4
∑
p,p′∈P

|Φp⟩ ⟨Φp′ |AB

ΛAB . (25)

The rotated propagation terms V †h
(ℓ)
i,jV for ℓ < D (corresponding to two-qubit gates acting on qubits

i, j in layer ℓ) are, however, generally non-local3. Here, we will instead utilize the following lemma about a
property of them in a certain subspace related to the state

|ϕ0⟩ ≜ 1√
1 + 3δ2

(|ΦI⟩ + δ
∑

p∈{X,XZ,Z}

|Φp⟩). (26)

Lemma 4.12 (Bulk propagation). Consider a propagation term h
(ℓ)
i,j = Λ⊗4(I − |ΦU ⟩ ⟨ΦU |)Λ⊗4, where |ΦU ⟩

is the EPR state encoding the two-qubit gate U acting on qubits i, j in layer ℓ < D. It holds that

⟨ϕ0|⊗2
V †h

(ℓ)
i,jV |ϕ0⟩⊗2 = 16δ4

(1 + 3δ2)2 Λ⊗2

 ∑
p⃗∈P⊗2

|Φp⃗⟩ ⟨Φp⃗| − 1
16

∑
p⃗,q⃗∈P⊗2

|Φp⃗⟩ ⟨Φq⃗|

 , (27)

where |ϕ0⟩⊗2 acts on the shifted EPR locations (i, j) in EPR layer ℓ + 1. Furthermore, a robust version of
the previous statement also holds. Let |ψ⟩ be a normalized state such that Tr

(
ψ

′(ℓ+1)
i,j ϕ⊗2

0

)
≥ 1 − η in for

some ℓ ≤ D − 1. If additionally ⟨ψ|h(ℓ)
i,j |ψ⟩ ≤ α, then Tr

(
ψ

′(ℓ,ℓ+1)
i,j ϕ⊗4

0

)
≥ 1 − η

δ8 − α
δ16 .

Intuitively, the above lemma says that, if the qubits i, j in layer ℓ + 1 of a slighly violated propagation
Hamiltonian term are in the “good” state ϕ0, then the qubits i, j in layer ℓ are also in the good state ϕ0.

U

Figure 6: Propagation term hU corresponding to a two-qubit gate U in the bulk of the circuit. According
to Lemma 4.12, if a global state |ψ⟩ has low energy with respect to hU and its rotated version V † |ψ⟩ is locally
close to |ϕ0⟩⊗2 on the EPR locations to the right, then V † |ψ⟩ is close to |ϕ0⟩⊗4 on all 4 EPR locations.

3We show in Appendix B that they are local if the associated gate is Clifford.
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Lemma 4.13 (Robust teleportation of Hin). Consider an initialization term hin
j = ΛΠjΛ in Hin, where

Πj is the input check on qubit j. It holds that ⟨ϕ0|V †hin
j V |ϕ0⟩ = 4δ2

1+3δ2 Πout
j , where |ϕ0⟩ acts on the first

layer at EPR location j, and Πout
j means Πj acts on the output column. Furthermore, a robust version of

the previous statement also holds. Let |ψ′⟩ be a normalized state such that Tr
(
ψ

′(1)
j |ϕ0⟩ ⟨ϕ0|

)
≥ 1 − η. If

additionally ⟨ψ′|V †hin
j V |′ψ⟩ ≤ α, then Tr

(
ψ′Πout

j

)
≥ 1 − η

δ2 − α
δ2 .

Πj

⟨ϕ0|V †hin
j V |ϕ0⟩

. . .
4δ2

1+3δ2 Πout
j

Figure 7: Initialization term hin
j = ΛΠjΛ in Hin is teleported to the output column according to Lemma 4.13.

Therefore, if the first layer is in the good state |ϕ0⟩, then Hin is teleported to the output column.

Proof of Theorem 4.3. Consider a state |ψ⟩ with energy density ε
D+1 such that ⟨ψ|Hparent |ψ⟩ ≤ εn, where

ε = δ200D. It follows that at most εn/α terms in Hparent have energy greater than α, for some value α to
be specified later (we will choose α = δ100D). We refer to these terms as “slightly violated” (as opposed to
strongly violated). Let |ψ′⟩ = V † |ψ⟩ be the rotated state.

The proof will proceed as follows. First, according to Lemma 4.11 ψ′(D)
j is close to |ϕ0⟩ for many indices

j ∈ [n]. Next, we repeatedly apply Lemma 4.12 to propagate the “good” states |ϕ0⟩ to the first layer. Then
we use Lemma 4.13 to conclude that most of intialization terms in Hin get teleported (approximately) to the
output column. This makes sure that most of the ancilla qubits are initialized (approximately) correctly to
|0⟩. Finally, we use a similar argument to Theorem 4.4’s proof.

We start by looking at the local reduced states on the last layer. For at least (1 − ε/α)n many indices
j, the propagation term h

(D)
j in the last layer is slightly violated. So we invoke Lemma 4.11 to obtain

Tr
(
ψ

′(D)
j |ϕ0⟩ ⟨ϕ0|

)
≥ 1 − 4α.

We now “propagate” these good states to the first layer. According to Lemma 4.12, a sufficient condition
for ψ

′(1)
j to be good is that all the Hamiltonian terms associated to gates in the forward lightcone of qubit j,

have energy bounded by α. We denote the forward lightcone of qubit j by LC(j). Note that we only consider
D = o(log n). Assume all propagation terms in LC(j) are slightly violated, then for any locations r, s ∈ LC(j)
in the last layer we have Tr

(
ψ

′(D)
r,s (|ϕ0⟩ ⟨ϕ0|⊗2)

)
≥ 1−8α due to the previous paragraph. Next, we repeatedly

apply Lemma 4.12 on the propagation terms in LC(j) to obtain that Tr
(
ψ

′(1)
j |ϕ0⟩ ⟨ϕ0|

)
≥ 1 − α

δ16D for
sufficiently small δ. Thus, we can invoke the robust version of Lemma 4.13 to obtain Tr

(
ψ′Πout

j

)
≥ 1− α

δ16D+2 .
The number of locations whose forward lightcone is “bad” (i.e., it contains a strongly violated Hamiltonian

term) is bounded above by 2D−1εn/α. Hence, Tr
(
ψ′Πout

j

)
≥ 1− α

δ16D+2 for at least a fraction of 1−2D−1ε/α of
the qubits j. We refer to the initialization locations without this guarantee as “strongly faulty” initialization
locations. Denote these locations as S0, we have |S0| ≤ 2D−1εn/α. Similarly, there are at most 2D−1εn/α

EPR locations where we do not have the guarantee Tr
(
ψ

′(ℓ)
j |ϕ0⟩ ⟨ϕ0|

)
≥ 1 − α

δ16D . We refer to them as
“strongly faulty” gate locations in the circuit and denote S = {S1, . . . , SD}.

For each slightly faulty location j at layer 1 ≤ ℓ ≤ D, we have the following distance guarantee due to
Fuchs–van de Graf inequality and by choosing, say, α = δ50D

∥ψ
′(ℓ)
j − |ϕ0⟩ ⟨ϕ0| ∥1 ≤ 2

√
α

δ16D ≤ δ10D. (28)
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It follows that ∣∣∣Tr
(
ψ

′(ℓ)
j |Φp⟩ ⟨Φp|

)
− | ⟨ϕ0|Φp⟩ |2

∣∣∣ ≤ δ10D, p ∈ P (29)

In other words, the Pauli errors at the slightly violated locations approximately follows the depolarizing
channel with probability p = δ2/(1 + 3δ2) for each of X,Y, Z errors.

Similarly, we obtain the following bound at the (approximately) correctly initialized locations in the
output column

Tr
(
ψ

′out
j |0⟩ ⟨0|

)
≥ 1 − δ10D, (30)

With α = δ50D and ε = δ200D we also have the following bound on the total number of strongly faulty
locations

|S| =
D∑
ℓ=0

|Sℓ| ≤ 2Dεn/α ≤ δ50Dn. (31)

Similar to the proof of Theorem 4.4, we denote by Ẽℓ the adversarial errors at locations Sℓ coming from
the strongly faulty locations and by P̃ℓ be the almost local depolarizing noise coming from the slightly faulty
locations. We can expand |ψ′⟩ as

|ψ′⟩ =
∑

E⃗∈PS

P⃗ ∈PSc

cE⃗,P⃗

⊗
1≤ℓ≤D

(∣∣ΦP̃ℓ

〉 ∣∣ΦẼℓ

〉)⊗
(Ẽ0 ⊗ P̃0 |0a⟩) ⊗

∣∣∣ξP⃗ ,E⃗〉 , (32)

where
∣∣∣ξP⃗ ,E⃗〉 are normalized states and cE⃗,P⃗ are (w.l.o.g.) real coefficients such that |cE⃗,P⃗ |2 define a prob-

ability distribution whose local marginals on Sc are constrained by Equations (29), (30).
Finally, we can combine P⃗ and E⃗ together and treat them as adversarial errors by truncating the sum-

mands with high-weight P⃗ . Let Π be the projector onto high-weight EPR states in Sc

Π =
∑

P⃗∈PSc :|P⃗ |≥(β−δ50D)n

∣∣ΦP⃗ 〉 〈ΦP⃗ ∣∣ , (33)

where β is a parameter to be specified. Below, we will truncate the high-weight P⃗ in |ψ′⟩ to obtain the state
|χ′⟩ = (I−Π)|ψ⟩

∥(I−Π)|ψ⟩∥ , and our goal is to show |χ′⟩ is close to |ψ′⟩. Note that |χ′⟩ only contains terms with at
most βn adversarial errors as desired.

Observe that EP⃗∼|ψ′⟩[|P⃗ | : P⃗ ∈ PSc ] ≤ 3( δ2

1+3δ2 + δ10D)nD according to Equations (29), (30). So using
Markov’s inequality we can bound

Tr(Π |ψ′⟩ ⟨ψ′|) ≤ 4δ2D

β
. (34)

Assuming δ2D ≪ 1 and chosing β = 400δ2D and using gentle measurement lemma we have
1
2∥ |χ′⟩ ⟨χ′| − |ψ′⟩ ⟨ψ′| ∥1 ≤ 1

10 . (35)

The same trace distance bound holds on the unrotated states V |ψ′⟩ and V |χ′⟩ ≜ |χ⟩, as well as their reduced
states on the output column ψout and χout due to unitary-invariance and monoticity of the trace distance:

1
2∥ψout − χout∥ ≤ 1

10 . (36)

The reduced state χout is a β-noisy state

χout =
∑

Ẽ1 ...ẼD :|E⃗|≤βn

 ∑
Ẽ0:|E⃗|≤βn

c′
E⃗
W̃E⃗(Ẽ0 |0a⟩) ⊗

∣∣ξE⃗〉
 (. . .)†

, (37)

where W̃E⃗ ≜WDẼD . . .W1Ẽ1. This concludes the proof of Theorem 4.3.
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4.4 Analysis of Hprop and Hin: deferred proofs
For convenience, recall the change of basis

V =
∑

P⃗∈P⊗nD

∣∣ΦP⃗ 〉 〈ΦP⃗ ∣∣⊗ (WDP̃D . . .W1P̃1), (38)

and the inverse local injective map

Λ = δ |ΦI⟩ ⟨ΦI | +
∑

p∈{X,XZ,Z}

|Φp⟩ ⟨Φp| . (39)

4.4.1 Proof of Lemma 4.11 (Good states in last layer of Hprop)

As stated in the lemma, we assume the last layer of gates in the circuit are identity gates for simplicity in
calculating the rotated Hg terms. We have that

V †(h(D)
j )ABCV = V †ΛAB(I − |ΦI⟩ ⟨ΦI |BC)ΛABV

= V †

 ∑
p,p′∈P

δ2−|(p,p′)| |Φp⟩ ⟨Φp′ |AB ⊗ ⟨Φp|AB (I − |ΦI⟩ ⟨ΦI |BC) |Φp′⟩AB

V

= V †

 ∑
p,p′∈P

δ2−|(p,p′)| |Φp⟩
(
1p,p′I − 1

4(p∗p′⊤)C
)V

=
∑
p∈P

δ2−2|p| |Φp⟩ ⟨Φp|AB

− 1
4

∑
P⃗∈P⊗n(D−1)

∑
p,p′∈P

δ2−|(p,p′)| |Φp⟩ ⟨Φp′ |AB ⊗
∣∣ΦP⃗ 〉 〈ΦP⃗ ∣∣⊗

(
(W̃<D

P⃗
)†p†p∗p′⊤p′(W̃<D

P⃗
)
)

=
∑
p∈P

δ2−2|p| |Φp⟩ ⟨Φp|AB − 1
4
∑
p,p′

δ|(p,p′)| |Φp⟩ ⟨Φp′ |AB

= ΛAB

∑
p

|Φp⟩ ⟨Φp|AB − 1
4
∑
p,p′

|Φp⟩ ⟨Φp′ |AB

ΛAB ,

where
∑
P⃗∈P⊗n(D−1) denotes the sum over the Pauli noise P̃ℓ for ℓ < D and W̃<D

P⃗
≜WD−1P̃D−1 . . .W1P̃1.

Note that V †h
(D)
j V has ground state |ϕ0⟩ and spectral gap γ ≥ 1/4, so

1
4 Tr

(
ψ

′(D)
j (I − |ϕ0⟩ ⟨ϕ0|)

)
≤ Tr

(
|ψ⟩ ⟨ψ|h(D)

j

)
≤ α,

Tr
(
ψ

′(D)
j |ϕ0⟩ ⟨ϕ0|

)
≥ 1 − 4α.

4.4.2 Proof of Lemma 4.12 (Bulk propagation of good states)

We first prove the following claim, which is the “noiseless” version of Lemma 4.12.
Claim 4.14. Let |ϕ0⟩ be defined as in Equation (26). Consider a propagation term hU corresponding to a
two-qubit gate as shown in Figure 6. Furthermore, define |Φp⃗⟩ ≜ |Φp1⟩ |Φp2⟩, for p⃗ ∈ P⊗2. It holds that

⟨ϕ0|⊗2
V †hUV |ϕ0⟩⊗2 = 16δ4

(1 + 3δ2)2 Λ⊗2

 ∑
p⃗∈P⊗2

|Φp⃗⟩ ⟨Φp⃗| − 1
16

∑
p⃗,q⃗∈P⊗2

|Φp⃗⟩ ⟨Φq⃗|

Λ⊗2, (40)

where |ϕ0⟩⊗2 (|Φp⃗⟩) acts on the EPR locations to the right (left) of hU (see Figure 6).
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The above claim implies that if on one side of hU the state V † |ψ⟩ is equal to |ϕ0⟩⊗2, then so is it on the
other side since this is the unique ground state of the matrix to the RHS of Equation (40).

Proof of Claim. For simplicity, we prove the claim for terms corresponding to single-qubit gates. The gen-
eralization to the multi-qubit case is straightforward as explained later. Consider a gate U in layer ℓ < D
acting on qubit j. We refer to the Hamiltonian term corresponding to this gate as hU = Λ⊗2

AB,CD(I −
|ΦU ⟩ ⟨ΦU |BC)Λ⊗2

AB,CD, which acts on qubits A,B (EPR layer ℓ) and C,D (EPR layer ℓ+ 1).

U

B CA D

Let |Φp⃗⟩AB,CD ≜ |Φp1⟩AB |Φp2⟩CD, for p1, p2 ∈ P . We will omit the system labels when they are clear
from the context. The rotated term is of the form

V †hUV = V †Λ⊗2
AB,CD(I − |ΦU ⟩ ⟨ΦU |BC)Λ⊗2

AB,CDV

= V †

 ∑
p⃗,q⃗∈P⊗2

δ4−|(p⃗,q⃗)| |Φp⃗⟩ ⟨Φq⃗|AB,CD · ⟨Φp⃗| (I − |ΦU ⟩ ⟨ΦU |BC) |Φq⃗⟩

V

= V †

 ∑
p⃗,q⃗∈P⊗2

δ4−|(p⃗,q⃗)| |Φp⃗⟩ ⟨Φq⃗|AB,CD ·
(
1p⃗,q⃗ − 1

8 Tr(p∗
1q

⊤
1 U

†q⊤
2 p

∗
2U)

)V

=
∑

p⃗∈P⊗2

δ4−2|p⃗| |Φp⃗⟩ ⟨Φp⃗|

− 1
8

∑
P⃗∈P⊗n(ℓ−1)

∑
p⃗,q⃗

δ4−|(p⃗,q⃗)| |Φp⃗⟩ ⟨Φq⃗| Tr(p∗
1q

⊤
1 U

†q⊤
2 p

∗
2U) ⊗

∣∣ΦP⃗ 〉 〈ΦP⃗ ∣∣⊗ (W̃<ℓ

P⃗
)†p†

1U
†p†

2q2Uq1(W̃<ℓ

P⃗
),

where W̃<ℓ

P⃗
≜Wℓ−1P̃ℓ−1 . . .W1P̃1. Above, 1p⃗,q⃗ denotes the Kronecker delta symbol. The sum

∑
P⃗∈P⊗n(ℓ−1)

is over the Pauli noise P⃗ in layers preceding the gate U . We can also drop the complex conjugate “∗” because
P = {I,X,XZ,Z} are real matrices.

Next, we project qubits C,D onto |ϕ0⟩. Doing so on the term
∑
p⃗ δ

4−2|p⃗| |Φp⃗⟩ ⟨Φp⃗|AB,CD yields the
following two-qubit term acting on qubits A,B

4δ2

1 + 3δ2

∑
p1∈P

δ2−2|p1| |Φp1⟩ ⟨Φp1 |AB . (41)

We analyze the second term in V †hUV . For each summand P⃗ , projecting project qubits C,D onto |ϕ0⟩ gives

δ2

1 + 3δ2

∑
p⃗,q⃗∈P⊗2

δ2−|(p1,q1)| |Φp1⟩ ⟨Φq1 | Tr(p1q
⊤
1 U

†q⊤
2 p2U) ⊗

∣∣ΦP⃗ 〉 〈ΦP⃗ ∣∣⊗ (W̃<ℓ

P⃗
)†p⊤

1 U
†p⊤

2 q2Uq1(W̃<ℓ

P⃗
). (42)

Next, we apply the following identity∑
p2,q2∈P

Tr(p1q
⊤
1 U

†q⊤
2 p2U)p⊤

2 q2 = 8Up1q
⊤
1 U

† (43)

to simplify Equation (42) to

8δ2

1 + 3δ2

∑
p1,q1

δ2−|(p1,q1)| |Φp1⟩ ⟨Φq1 | ⊗
∣∣ΦP⃗ 〉 〈ΦP⃗ ∣∣⊗ I. (44)
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Overall, summing over P⃗ , the second term in V †hUV is equal to

− δ2

1 + 3δ2

∑
p1,q1

δ2−|(p1,q1)| |Φp1⟩ ⟨Φq1 | . (45)

Combining this with Equation (41) we get

⟨ϕ0|CD V
†hUV |ϕ0⟩CD = 4δ2

1 + 3δ2 ΛAB

(∑
p1

|Φp1⟩ ⟨Φp1 |AB − 1
4
∑
p1,q1

|Φp1⟩ ⟨Φq1 |AB

)
ΛAB . (46)

A completely similar analysis for two-qubit gates gives the lemma statement.

We now prove Lemma 4.12.

Proof of Lemma 4.12. Let Π1 = I ⊗ ϕ⊗2
0 and Π2 be the projector onto the ground space of V †hUV . As a

reminder, it is assumed that Tr(Π1ψ
′) ≥ 1 − η and Tr

(
V †hUV ψ

′) ≤ α, and the goal is to show Tr(Π2ψ
′) ≥

1 − η
Θ(δ8) − α

Θ(δ16) .
According to Claim 4.14, the operator ⟨ϕ0|⊗2

V †hUV |ϕ0⟩⊗2 has a spectral gap ≥ 15δ8 for sufficiently
small δ. Therefore,

δ8(Π1 − ϕ⊗4
0 ) ≤ Π1V

†hUVΠ1. (47)
However, observe the following inequality which follows from ∥hU∥ ≤ 1

Π1V
†hUVΠ1 ≤ (Π1 − Π1Π2Π1) (48)

Combining the previous inequalities we obtain

Π1Π2Π1 ≤ Π1 − 15δ8(Π1 − ϕ⊗4
0 ). (49)

Next, we apply Jordan’s lemma to decompose Π1 and Π2 into 1 × 1 and 2 × 2 blocks. Observe that
Claim 4.14 implies ϕ⊗4

0 is the unique intersection of Π1 and Π2, as also evident from Equation (49). Consider
two corresponding 2 × 2 blocks |u⟩ ⟨u| in Π1 and |v⟩ ⟨u| in Π2, Equation (49) then implies that | ⟨u|v⟩ |2 ≤
1 − 15δ8.

On the other hand, letting γ ≥ δ8 be the spectral gap of hU 4, we have

γ(I − Π2) ≤ V †hUV =⇒ Tr(Π2ψ
′) ≥ 1 − α

δ8 . (50)

The following expressions follows by writing the projectors Π1,Π2 according to Jordan’s lemma Π1 = ϕ⊗4
0 +∑

i |ui⟩ ⟨ui| and Π2 = ϕ⊗4
0 +

∑
i |vi⟩ ⟨vi|

Tr
(
ψ′ϕ⊗4

0
)

+
∑
i

Tr(|ui⟩ ⟨ui|ψ′) ≥ 1 − η, (51)

Tr
(
ψ′ϕ⊗4

0
)

+
∑
i

Tr(|vi⟩ ⟨vi|ψ′) ≥ 1 − α

δ8 . (52)

Using |ui⟩ ⟨ui| + |vi⟩ ⟨vi| ≤ (1 + | ⟨ui|vi⟩ |)Pi ≤ (2 − δ8)Pi, where Pi is the projector onto the 2 × 2 Jordan
block i, we get

2 Tr
(
ψ′ϕ⊗4

0
)

+ (2 − δ8) Tr
(∑

i

Piψ
′

)
≥ 2 − η − α

δ8 (53)

Using
∑
i Pi + ϕ⊗4

0 ≤ I and rearranging we get

Tr
(
ψ′ϕ⊗4

0
)

≥ 1 − η

δ8 − α

δ16 , (54)

This concludes the proof of Lemma 4.12.
4We have h2

U = Λ⊗4(I − |ΦU ⟩ ⟨ΦU |)(Λ2)⊗4(I − |ΦU ⟩ ⟨ΦU |)Λ⊗4 ≥ δ8Λ⊗4(I − |ΦU ⟩ ⟨ΦU |)Λ⊗4 = δ8hU .
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4.4.3 Proof of Lemma 4.13 (Teleportation of Hin to output column)

We have the “noiseless” version

⟨ϕ0|V †hin
j V |ϕ0⟩ = ⟨ϕ0|

 ∑
p,p′∈P

δ2−|(p,p′)| |Φp⟩ ⟨Φp′ | ⊗ (p†p′)out
j ⟨Φp| (Πj ⊗ I) |Φp′⟩

 |ϕ0⟩ (55)

= ⟨ϕ0|

 ∑
p,p′∈P

δ2−|(p,p′)| |Φp⟩ ⟨Φp′ | ⊗ (p†p′)out
j

1
2 Tr

(
p′⊤p∗Πj

) |ϕ0⟩ (56)

= 1
1 + 3δ2

∑
p,p′∈P

δ2(p†p′)out
j

1
2 Tr

(
p′⊤p∗Πj

)
(57)

= 4δ2

1 + 3δ2 Πout
j . (58)

The proof of the robust version is completely similar to that of Lemma 4.12.

5 Verifying QMA via shallow circuits
As shown in Section 4, the parent Hamiltonian robustness properties only depend on circuit depth, so it
is desirable to restrict our attention to shallow circuits. Here we show that any QMA protocol can be
replaced by one involving a constant depth quantum circuit followed a logarithmic depth classical circuit.
The high-level idea is to first use the Feynman-Kitaev mapping to turn an arbitrary QMA protocol into a
local Hamiltonian, and then construct a short-depth QMA circuit to measure the energy of the resulting
Hamiltonian. For this, we need a low-degree version of the FK mapping.

Claim 5.1 (Degree reduction for FK Hamiltonian). Any QMA protocol involving an n-qubit verifier circuit
V with T = poly(n) two-qubit gates can be mapped into a 5-LH[a, b] on poly(n) qubits with a = 2− poly(n)

and b = a+ 1/ poly(n). Furthermore, each qubit is involved in at most 7 terms in the Hamiltonian.

Proof. W.l.o.g., we assume the circuit has been amplified by Lemma 3.2 or Lemma 3.3, such that its com-
pleteness is c = 1 − 2−r and s = 2−r with r = poly(n).

We first recall the FK Hamiltonian [1] here to observe that it is not sparse. For all T ∈ N and t ≤ T ,
we define the unary clock states as |u(t, T )⟩ = |1t⟩ ⊗ |0T−t⟩. The clock qubits are index by t ∈ [T ] and the
data qubits are indexed by i ∈ [n]. Let m be the number of ancilla qubits, so that the witness has n − m
qubits. The FK Hamiltonian consists of four parts acting on a unary clock register and a data register: (1)
initialization terms

Hin = |0⟩ ⟨0|t=0 ⊗

(
m∑
i=1

|1⟩ ⟨1|i

)
,

(2) propagation terms (note there are no clock qubits −1 and T + 1)

Hprop = 1
2

(
T∑
t=1

(|100⟩ ⟨100| + |110⟩ ⟨110|)t−1,t,t+1 − |110⟩ ⟨100t−1,t,t+1| ⊗ Ut − |100⟩ ⟨110|t−1,t,t+1 ⊗ U†
t

)
,

(3) clock validity terms

Hclock =
T∑
t=1

|01⟩ ⟨01|t−1,t ,
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(4) and output check term

Hout = |1⟩ ⟨1|T ⊗ |0⟩ ⟨0|1 .

As it is, the FK Hamiltonian has high degree due to the t = 0 clock qubit, which participates in m terms
in Hin and the data qubits, which participate in as many terms in Hprop as the number of nontrivial gates
acting on the qubit.

Note: Here, we justify the claim in Table 1 that there is a combinatorial state that violates a O( 1
T ) fraction

of terms. For example, the state |0100 . . .⟩clock ⊗|0⟩⊗n
data contains a fixed invalid clock configuration and hence

satisfies all the terms in the Feynman-Kitaev Hamiltonian, except 2 terms from Hclock.

We reduce the degree of data qubits by transforming V into a new circuit V ′ that acts on n′ = nT qubits
divided into T n-qubit blocks. After applying the first gate in V on the first qubit block, we apply n SWAP
gates to swap the first and second blocks. Then, the second gate in V is applied on the second block of V ′,
and so on. This way, the qubits in V ′ are acted on by at most 3 nontrivial gates. The number of nontrivial
gates in V ′ is T ′ = O(nT ).

We reduce the degree of the t = 0 clock qubit by observing that the initialization of ancilla qubit i only
need to be verified right before the first gate acting on it. Let ti ∈ [T ] be this gate, then we use the following
initialization term (note there are no clock qubits −1 and T + 1)

Hin,i = |10⟩ ⟨10|ti−1,ti ⊗ |1⟩ ⟨1|i . (59)

Applying this modified FK mapping (with modified Hin) to the circuit V ′ we obtain a 5-local Hamiltonian
HFK in which each qubit involves in at most 7 terms. The energy analysis in [1] still applies for this modified
construction. Indeed, according to [1], Hprop +Hclock has ground states of the form

|Ψ⟩ := 1√
T ′ + 1

T ′∑
t=0

|u(t, T ′)⟩ ⊗ Ut · · ·U1 |ψ⟩ , for any |ψ⟩ ∈ (C2)n
′

(60)

In the completeness case, setting |ψ⟩ = |0m′⟩ |ξ⟩, where |ξ⟩ is the witness that V ′ accepts with probability
c, gives an energy of a = O((1 − c)/T ′) = 2− poly(n′).

In the soundness case, the main step of the proof is Equation 14.17 in [1] in which the author bounds
max|ψ⟩ ⟨Ψ| Π1 |Ψ⟩ where Π1 is the projector onto the nullspace of Hin +Hout. However, it can be seen that
modifying Hin as in Equation (59) does not change this quantity which remains to be

⟨Ψ| Π1 |Ψ⟩ = 1 − 1
T ′ + 1

⟨ψ| (
m′∑
i=1

|1⟩ ⟨1|i) |ψ⟩ + ⟨ψ|V ′† |0⟩ ⟨0|1 V
′ |ψ⟩

 (61)

by noting that U†
1 . . . U

†
ti−1(|1⟩ ⟨1|i)Uti−1 . . . U1 = |1⟩ ⟨1|i for any i. Therefore, according to [1], any state has

energy no smaller than b = Ω((1 −
√
s)/T ′3) = 1/ poly(n′).

Claim 5.2 (Log-depth QMA). Any QMA protocol involving an n-qubit verifier circuit V with T = poly(n)
two-qubit gates can be converted into a O(log n)-depth QMA protocol on poly(n) qubits, whose completeness
is 1 − 2−r and soundness is 2−r with r = poly(n). More specifically, the O(log n)-depth circuit involves a
constant-depth quantum circuit that ends with computational basis measurements, followed by a O(log n)-
depth classical circuit.

Proof. Given any QMA protocol V0 (with n0 qubits including the size of the witness and number of gates
T0 = poly(n0)), we first convert it into the low-degree FK Hamiltonian using Claim 5.1. The Hamiltonian
HFK =

∑m
i=1 hi acts on n = Θ(n0T0) qubits, contains m = Θ(n0T0) = Θ(n) projectors that are at most

5-local, and has a promise gap of b− a = Ω(m−3). Each qubit participates in at most 7 terms hi.
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Next, we construct a constant-depth circuit V extracting the satisfiability of the Hamiltonian terms in
HFK. The circuit consists of m ancillas initialized to |0⟩. Upon receiving an n-qubit witness state |ξ⟩, V
applies unitaries of the form ChiNOT = (I − hi) ⊗ Ii + hi ⊗ Xi, which, conditioned on the reduced state
of |ξ⟩ being in supp(hi), flip ancilla qubit i. In particular, consider the decomposition of the terms hi
into L = O(1) groups, H1, . . . ,HL such that the terms in each group are pairwise non-overlapping. Let
Πℓ =

⊗
i:hi∈Hℓ

(I − hi). The layer ℓ ∈ [L] of V is Vℓ =
∏
i:hi∈Hℓ

ChiNOT. After applying VQ ≜ VL . . . V2V1,
we measure the ancillas in the Z basis to get a bitstring x ∈ {0, 1}m, and compute the OR function on x and
output OR(x). The OR function on m bits can be computed by a O(logm)-depth Boolean circuit5, which
can in turn be made reversible with constant space overhead [31, Section 3.2.5].

The circuit V output 1 if and only if the ancillas are measured in the all-zeros string, which happens
with probability Pr[x = 0m] = |⟨0m|VQ |ξ⟩ ⊗ |0m⟩|2 = Tr

(
DL†DL |ξ⟩ ⟨ξ|

)
where DL ≜ ΠL . . .Π2Π1 is the

detectability lemma operator [26].
Below we show that, if V0 accepts, then V accepts 1 − 2− poly(n) and if V0 rejects then V accepts with

1 − Ω(n−2). In addition, the soundness can be depth-efficiently improved to 2− poly(n).

Completeness The prover sends the witness state |ξ⟩ such that ⟨ξ|HFK |ξ⟩ ≤ 2− poly(n) (the case of mixed
state witness follows by linear extension). Also ⟨ξ|hi |ξ⟩ ≤ 2− poly(n) for any i ∈ [m]. Using the quantum
union bound (Lemma 3.7) on HFK and |ξ⟩ we can bound

1 − Tr
(

DL†DL |ξ⟩ ⟨ξ|
)

≤ 4
∑
i

⟨ξ|hi |ξ⟩ ≤ 2− poly(n). (62)

So V outputs 1 with probability at least c = 1 − 2− poly(n).

Soundness According to Claim 5.1, for any state |ξ⟩ we have ⟨ξ|HFK |ξ⟩ ≥ Ω(n−3). Observe that the
terms in HFK are projectors and each of them overlaps with at most g = 34 others, so we can apply the
detectability lemma (Lemma 3.6) on HFK and |ξ⟩

Tr
(

DL†DL |ξ⟩ ⟨ξ|
)

≤ 1
Ω(n−3) + 1 ≤ 1 − Ω(n−3) = s. (63)

Finally, soundness can be amplified to 2− poly(n) while keeping the depth logarithmic via the weak am-
plification procedure in Lemma 3.2. In particular, this procedure [1] works by using q = poly(n) copies of V
in parallel. The prover is expected to send q copies of an accepting state. We perform OR on the q decision
bits of the copies in depth O(log q) = O(log n). It is a standard fact that we can assume w.l.o.g. the prover
sends an unentangled state between these q copies (e.g., see [1, Lemma 14.1]). Thus, a simple application of
Chernoff’s bound achieves the amplified soundness whenever q is a sufficiently large polynomial in n.

We note that the technique in [32], where the author studies the hardness of distinguishing log-depth
circuits, seems to also give a log-depth verification procedure for QMA. However, their quantum circuit is
necessarily logarithmic-depth due to the use of n-qubit controlled SWAP gates. This is to be compared with
our construction, where the quantum circuit is constant-depth and followed by log-depth classical circuit.
This could be a useful feature for fault tolerance protocols and possible implications for the quantum PCP
conjecture that we discuss in this work.

6 Computational complexity of injective PEPS
We now discuss a hardness result on the creation and contraction of certain tensor network states that follows
from our construction. A summary of our results can be found in Table 2.

5A log-depth OR circuit is as follows: the first layer computes pairwise OR’s (x1 ∨ x2), (x3 ∨ x4), . . ., the second layer
similarly computes OR pairwise on the output of the first layer, and so on.
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Definition 6.1 (PEPS). A projected entangled pair state (PEPS) is any (unnormalized) state that can be
obtained by the following procedure: consider a graph and associate to each vertex v as many D-dimensional
spins as there are edges incident to v. Assume that the spins associated to the end points of an edge form
maximally entangled states |EPRD⟩ =

∑D
i=1 |i⟩ |i⟩. The PEPS is obtained by applying a linear map Pv :

CD ⊗ · · · ⊗ CD → Cd at each vertex v. Without affecting the computational complexity, we further allow
the virtual states to be any maximally entangled states of the form (I ⊗ U) |EPRD⟩. We can also assume
∥Pv∥ ≤ 1.

In [15] it was shown that preparing PEPS as a quantum state is PostBQP-hard, where PostBQP is a large
complexity class that contains QMA. The idea of the proof is that measurement-based quantum computation
with the power to post-select on the measurement outcomes reduces to preparing a PEPS. The power to
post-select on the outcomes of a quantum computation is due to the fact that the local maps Pv are allowed to
be non-invertible. Hence, it is natural to ask what happens when we reduce the power of preparing arbitrary
PEPS by removing the ability to post-select. We do this by considering a subclass of tensor networks called
injective PEPS [33].

Definition 6.2 (Injective PEPS). A PEPS on n spins is δ(n)-injective if the local maps Pv are non-singular
matrices with singular values bounded from below by Ω(δ(n)).

Our construction gives the following hardness result on the preparation of injective PEPS.

Theorem 6.3. Preparing constant-injective PEPS states in two or higher dimensions with bond dimension
D ≥ 4 and physical dimension d ≥ 4 allows solving BQP-hard problems.

Proof. Claim 2.1 tells us that we can encode a noisy quantum computation suffering from i.i.d. depolar-
izing noise with constant error probability δ2/(1 + 3δ2) into a δ-injective PEPS state. Choosing δ to be
a sufficiently small constant, the quantum fault-tolerance threshold theorem (Theorem 3.9) states that we
can ε-approximate any noise-free circuit C with a noisy circuit C̃ with polylogarithmic overhead in 1/ε.
Note that the threshold theorem holds even when the circuit connectivity is restricted to one dimension
(Corollary 3.10), so the computational hardness persists on two-dimensional injective PEPS.

The above (state) BQP-hardness result can be understood as a complement to previous works in efficient
quantum algorithms for preparing injective PEPS under assumptions on the parent Hamiltonian spectral
gap [17, 18]. We leave it as an open question to obtain tight upper bound on the complexity of preparing
injective PEPS states (an upper bound is (state) PostBQP due to [15]).

We next discuss the classical complexity of injective PEPS. PEPS is conceived as an efficient classical
description of quantum states and an important application is contracting a PEPS in order to evaluate the
value of a given observable.

Task 6.4 (PEPS observable contraction). Given a PEPS describing an unnormalized state |ψ⟩ and a local
observable O, calculate the normalized expectation value ⟨ψ|O|ψ⟩

⟨ψ|ψ⟩ .

Ref. [19] gave a quasi-polynomial time classical algorithn to contract injective PEPS under assumptions
on the parent Hamiltonian spectral gap. The complexity of injective PEPS has also been implicitly studied
in [34], where the authors showed that random PEPS, whose local maps are i.i.d. Gaussian are #P-hard
to contract to exponential additive precision. However, the random PEPS ensemble of [34] has injectivity
1/Ω(poly(n)) with high probability, and their result does not necessarily indicate that a #P-hard PEPS
instance would have constant injectivity. Similarly, the #P-hard PEPS instances in [15] can be seen to be
non-injective, even after blocking6 [33]. Using the construction in this work, we obtain the following hardness
results for contracting PEPS with constant injectivity.

Theorem 6.5. For constant-injective PEPS states in two or higher dimensions with bond dimension D ≥ 4
and physical dimension d ≥ 4, evaluating local observable expectation values to O(1) additive error is BQP-
hard.

6This is because their local maps have the form |0⟩ ⟨0|, which will remain being rank-1 after blocking.
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Proof. The BQP-hardness, similar to Theorem 6.3, follows from encoding a noisy BQP computation C into
our injective PEPS |Ψ⟩ and invoking the threshold theorem. The difference is that at the end of the fault-
tolerant circuit C̃ that simulates the noiseless circuit C in Theorem 3.9, we further perform a fault-tolerant
decoding circuit that transforms the encoded output into a physical output state. For concatenated-code
fault tolerance, this procedure is described in Section 4 of [35] (also see Section 6 of [36]). This decoding
circuit results in a physical error rate per physical qubit of the output state which is bounded by some
constant value. We encode the entire fault-tolerant circuit, including the fault-tolerant decoding part, into
our injective PEPS with noise rate below the threshold. Then evaluating to O(1)-additive error the Pauli-Z
expectation on the first qubit of the PEPS output column decides the BQP computation C.

Task PEPS Injective PEPS

State preparation PostBQP-complete BQP-hard

Multiplicative-error contraction #P-complete #P-complete∗

Additive-error contraction BQP-hard BQP-hard

Table 2: Computational complexity of general PEPS [15] and constant-injective PEPS. ∗The #P-hardness
of injective PEPS requires a specific non-local observable in Theorem 6.6.

If we instead consider O(1)-multiplicative error expectation value evaluation of PEPO non-local observ-
ables in Task 6.4, then we obtain a classical hardness matching that of general non-injective PEPS [15]. Is is
a simple observation that exact observable evaluation of Task 6.4 for general PEPS and PEPO observables7

is in #P. For this, we reduce this task to norm evaluation of PEPS, which was shown to be in #P in [15].
Observe that ⟨ψ|O |ψ⟩ = (⟨ψ| (O+ I)(O+ I) |ψ⟩ − ⟨ψ|OO |ψ⟩ − ⟨ψ|ψ⟩)/2. Each of (O+ I) |ψ⟩, O |ψ⟩, and |ψ⟩
are PEPS states since O is a PEPO. Thus, evaluating ⟨ψ|O |ψ⟩ / ⟨ψ|ψ⟩ is in #P.

In order for our construction to go through for multiplicative errors, we have to constrain the type of
observable to be describable as a tree tensor network (TTN) which is a PEPO defined on a tree graph [37].

Theorem 6.6. For constant-injective PEPS states in two or higher dimensions with bond dimension D ≥ 4
and physical dimension d ≥ 4, evaluating the expectation value of a tree tensor network observable to O(1)-
multiplicative error is #P-hard.

Proof. We encode the “quantum sum” problem8, well-known in the random circuit sampling literature [38],
into a fault-tolerant quantum circuit that exponentially suppresses the local depolarizing noise:

S =
∑

x∈{0,1}n

(−1)f(x), f : {0, 1}n 7→ {0, 1}. (64)

It is well known that O(1)-multiplicative error approximation of S2 remains #P-hard (under Turing reduc-
tion) and can be converted into O(1)-multiplicative error estimation of the amplitude | ⟨0n|C |0n⟩ |2 = S2 of
a quantum circuit C [38].

This can be further simplified to a measurement on one qubit as follows. Let W be a reversible circuit
that computes the inverse OR function, using additional ancillas initialized to a computational basis state
|0m⟩anc, and then writing the result on the (n+1)-st qubit. Note the identity (I⊗⟨0m|anc)W † |0⟩⟨0|n+1 W (I⊗
|0m⟩anc) = |0⟩⟨0|n. This implies - defining C ′ = WC and abbreviating |0n⟩ ⊗ |0m⟩anc as |0n+m⟩ - that
| ⟨0|C ′ |0n+m⟩ |2 = | ⟨0n|C |0n⟩ |2.

7Projected entangled pair operators (PEPO) are an efficiently describable family of operators, which can be thought of as
the operator version of PEPS, i.e., local maps are Pv : CD ⊗ · · · ⊗ CD → Cd×d.

8Ref. [15] instead used the “classical sum”
∑

x
f(x), whose multiplicative error estimation is significantly easier than #P.

So strictly speaking, #P-hardness of multiplicative error estimation of general PEPS contraction does not follow from Ref. [15].
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Figure 8: The recursive-majority readout of a codeblock is encoded into a tree tensor network observable.

Next, we use a concatenated-code fault-tolerant circuit C̃ from Theorem 3.9 that approximates C ′ to
additive error ε = e−Ω(n), which implies that |

〈
0̄
∣∣ C̃ ∣∣0̄n+m〉 |2 approximates | ⟨0|C ′ |0n+m⟩ |2 = S2 to O(1)-

multiplicative error. Unlike in the proof of Theorem 6.5, we cannot afford to perform the noisy fault-tolerant
decoding circuit, as doing so would no longer guarantee a multiplicative-closeness between |

〈
0̄
∣∣ C̃ ∣∣0̄n+m〉 |2

and S2. Instead, we directly read out the logical information in the output of the noisy execution of C̃ by
performing a recursive majority vote on the first logical qubit register (cf. Lemma 9 in [20]). The observable
that represents this majority vote is a tree tensor network. For concreteness, suppose C̃ is constructed from
concatenating L levels of the [[7, 1, 3]]-Steane code, then this recursive majority vote means that we first take
the majority in each block of size 7, then we take the majority, of 7 such majority bits, and so on for L levels,
to give one output bit. Here, L = Θ(log n) for the desired error suppression, which means each logical code
block consists of poly(n) physical qubits. This recursive majority vote can readily be encoded in an L-level
tree tensor network operator O as illustrated in Figure 8. Thus, evaluating the expectation value of O to
multiplicative error on our injective PEPS gives a multiplicative error estimation of S2.

Since tree tensor networks are themselves easy to contract (similar to an MPO), we conclude from
Theorem 6.6 that the #P hardness must be arising from the injective PEPS itself. Proving the same
theorem with local - or product - observables is an interesting open question.

7 Open questions
This work brings up a series of relevant open questions.

• Our main question is if we can achieve a soundness of 1/ poly(D). In our proof of Theorem 4.3, two
steps are needed - robust teleportation of Hin and a small number of Pauli errors in the low energy
states. The challenging part is the robust teleportation of Hin, which we do not know how to achieve
when the energy is 1/ poly(D). It turns out that we can enforce low Pauli errors by adding new
Hamiltonian terms with poly(D) locality. Specifically, for each local region A of D

δ4 EPR locations we
can define a Hamiltonian term that penalizes ≥ 10δ2 · Dδ4 Pauli errors, i.e.,

hlow
A =

∑
P⃗∈PA:|P⃗ |≥10δ2· D

δ4

∣∣ΦP⃗ 〉 〈ΦP⃗ ∣∣ .
Since δ is chosen 1

poly(D) , there new Hamiltonian terms are poly(D) local, which is polylog(n) when
D = polylog(n). In addition, these Hamiltonian terms are unchanged under the unitary V defined
in Section 2.3. Now, lets choose a collection of regions A1, . . . Am (with m = O(nδ4) such that each of
nD EPRs is involved in O(1) regions) and add the following Hamiltonian to the existing Hamiltonian
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H low = 1
m

∑
i h

low
Ai

. Note that H low does not change the ground state energy density too much: The
ground state achieves energy density of at most e−27D/δ2 by Chernoff bound. On the other hand, any
state with energy density at most 1

100D2 has the property that it has at most O(Dδ2 + 1
D ) fraction of

Pauli errors with probability 1 − 1/D. For this, consider the ‘fraction of Pauli errors’ operator in local
regions δ4

D

∑
j∈Ai

(I − ΦIj
). Note that δ4

D

∑
j∈Ai

(I − ΦIj
) ⪯ 10δ2(I − hlow

Ai
) + hlow

Ai
⪯ 10δ2I + hlow

Ai
. Thus,

the total fraction of Pauli errors satisfies

1
nD

∑
j

(I − ΦIj
) ⪯ O(1) 1

m

m∑
i=1

(δ
4

D

∑
j∈Ai

(I − ΦIj )) ⪯ O(1) · 10δ2I + O(1)
m

m∑
i=1

hlow
Ai
.

Thus, the expected fraction of Pauli errors in such low energy states is O(δ2 +1/D2). The claim follows
from Markov’s inequality.

• In the introduction and Appendix A, we outline a connection between the ‘polylog weaker’ classical
PCP result and adversarial fault tolerance. It is expected that adversarial fault tolerance may use good
classical codes, but we do not see a clear use of local testability (beyond locally testable repetition
codes for reading the answer from fault-tolerant computation). Could ‘polylog weaker’ classical PCP
be achieved without strong reliance on local testability (or local decodability)?

• Can the depth of BQP protocol be reduced to polylogarithmic in the input size? This does not follow
from the depth reduction of QMA due to the presence of witness. Thus, the heart of the question is
if the ground state of the tensor network Hamiltonian can be prepared in low depth when witness is
absent. One possibility is to run an adiabatic algorithm tuning δ from 1 to a smaller value. We do
not know about the spectral gap in this process - and it is likely small. But suppose that we go ahead
and tune δ adiabatically for small duration. Can we argue that we end up in a low energy state of the
parent Hamiltonian? If that is the case, we would still encode the answer to the computation if we
started from a fault-tolerant circuit.

• Can we recover QMA-hardness of the local Hamiltonian problem as an alternative to Feynman-Kitaev
clock? This is not the goal of this paper, but is interesting in its own right as it would directly map
a QMA protocol to a local Hamiltonian in two dimensions. We expect that a resolution of our main
open question would lead to this result.
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A Adversarial fault tolerance and polylog-weaker classical PCP
Here we discuss the connection between adversarial fault tolerance and polylog-weaker classical PCP. We
take any NP-hard classical Constraint Satisfaction Problem (CSP) C1 = 1

m

∑
i C1,i on n bits in which each

constraint acts on a constant number of bits and each bit participates in a constant number of constraints
(for example, a 2D Ising model).

We can verify whether C1 is satisfiable in logarithmic depth via a similar circuit as in Section 5. Specif-
ically, the verifier (1) adds m ancilla bits (ith bit corresponding to the ith constraint) initialized to 0, (2)
asks prover for the satisfying solution, and for each constraint, (3) flips the corresponding ancilla bit if the
corresponding constraint was violated. Step (2) can be done in O(1) depth since the constraints can be
divided into O(1) groups such that each group contains only non-intersecting constraints. Once this is done,
we can run an ŌR function in O(log n) depth on the ancilla bits to accept or reject.

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Figure 9: In Cook-Levin transformation from a classical circuit to a classical CSP, one places a binary
variable on each wire (red ‘x’) and enforces a (local) consistency constraint on 4 variables that are input
and output to a gate. Fix an assignment to the variables. If the assignment satisfies a local consistency
constraint, then we can view it as a correct execution of the gate. On the other hand, if the assignment
violates a local consistency constraint, then we can view it as an error in the computation.

If such O(log n) depth verification circuit can be transformed into a polylog(n) depth circuit sound
against 1

polylog(n) fraction adversarial errors within the circuits, then applying the Cook-Levin transforma-
tion (Figure 9) on this fault-tolerant circuit gives us a CSP C2 in which 1

polylog(n) energy density assignments
still encode the accept/reject answer of C1. The crucial observation here is that any violated constraint in
C2 can be viewed as an adversarial error on the circuit (Figure 9). Note that we only require adversarial
fault tolerance for NP protocols, which could be different (possibly easier to achieve) from universal adver-
sarially fault-tolerant computation. The fault-tolerant circuit will produce the output encoded in a length
Ω
(

n
polylog(n)

)
repetition code.9 We can fault-tolerantly verify the logical output bit by local checks. Let

Cout be the CSP that realizes this check and penalizes the rejecting encoded output in C2.
We claim that the CSP 1

2C2+ 1
2Cout has a promise gap of 1

polylog(n) . In the yes case where C1 is satisfiable,
the above fault-tolerant computation accepts for some witness and hence C2 as well as Cout are satisfiable.
In the no case where C1 is unsatisfiable, let x be an assignment to the variables in C2 that have energy
at most 1

polylog(n) . This assignment encodes the fault-tolerant computation above with 1
polylog(n) fraction of

adversarial errors. By assumption on fault-tolerant computation, the logical output bit of this computation
should still be an encoding of logical 1. Hence the penalty from Cout is 1

polylog(n) due to the distance of the
repetition code encoding the logical output bit. Thus, the energy of 1

2C2 + 1
2Cout is at least 1

polylog(n) .
This concludes our claim that adversarial classical fault tolerance with polynomial depth overhead implies

a ‘polylog weaker’ version of classical PCP theorem.
9Given the error budget with adversary, the output cannot be encoded in a code of length smaller than O

(
n

polylog(n)

)
.
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B Locality of Clifford propagation terms
We show that the rotated propagation term V †h

(ℓ)
i,jV associated with a Clifford gate U (acting on qubits i, j

in layer ℓ < D) remains local. For simplicity, we first prove this for single-qubit gate. The generalization to
the two-qubit case is straightforward. Below we refer to this term as hU for brevity.

Recall hU = Λ⊗2
AB,CD(I − |ΦU ⟩ ⟨ΦU |BC)Λ⊗2

AB,CD acting on qubits A,B,C,D as shown below.

U

B CA D

As in the main text, let |Φp⃗⟩AB,CD ≜ |Φp1⟩AB |Φp2⟩CD and we will omit the system labels when they are
clear from the context. The rotated term is of the form
V †hUV = V †Λ⊗2

AB,CD(I − |ΦU ⟩ ⟨ΦU |BC)Λ⊗2
AB,CDV

= V †

 ∑
p⃗,q⃗∈P⊗2

δ4−|(p⃗,q⃗)| |Φp⃗⟩ ⟨Φq⃗|AB,CD ⊗ ⟨Φp⃗| (I − |ΦU ⟩ ⟨ΦU |BC) |Φq⃗⟩

V

= V †

 ∑
p⃗,q⃗∈P⊗2

δ4−|(p⃗,q⃗)| |Φp⃗⟩ ⟨Φq⃗|AB,CD ⊗
(
1p⃗,q⃗ − 1

8 Tr(p∗
1q

⊤
1 U

†q⊤
2 p

∗
2U)

)V

=
∑
p⃗

δ4−2|p⃗| |Φp⃗⟩ ⟨Φp⃗|

− 1
8

∑
P⃗∈P⊗n(ℓ−1)

∑
p⃗,q⃗

δ4−|(p⃗,q⃗)| |Φp⃗⟩ ⟨Φq⃗| Tr(p∗
1q

⊤
1 U

†q⊤
2 p

∗
2U) ⊗

∣∣ΦP⃗ 〉 〈ΦP⃗ ∣∣⊗ (W̃<ℓ

P⃗
)†p†

1U
†p†

2q2Uq1(W̃<ℓ

P⃗
),

where W̃<ℓ

P⃗
≜Wℓ−1P̃ℓ−1 . . .W1P̃1. Above, 1p⃗,q⃗ denotes the Kronecker delta symbol. The sum

∑
P⃗∈P⊗n(ℓ−1)

is over the Pauli noise P⃗ in layers preceding the gate U . We can also drop the complex conjugate “∗” because
P = {I,X,XZ,Z} are real matrices.

Since U is a Clifford operator, the second term above is nonzero if and only if U†q⊤
2 p

∗
2U = αp∗

1q
⊤
1 for

α ∈ {±1,±i}. We denote p⃗ U∼ q⃗ if this is the case, leaving the phase α implicit. This notation suggests that
the phase α does not show up in V †hUV . Indeed, it can be verified that

p⊤
1 U

†p⊤
2 q2Uq1 Tr(p1q

⊤
1 U

†q⊤
2 p2U) = p⊤

1 (α∗q1p
⊤
1 )q1 Tr(αp1q

⊤
1 p1q

⊤
1 )

= α∗αp⊤
1 q1p

⊤
1 q1 Tr(p⊤

1 q1p
⊤
1 q1)

= 2I.

Thus,

V †hUV =
∑

p⃗∈P⊗2

δ4−2|p⃗| |Φp⃗⟩ ⟨Φp⃗| − 1
4
∑
p⃗

U∼q⃗

δ4−|(p⃗,q⃗)| |Φp⃗⟩ ⟨Φq⃗|

= Λ⊗2

 ∑
p⃗∈P⊗2

|Φp⃗⟩ ⟨Φp⃗| − 1
4
∑
p⃗

U∼q⃗

|Φp⃗⟩ ⟨Φq⃗|

Λ⊗2.

A completely similar analysis for two-qubit gates gives

V †hUV = Λ⊗4

 ∑
p⃗∈P⊗4

|Φp⃗⟩ ⟨Φp⃗| − 1
16
∑
p⃗

U∼q⃗

|Φp⃗⟩ ⟨Φq⃗|

Λ⊗4,
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where in this case p⃗ U∼ q⃗ means U†(q⊤
2 p2) ⊗ (q⊤

4 p4)U ∝ (q⊤
1 p1) ⊗ (q⊤

3 p3).
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