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ABSTRACT 16 

Achieving targeted product performance requires the integrated exploration of design spaces across 17 
multiple levels of decision-making in systems comprising products, materials, and manufacturing processes 18 
- Product-Material-Manufacturing Process (PMMP) systems. This demands the capability to co-design 19 
PMMP systems, that is, share ranged sets of design solutions among distributed product, material, and 20 
manufacturing process designers. PMMP systems are subject to uncertainties in processing, microstructure, 21 
and models employed. Facilitating co-design requires support for simultaneously exploring high-22 
dimensional design spaces across multiple levels under uncertainty. 23 

In this paper, we present the Co-Design Exploration of Multilevel PMMP systems under Uncertainty 24 
(CoDE-MU) framework to facilitate the simultaneous exploration of high-dimensional design spaces across 25 
multiple levels under uncertainty. The CoDE-MU framework is a machine learning-enhanced, robust co-26 
design exploration framework that integrates robust, coupled compromise Decision Support Problem (rc-27 
cDSP) construct with interpretable Self-Organizing Maps (iSOM). The framework supports multidisciplinary 28 
designers to i) understand the multilevel interactions, ii) identify the process mechanisms that affect material 29 
and product responses, and iii) provide decision support for problems involving many goals with different 30 
behaviors across multiple levels and uncertainty. 31 

We use an industry-inspired hot rod rolling (HRR) steel manufacturing process chain problem to 32 
showcase the CoDE-MU framework's efficacy in facilitating the simultaneous exploration of the product, 33 
material, and manufacturing process design spaces across multiple levels under uncertainty. The framework 34 
is generic and facilitates the co-design of multilevel PMMP systems characterized by hierarchical product-35 
material-manufacturing process relations and many goals with different behaviors that must be realized 36 
simultaneously at individual levels. 37 
Keywords: Co-design, Robust design, coupled-compromise Decision Support Problem (c-cDSP) construct, 38 
interpretable Self-Organizing Map (iSOM) 39 

GLOSSARY 40 
Product-Material-Manufacturing Process (PMMP) system: We define PMMP systems as systems 41 
comprising the product, its materials, and associated manufacturing processes. 42 
Design Level: We define ‘design level’ as the interface where design decisions are made by disciplinary 43 
experts regarding products, materials, and manufacturing processing, considering their interactions. The 44 
disciplinary experts correspond to the product, materials, and process designers, respectively. 45 
Robust satisficing solutions: Solutions that are relatively insensitive to uncertainties and satisfice the 46 
designer’s requirements. 47 
Co-design: We define co-design from an ICME perspective as a design that supports distributed disciplinary 48 
experts, such as product, material, and process designers, across multiple levels of decision-making to work 49 
collaboratively in ensuring PMMP system performance. In co-design, designers are supported in i) making 50 
decisions simultaneously across multiple levels while considering their interrelations and ii) managing design 51 
conflicts to ensure collaboration. 52 
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Robust Co-design: We define robust co-design from an ICME perspective as a co-design that supports 53 
designers across multiple levels to manage inherent uncertainties by facilitating the identification of a ranged 54 
set of common robust satisficing solutions across the levels. 55 
 56 
NOMENCLATURE AND LIST OF SYMBOLS 57 
[C]  - Carbon concentration 58 
c-cDSP  - coupled-compromise Decision Support Problem 59 
cDSP  - compromise Decision Support Problem 60 
Ceq   - Equivalent Carbon 61 
CoDE-MU - Co-Design Exploration of Multilevel PMMP systems under Uncertainty 62 
CR   - Cooling Rate 63 
[Cu]  - Copper concentration 64 
DBD  - Decision-Based Design 65 
DCI  - Design Capability Index 66 
DSIDES  - Decision Support In the Design of Engineering Systems 67 
DSP   - Decision Support Problem 68 
Dα   - Ferrite Grain Size 69 
dγ  - Austenite Grain Size 70 
EMI  - Error Margin Index 71 
GoID  - Goal-oriented Inverse Design 72 
HRR  - Hot Rod Rolling 73 
HV  - Hardness 74 
ICME   - Integrated Computational Materials Engineering 75 
IDEM  - Inductive Design Exploration Method 76 
iSOM  - interpretable Self-Organizing Map 77 
[Mn] and [Mncopy]- Manganese concentration 78 
MDO  - Multi-Disciplinary Optimization 79 
[N]  - Nitrogen concentration 80 
p  - Pearlite colony size 81 
[P]  - Phosphorus Concentration 82 
PMMP  - Product, Material, and Manufacturing Process 83 
PSPP  - Processing-microStructure-Property-Performance 84 
rc-cDSP  - robust, coupled-compromise Decision Support Problem 85 
SOM  - Self-Organizing Maps 86 
[Si]  - Silicon concentration 87 
S0  - Pearlite interlamellar spacing 88 
tcarb  - Carbide thickness 89 
Tmf  - Average Austenite to Ferrite transition temperature 90 
TS  - Tensile Strength 91 
Xf  - Ferrite fraction 92 
Xf eq  - Equivalent Ferrite fraction 93 
YS  - Yield Strength 94 
εr  - Residual strain at the end of rolling 95 
 96 
1. FRAME OF REFERENCE 97 

 The achievement of targeted product performance requires careful consideration of the relations among 98 
products, their materials with respective microstructures, and associated manufacturing processing. Product 99 
performances are defined by many property requirements with different behaviors that need to be realized 100 
simultaneously. The manufacture of steel rods through the hot rod rolling (HRR) manufacturing process 101 
chain [1] is an example that illustrates the relations among manufacturing processing, material 102 
microstructure, and product properties and performance. In the HRR of steel, cast steel billets are reheated 103 
and subsequently processed in rolling and cooling mills to produce hot-rolled steel rods as products. The 104 
mechanical properties of the hot-rolled steel rods identify their performance. The steel microstructure 105 
determines the mechanical properties. The steel microstructure is influenced by the thermo-mechanical 106 
processing that steel billets undergo. Given the relations among manufacturing processing, material 107 
microstructure, and product properties and performance, realizing targeted product performance requires a 108 
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collective consideration of a system comprising the products, materials, and manufacturing processes [2], 109 
referred to as Product-Material-Manufacturing Process (PMMP) systems in this paper. This necessitates an 110 
integrated, top-down, systems-based approach for designing PMMP systems, starting with the property 111 
requirements and inversely designing the material microstructure and processing paths to realize the targeted 112 
product performance [3]. Olson's Processing-microStructure-Property-Performance (PSPP) relations [4] lay 113 
the foundation for the inverse, systems-based design of PMMP systems by connecting the product, materials, 114 
and manufacturing processes, as depicted in Figure 1. According to the PSPP relations, the processing during 115 
manufacturing determines the material microstructure and properties, which in turn determines the product 116 
properties and performance. 117 

 
FIGURE 1. Olson’s Processing-microStructure-Property-Performance (PSPP) relations [4] that connect 

products, materials, and manufacturing processes. 

The design of PMMP systems involves decision-making by different disciplinary experts, such as 118 
product, material, and process designers. The expert decisions are made across multiple levels of a decision 119 
hierarchy defined based on the PSPP relations. The decisions at individual levels in the PMMP system are 120 
directed toward simultaneously achieving their design goals with different behaviors. The difference in 121 
behaviors necessitates the trade-offs or compromises among the goals. Individual-level decisions require 122 
careful consideration of the level-specific constraints and design variable bounds. The individual-level 123 
decisions collectively determine product performance. Due to their interrelations, decisions at an individual 124 
level will affect the decisions at another interrelated level, impacting product performance. Individual-level 125 
decisions can result in ' design conflicts when made in isolation without considering their interrelations.’ We 126 
consider design conflicts as situations where the goal-directed decisions at an individual level do not align 127 
with the goal-directed decisions at another interrelated level. Design conflicts will result in poor PMMP 128 
system performance and products not meeting targeted performance requirements. In this paper, we focus on 129 
the simulation-supported design of PMMP systems that help reduce dependency on expensive and time-130 
consuming lab-scale experimentation and plant trials [5]. The Integrated Computational Materials 131 
Engineering (ICME) initiative [6] provides a heading for simulation-supported PMMP systems design. ICME 132 
focuses on the simulation-supported, concurrent, top-down design of products and materials by using the 133 
PSPP relations to link materials models across multiple length and time scales. According to McDowell [7], 134 
simulation-supported systems design approaches should enhance the designer’s understanding of complex 135 
relations in the system to help make informed decisions. The decisions in simulation-supported PMMP 136 
system design are based on simulation-generated information. In simulations, designers use models that are 137 
incomplete, inaccurate, and abstractions of underlying physical phenomena [8] and therefore, they embody 138 
uncertainty. The decisions at individual levels are also subject to design variable uncertainties arising from 139 
random variations in manufacturing processing and material microstructure. These inherent uncertainties 140 
adversely impact the decisions at individual levels and PMMP system performance. Therefore, the 141 
simulation-supported integrated design of PMMP systems requires support for i) consideration of the 142 
relations among individual-level decisions, ii) management of design conflicts, and iii) management of 143 
uncertainties. This necessitates the facilitation of ‘robust co-design,’ allowing designers distributed across 144 
multiple levels to collaborate by supporting i) the consideration of the relations among individual-level 145 
decisions and ii) the management of uncertainties and design conflicts. By facilitating collaboration, the 146 
satisfaction of the level-specific design goals and the PMMP system performance under conditions of 147 
uncertainty is ensured. Collaboration is achieved by supporting ‘co-design exploration’ - the simultaneous 148 
exploration of the multilevel design spaces to identify a ranged set of common ‘robust satisficing solutions’ 149 
across levels. Robust satisficing solutions are relatively insensitive to uncertainties and ‘satisfy’ and ‘suffice’ 150 
the design requirements. 151 
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From a systems design perspective, we consider design a goal-oriented, decision-based process 152 
supported by simulations. Therefore, we abide by the Decision-Based Design (DBD) paradigm advocated by 153 
Mistree and co-authors [9], where designing is considered a decision-making process wherein designers make 154 
a series of decisions, some sequentially while others concurrently. The decisions in DBD are modeled using 155 
the Decision Support Problem (DSP) technique [9], anchored in the notion of bounded rationality proposed 156 
by Herbert A. Simon [10]. The information required to support decisions in DBD is generated using empirical 157 
or simulation-driven surrogate models that are abstractions of reality. Therefore, we seek a ranged set of 158 
‘satisficing solutions’ [11] that ‘satisfy’ and ‘suffice’ the designer's requirements for the many goals of the 159 
design problem by exploring the solution space. The use of the compromise Decision Support Problem 160 
(cDSP) [12] construct supports exploring satisficing solutions for problems involving many goals with 161 
different behaviors, where goal trade-off considerations are essential. Using the coupled cDSP (c-cDSP) 162 
construct [13], designers can model interrelated decision problems across multiple levels, with decisions at 163 
individual levels requiring trade-offs among the many goals. The design spaces generated by executing the 164 
DSP are explored to identify a ‘ranged set of satisficing solutions.’ The ranged set of satisficing solutions 165 
helps designers identify i) regions of interest in the design space that require further detailed exploration and 166 
ii) key design variables and important relations in a system. In this paper, we look at managing uncertainties 167 
by designing the system to be relatively insensitive to uncertainties without reducing or eliminating them, 168 
termed ‘robust design.’ Unlike uncertainty mitigation approaches that involve developing ‘perfect’ models 169 
by collecting more data and performing extensive computations to quantify uncertainties, uncertainty 170 
management is computationally less expensive. Uncertainty management is achieved by seeking ‘robust 171 
solutions’ that are relatively insensitive to uncertainties. Type I, Type II, and Type III robust designs are 172 
discussed in the literature [1] to deal with uncertainties associated with random noise, design variables, and 173 
models, respectively. The use of the Design Capability Index (DCI) [14] and Error Margin Index (EMI) [15] 174 
robust design indices in conjunction with the DSP construct have been proposed to help identify a ranged set 175 
of ‘robust satisficing solutions’ for Type I and II robust designs, and Type III robust design, respectively.  176 

Most current approaches discussed in the literature for the top-down design of PMMP systems are 177 
sequential. Adams and co-authors [16] present a framework to support the inverse design of systems 178 
involving materials and processes by employing spectral representation to establish invertible relationships 179 
between the same. The materials knowledge systems approach is presented by Kalidindi and co-authors [17, 180 
18], where the bi-directional information flow between different length scales is facilitated to support inverse 181 
materials design. Ghosh and co-author [19] present a scalable framework for explicit inverse design named 182 
probabilistic machine learning for inverse design. The explicit inverse design is modeled in the framework 183 
using a conditional invertible neural network. The focus here is on supporting the identification of product 184 
designs that meet targeted performance. This is demonstrated in the inverse aerodynamic design of three-185 
dimensional turbine blades. Sui and co-authors [20] present a deep reinforcement learning scheme for 186 
automating the inverse design of composite material structures to realize the required properties. The scheme 187 
is applied to a two-dimensional composite planar structure design problem to achieve the strongest average 188 
structure tensile strength along the primary axes. Chen and co-authors [21] present a machine-learning-based 189 
inverse materials design approach that combines generative inverse design networks, backpropagation, and 190 
an active learning strategy to support composite materials design. Kumar and co-authors [22] propose a 191 
machine learning-based inverse design technique using neural networks to realize metamaterials with desired 192 
properties by tailoring the material topologies. Tsai and co-authors [23] and Qian and co-authors [24] present 193 
inverse design approaches that combine artificial neural networks and the genetic algorithm to relate 194 
processing with product properties and material properties with structure, respectively. The sequential nature 195 
of these approaches results in isolated decision-making across individual levels, thereby failing to consider 196 
the multilevel relations and resulting in design conflicts that impact the PMMP system performance. The use 197 
of multidisciplinary optimization (MDO) [25] approaches, such as analytical target cascading [26], 198 
collaborative optimization [27], and bilevel integrated system synthesis [28, 29] for optimizing multilevel 199 
systems while considering the multilevel interactions are discussed in the literature. Ituarte and co-authors 200 
[30] present a computer-aided expert system where MDO and surrogate models are employed to conduct 201 
trade-off exploration and optimization by coupling product design, materials systems, and manufacturing 202 
processes. The authors demonstrate the exploration of optimized solutions across the product, material, and 203 
manufacturing disciplines for a digital manufacturing scenario to ensure overall system performance. 204 
Rigorous and iteratively intensive optimization techniques that involve optimization loops within and 205 
between levels are employed in MDO approaches to identify unique single-point solutions at each level. This 206 
is especially challenging during design exploration, where the focus is on quickly identifying a set of 207 
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satisfactory solutions instead of a unique single-point solution [31]. In the optimization formulation employed 208 
in MDO approaches, designers assume the perfectness of the models and objective function and the 209 
availability of all required information. Given that the models used are abstractions of reality, the objective 210 
functions are imperfect, and the information available is incomplete, our focus is on ‘satisficing’ rather than 211 
‘optimizing.’ We therefore seek a ranged set of robust satisficing solutions. 212 

Different approaches that support multilevel co-design exploration under uncertainty by identifying 213 
robust satisficing solution sets have been discussed in the literature. Choi and co-authors [3] propose the 214 
Inductive Design Exploration Method (IDEM) to support the robust co-design of multilevel systems. IDEM 215 
involves sequentially identifying and propagating a range of robust solutions among the individual levels. 216 
IDEM is limited by the number of design variables that can be considered, discretization errors, increased 217 
computational expense for improved accuracy, and limited flexibility in design, as discussed in [1]. 218 
Nellippallil and co-authors [1] present an inverse robust design approach named Goal-oriented Inverse 219 
Design (GoID) to address some of the limitations in IDEM and support the co-design of systems composed 220 
of hierarchically connected products, materials, and associated manufacturing processes. The GoID approach 221 
supports sequential design space exploration at the individual levels to identify robust satisficing solutions 222 
and their propagation as targets inversely along the hierarchical process chain. The GoID approach does not 223 
support the management of design conflicts that can arise due to the sequential nature of design space 224 
exploration. To address this shortcoming, Baby and Nellippallil [32] present an information‐decision 225 
framework to support the systematic detection and management of design conflicts. This is achieved by 226 
controlling the design space and decisions across different levels of decisions made sequentially. The IDEM, 227 
GoID approach, and the information‐decision framework presented by Baby and Nellippallil do not support 228 
the simultaneous exploration of the individual levels.  229 

Our focus in this paper is on providing decision support during the simulation-supported design of 230 
multilevel PMMP systems under uncertainty. From a DBD perspective, we hypothesize that this can be 231 
achieved by facilitating robust co-design using a decision support framework that supports i) modeling the 232 
level-specific decision problems and their interactions with other levels in PMMP systems in terms of the 233 
flow of information, ii) consideration of uncertainties in the decision problems, and iii) co-design exploration 234 
of the multilevel design spaces to identify common robust satisficing solutions and thereby manage design 235 
conflicts. Given the many design goals at individual levels that require trade-offs and the interactions of 236 
decisions across levels, we model the individual-level decision problems and their interaction in PMMP 237 
systems using the c-cDSP construct discussed in Section 3.1.1. A combination of Preemptive and 238 
Archimedean formulations is used in the c-cDSP. Using the Preemptive formulation, designers can consider 239 
the interrelations among the decision problems across multiple levels of a decision problem. Using the 240 
Archimedean formulation, designers can consider many goals that require trade-offs at individual levels of a 241 
multilevel decision problem. By combining the two, designers can use a coupled DSP formulation to account 242 
for many design goals at individual levels and hierarchical relations across levels of a multilevel decision 243 
problem. The EMI and DCI robust design indices presented in Section 3.1.2 are combined with the c-cDSP 244 
construct to establish the robust, coupled cDSP (rc-cDSP) that helps designers generate robust design 245 
solutions across multiple levels. The design spaces across the multiple levels in the PMMP system are 246 
visualized in an integrated manner using the interpretable Self Organizing Maps (iSOM) [33] discussed in 247 
Section 3.1.3. The integrated iSOM visualization facilitates co-design exploration to identify common robust 248 
satisficing solution sets across multiple levels. In this paper, we present the Co-Design Exploration of 249 
Multilevel PMMP systems under Uncertainty (CoDE-MU) framework that enables designers to i) model 250 
decision problems at individual levels and their interactions, ii) consider uncertainties, and iii) visualize and 251 
efficiently explore multilevel design spaces simultaneously to support robust co-design. The CoDE-MU 252 
framework’s novelty lies in two aspects: a) support for modeling multilevel design problems characterized 253 
by the need to consider trade-offs among many goals at individual levels and interactions across levels, using 254 
a coupled decision problem formulation. This is achieved by combining the Preemptive and Archimedean 255 
formulations in the c-cDSP; b) support for the joint management of design conflicts and uncertainties across 256 
multiple levels through co-design exploration. Co-design exploration involves the simultaneous exploration 257 
of multilevel design spaces. It is realized by exploiting the inherent interpretability and correlated nature of 258 
the iSOM plots to help designers efficiently identify common robust satisficing solutions. 259 

A description of the problem is presented in Section 2. In Section 3, the CoDE-MU framework to support 260 
the robust co-design exploration of multilevel PMMP systems is presented. In Section 4, we showcase the 261 
framework's efficacy in supporting the simultaneous exploration of design spaces across multiple levels in 262 
PMMP systems and managing uncertainties using an industry-inspired steel manufacturing process chain test 263 
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problem – the HRR of steel. In the HRR problem, we focus on the interactions between the material and 264 
cooling process designers at different levels. We end the paper with our key findings and closing remarks in 265 
Section 5. In Appendix A, we present the empirical models that relate the design variables and goals in the 266 
coupled HRR problem. 267 
 268 
2. PROBLEM DESCRIPTION: ACCOUNTING FOR INTERACTIONS ACROSS MULTIPLE 269 

LEVELS AND UNCERTAINTIES INVOLVED IN THE DESIGN OF PMMP SYSTEMS 270 
The design of PMMP systems involves decisions by the product, materials, and process designers 271 

regarding the product, its materials, and associated manufacturing processes, respectively. The product 272 
designer makes decisions regarding the properties that define the product performance; the materials designer 273 
makes decisions regarding material microstructure and composition that defines material properties; and 274 
process designers make decisions regarding material processing and input material characteristics that 275 
determine the end of processing material microstructure. The interrelated decisions are made across multiple 276 
design levels in a design hierarchy defined by the PSPP relations, as depicted in Figure 2. 277 

 
FIGURE 2:  Design of PMMP system: Multilevel nature of the PMMP system considering the multiple 

levels of decisions, multilevel interactions, and uncertainties across the multiple levels. The black arrows 

depict the forward flow of material, and the red dashed arrows represent the inverse flow of information 

across multiple design levels that connect the manufacturing processing, material, and product. 

In Figure 2, Design Level ‘m’ involves decisions by the materials designer at the top of the hierarchy, 278 
followed by the various process designer’s decisions across Design Levels ‘m+1’ to ‘m+n.’ Design Levels 279 
‘m+1’ to ‘m+n’ are related to the corresponding material processing ‘1’ to ‘n’ during manufacturing. In this 280 
paper, for demonstration purposes, we focus on the interactions between the Design Levels ‘m’ and ‘m+1’ 281 
of the design hierarchy, where m = 1. At Design Level ‘m’ or ‘1’- the upper level, decisions are made 282 
regarding the material microstructure required to achieve targeted properties by considering the relations 283 
between the product properties and material microstructure. At the lower level - Design Level ‘m+1’ or ‘2’, 284 
decisions are made regarding the input material composition and microstructure and the processing during 285 
manufacturing process ‘1’ required to achieve the targeted microstructure. This requires considering the 286 
relations between the material processing ‘1’ and the material microstructure. Decisions at Design Level 1 287 
will influence the decisions at Design Level 2. Sequential decision-making across the individual levels in an 288 
isolated manner will result in design conflict, where decisions at Design Level 1 regarding the material 289 
microstructure required to achieve the targeted property goal values may not be achievable at Design Level 290 
2, given the resource constraints. Resource constraints at Design Level 2 are defined in terms of process 291 
limitations and compositional or microstructural characteristics of the input material. The design conflict will 292 
result in targeted product performance not being achieved. Hence, the collective consideration of the 293 
decisions across the individual levels is vital to account for their interactions and manage design conflicts, 294 
thereby ensuring targeted product performance during PMMP systems design. This necessitates co-designing 295 
the individual levels, where designers at different levels are supported in identifying and sharing ranged sets 296 
of design solutions across the levels. Co-design requires support for simultaneously exploring the design 297 
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spaces across the individual levels. The decisions at the individual levels are subject to various uncertainties 298 
associated with the models employed and other random variations stemming from manufacturing processing 299 
and material microstructure. Therefore, management of these uncertainties during PMMP systems design is 300 
also essential. This can be achieved by facilitating the identification of robust satisficing solutions. In this 301 
paper, we specifically focus on uncertainties associated with the design variables and models. Overall, the 302 
need in designing PMMP systems is the support for simultaneous multilevel design exploration to identify a 303 
ranged set of common robust satisficing solutions across multiple levels. 304 

 305 
3. A FRAMEWORK TO FACILITATE ROBUST CO-DESIGN EXPLORATION OF 306 

MULTILEVEL PMMP SYSTEMS 307 
In this section, we present a framework, namely Co-Design Exploration of Multilevel PMMP systems 308 

under Uncertainty (CoDE-MU), that supports designers in simultaneously exploring design spaces across 309 
multiple levels to identify a ranged set of common robust satisficing solutions. Using the CoDE-MU 310 
framework, we facilitate the co-design of multilevel PMMP systems that involve the product, materials, and 311 
manufacturing processes while considering the uncertainties. We begin this section by discussing the various 312 
constructs and tools employed in the framework. This is followed by a discussion on decision support using 313 
the framework. 314 
3.1. Constructs and tools used in the CoDE-MU framework 315 

Three primary constructs and tools are employed in the CoDE-MU framework. They are i) the coupled-316 
cDSP (c-cDSP) construct, ii) Robust design constructs – DCI and EMI, and iii) the iSOM visualization tool. 317 
A discussion of the constructs and tools follows. 318 
3.1.1. c-cDSP construct 319 

The coupled DSP [13] is a DSP construct that supports designers to account for the relations among 320 
decisions made hierarchically or concurrently across multiple levels. Using the coupled DSP construct, the 321 
relations among the decisions at different levels are modeled as either a vertical or horizontal coupling [13]. 322 
Vertical coupling is used for hierarchical decisions, and horizontal coupling is used for concurrent decisions. 323 
Decisions at individual levels are directed towards simultaneously meeting many design goals with different 324 
behaviors, requiring trade-offs to be made. Hence, we use a c-cDSP to model the multilevel decisions and 325 
their relations in PMMP systems. In c-cDSPs, the level-specific information regarding design variables, 326 
design goals, and constraints is captured using the keywords – Given, Find, and Satisfy, as depicted in Figure 327 
3. Figure 3 depicts the basic structure of the c-cDSP for a system with two levels, Design Levels 1 and 2.  328 

  
FIGURE 3:  The basic structure of the coupled cDSP (c-cDSP) construct 

The focus in utilizing the c-cDSP is to find solutions that minimize the total deviation of all the design 329 
goals in the system from their target values, termed the ‘deviation function.’ Based on the coupling between 330 
the individual levels, the deviation function in c-cDSPs is modeled using a combination of Preemptive and 331 
Archimedean formulations. Using the Preemptive formulation, designers can consider the relations among 332 
decisions made sequentially across multiple levels of a decision hierarchy. Since the decisions in PMMP 333 
systems are made sequentially across different levels of a decision hierarchy defined by the PSPP relations, 334 
the Preemptive formulation is used to model the relations across design levels. In the preemptive formulation, 335 
the goals at different design levels are ordered into different priority sets, as depicted in Figure 3. The priority 336 
sets are ordered according to the position of the design level in the decision hierarchy. The design goals are 337 
satisfied in the order of priority sets, with goals at a higher priority set being met first before meeting the 338 
goals at a lower priority set [12]. The use of the Preemptive formulation, therefore, allows designers to i) 339 
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consider the relations among decisions made sequentially across different levels of a decision hierarchy and 340 
ii) assign different priorities for the design goals at different levels. Designers can use the Archimedean 341 
formulation to consider many design goals requiring trade-offs at individual levels in a multilevel decision 342 
problem. In the Archimedean formulation, design goals in a priority set are assigned different weights to 343 
account for the differences in their relative importance [12]. The weights assigned are values between 0 and 344 
1, summing to 1, with a higher value indicating a higher preference. Hence, the Archimedean formulation is 345 
used at individual levels of a multilevel decision problem. By combining the Preemptive and Archimedean 346 
formulations in the proposed framework, designers can account for many design goals requiring trade-offs 347 
at individual levels and relations across levels in PMMP systems using a c-cDSP. The c-cDSP is created and 348 
executed using the Decision Support In the Design of Engineering Systems (DSIDES) platform. 349 
3.1.2. Robust design constructs: DCI and EMI 350 

The DCI and EMI constructs help designers manage uncertainties by facilitating the identification of 351 
robust solutions that are relatively insensitive to uncertainties. Using the DCI construct [14], designers can 352 
account for design variable uncertainties arising from manufacturing processing and material microstructure 353 
variability. Using the EMI construct [15], designers can consider uncertainties in the models that interrelate 354 
processing with microstructure and microstructure with properties. The ‘larger-is-better’ and ‘smaller-is-355 
better’ cases for EMI and DCI computations are depicted in Figures 4a and 4b, respectively.  356 

  
FIGURE 4:  Uncertainty in responses with variability in design variables and models for the larger-is-better 

and smaller-is-better cases. The solid and the dashed bell curves represent different models for a response, 

indicating variability in the models.   

Identifying solutions with values of DCI ≥ 1 and EMI ≥ 1 will ensure system robustness to uncertainties. 357 
The higher the DCI or EMI values, the higher the safety measure against failure due to uncertainties. A larger-358 
is-better case is employed for maximization goals. The DCI and EMI values for the larger-is-better case are 359 
computed using Equations 1 and 4, respectively. For the l larger-is-better case depicted in Figure 4a, higher 360 
EMI and DCI values can be achieved by i) keeping the mean response (𝜇𝑦) as far away as possible from a 361 
lower requirement limit (LRL), thereby maximizing the numerator, and ii) minimizing the spread of the 362 
response - ΔY or ΔYlower, thereby minimizing the denominator. A smaller-is-better case is employed for 363 
minimization goals. The DCI and EMI values for this case are computed using Equations 2 and 5, 364 
respectively. For the smaller-is-better case depicted in Figure 4b, higher EMI and DCI values can be achieved 365 
by i) keeping the mean response (𝜇𝑦) as far away as possible from an upper requirement limit (URL), thereby 366 
maximizing the numerator and ii) minimizing the spread of the response - ΔY or ΔYlower, thereby minimizing 367 
the denominator. 368 
For the larger-is-better case 369 

For the smaller-is-better case 370 

where,  371 
ΔY - response variation for small variations in design variables  372 
𝜇𝑦– Mean responses 373 
LRL – Lower requirement limit 374 
URL – Upper requirement limit 375 
The value of ΔY is computed as per Equation 3. 376 

𝐷𝐶𝐼 =  
μ𝑦 − 𝐿𝑅𝐿

ΔY
 (1) 

𝐷𝐶𝐼 =  
𝑈𝑅𝐿 − μ𝑦

ΔY
 (2) 
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where, 377 
i = 1, 2, 3, …, r (index of design variables) 378 
Δx𝑖 – variation or uncertainty in design variable x𝑖 379 
𝜕𝑓

𝜕𝑥𝑖
 – variation in the response 𝑓 with respect to the design variable x𝑖 380 

For the larger-is-better case 381 

For the smaller-is-better case 382 

where,  383 
μ𝑦 – mean responses, 384 
LRL – Lower requirement limit 385 
𝛥𝑌𝑙𝑜𝑤𝑒𝑟  =  𝑓𝑜(𝑥) – 𝑌𝑚𝑖𝑛  386 
𝑓𝑜(𝑥) – mean response model 387 
𝑌𝑚𝑖𝑛  =  𝑀𝑖𝑛[ 𝑓𝑗(𝑥) − 𝛥𝑌𝑗] 388 
j = 0, 1, 2, …, s (number of uncertainty bounds)   389 
i = 1, 2, 3, …, r (index of design variables) 390 
Δx𝑖 – variation or uncertainty in design variable x𝑖 391 
ΔYj is the response variation for small variations in design variables for each uncertainty bound j 392 
and is computed as per Equation 6. 393 

Given that the required data is available, an approach to generate the upper, mean, and lower bound 394 
models is presented in [34]. A discussion of this approach is beyond the scope of this paper. We do not 395 
employ the above approach in this paper. Instead, we assume the availability of the upper, mean, and lower 396 
bound models to demonstrate the facilitation of model uncertainty management using the framework. 397 
3.1.3. iSOM visualization tool 398 

iSOM [33] is a tool to visualize high-dimensional data using 2D plots. It is an unsupervised machine-399 
learning algorithm, specifically an artificial neural network, and is a modified form of the conventional Self 400 
Organizing Maps (SOM) [35]. SOM, an artificial neural network developed by Kohonen [36], is an efficient 401 
algorithm for visualizing multidimensional numerical data [37]. The modification to conventional SOM 402 
results in the avoidance of self-intersections and makes the iSOM plots inherently interpretable. iSOM has 403 
distinct advantages, such as scalability and interpretability, making it suitable for exploring design space in 404 
real-world problems. Plots generated using iSOM are valuable for visualizing the underlying relationships 405 
between input design variables and output responses, as depicted in Figure 5 for the function Z = X2 + Y2.  406 

 
FIGURE 5:  Example of visualization using iSOM for a function Z = X2 + Y2 (plot on the left) with input 

component plots X and Y and output component plot Z [38] 

ΔY = ∑ |
𝜕𝑓

𝜕𝑥𝑖

|

𝑟

𝑖=1

∗ Δx𝑖 (3) 

𝐸𝑀𝐼 =  
μ𝑦 − 𝐿𝑅𝐿

ΔY𝑙𝑜𝑤𝑒𝑟

 (4) 

𝐸𝑀𝐼 =  
URL −  μ𝑦

ΔY𝑢𝑝𝑝𝑒𝑟

 (5) 

ΔY𝑗 = ∑ |
𝜕𝑓𝑗

𝜕𝑥𝑖

|

𝑟

𝑖=1

∗  Δx𝑖 (6) 
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In Figure 5, the arrows in the X and Y component plots represent the increasing direction of the axes 407 
values. Correspondingly, the Z component plot captures the expected trend of a decrease followed by an 408 
increase in Z values with increasing X and Y values. Similarly, suppose designers are interested in the region 409 
the circle identifies in the Z component plot. They can determine the X and Y values that result in the chosen 410 
Z values. The circles in the X and Y component plots in Figure 5 identify these X and Y values. Using the 411 
iSOM plots, designers can carry out forward design space exploration to relate inputs to outputs and inverse 412 
design space exploration to relate outputs to inputs. It is worth noting that the shape of the function remains 413 
consistent in the Z component plot. A detailed discussion of selecting regions of interest using iSOM plots, 414 
regardless of the number of dimensions, is presented in [33]. The work by Sushil and co-authors [38] 415 
showcases the utility of the iSOM tool in visualizing i) high-dimensional design spaces and ii) the relations 416 
between inputs and outputs in multilevel systems. In recent literature, iSOM has been demonstrated as a 417 
potent visualization tool for effectively addressing multi-objective, multi-dimensional, and multi-criteria 418 
problem scenarios. More details can be found in [39-41]. In the proposed framework, we use iSOM to support 419 
the co-design exploration of the multilevel design spaces in PMMP systems by simultaneously visualizing 420 
the design spaces across individual levels using iSOM plots. The iSOM tool is available as a MATLAB code 421 
[33]. 422 
3.2. Decision support using the CoDE-MU framework 423 

In this section, the structure and use of the CoDE-MU framework are discussed in detail. To demonstrate 424 
the concept, in the CoDE-MU framework presented, we only consider the interactions between two levels in 425 
the PMMP system – Design Levels 1 and 2. The CoDE-MU framework comprises four blocks named A, B, 426 
C, and D, as depicted in Figure 6. A detailed discussion of these blocks follows. 427 

 
FIGURE 6:  Decision support framework to facilitate multilevel robust co-design exploration of PMMP 

systems (Co-Design Exploration of Multilevel PMMP systems under Uncertainty: CoDE-MU)  
Block A: Design problem and level-specific information collection 428 

 In Block A, information regarding the multilevel design problem and its levels are collected. Block A 429 
is executed in Steps A1 to A3, as discussed below. 430 

Step A1: The levels of the decisional hierarchy in the multilevel PMMP system design problem are 431 
identified. 432 
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Step A2: Information specific to the decision problems at the individual levels is collected. The collected 433 
information includes i) design variables – their bounds and uncertainty estimates, ii) models employed and 434 
associated uncertainties, iii) design goals and goal targets, and iv) level-specific constraints. 435 

Step A3: The flow of information connecting the individual levels is established by identifying shared 436 
design variables between levels. A copy of the shared design variables is used as the level-specific design 437 
variables at the lower level in the decision hierarchy. Additionally, consistency constraints are established at 438 
the lower level to ensure consistency of the shared design variable value at the lower level with the one 439 
determined at the upper level.  440 
Block B: Modeling decision problems across individual levels and their interactions 441 

In Block B, the decision problems at various levels in the PMMP system and their interactions are 442 
modeled as a single rc-cDSP using the information from Block A, as follows. 443 

Step B1: Using the uncertainty information from Step A2, the design goals impacted by uncertainties at 444 
the individual levels are formulated as robust goals using the EMI and DCI constructs presented in Section 445 
3.1.2. Goals affected by design variable uncertainties are formulated as DCI goals using Equations 1 or 2. 446 
Equations 1 and 2 are used when goals are maximization and minimization goals, respectively. Goals 447 
impacted by model uncertainties are formulated as EMI goals using Equations 4 or 5. Equations 4 and 5 are 448 
used when goals are maximization and minimization goals, respectively. A detailed description of EMI and 449 
DCI goal formulations for the HRR test problem is provided in Section 4. Step B1 is followed by Step B2, 450 
where the PMMP system design problem is modeled as an rc-cDSP. 451 

Step B2: The individual-level decision problems and interactions across different levels in the PMMP 452 
system are modeled using the c-cDSP construct. In the c-cDSP, separate instances of the c-DSP construct are 453 
used to model decision problems at the individual levels. The keywords of the c-DSP construct – Given, 454 
Find, and Satisfy help capture the level-specific information. The interactions between the level-specific 455 
cDSPs in the c-cDSP are captured in the form of the flow of shared information, such as shared design 456 
variables, as determined in Step A3. In the c-cDSP, the goals impacted by uncertainties are formulated as 457 
DCI and EMI goals, as discussed in Step B1. The c-cDSP with EMI and DCI goals is referred to as the rc-458 
cDSP. The deviation function of the rc-cDSP is modeled using a combination of Preemptive and 459 
Archimedean formulations. Decisions in PMMP systems are made hierarchically across levels. Hence, the 460 
Preemptive formulation is employed, where the design goals at Design Levels 1 and 2 are assigned different 461 
priority levels. Design Level 1 decisions are given higher priority as these are made first, followed by Design 462 
Level 2 decisions at a lower priority. The difference in preferences among the many design goals at individual 463 
levels of a multilevel decision problem is modeled using the Archimedean formulation, where different 464 
weights are assigned to the various goals. The weights assigned are values between 0 and 1 that sum up to 1, 465 
with higher values indicating higher preference. Combining the Preemptive and Archimedean formulations 466 
in the rc-cDSP allows designers to consider many design goals requiring trade-offs at individual levels and 467 
relations across levels of a multilevel decision problem, using a coupled decision problem formulation. A 468 
detailed description of the rc-cDSP for the HRR test problem is provided in Section 4. The rc-cDSP is created 469 
using the DSIDES platform. 470 
Block C: Generation of robust design solutions  471 

In Block C, the rc-cDSP formulation is executed for different multilevel design scenarios using the 472 
DSIDES platform to generate robust design spaces across multiple levels. Block C is implemented in two 473 
steps. 474 

Step C1: The multilevel design scenarios to execute the rc-cDSP are created. The multilevel design 475 
scenarios depicted in Step C1, Block C of Figure 6, represent situations with different preferences for the 476 
design goals across Design Levels 1 and 2. These multilevel design scenarios are created by combining 477 
individual-level design scenarios at Design Levels 1 and 2 in all possible combinations. Individual-level 478 
design scenarios are created using Latin hypercube sampling. In each individual-level design scenario, 479 
different weights are assigned to the design goals at the level. The weights indicate the difference in 480 
preferences amongst the goals. The weights assigned are values between 0 and 1 that add up to 1, with higher 481 
values indicating higher preference. If there are ‘n’ distinct design scenarios at an individual level in a 482 
multilevel PMMP system with ‘m’ levels, there exist nm distinct multilevel design scenarios. In this paper, 483 
n2 multilevel design scenarios are considered for the two-level PMMP system. 484 

Step C2: The rc-cDSP formulation for the PMMP system is exercised for the n2 multilevel design 485 
scenarios to generate design solutions, including robust solutions, across the levels. 486 
Block D: Visualization and co-design exploration 487 
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In Block D, the simultaneous visualization of individual-level solution spaces is carried out using iSOM. 488 
This is followed by the co-design exploration of individual-level solution spaces to identify common robust 489 
satisficing solutions across multiple levels. Block D is executed in two steps, as detailed below.  490 

Step D1: The iSOM algorithm is trained for the weight combinations corresponding to different 491 
multilevel design scenarios and goal values generated for these scenarios. The trained iSOM algorithm 492 
produces separate 2D iSOM plots for each input weight and output goal across multiple levels. The 493 
simultaneous visualization of the individual-level solutions spaces across various levels is realized by 494 
combining iSOM with the rc-cDSP. The iSOM plots for the output goals help designers visualize the relations 495 
between goals across multiple levels. 496 

Step D2: The solution spaces visualized using iSOM plots are explored to determine satisficing solution 497 
regions for the individual goals by setting satisficing limits for each goal. The hexagonal grid points in an 498 
iSOM plot whose values meet the set satisficing limit constitute the satisficing solution region for a given 499 
goal. For example, in Step D2, Block D of Figure 6, the iSOM grid points with red borders identify the 500 
satisficing solution regions for the individual goals. Only the grid points with multilevel design scenarios 501 
mapped against them, indicated by the dots on the iSOM grid points, are considered. A larger size of the dot 502 
on an iSOM grid point suggests a larger number of multilevel design scenarios being mapped to that specific 503 
iSOM grid point. The designers seek to identify common satisficing solution regions for all the goals across 504 
the levels by carrying out co-design exploration. Co-design exploration is carried out using a systematic 505 
approach described as follows. 506 
Systematic co-design exploration: Systematic co-design exploration takes place in 3 steps. 507 

Step 1: Determining if satisficing goal limit relaxations are required. 508 
The designer asks, "Does a common satisficing solution region exist for all the goals across the levels?”  509 
▪ If “No,” the designer proceeds to Step 2. 510 
▪ If “Yes,” co-design exploration is complete, and common satisficing solutions for all goals across levels 511 

are identified. 512 
Step 2: Identifying a goal to be excluded from satisficing limit relaxation.  513 
The designer identifies a goal across the different levels whose satisficing limits cannot be relaxed due 514 

to its critical nature. The following goals are candidates to be excluded from satisficing limit relaxation: i) 515 
goals formulated as DCIs or EMIs with low satisficing limit values, typically less than 1.5, and ii) other goals 516 
deemed critical by designers. All the remaining goals are collectively called ‘non-excluded’ goals.  517 

Step 3: Relaxation of satisficing limits for non-excluded goals. 518 
The designer begins by grouping all non-excluded goals into two sets: i) Set 1 - All non-excluded goals 519 

formulated as DCIs or EMIs with satisficing limit values greater than 1.5, and ii) Set 2 - All remaining non-520 
excluded goals. The relaxation of satisficing limits of non-excluded goals starts with the goals in Set 1, 521 
followed by the goals in Set 2. 522 

Step 3a: Relaxation of satisficing limits for Set 1 goals. 523 
▪ The designer picks the goal in Set 1 with the highest satisficing limit defined in terms of DCI 524 

or EMI value.  525 
▪ For the chosen goal, the designer checks for any common iSOM grid points between the 526 

satisficing solution regions of the excluded and chosen goals.  527 
o If any common iSOM grid points exist, the satisficing limits of the chosen goal are not 528 

relaxed. The designer then picks the goal in Set 1 with the next highest DCI or EMI 529 
satisficing limit value and repeats the check. 530 

o If no common iSOM grid points are identified, the designer relaxes the satisficing limit 531 
by the least possible amount till common iSOM grid points are identified. The relaxed 532 
DCI or EMI satisficing limits can be as low as 1.5.  533 

o The above step is repeated till all goals in Set 1 are considered.  534 
Step 3b: Relaxation of satisficing limits for Set 2 goals. 535 
▪ Based on the designer’s judgment, a goal in Set 2 with a greater scope for satisficing limits 536 

relaxation is chosen. 537 
▪ For the chosen goal, the designer repeats the procedure to check for common iSOM grid points 538 

described in Step 3a until all goals in Set 2 are considered. 539 
At the end of Step 3b, designers identify a common satisficing region for all the goals across different 540 

levels, as depicted by the plot labeled ‘common robust satisficing design region for all goals across levels’ in 541 
Step D2 of Figure 6. Based on the common region identified, the designer then determines the design 542 
scenarios mapped to the common region and the corresponding design variable and goal values. The designer 543 
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can also use the input and output iSOM component plots to understand the effect of varying the weights and 544 
changing variable values on the goals across multiple levels and other performance indicators in PMMP 545 
systems. In the next section, we demonstrate the CoDE-MU framework’s efficacy in supporting the design 546 
of multilevel PMMP systems using an industry-inspired steel manufacturing process chain problem.  547 

 548 
4. THE HOT ROD ROLLING (HRR) PMMP SYSTEM DESIGN PROBLEM  549 

The CoDE-MU framework’s efficacy is tested using the industry-inspired Hot Rod Rolling (HRR) 550 
problem. In this problem, we look at the co-design of the HRR PMMP system composed of the hot rolled 551 
rod product, C-Mn steel material, and the cooling manufacturing process. HRR of steel is a complex 552 
manufacturing process chain used to produce hot-rolled steel rods as products. HRR comprises a series of 553 
manufacturing processes executed sequentially, as depicted in Figure 7, starting with the ‘reheating process,’ 554 
where the primary input steel in the form of billets is reheated. The reheated steel billets are then plastically 555 
deformed to steel rods in the ‘hot rolling process’ by passing the material through several rollers in rolling 556 
mills. Further, the ‘cooling process’ is carried out where rolled products are cooled in a run-out table to 557 
produce steel rods as products.  558 

  
FIGURE 7: Multilevel decision-making and their interrelations in the HRR PMMP system 

The above thermo-mechanical processing during manufacturing causes microstructural evolution and 559 
macrostructural changes in the material, resulting in hot-rolled steel rods with specific microstructural 560 
characteristics and corresponding mechanical properties. The performance requirements of the steel rods are 561 
identified in terms of the target mechanical properties of the rods. Realizing hot rolled rods with targeted 562 
performance requires the collective consideration of i) manufacturing processing, ii) material microstructure 563 
and composition, and iii)  product properties. In this paper, to demonstrate the efficacy of the CoDE-MU 564 
framework, we bound the HRR PMMP system design problem to consider only the cooling process in the 565 
HRR process chain. The design of the HRR PMMP system using the CoDE-MU framework is discussed 566 
below. 567 
Block A: The HRR PMMP system and design level-specific information collection. 568 

The design of the HRR PMMP system starts at Step A1 in Block A of the CoDE-MU framework.  569 
Step A1: The levels of decisions in the HRR PMMP system are identified. The design of the HRR PMMP 570 

system involves decisions at three levels – Design Levels 1, 2, and 3, as depicted in Figure 7. Design Level 571 
1 involves decisions regarding materials that affect product properties and performance. Design Levels 2 and 572 
3 involve decisions regarding the cooling and rolling manufacturing processing, respectively, that affect the 573 
material. To demonstrate the efficacy of the CoDE-MU framework, we focus on Design Levels 1 and 2 and 574 
their interactions only. This aspect is clarified in Figure 7 using the block labeled ‘FOCUS’ beside Design 575 
Levels 1 and 2.   576 

Step A2: Information specific to Design Levels 1 and 2 is collected. At Design Level 1, decisions are 577 
made regarding i) the steel microstructure design variables identified by the Ferrite grain size (Dα), Ferrite 578 
fraction (Xf), and Pearlite interlamellar spacing (So) and ii) the steel composition design variable identified 579 
by Manganese concentration [Mn] to achieve required mechanical properties for the steel rods. The 580 
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mechanical property requirements are to achieve targeted Yield strength (YS), Tensile strength (TS), and 581 
Hardness (HV) values of 330MPa, 750MPa, and 170, respectively. The corresponding minimum acceptable 582 
values of 220MPa, 450MPa, and 130 define the lower requirement limits. The YS, TS, and HV property 583 
requirements have different behaviors, and simultaneously realizing these properties requires compromises 584 
or trade-offs. In Appendix A1, the models that relate the mechanical properties to the steel microstructure 585 
and composition design variables at Design Level 1 are listed. The concentration of other elements that 586 
determine the steel composition (Fe, C, Si, N, P, and Cu) is assumed to be fixed. The Design Level 1 specific 587 
information is listed in the Given Section of Table 1. 588 

At Design Level 2, decisions are made regarding i) the cooling process design variable - Cooling Rate 589 
(CR), ii) the input steel microstructure design variable - Austenite grain size (dγ), and iii) the input steel 590 
composition design variable - [Mn] to achieve the required end of cooling steel microstructure. The end of 591 
cooling steel microstructure requirements are to achieve the targeted Dα, So, and Xf values of 5µm, 0.15µm, 592 
and 1.0, respectively. The acceptable values Dα = 20µm, So = 0.2µm, and Xf = 0.6 define the upper 593 
requirement limits for Dα and So and the lower requirement limit for Xf. The models that relate the steel 594 
microstructure at the end of cooling to the cooling processing and input material microstructure and 595 
composition design variables at Design Level 2 are provided in Appendix A2. The Design Level 2 specific 596 
information is provided in the Given Section of Table 1. 597 

The decisions at Design Levels 1 and 2 are subject to uncertainties associated with design variables. We 598 
consider uncertainty in the model that relates YS to the steel microstructure at Design Level 1 using three 599 
different YS models. Based on the values predicted for YS, we assume the model by Gladman and co-authors 600 
[42] as the mean model - 𝑓𝑜(𝑥) or YSmean, the model by Hodgson and Gibbs [43] as the upper bound - 𝑓1(𝑥) 601 
or YSupper, and the model by Kuziak and co-authors [44] as the lower bound model - 𝑓2(𝑥) or YSlower. These 602 
models are presented in Appendix A1. We assume no model uncertainties for the remaining requirements 603 
across Design Levels 1 and 2. The uncertainties associated with the design variables at Design Levels 1 and 604 
2 are listed in the Given Section of Table 1.  605 

Step A3: The design level-specific information from Step A3 is employed to identify the relationship 606 
between the design levels regarding shared design variables. [Mn] is the shared design variable between 607 
Design Levels 1 and 2. Hence, a copy of this variable, [Mncopy], is used at Design Level 2 as its level-specific 608 
variables. Additionally, a consistency constraint is imposed at Design Level 2 to ensure that the value of the 609 
[Mn] design variable at both levels remains the same. These details are provided in the Given and Satisfy 610 
Sections of Table 1. 611 
Block B: Modeling decision problems across multiple levels in the HRR PMMP system and their interactions  612 

Using the information from Block A, decisions at Design Levels 1 and 2 and their interactions are 613 
modeled in steps B1 and B2. 614 

Step B1: Based on the uncertainty information from Step A2, the goals at Design Levels 1 and 2 are 615 
formulated as robust goals using the EMI and DCI constructs. At Design Level 1, the YS requirement is 616 
formulated as an EMI goal to account for uncertainties in the YS model. The formulation of the EMI YS goal 617 
using Equation 3 is discussed below.  618 

𝐸𝑀𝐼 𝑌𝑆 =
μ𝑦 − 𝐿𝑅𝐿

ΔY𝑙𝑜𝑤𝑒𝑟

 619 

where, 620 
 LRL= 220MPa 621 
 μ𝑦 is the YSmean or 𝑓𝑜(𝑥) model in Table A1, Appendix A 622 

𝛥𝑌𝑙𝑜𝑤𝑒𝑟 =  𝑓𝑜(𝑥)– 𝑌𝑚𝑖𝑛  623 
𝑌𝑚𝑖𝑛 =  𝑀𝑖𝑛[ 𝑓𝑗(𝑥) − 𝛥𝑌𝑗], where j= 0, 1, and 2 corresponding to the mean, upper and lower bound 624 
models for YS, respectively, in Table A1, Appendix A 625 

ΔY𝑗 = ∑ |
𝜕𝑓𝑗

𝜕𝑥𝑖
|4

𝑖=1 ∗ Δx𝑖, where i= 1, 2, 3, and 4 corresponding to design variables X1 to X4 at Design 626 

Level 1, for every j= 0, 1, and 2. 627 
The TS and HV goals at Design Level 1 are formulated as DCI goals to account for design variable 628 

uncertainties that arise from the variability in steel microstructure - Dα, So, and Xf and steel composition 629 
[Mn]. The DCI TS goal formulation using Equation 1 is presented below as an example. 630 

 631 

𝐷𝐶𝐼 =
μ𝑦 − 𝐿𝑅𝐿

ΔY
 632 

where, 633 
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 LRL= 450MPa 634 
 μ𝑦 or 𝑓 is the TS model in Table A1, Appendix A 635 

ΔY = ∑ |
𝜕𝑓

𝜕𝑥𝑖
|4

𝑖=1 ∗ Δx𝑖, where i= 1, 2, 3, and 4 corresponding to design variables X1 to X4 at Design 636 

Level 1 637 
The Dα, So, and Xf goals at Design Level 2 are formulated as DCI goals to facilitate the consideration of 638 

design variable uncertainties that arise from the variability in cooling processing parameter – CR, steel 639 
microstructure - dγ, and steel composition - [Mncopy]. The EMI and DCI goal formulations at Design Levels 640 
1 and 2 are maximization goals to achieve higher EMI and DCI values, thereby ensuring greater robustness 641 
to uncertainties. The EMI YS, DCI TS, and DCI HV goal targets are set as 3, 8, and 8, respectively. The goal 642 
targets for DCI Dα, DCI So, and DCI Xf are set as 3, 10, and 10, respectively. 643 

Step B2: Using the information from Block A, the decisions at Design Levels 1 and 2 and interactions 644 
are modeled using the c-cDSP construct. In the c-cDSP, a copy of the [Mn] shared design variable and a 645 
consistency constraint are employed at Design Level 2 to account for the interactions, as listed in the Satisfy 646 
Section in Table 1. The DCI and EMI goal formulations from Step B1 are used as goals for the c-cDSP. The 647 
DCI and EMI goals and the c-cDSP together form the rc-cDSP for the HRR PMMP system, as detailed in 648 
Table 1. Further design requirements pertaining to cost or other production considerations may be added as 649 
goals at the appropriate design level in the rc-cDSP. Additionally, constraints, as listed in the Satisfy Section 650 
in Table 1, are established to i) ensure DCI and EMI goal values greater than one and guarantee robust 651 
solutions and ii) to account for any limitations associated with the manufacturing processing. The deviation 652 
function of the rc-cDSP is modeled using a combination of Preemptive and Archimedean formulations. The 653 
decisions in the HRR PMMP system are made hierarchically, with decisions at Design Level 1 being made 654 
before the decisions at Design Level 2. The Preemptive formulation is employed to help account for the 655 
hierarchical relation between Design Levels 1 and 2. The difference in preferences among the many design 656 
goals at the individual levels - Design Levels 1 and 2, is modeled using the Archimedean formulation, as 657 
given in the Minimize Section in Table 1. By combining the Preemptive and Archimedean formulations in 658 
the rc-cDSP, designers can consider many goals at Design Levels 1 and 2 and relations between Design 659 
Levels 1 and 2 in a coupled decision problem formulation. 660 

TABLE 1: Robust coupled cDSP (rc-cDSP) for the HRR PMMP system considering interactions between 661 
Design Levels 1 and 2 662 

GIVEN 

a. HRR PMMP system information 

Constants:  

i. Elemental composition of C-Mn steel: 

[Cu]= 0.08%; [P]= 0.019%; [C]= 0.18%; [N]= 0.007%; [Si]= 0.36% 

ii. Average Austenite to Ferrite transition temperature, Tmf = 7000C 

iii. Pearlite colony size, p= 6µm,  

iv. Carbide thickness, tcarb= 0.025µm 

v. Residual strain at the end of rolling, εr = 0 (assumed) 

b. Design variables (xi), their bound, and uncertainties at Design Level 1 

i. 0.1≤ x1 (Xf) ≤1.0 

ii. 5≤ x2 (Dα) ≤25 (µm) 

iii. 0.15≤ x3 (S0) ≤0.25 (µm) 

iv. 0.7≤ x4 ([Mn]) ≤1.5 (%) (shared) 

• Uncertainty: Dα= ± 3µm; Xf= ± 0.1; So= ± 0.01µm; [Mn]= ± 0.1% 

Design variables (xi), their bounds, and uncertainties at Design Level 2 

i. 30≤ x5 (dγ) ≤100 (µm) 

ii. 0.1833 ≤ x6 (CR) ≤1.66 (oC/s) 

iii. 0.7≤ x7 ([Mncopy]) ≤1.5 (%) (shared) 

• Uncertainty: dγ= ± 10µm; CR= ± 0.166oC/s; [Mncopy]= ± 0.1% 

c. End requirements at Design Level 1 in terms of steel rod mechanical properties 

i. Achieve targeted YS [MPa]  

ii. Achieve targeted TS [MPa] 

iii. Achieve targeted HV 

Corresponding requirement on the rc-cDSP goals (Gk) at Design Level 1 (k= 1,2,3) 
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i. Goal G1: Maximize EMI YS  

ii. Goal G2: Maximize DCI TS  

iii. Goal G3: Maximize DCI HV 

Goal Targets: G1,target = 3; G2,target = 8; G3,target = 8  

End requirements at Design Level 2 in terms of steel microstructural characteristics 

i. Achieve targeted Dα  

ii. Achieve targeted S0 

iii. Achieve targeted Xf  

Corresponding requirement on the rc-cDSP goals (Gk) at Design Level 2 (k= 4,5,6) 

i. Goal G4: Maximize DCI Dα 

ii. Goal G5: Maximize DCI S0 

iii. Goal G6: Maximize DCI Xf 

Goal Targets: G4,target = 3; G5,target = 10; G6,target = 10  

• The models for the end requirements at Design Levels 1 and 2 are provided in Appendix A1 and 

A2, respectively. 

• Uncertainty associated with the YS model is represented by the YSmean, YSupper, and YSlower 

models listed in Appendix A1. 

d. Requirement limits at Design Level 1: Lower Requirement Limit (LRL) for YSmean= 220MPa; LRL 

for TS= 450MPa; LRL for HV= 130 

Requirement limits at Design Level 2: Upper Requirement Limit (URL) for Dα= 25µm; URL for S0= 

0.25µm; LRL for Xf= 0.5 

FIND values of 

a. Design variables: Xi, where i= 1,2,3,4,5,6,7 

b. Deviation variables: dk
+ and dk

-
, where k= 1,2,3,4,5,6 

SATISFY 

a. Design Level 1 constraints 

ii. EMI YS ≥ 1 

iii. DCI TS ≥ 1 

iv. DCI HV ≥ 1 

Design Level 2 constraints 

i. dγ ≤100 

ii. dγ ≥30 

iii. CR ≤1.66 

iv. CR ≥0.1833 

v. Mncopy= Mn (consistency constraint for shared design variable) 

vi. DCI Dα ≥ 1 

vii. DCI S0 ≥ 1 

viii. DCI Xf ≥ 1 

b. Variable bounds at Design Level 1 

i. 0.1≤ Xf ≤1.0 

ii. 5≤ Dα ≤25 

iii. 0.15≤ S0 ≤0.25 

iv. 0.7≤ [Mn] ≤1.5 

Variable bounds at Design Level 2 

i. 30≤ dγ ≤100 

ii. 0.1833≤ CR ≤1.66 

iii. 0.7≤ [Mncopy] ≤1.5 

Deviation variable bounds 

dk
+, dk

- >= 0 and dk
+ * dk

- = 0 

MINIMIZE 

Preemptive formulation at two levels.  

The deviation function (Z) needs to be minimized. 

Min Z= (f1, f2) 

Priority 1: Design Level 1 (Archimedean Formulation) 

f1= 𝜮 Wk (dk
+ + dk

-), 
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where, Wk= weights assigned to the deviations of the individual goals from the target values, 𝜮 Wk= 1, 

and k= 1, 2, 3. 

Priority 2: Design Level 2 (Archimedean Formulation) 

f2= 𝜮 Wk (dk
++ dk

-),  

where, Wk= weights assigned to the deviations of the individual goals from the target values, 𝜮 Wk= 1 and 

k= 4, 5, 6 

Block C: Generation of robust design solutions across Design Levels 1 and 2 663 
The rc-cDSP is executed for various multilevel design scenarios to generate robust design solutions 664 

across Design Levels 1 and 2. 665 
Step C1: Multilevel design scenarios are created by considering all combinations of individual-level 666 

design scenarios at Design Levels 1 and 2. Individual-level design scenarios are created by assigning different 667 
combinations of weights to the goals at the level using a Latin hypercube sampling (LHS) design. Using the 668 
LHS design helps cover the design space effectively. 13 design scenarios are considered at the individual 669 
levels, leading to 169 multilevel design scenarios across the two design levels. Some sample multilevel design 670 
scenarios are listed in Table 2. 671 

 TABLE 2: Sample multilevel design scenarios  

Scenario # 

Design Level 1 weights (Wk=1,2,3) Design Level 2 weights (Wk=4,5,6) 

W1 W2 W3 ∑ 𝑾𝒌
𝒌

 W4 W5 W6 ∑ 𝑾𝒌
𝒌

 

1 0.33 0.13 0.54 1 0.33 0.13 0.54 1 

2 0.33 0.13 0.54 1 0.35 0.42 0.23 1 

- - - - - - - - - 

55 0.16 0.42 0.42 1 0.06 0.06 0.88 1 

- - - - - - - - - 

169 0.33 0.18 0.49 1 0.33 0.18 0.49 1 

Step C2: The HRR PMMP system rc-cDSP is executed for the multilevel design scenarios to generate 672 
robust design solutions for the goals across Design Levels 1 and 2.  673 
Block D: Visualization and co-design exploration of the solution spaces  674 

In Block D, the visualization and co-design exploration of the robust solution spaces across Design 675 
Levels 1 and 2 is carried out in Steps D1 and D2, respectively. 676 

Step D1: The weight combinations corresponding to different multilevel design scenarios and goal 677 
values generated for these scenarios at Design Levels 1 and 2 are used to train the iSOM algorithm. The 678 
trained iSOM helps visualize the solution spaces across the levels simultaneously by generating six iSOM 679 
plots for the six goals across Design Levels 1 and 2, as shown in Figure 8. 680 

 
 FIGURE 8: Initial iSOM plots for goals at Design Levels 1 and 2, with yellow and dark blue regions 

representing relatively high and low robustness regions, respectively. The hexagonal iSOM grid points 

highlighted in red indicate satisficing solutions regions for goals. The red dots indicate design scenarios being 

mapped to the iSOM grid points. 
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Step D2: The iSOM plots for the goals are used to conduct co-design exploration of Design Levels 1 and 681 
2 by simultaneously exploring the solution spaces. Co-design exploration of the levels helps identify common 682 
robust satisficing solutions for the goals across the two levels.  683 

The co-design exploration of Design Levels 1 and 2 begins by establishing the satisficing limits for all 684 
the goals to identify robust satisficing solution regions on the iSOM plots for each goal. The designer focuses 685 
on ensuring greater safety against uncertainties by choosing regions with higher EMI or DCI values. Hence, 686 
the satisficing limits for the goals at Design Levels 1 and 2 are initially set to the higher end of the achievable 687 
EMI or DCI values, as follows.  688 

At Design Level 1 

i. EMI YS, G1 ≥1.3 

ii. DCI TS, G2 ≥6 

iii. DCI HV, G3 ≥6 

At Design Level 2 

i. DCI Dα, G4 ≥2 

ii. DCI So, G5 ≥9 

iii. DCI Xf, G6 ≥10 

For the above satisficing goal limits, iSOM grid points highlighted with a red border in Figure 8 indicate 689 
the initial satisficing solution regions. 690 
Systematic co-design exploration 691 

Step 1: With the satisficing limits set to the above values, the designer identifies no common region in 692 
terms of iSOM grid points for all six goals across Design Levels 1 and 2. The designer, therefore, proceeds 693 
to Step 2.  694 

Step 2: Since all the goals are formulated as EMIs or DCIs, the designer picks the goal with the lowest 695 
satisficing limit as the goal to be excluded from satisficing limit relaxation. Hence, G1, with a satisficing limit 696 
of less than 1.5, is picked as the goal to be excluded from the satisficing limit relaxation. G2 to G6 constitute 697 
the non-excluded goals. 698 

Step 3: The designer groups all non-excluded goals (G2 to G6) into Set 1 as they are all formulated as 699 
DCIs or EMIs.  700 

Step 3a: The designer picks G6 with the largest satisficing limit value. Since common grid points with 701 
the excluded goal G1 are identified, as depicted by the iSOM grid points highlighted in black for G1 and G6 702 
in Figure 9, the satisficing limit of G6 is not relaxed. The designer then picks the goals with the next highest 703 
satisficing limit, G5. The designer checks for common grid points and decides not to relax the satisficing limit 704 
for G5 as common grid points exist. The designer then considers G3. Since G3 has no common iSOM grid 705 
points with the excluded goal G1, G3’s satisficing limit is relaxed to 5. This results in the iSOM grid points 706 
highlighted in black in Figure 9 becoming common for G3 and G1. The above step is repeated for G2, resulting 707 
in its satisficing limit being relaxed to 3.5. Finally, the designer considers G4 with the smallest satisficing 708 
limit in Set 1. Since G4 has common iSOM grid points with the excluded goal G1, G4’s satisficing limit is not 709 
relaxed. 710 

 
FIGURE 9: iSOM plots for all goals across Design Levels 1 and 2 after systematically updating the satisficing 

goal limits. The iSOM grid points highlighted in red indicate the satisficing solutions regions for the goals. The 

black iSOM grid points indicate the common satisficing solution region for all Design Levels 1 and 2 goals. 
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With the updated satisficing limits, three iSOM grid points are determined to be the common satisficing 711 
region for all the goals, as depicted by the black iSOM grid points in Figure 9. These grid points have six 712 
design scenarios mapped against them, resulting in six common robust satisficing design solutions across 713 
Design Levels 1 and 2 of the HRR PMMP system. Hence, using the combination of the rc-cDSP and iSOM 714 
in the CoDE-MU framework, designers can simultaneously explore the solution spaces across Design Levels 715 
1 and 2 to identify common robust satisficing design solutions. The CoDE-MU framework thereby facilitates 716 
the robust co-design of the HRR PMMP system. The six design scenarios and the corresponding goal values 717 
at Design Levels 1 and 2 are listed in Table 3.  718 
 719 

TABLE 3: Common solutions identified after co-design exploration of Design Levels 1 and 2 in the HRR 

PMMP system 

Design Scenario # 

Robust goal values 

Design Level 1 Design Level 2 

EMI YS DCI TS DCI HV DCI Dα DCI S0 DCI Xf 

40 1.45 3.25 4.62 2.00 10.40 10.21 

44 1.45 3.25 4.62 1.67 9.75 10.84 

49 1.45 3.25 4.62 2.00 10.40 10.21 

50 1.45 3.25 4.62 1.67 9.75 10.84 

52 1.45 3.25 4.62 2.00 10.40 10.21 

144 1.45 3.25 4.62 2.00 10.40 10.21 

On analyzing the EMI and DCI values in Table 3, all solutions identified are robust with EMI and DCI 720 
values greater than 1. The design variables values, steel rod properties, and steel microstructure 721 
corresponding to the six common robust satisficing design solutions are listed in Table 4.  722 

 723 
TABLE 4: Design variables, properties, and microstructure corresponding to the common robust satisficing solutions 

identified after co-design exploration of Design Levels 1 and 2 in the HRR PMMP system 

Design 

Scenario # 

Design Variables Properties and Microstructure  

 Design Level 1 Design Level 2 Design Level 1 Design Level 2 

Xf 
Dα S0 Mn dγ CR Mncopy YSmean TS 

HV 
Dα S0 

Xf 
μm μm % μm oC/s % MPa MPa μm μm 

40 0.52 8.50 0.15 1.50 42.50 1.16 1.50 341.53 617.03 151.23 18.87 0.11 0.67 

44 0.52 8.50 0.15 1.50 42.50 0.98 1.50 341.53 617.03 151.23 19.51 0.12 0.68 

49 0.52 8.50 0.15 1.50 42.50 1.16 1.50 341.53 617.03 151.23 18.87 0.11 0.67 

50 0.52 8.50 0.15 1.50 42.50 0.98 1.50 341.53 617.03 151.23 19.51 0.12 0.68 

52 0.52 8.50 0.15 1.50 42.50 1.16 1.50 341.53 617.03 151.23 18.87 0.11 0.67 

144 0.52 8.50 0.15 1.50 42.50 1.16 1.50 341.53 617.03 151.23 18.87 0.11 0.67 

Upon analyzing the mechanical properties of steel rods listed in Table 4, a mean YS of 341.53MPa, TS 724 
of 617.03MPa, and HV of 151.23 are achieved by ensuring a steel microstructure with moderate to high Xf 725 
(0.52), low Dα (8.5μm), low S0 (0.15μm), and steel composition with [Mn] of 1.5%. At Design Level 2, the 726 
cooling process parameter (CR), input steel microstructure (dγ), and composition ([Mn]) variable values 727 
identified help achieve targeted Xf, Dα, and S0 values, given the cooling process constraints and uncertainties 728 
involved. This results in Dα values between 18.9 and 19.5μm, S0 values between 0.11 and 0.12μm, and Xf 729 
values between 0.67 and 0.68, as listed in Table 4. Correspondingly, the cooling rate during the cooling 730 
process is identified to be between 0.98 and 1.16oC/s, and the input steel microstructure, dγ of 42.5μm. Based 731 
on the CR value range, it is evident that higher cooling rates are necessary to realize the required steel 732 
microstructure and steel rod properties. Therefore, designers can assess the impact of process variables on 733 
the product and materials using the CoDE-MU framework.  734 

From the iSOM plots in Figure 9, the relations among the goals at the individual levels can also be 735 
ascertained. For example, at Design Level 1, a focus on achieving high EMI YS, depicted by the yellow 736 
regions on the iSOM plot for G1, will result in lower DCI TS and DCI HV values, shown by the blue regions 737 
on the G2 and G3 iSOM plots. Similarly, at Design Level 2, a focus on maximizing DCI Xf, depicted by the 738 
yellow regions in the iSOM plot for G6, will result in lower DCI So and DCI Dα values, shown by the blue 739 
regions on the G4 and G5 iSOM plots. Moreover, the relations among the goals across levels can also be 740 
established based on the iSOM plots. For example, a focus on achieving high DCI So and DCI Dα values at 741 
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Design Level 2, depicted by the yellow regions on the G4 and G5 iSOM plots, will result in high EMI YS 742 
value, represented by the yellow regions in the G1 iSOM plot, and low DCI TS and DCI HV values, 743 
represented by the blue regions in the G2 and G3 iSOM plots, at Design Level 1. Therefore, the CoDE-MU 744 
framework also supports designers in understanding the relations within and between levels during the design 745 
of the HRR PMMP system. 746 
 747 
5. CLOSING REMARKS 748 

Realizing products that simultaneously meet many performance requirements with different behaviors 749 
requires careful consideration of the relations among the product, materials, and manufacturing processes 750 
across multiple decision levels in PMMP systems. Failure to account for the relations among individual levels 751 
will result in design conflicts that will adversely impact the realization of targeted product performance. 752 
Uncertainties arising from the variability associated with processing and microstructure and uncertainties in 753 
the models employed will also adversely affect product performance. Hence, it is vital to consider the 754 
relations among individual levels and manage the design conflicts and uncertainties during PMMP systems 755 
design. This necessitates the support for co-design exploration of individual design levels to identify ranged 756 
sets of common robust satisficing solutions across the levels. 757 

In this paper, we present a decision support framework that facilitates the co-design exploration of 758 
multiple levels of the PMMP systems under uncertainty, namely CoDE-MU. In the CoDE-MU framework, 759 
the c-cDSP construct is combined with EMI and DCI robust design constructs and machine-learning-based 760 
iSOM visualization to facilitate multilevel robust co-design exploration. Using the framework, designers can 761 
i) model decision problems across individual levels and their interactions using a coupled decision problem 762 
formulation, ii) visualize and simultaneously explore the design spaces across multiple levels, iii) manage 763 
the impact of uncertainties, and iv) identify important processing and microstructure variables that influence 764 
the product performance. The framework enhances the ability of designers to account for the interactions 765 
among the products, materials, and manufacturing processes and, at the same time, manage the inherent 766 
uncertainties in PMMP systems. This is achieved by employing the rc-cDSP, where the c-cDSP construct is 767 
used with the EMI and DCI robust design constructs. In the rc-cDSP, a combination of the Preemptive and 768 
Archimedean formulations is employed to help account for i) the hierarchical relationships among the 769 
individual levels and ii) the many design goals requiring trade-offs at individual levels of a multilevel 770 
decision problem. Using the framework, designers can perform efficient, robust co-design exploration. This 771 
is realized by employing the iSOM visualization tool to simultaneously explore the individual-level design 772 
spaces formulated using the rc-cDSP. iSOM visualization involves training iSOM using weight combinations 773 
corresponding to multilevel design scenarios of the rc-cDSP and goal values generated for these scenarios. 774 
Two-dimensional plots for the output goals across multiple levels are generated via iSOM. Using the 775 
simultaneous solution space visualization capability offered by iSOM, designers are further able to explore 776 
and seek common robust satisficing regions for the many goals across multiple levels, thereby facilitating 777 
co-design and the joint management of design conflicts and uncertainties. The framework supports designers 778 
in accounting for various soft and hard requirements across the design levels by facilitating their modeling 779 
in the rc-cDSP as goals and constraints, respectively. This allows consideration of any additional 780 
requirements relating to cost, production considerations, and process limitations during PMMP system 781 
design. 782 

The framework's capability in supporting the above functionalities is demonstrated using an industry-783 
inspired steel manufacturing process chain problem – HRR of steel. Using the framework, the co-design of 784 
the HRR PMMP system that involves the steel rod product, steel material, and the cooling process at two 785 
different levels - Design Levels 1 and 2, their interactions and inherent uncertainties are demonstrated. The 786 
design conflicts arising from the hierarchically related levels are managed by simultaneously exploring the 787 
solution spaces across Design Levels 1 and 2 to identify common robust satisficing solutions for the goals 788 
across the levels. In the HRR test problem, we consider model uncertainties in the YS design goal by 789 
assuming different mean, upper, and lower models. We assume that TS and HV functions are not subject to 790 
model uncertainties and thus consider their models mean models. The uncertainty associated with the 791 
function parameters of TS and HV are considered. This assumption is made to demonstrate the efficacy of 792 
the robust design constructs for various sources of uncertainties in the problem, namely model structure 793 
uncertainty (via EMI metric) and model parameter uncertainty (via DCI metric). The limitation of such an 794 
assumption is that the design solutions found will be sensitive to model variability since models are always 795 
abstractions of reality. The formulation of model uncertainty requires designers to have data sets that capture 796 
the variability of the function with respect to the design variables. This could be practically difficult for 797 
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certain materials design problems with limited information. The integrated mean response model and 798 
prediction interval approach presented by McDowell and co-authors [34] allows the efficient estimation of 799 
the mean function model and prediction intervals, defining the upper and lower bounds if simulation-assisted 800 
or experimental data is available. Extending the current framework with efficient data-driven approaches to 801 
consider model uncertainty and its propagation across levels is a focus for future research.    802 

The generic nature of the framework is made evident by the generic nature of the constructs and tools 803 
employed. Using the framework, we facilitate the robust co-design of multilevel PMMP systems 804 
characterized by many design goals requiring trade-offs at individual levels and hierarchical relations among 805 
the levels. From an ICME perspective, the CoDE-MU framework supports the need to consider the influence 806 
of manufacturing processing in materials design. This is achieved by facilitating the consideration of 807 
manufacturing processing decisions and their influences during PMMP systems design. The CoDE-MU 808 
framework can also facilitate location-specific materials design, a significant focus area in ICME. Location-809 
specific materials design can be realized by supporting the designers to account for the influence of the 810 
manufacturing process to tailor material microstructure and properties at desired locations.  811 

The proposed CoDE-MU framework can be further expanded to account for all the manufacturing 812 
processing decisions and their interactions by modifying the rc-cDSP formulation with additional levels. The 813 
changes to the rc-cDSP required to facilitate the same involve creating additional priority levels in the 814 
Preemptive formulation of the deviation function. Consequently, the multilevel design scenarios need to be 815 
modified to account for the new design levels in the PMMP system. 816 
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 950 
APPENDIX A 951 

In Table A1, we present the empirical models that relate the steel microstructure and composition with 952 
the steel rod properties. These models are employed in modeling the decision problem at Design Level 1, as 953 
described in Block B of Section 4. The YSlower, YSmean, and YSupper models depict the uncertainties in the YS 954 
model, as described in Step A2, Block A of Section 4. 955 

TABLE A1: Empirical models for mechanical property goals at Design Level 1 956 
(Tmf = 7000C, p= 6µm, t carb= 0.025µm) 957 

Mechanical Property Empirical Model Source 

YSlower [𝒇𝟐(𝒙)] 
Xf (77.7 + 59.9[Mn] + 9.1(Dα*0.001)-0.5) + 

478[N]0.5 + 1200[P] + (1 - Xf)(145.5 +3.5S0
-0.5) 

Kuziac and co-authors (1997) [44] 

YSmean [𝒇𝒐(𝒙)] 
63[Si] + 425[N]0.5 + Xf 

1/3 (35 + 58[Mn] + 

17(0.001Dα) −0.5) + (1 – Xf 1/3) (179 + 3.9S0
−0.5) 

Gladman and co-authors (1972) 

[42] 
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YSupper [𝒇𝟏(𝒙)] 
62.6 + 26.1[Mn] + 60.2[Si] + 759[P] + 

212.9[Cu] + 3286[N] + 19.7(0.001Dα) −0.5 
Hodgson & Gibbs (1992) [43] 

TS 
Xf (20 + 2440[N]0.5 + 18.5(0.001*Dα)-0.5 +    

750(1 - Xf) + 3(1 - Xf
0.5) S0

-0.5 + 92.5*[Si] 
Kuziac and co-authors (1997) [44] 

HV Xf (361 - 0.357Tmf + 50[Si]) + 175(1 - Xf) Yada (1988) [45] 

 958 
In Table A2, we present the empirical models that relate the steel microstructure and composition 959 

before cooling and the cooling processing parameters with the steel microstructure at the end of the cooling 960 
process. These models are employed in modeling the decision problem at Design Level 2, as described in 961 
Block B of Section 4.  962 

TABLE A2: Empirical models for steel microstructure characteristics at the end of cooling at Design Level 2  963 
Microstructure characteristics Empirical Models Source 

Dα 
(1 − 0.45εr

0.5) *{(-0.4 + 6.37*Ceq) + (24.2 – 

59*Ceq) CR-0.5 + 22*(1-exp(-0.015*dγ))} 

Hodgson & Gibbs (1992) 

[43] 

S0 
0.1307 + 1.027[C] - 1.993[C]2 -0.1108[Mn] + 

0.0305*CR-0.52 

Kuziac and co-authors 

(1997) [44] 

Xf eq 
1 - ([C] / (0.789 - 0.1671[Mn] + (0.1607[Mn]2) 

-(0.0448[Mn] 3))) 

Kuziac and co-authors 

(1997) [44] 

Xf 
Xf eq - 5.48(1-exp(-0.0106CR)) - (0.723*(1-

exp(-0.0009dγ))) 

Kuziac and co-authors 

(1997) [44] 

Ceq ([C] + [Mn])/6 
Hodgson & Gibbs (1992) 

[43] 

 964 


