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ABSTRACT

Achieving targeted product performance requires the integrated exploration of design spaces across
multiple levels of decision-making in systems comprising products, materials, and manufacturing processes
- Product-Material-Manufacturing Process (PMMP) systems. This demands the capability to co-design
PMMP systems, that is, share ranged sets of design solutions among distributed product, material, and
manufacturing process designers. PMMP systems are subject to uncertainties in processing, microstructure,
and models employed. Facilitating co-design requires support for simultaneously exploring high-
dimensional design spaces across multiple levels under uncertainty.

In this paper, we present the Co-Design Exploration of Multilevel PMMP systems under Uncertainty
(CoDE-MU) framework to facilitate the simultaneous exploration of high-dimensional design spaces across
multiple levels under uncertainty. The CoDE-MU framework is a machine learning-enhanced, robust co-
design exploration framework that integrates robust, coupled compromise Decision Support Problem (rc-
¢DSP) construct with interpretable Self-Organizing Maps (iSOM). The framework supports multidisciplinary
designers to i) understand the multilevel interactions, ii) identify the process mechanisms that affect material
and product responses, and iii) provide decision support for problems involving many goals with different
behaviors across multiple levels and uncertainty.

We use an industry-inspired hot rod rolling (HRR) steel manufacturing process chain problem to
showcase the CoDE-MU framework's efficacy in facilitating the simultaneous exploration of the product,
material, and manufacturing process design spaces across multiple levels under uncertainty. The framework
is generic and facilitates the co-design of multilevel PMMP systems characterized by hierarchical product-
material-manufacturing process relations and many goals with different behaviors that must be realized
simultaneously at individual levels.

Keywords: Co-design, Robust design, coupled-compromise Decision Support Problem (c-cDSP) construct,
interpretable Self-Organizing Map (iISOM)

GLOSSARY

Product-Material-Manufacturing Process (PMMP) system: We define PMMP systems as systems
comprising the product, its materials, and associated manufacturing processes.

Design Level: We define ‘design level’ as the interface where design decisions are made by disciplinary
experts regarding products, materials, and manufacturing processing, considering their interactions. The
disciplinary experts correspond to the product, materials, and process designers, respectively.

Robust satisficing solutions: Solutions that are relatively insensitive to uncertainties and satisfice the
designer’s requirements.

Co-design: We define co-design from an ICME perspective as a design that supports distributed disciplinary
experts, such as product, material, and process designers, across multiple levels of decision-making to work
collaboratively in ensuring PMMP system performance. In co-design, designers are supported in i) making
decisions simultaneously across multiple levels while considering their interrelations and ii) managing design
conflicts to ensure collaboration.
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Robust Co-design: We define robust co-design from an ICME perspective as a co-design that supports
designers across multiple levels to manage inherent uncertainties by facilitating the identification of a ranged
set of common robust satisficing solutions across the levels.

NOMENCLATURE AND LIST OF SYMBOLS

[C] - Carbon concentration

c-cDSP - coupled-compromise Decision Support Problem
cDSP - compromise Decision Support Problem

Ceq - Equivalent Carbon

CoDE-MU - Co-Design Exploration of Multilevel PMMP systems under Uncertainty
CR - Cooling Rate

[Cu] - Copper concentration

DBD - Decision-Based Design

DCI - Design Capability Index

DSIDES - Decision Support In the Design of Engineering Systems
DSP - Decision Support Problem

D - Ferrite Grain Size

d, - Austenite Grain Size

EMI - Error Margin Index

GolD - Goal-oriented Inverse Design

HRR - Hot Rod Rolling

HV - Hardness

ICME - Integrated Computational Materials Engineering
IDEM - Inductive Design Exploration Method

iSOM - interpretable Self-Organizing Map

[Mn] and [Mncepy |- Manganese concentration

MDO - Multi-Disciplinary Optimization

[N] - Nitrogen concentration

p - Pearlite colony size

[P] - Phosphorus Concentration

PMMP - Product, Material, and Manufacturing Process
PSPP - Processing-microStructure-Property-Performance
rc-cDSP - robust, coupled-compromise Decision Support Problem
SOM - Self-Organizing Maps

[Si] - Silicon concentration

So - Pearlite interlamellar spacing

tearb - Carbide thickness

Tt - Average Austenite to Ferrite transition temperature
TS - Tensile Strength

X - Ferrite fraction

Xfeq - Equivalent Ferrite fraction

YS - Yield Strength

& - Residual strain at the end of rolling

1. FRAME OF REFERENCE

The achievement of targeted product performance requires careful consideration of the relations among
products, their materials with respective microstructures, and associated manufacturing processing. Product
performances are defined by many property requirements with different behaviors that need to be realized
simultaneously. The manufacture of steel rods through the hot rod rolling (HRR) manufacturing process
chain [1] is an example that illustrates the relations among manufacturing processing, material
microstructure, and product properties and performance. In the HRR of steel, cast steel billets are reheated
and subsequently processed in rolling and cooling mills to produce hot-rolled steel rods as products. The
mechanical properties of the hot-rolled steel rods identify their performance. The steel microstructure
determines the mechanical properties. The steel microstructure is influenced by the thermo-mechanical
processing that steel billets undergo. Given the relations among manufacturing processing, material
microstructure, and product properties and performance, realizing targeted product performance requires a
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collective consideration of a system comprising the products, materials, and manufacturing processes [2],
referred to as Product-Material-Manufacturing Process (PMMP) systems in this paper. This necessitates an
integrated, top-down, systems-based approach for designing PMMP systems, starting with the property
requirements and inversely designing the material microstructure and processing paths to realize the targeted
product performance [3]. Olson's Processing-microStructure-Property-Performance (PSPP) relations [4] lay
the foundation for the inverse, systems-based design of PMMP systems by connecting the product, materials,
and manufacturing processes, as depicted in Figure 1. According to the PSPP relations, the processing during
manufacturing determines the material microstructure and properties, which in turn determines the product
properties and performance.

PRODYCT Performance
MATERIAL | property
MANUFACTURING m_ — |

FIGURE 1. Olson’s Processing-microStructure-Property-Performance (PSPP) relations [4] that connect
products, materials, and manufacturing processes.

The design of PMMP systems involves decision-making by different disciplinary experts, such as
product, material, and process designers. The expert decisions are made across multiple levels of a decision
hierarchy defined based on the PSPP relations. The decisions at individual levels in the PMMP system are
directed toward simultaneously achieving their design goals with different behaviors. The difference in
behaviors necessitates the trade-offs or compromises among the goals. Individual-level decisions require
careful consideration of the level-specific constraints and design variable bounds. The individual-level
decisions collectively determine product performance. Due to their interrelations, decisions at an individual
level will affect the decisions at another interrelated level, impacting product performance. Individual-level
decisions can result in ' design conflicts when made in isolation without considering their interrelations.” We
consider design conflicts as situations where the goal-directed decisions at an individual level do not align
with the goal-directed decisions at another interrelated level. Design conflicts will result in poor PMMP
system performance and products not meeting targeted performance requirements. In this paper, we focus on
the simulation-supported design of PMMP systems that help reduce dependency on expensive and time-
consuming lab-scale experimentation and plant trials [5]. The Integrated Computational Materials
Engineering (ICME) initiative [6] provides a heading for simulation-supported PMMP systems design. I[CME
focuses on the simulation-supported, concurrent, top-down design of products and materials by using the
PSPP relations to link materials models across multiple length and time scales. According to McDowell [7],
simulation-supported systems design approaches should enhance the designer’s understanding of complex
relations in the system to help make informed decisions. The decisions in simulation-supported PMMP
system design are based on simulation-generated information. In simulations, designers use models that are
incomplete, inaccurate, and abstractions of underlying physical phenomena [8] and therefore, they embody
uncertainty. The decisions at individual levels are also subject to design variable uncertainties arising from
random variations in manufacturing processing and material microstructure. These inherent uncertainties
adversely impact the decisions at individual levels and PMMP system performance. Therefore, the
simulation-supported integrated design of PMMP systems requires support for i) consideration of the
relations among individual-level decisions, ii) management of design conflicts, and iii) management of
uncertainties. This necessitates the facilitation of ‘robust co-design,” allowing designers distributed across
multiple levels to collaborate by supporting i) the consideration of the relations among individual-level
decisions and ii) the management of uncertainties and design conflicts. By facilitating collaboration, the
satisfaction of the level-specific design goals and the PMMP system performance under conditions of
uncertainty is ensured. Collaboration is achieved by supporting ‘co-design exploration’ - the simultaneous
exploration of the multilevel design spaces to identify a ranged set of common ‘robust satisficing solutions’
across levels. Robust satisficing solutions are relatively insensitive to uncertainties and ‘satisfy’ and ‘suffice’
the design requirements.



From a systems design perspective, we consider design a goal-oriented, decision-based process
supported by simulations. Therefore, we abide by the Decision-Based Design (DBD) paradigm advocated by
Mistree and co-authors [9], where designing is considered a decision-making process wherein designers make
a series of decisions, some sequentially while others concurrently. The decisions in DBD are modeled using
the Decision Support Problem (DSP) technique [9], anchored in the notion of bounded rationality proposed
by Herbert A. Simon [10]. The information required to support decisions in DBD is generated using empirical
or simulation-driven surrogate models that are abstractions of reality. Therefore, we seek a ranged set of
‘satisficing solutions’ [11] that ‘satisfy’ and ‘suffice’ the designer's requirements for the many goals of the
design problem by exploring the solution space. The use of the compromise Decision Support Problem
(cDSP) [12] construct supports exploring satisficing solutions for problems involving many goals with
different behaviors, where goal trade-off considerations are essential. Using the coupled cDSP (c-cDSP)
construct [13], designers can model interrelated decision problems across multiple levels, with decisions at
individual levels requiring trade-offs among the many goals. The design spaces generated by executing the
DSP are explored to identify a ‘ranged set of satisficing solutions.” The ranged set of satisficing solutions
helps designers identify 1) regions of interest in the design space that require further detailed exploration and
i) key design variables and important relations in a system. In this paper, we look at managing uncertainties
by designing the system to be relatively insensitive to uncertainties without reducing or eliminating them,
termed ‘robust design.” Unlike uncertainty mitigation approaches that involve developing ‘perfect’ models
by collecting more data and performing extensive computations to quantify uncertainties, uncertainty
management is computationally less expensive. Uncertainty management is achieved by seeking ‘robust
solutions’ that are relatively insensitive to uncertainties. Type I, Type II, and Type III robust designs are
discussed in the literature [1] to deal with uncertainties associated with random noise, design variables, and
models, respectively. The use of the Design Capability Index (DCI) [14] and Error Margin Index (EMI) [15]
robust design indices in conjunction with the DSP construct have been proposed to help identify a ranged set
of ‘robust satisficing solutions’ for Type I and II robust designs, and Type III robust design, respectively.

Most current approaches discussed in the literature for the top-down design of PMMP systems are
sequential. Adams and co-authors [16] present a framework to support the inverse design of systems
involving materials and processes by employing spectral representation to establish invertible relationships
between the same. The materials knowledge systems approach is presented by Kalidindi and co-authors [17,
18], where the bi-directional information flow between different length scales is facilitated to support inverse
materials design. Ghosh and co-author [19] present a scalable framework for explicit inverse design named
probabilistic machine learning for inverse design. The explicit inverse design is modeled in the framework
using a conditional invertible neural network. The focus here is on supporting the identification of product
designs that meet targeted performance. This is demonstrated in the inverse aecrodynamic design of three-
dimensional turbine blades. Sui and co-authors [20] present a deep reinforcement learning scheme for
automating the inverse design of composite material structures to realize the required properties. The scheme
is applied to a two-dimensional composite planar structure design problem to achieve the strongest average
structure tensile strength along the primary axes. Chen and co-authors [21] present a machine-learning-based
inverse materials design approach that combines generative inverse design networks, backpropagation, and
an active learning strategy to support composite materials design. Kumar and co-authors [22] propose a
machine learning-based inverse design technique using neural networks to realize metamaterials with desired
properties by tailoring the material topologies. Tsai and co-authors [23] and Qian and co-authors [24] present
inverse design approaches that combine artificial neural networks and the genetic algorithm to relate
processing with product properties and material properties with structure, respectively. The sequential nature
of these approaches results in isolated decision-making across individual levels, thereby failing to consider
the multilevel relations and resulting in design conflicts that impact the PMMP system performance. The use
of multidisciplinary optimization (MDQO) [25] approaches, such as analytical target cascading [26],
collaborative optimization [27], and bilevel integrated system synthesis [28, 29] for optimizing multilevel
systems while considering the multilevel interactions are discussed in the literature. [tuarte and co-authors
[30] present a computer-aided expert system where MDO and surrogate models are employed to conduct
trade-off exploration and optimization by coupling product design, materials systems, and manufacturing
processes. The authors demonstrate the exploration of optimized solutions across the product, material, and
manufacturing disciplines for a digital manufacturing scenario to ensure overall system performance.
Rigorous and iteratively intensive optimization techniques that involve optimization loops within and
between levels are employed in MDO approaches to identify unique single-point solutions at each level. This
is especially challenging during design exploration, where the focus is on quickly identifying a set of
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satisfactory solutions instead of a unique single-point solution [31]. In the optimization formulation employed
in MDO approaches, designers assume the perfectness of the models and objective function and the
availability of all required information. Given that the models used are abstractions of reality, the objective
functions are imperfect, and the information available is incomplete, our focus is on ‘satisficing’ rather than
‘optimizing.” We therefore seek a ranged set of robust satisficing solutions.

Different approaches that support multilevel co-design exploration under uncertainty by identifying
robust satisficing solution sets have been discussed in the literature. Choi and co-authors [3] propose the
Inductive Design Exploration Method (IDEM) to support the robust co-design of multilevel systems. IDEM
involves sequentially identifying and propagating a range of robust solutions among the individual levels.
IDEM is limited by the number of design variables that can be considered, discretization errors, increased
computational expense for improved accuracy, and limited flexibility in design, as discussed in [1].
Nellippallil and co-authors [1] present an inverse robust design approach named Goal-oriented Inverse
Design (GolD) to address some of the limitations in IDEM and support the co-design of systems composed
of hierarchically connected products, materials, and associated manufacturing processes. The GolD approach
supports sequential design space exploration at the individual levels to identify robust satisficing solutions
and their propagation as targets inversely along the hierarchical process chain. The GolD approach does not
support the management of design conflicts that can arise due to the sequential nature of design space
exploration. To address this shortcoming, Baby and Nellippallil [32] present an information-decision
framework to support the systematic detection and management of design conflicts. This is achieved by
controlling the design space and decisions across different levels of decisions made sequentially. The IDEM,
GolD approach, and the information-decision framework presented by Baby and Nellippallil do not support
the simultaneous exploration of the individual levels.

Our focus in this paper is on providing decision support during the simulation-supported design of
multilevel PMMP systems under uncertainty. From a DBD perspective, we hypothesize that this can be
achieved by facilitating robust co-design using a decision support framework that supports i) modeling the
level-specific decision problems and their interactions with other levels in PMMP systems in terms of the
flow of information, ii) consideration of uncertainties in the decision problems, and iii) co-design exploration
of the multilevel design spaces to identify common robust satisficing solutions and thereby manage design
conflicts. Given the many design goals at individual levels that require trade-offs and the interactions of
decisions across levels, we model the individual-level decision problems and their interaction in PMMP
systems using the c-cDSP construct discussed in Section 3.1.1. A combination of Preemptive and
Archimedean formulations is used in the ¢c-cDSP. Using the Preemptive formulation, designers can consider
the interrelations among the decision problems across multiple levels of a decision problem. Using the
Archimedean formulation, designers can consider many goals that require trade-offs at individual levels of a
multilevel decision problem. By combining the two, designers can use a coupled DSP formulation to account
for many design goals at individual levels and hierarchical relations across levels of a multilevel decision
problem. The EMI and DCI robust design indices presented in Section 3.1.2 are combined with the c-cDSP
construct to establish the robust, coupled cDSP (rc-cDSP) that helps designers generate robust design
solutions across multiple levels. The design spaces across the multiple levels in the PMMP system are
visualized in an integrated manner using the interpretable Self Organizing Maps (iISOM) [33] discussed in
Section 3.1.3. The integrated iISOM visualization facilitates co-design exploration to identify common robust
satisficing solution sets across multiple levels. In this paper, we present the Co-Design Exploration of
Multilevel PMMP systems under Uncertainty (CoDE-MU) framework that enables designers to i) model
decision problems at individual levels and their interactions, ii) consider uncertainties, and iii) visualize and
efficiently explore multilevel design spaces simultaneously to support robust co-design. The CoDE-MU
framework’s novelty lies in two aspects: a) support for modeling multilevel design problems characterized
by the need to consider trade-offs among many goals at individual levels and interactions across levels, using
a coupled decision problem formulation. This is achieved by combining the Preemptive and Archimedean
formulations in the c-cDSP; b) support for the joint management of design conflicts and uncertainties across
multiple levels through co-design exploration. Co-design exploration involves the simultaneous exploration
of multilevel design spaces. It is realized by exploiting the inherent interpretability and correlated nature of
the iISOM plots to help designers efficiently identify common robust satisficing solutions.

A description of the problem is presented in Section 2. In Section 3, the CoDE-MU framework to support
the robust co-design exploration of multilevel PMMP systems is presented. In Section 4, we showcase the
framework's efficacy in supporting the simultaneous exploration of design spaces across multiple levels in
PMMP systems and managing uncertainties using an industry-inspired steel manufacturing process chain test
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problem — the HRR of steel. In the HRR problem, we focus on the interactions between the material and
cooling process designers at different levels. We end the paper with our key findings and closing remarks in
Section 5. In Appendix A, we present the empirical models that relate the design variables and goals in the
coupled HRR problem.

2. PROBLEM DESCRIPTION: ACCOUNTING FOR INTERACTIONS ACROSS MULTIPLE

LEVELS AND UNCERTAINTIES INVOLVED IN THE DESIGN OF PMMP SYSTEMS

The design of PMMP systems involves decisions by the product, materials, and process designers
regarding the product, its materials, and associated manufacturing processes, respectively. The product
designer makes decisions regarding the properties that define the product performance; the materials designer
makes decisions regarding material microstructure and composition that defines material properties; and
process designers make decisions regarding material processing and input material characteristics that
determine the end of processing material microstructure. The interrelated decisions are made across multiple
design levels in a design hierarchy defined by the PSPP relations, as depicted in Figure 2.
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FIGURE 2: Design of PMMP system: Multilevel nature of the PMMP system considering the multiple

levels of decisions, multilevel interactions, and uncertainties across the multiple levels. The black arrows

depict the forward flow of material, and the red dashed arrows represent the inverse flow of information
across multiple design levels that connect the manufacturing processing, material, and product.

In Figure 2, Design Level ‘m’ involves decisions by the materials designer at the top of the hierarchy,
followed by the various process designer’s decisions across Design Levels ‘m+1’ to ‘m+n.” Design Levels
‘m+1’° to ‘m+n’ are related to the corresponding material processing ‘1’ to ‘n’ during manufacturing. In this
paper, for demonstration purposes, we focus on the interactions between the Design Levels ‘m’ and ‘m+1’
of the design hierarchy, where m = 1. At Design Level ‘m’ or ‘1’- the upper level, decisions are made
regarding the material microstructure required to achieve targeted properties by considering the relations
between the product properties and material microstructure. At the lower level - Design Level ‘m+1" or 2°,
decisions are made regarding the input material composition and microstructure and the processing during
manufacturing process ‘1’ required to achieve the targeted microstructure. This requires considering the
relations between the material processing ‘1’ and the material microstructure. Decisions at Design Level 1
will influence the decisions at Design Level 2. Sequential decision-making across the individual levels in an
isolated manner will result in design conflict, where decisions at Design Level | regarding the material
microstructure required to achieve the targeted property goal values may not be achievable at Design Level
2, given the resource constraints. Resource constraints at Design Level 2 are defined in terms of process
limitations and compositional or microstructural characteristics of the input material. The design conflict will
result in targeted product performance not being achieved. Hence, the collective consideration of the
decisions across the individual levels is vital to account for their interactions and manage design conflicts,
thereby ensuring targeted product performance during PMMP systems design. This necessitates co-designing
the individual levels, where designers at different levels are supported in identifying and sharing ranged sets
of design solutions across the levels. Co-design requires support for simultaneously exploring the design
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spaces across the individual levels. The decisions at the individual levels are subject to various uncertainties
associated with the models employed and other random variations stemming from manufacturing processing
and material microstructure. Therefore, management of these uncertainties during PMMP systems design is
also essential. This can be achieved by facilitating the identification of robust satisficing solutions. In this
paper, we specifically focus on uncertainties associated with the design variables and models. Overall, the
need in designing PMMP systems is the support for simultaneous multilevel design exploration to identify a
ranged set of common robust satisficing solutions across multiple levels.

3. A FRAMEWORK TO FACILITATE ROBUST CO-DESIGN EXPLORATION OF

MULTILEVEL PMMP SYSTEMS

In this section, we present a framework, namely Co-Design Exploration of Multilevel PMMP systems
under Uncertainty (CoDE-MU), that supports designers in simultaneously exploring design spaces across
multiple levels to identify a ranged set of common robust satisficing solutions. Using the CoDE-MU
framework, we facilitate the co-design of multilevel PMMP systems that involve the product, materials, and
manufacturing processes while considering the uncertainties. We begin this section by discussing the various
constructs and tools employed in the framework. This is followed by a discussion on decision support using
the framework.
3.1. Constructs and tools used in the CoDE-MU framework

Three primary constructs and tools are employed in the CoDE-MU framework. They are i) the coupled-
c¢DSP (c-cDSP) construct, ii) Robust design constructs — DCI and EMI, and iii) the iSOM visualization tool.
A discussion of the constructs and tools follows.
3.1.1.  c-cDSP construct

The coupled DSP [13] is a DSP construct that supports designers to account for the relations among
decisions made hierarchically or concurrently across multiple levels. Using the coupled DSP construct, the
relations among the decisions at different levels are modeled as either a vertical or horizontal coupling [13].
Vertical coupling is used for hierarchical decisions, and horizontal coupling is used for concurrent decisions.
Decisions at individual levels are directed towards simultaneously meeting many design goals with different
behaviors, requiring trade-offs to be made. Hence, we use a c-cDSP to model the multilevel decisions and
their relations in PMMP systems. In c-cDSPs, the level-specific information regarding design variables,
design goals, and constraints is captured using the keywords — Given, Find, and Satisfy, as depicted in Figure
3. Figure 3 depicts the basic structure of the c-cDSP for a system with two levels, Design Levels 1 and 2.

coupled cDSP (c-cDSP)

cDSP at Design Level 1
Given — Level 1 specific information
Find — Design and Deviation variables
Satisfy — Constraints, Bounds, and Goals
Shared information

cDSP at Design Level 2
Given — Level 2 specific information
Find — Design and Deviation variables
Satisfy — Constraints, Bounds, and Goals

Minimize: Deviation function (Z) (using Preemptive formulation)
a.At Design Level 1 (higher priority) - Archimedean formulation
b.At Design Level 2 (lower priority) - Archimedean formulation
Preemptive formulation
PN T Ty N— fi(di: AN
Archimedean formulation
f,=EW,(d," +d,") , EW,= 1
FIGURE 3: The basic structure of the coupled cDSP (c-cDSP) construct
The focus in utilizing the c-cDSP is to find solutions that minimize the total deviation of all the design
goals in the system from their target values, termed the ‘deviation function.’ Based on the coupling between
the individual levels, the deviation function in c-cDSPs is modeled using a combination of Preemptive and
Archimedean formulations. Using the Preemptive formulation, designers can consider the relations among
decisions made sequentially across multiple levels of a decision hierarchy. Since the decisions in PMMP
systems are made sequentially across different levels of a decision hierarchy defined by the PSPP relations,
the Preemptive formulation is used to model the relations across design levels. In the preemptive formulation,
the goals at different design levels are ordered into different priority sets, as depicted in Figure 3. The priority
sets are ordered according to the position of the design level in the decision hierarchy. The design goals are
satisfied in the order of priority sets, with goals at a higher priority set being met first before meeting the
goals at a lower priority set [12]. The use of the Preemptive formulation, therefore, allows designers to 1)

7



357
358
359
360
361
362
363
364

366
367

369

370

371
372
373
374

376

consider the relations among decisions made sequentially across different levels of a decision hierarchy and
ii) assign different priorities for the design goals at different levels. Designers can use the Archimedean
formulation to consider many design goals requiring trade-offs at individual levels in a multilevel decision
problem. In the Archimedean formulation, design goals in a priority set are assigned different weights to
account for the differences in their relative importance [12]. The weights assigned are values between 0 and
1, summing to 1, with a higher value indicating a higher preference. Hence, the Archimedean formulation is
used at individual levels of a multilevel decision problem. By combining the Preemptive and Archimedean
formulations in the proposed framework, designers can account for many design goals requiring trade-offs
at individual levels and relations across levels in PMMP systems using a c-cDSP. The ¢-cDSP is created and
executed using the Decision Support In the Design of Engineering Systems (DSIDES) platform.
3.1.2.  Robust design constructs: DCI and EMI

The DCI and EMI constructs help designers manage uncertainties by facilitating the identification of
robust solutions that are relatively insensitive to uncertainties. Using the DCI construct [14], designers can
account for design variable uncertainties arising from manufacturing processing and material microstructure
variability. Using the EMI construct [15], designers can consider uncertainties in the models that interrelate
processing with microstructure and microstructure with properties. The ‘larger-is-better’ and ‘smaller-is-
better’ cases for EMI and DCI computations are depicted in Figures 4a and 4b, respectively.
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FIGURE 4: Uncertainty in responses with variability in design variables and models for the larger-is-better
and smaller-is-better cases. The solid and the dashed bell curves represent different models for a response,
indicating variability in the models.

Identifying solutions with values of DCI> 1 and EMI > 1 will ensure system robustness to uncertainties.
The higher the DCI or EMI values, the higher the safety measure against failure due to uncertainties. A larger-
is-better case is employed for maximization goals. The DCI and EMI values for the larger-is-better case are
computed using Equations 1 and 4, respectively. For the | larger-is-better case depicted in Figure 4a, higher
EMI and DCI values can be achieved by i) keeping the mean response () as far away as possible from a
lower requirement limit (LRL), thereby maximizing the numerator, and ii) minimizing the spread of the
response - AY or AYjywer, thereby minimizing the denominator. A smaller-is-better case is employed for
minimization goals. The DCI and EMI values for this case are computed using Equations 2 and 5,
respectively. For the smaller-is-better case depicted in Figure 4b, higher EMI and DCI values can be achieved
by i) keeping the mean response (i) as far away as possible from an upper requirement limit (URL), thereby
maximizing the numerator and ii) minimizing the spread of the response - AY or AY)yyer, thereby minimizing
the denominator.
For the larger-is-better case

uy — LRL
DCl = X—— 1
Ay (1)
For the smaller-is-better case
URL —pn
DCl = ——~2 2
v 2

where,
AY - response variation for small variations in design variables
Uy~ Mean responses
LRL — Lower requirement limit
URL - Upper requirement limit
The value of AY is computed as per Equation 3.
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where,
i=1,2,3, ..., r(index of design variables)
Ax; — variation or uncertainty in design variable x;

% — variation in the response f with respect to the design variable x;
For the larger-is-better case
u, — LRL
EM] = ——
AYlower (4)
For the smaller-is-better case
URL — p,
EM] = —————
A ipper )

where,
I, — mean responses,
LRL — Lower requirement limit
AY e = fo(X) = Vo
fo(x) — mean response model
Y,, = Min[ fj(x) - 4Y]
j=0,1,2, ..., s (number of uncertainty bounds)
i=1,2,3, ..., r(index of design variables)
Ax; — variation or uncertainty in design variable x;
AY; is the response variation for small variations in design variables for each uncertainty bound j

and is computed as per Equation 6.
-
of;
AYf:Z'a_xi " A% ©)
i=

Given that the required data is available, an approach to generate the upper, mean, and lower bound
models is presented in [34]. A discussion of this approach is beyond the scope of this paper. We do not
employ the above approach in this paper. Instead, we assume the availability of the upper, mean, and lower
bound models to demonstrate the facilitation of model uncertainty management using the framework.

3.1.3.  iSOM visualization tool

iSOM [33] is a tool to visualize high-dimensional data using 2D plots. It is an unsupervised machine-
learning algorithm, specifically an artificial neural network, and is a modified form of the conventional Self
Organizing Maps (SOM) [35]. SOM, an artificial neural network developed by Kohonen [36], is an efficient
algorithm for visualizing multidimensional numerical data [37]. The modification to conventional SOM
results in the avoidance of self-intersections and makes the iSOM plots inherently interpretable. iSOM has
distinct advantages, such as scalability and interpretability, making it suitable for exploring design space in
real-world problems. Plots generated using iSOM are valuable for visualizing the underlying relationships
between input design variables and output responses, as depicted in Figure 5 for the function Z = X? + Y2,

Z=x24+Y? X Y
2
1
0 o
-1
8

e = wm

El
-2

-2
4

|
4
. 2
0

FIGURE 5: Example of visualization using iSOM for a function Z = X? + Y? (plot on the left) with input
component plots X and Y and output component plot Z [38]
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In Figure 5, the arrows in the X and Y component plots represent the increasing direction of the axes
values. Correspondingly, the Z component plot captures the expected trend of a decrease followed by an
increase in Z values with increasing X and Y values. Similarly, suppose designers are interested in the region
the circle identifies in the Z component plot. They can determine the X and Y values that result in the chosen
Z values. The circles in the X and Y component plots in Figure 5 identify these X and Y values. Using the
iSOM plots, designers can carry out forward design space exploration to relate inputs to outputs and inverse
design space exploration to relate outputs to inputs. It is worth noting that the shape of the function remains
consistent in the Z component plot. A detailed discussion of selecting regions of interest using iISOM plots,
regardless of the number of dimensions, is presented in [33]. The work by Sushil and co-authors [38]
showecases the utility of the iISOM tool in visualizing 1) high-dimensional design spaces and ii) the relations
between inputs and outputs in multilevel systems. In recent literature, iSOM has been demonstrated as a
potent visualization tool for effectively addressing multi-objective, multi-dimensional, and multi-criteria
problem scenarios. More details can be found in [39-41]. In the proposed framework, we use iSOM to support
the co-design exploration of the multilevel design spaces in PMMP systems by simultaneously visualizing
the design spaces across individual levels using iISOM plots. The iISOM tool is available as a MATLAB code
[33].

3.2. Decision support using the CoDE-MU framework

In this section, the structure and use of the CoDE-MU framework are discussed in detail. To demonstrate
the concept, in the CoDE-MU framework presented, we only consider the interactions between two levels in
the PMMP system — Design Levels 1 and 2. The CoDE-MU framework comprises four blocks named A, B,
C, and D, as depicted in Figure 6. A detailed discussion of these blocks follows.

BLOCK A: BLOCK B:
DESIGN PROBLEM AND LEVEL-SPECIFIC INFORMATIO MODELING DECISION PROBLEMS ACROSS MULTIPLE
COLLECTION LEVELS AND THEIR INTERACTIONS
‘ Step A1: Identification of levels of the decisional hierarchy in the Step B1: Modeling the goals at each level as robust goals using
sys:em EMI or DCI construct to account for uncertainties

Robust design constructs

Step A2: Collection of level-specific information - design variables
and variable bounds, constraints, goals, goal targets, models, and
uncertainties involved
¥

+ Design Capability Index (DCI) for variable uncertainty
= Error Margin Index (EMI) for model uncertainty

| ¥
Step B2: Modeling the decision problem at the levels and their
interactions using the coupled cDSP construct

| Step A3: Establishing flow of information between the levels

BLOCK D:
VISUALIZATION AND CO-DESIGN EXPLORATION ol e BB sl c

. " 1. Preemptive formulation for modeling multilevel interactions
Step D1: Visualization of input and output design spaces across 2. Archimedean formulation at a level for many conflicting goals
multiple levels using iISOM =

¥

. [ ... I robust-coupled cDSP (rc-cDSP) formulation for the system
‘ o design problem

wqmmnsoaltE“L;mmnm Goaln Weight on Goal A ;Neidﬂnn&ﬂln c-cDSP + DCI and EMI goals

E IR e

Goall igymy Goaln Goall vz Gealn GENERATION OF ROBUST DESIGN SOLUTIONS
¥ Step C1: Creating multilevel design scenarios

LOTS

| OUTPUT PI

Step D2: Co-design Exploratlt_m qf the mqltlple !evels to identify Sample Multilevel Design Scenarios
common robust satisficing solution regions
. Design Level 1 Design Level 2
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] .
Ei Gﬂill(uuell.]h Goaln (Level 1) AMOOAs [ 2 1 0 0 ] 0 3 0 1
:i :: 5 12 | 19 | 26 | 33 39 a7 - - - - - - 1
=] Es i
i s s B m]nle n 0 [05 ]| 05| 1 0 |075]025) 1
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Step C2: Executing rc-cDSP for multilevel design scenarios to
generate robust design solutions across the multiple levels in the
system

individual goals at different levels, region for all goals across levels, see
see hexagons with red border hexagons with red border

I's \
Robust satisficing design region for ‘l [ Common robust satisficing design

FIGURE 6: Decision support framework to facilitate multilevel robust co-design exploration of PMMP
systems (Co-Design Exploration of Multilevel PMMP systems under Uncertainty: CoDE-MU)
Block A: Design problem and level-specific information collection
In Block A, information regarding the multilevel design problem and its levels are collected. Block A
is executed in Steps Al to A3, as discussed below.
Step Al: The levels of the decisional hierarchy in the multilevel PMMP system design problem are
identified.
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Step A2: Information specific to the decision problems at the individual levels is collected. The collected
information includes 1) design variables — their bounds and uncertainty estimates, ii) models employed and
associated uncertainties, iii) design goals and goal targets, and iv) level-specific constraints.

Step A3: The flow of information connecting the individual levels is established by identifying shared
design variables between levels. A copy of the shared design variables is used as the level-specific design
variables at the lower level in the decision hierarchy. Additionally, consistency constraints are established at
the lower level to ensure consistency of the shared design variable value at the lower level with the one
determined at the upper level.

Block B: Modeling decision problems across individual levels and their interactions

In Block B, the decision problems at various levels in the PMMP system and their interactions are
modeled as a single rc-cDSP using the information from Block A, as follows.

Step B1: Using the uncertainty information from Step A2, the design goals impacted by uncertainties at
the individual levels are formulated as robust goals using the EMI and DCI constructs presented in Section
3.1.2. Goals affected by design variable uncertainties are formulated as DCI goals using Equations 1 or 2.
Equations 1 and 2 are used when goals are maximization and minimization goals, respectively. Goals
impacted by model uncertainties are formulated as EMI goals using Equations 4 or 5. Equations 4 and 5 are
used when goals are maximization and minimization goals, respectively. A detailed description of EMI and
DCI goal formulations for the HRR test problem is provided in Section 4. Step B1 is followed by Step B2,
where the PMMP system design problem is modeled as an rc-cDSP.

Step B2: The individual-level decision problems and interactions across different levels in the PMMP
system are modeled using the c-cDSP construct. In the c-cDSP, separate instances of the ¢c-DSP construct are
used to model decision problems at the individual levels. The keywords of the ¢c-DSP construct — Given,
Find, and Satisfy help capture the level-specific information. The interactions between the level-specific
cDSPs in the c-cDSP are captured in the form of the flow of shared information, such as shared design
variables, as determined in Step A3. In the c-cDSP, the goals impacted by uncertainties are formulated as
DCI and EMI goals, as discussed in Step B1. The c-cDSP with EMI and DCI goals is referred to as the rc-
cDSP. The deviation function of the rc-cDSP is modeled using a combination of Preemptive and
Archimedean formulations. Decisions in PMMP systems are made hierarchically across levels. Hence, the
Preemptive formulation is employed, where the design goals at Design Levels 1 and 2 are assigned different
priority levels. Design Level 1 decisions are given higher priority as these are made first, followed by Design
Level 2 decisions at a lower priority. The difference in preferences among the many design goals at individual
levels of a multilevel decision problem is modeled using the Archimedean formulation, where different
weights are assigned to the various goals. The weights assigned are values between 0 and 1 that sumup to 1,
with higher values indicating higher preference. Combining the Preemptive and Archimedean formulations
in the rc-cDSP allows designers to consider many design goals requiring trade-offs at individual levels and
relations across levels of a multilevel decision problem, using a coupled decision problem formulation. A
detailed description of the rc-cDSP for the HRR test problem is provided in Section 4. The rc-cDSP is created
using the DSIDES platform.

Block C: Generation of robust design solutions

In Block C, the rc-cDSP formulation is executed for different multilevel design scenarios using the
DSIDES platform to generate robust design spaces across multiple levels. Block C is implemented in two
steps.

Step C1: The multilevel design scenarios to execute the rc-cDSP are created. The multilevel design
scenarios depicted in Step C1, Block C of Figure 6, represent situations with different preferences for the
design goals across Design Levels 1 and 2. These multilevel design scenarios are created by combining
individual-level design scenarios at Design Levels 1 and 2 in all possible combinations. Individual-level
design scenarios are created using Latin hypercube sampling. In each individual-level design scenario,
different weights are assigned to the design goals at the level. The weights indicate the difference in
preferences amongst the goals. The weights assigned are values between 0 and 1 that add up to 1, with higher
values indicating higher preference. If there are ‘n’ distinct design scenarios at an individual level in a
multilevel PMMP system with ‘m” levels, there exist n™ distinct multilevel design scenarios. In this paper,
n?>multilevel design scenarios are considered for the two-level PMMP system.

Step C2: The rc-cDSP formulation for the PMMP system is exercised for the n? multilevel design
scenarios to generate design solutions, including robust solutions, across the levels.

Block D: Visualization and co-design exploration
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In Block D, the simultaneous visualization of individual-level solution spaces is carried out using iSOM.
This is followed by the co-design exploration of individual-level solution spaces to identify common robust
satisficing solutions across multiple levels. Block D is executed in two steps, as detailed below.

Step D1: The iSOM algorithm is trained for the weight combinations corresponding to different
multilevel design scenarios and goal values generated for these scenarios. The trained iSOM algorithm
produces separate 2D iSOM plots for each input weight and output goal across multiple levels. The
simultaneous visualization of the individual-level solutions spaces across various levels is realized by
combining iISOM with the rc-cDSP. The iSOM plots for the output goals help designers visualize the relations
between goals across multiple levels.

Step D2: The solution spaces visualized using iSOM plots are explored to determine satisficing solution
regions for the individual goals by setting satisficing limits for each goal. The hexagonal grid points in an
iSOM plot whose values meet the set satisficing limit constitute the satisficing solution region for a given
goal. For example, in Step D2, Block D of Figure 6, the iSOM grid points with red borders identify the
satisficing solution regions for the individual goals. Only the grid points with multilevel design scenarios
mapped against them, indicated by the dots on the iSOM grid points, are considered. A larger size of the dot
on an iISOM grid point suggests a larger number of multilevel design scenarios being mapped to that specific
iSOM grid point. The designers seek to identify common satisficing solution regions for all the goals across
the levels by carrying out co-design exploration. Co-design exploration is carried out using a systematic
approach described as follows.

Systematic co-design exploration: Systematic co-design exploration takes place in 3 steps.
Step I: Determining if satisficing goal limit relaxations are required.

The designer asks, "Does a common satisficing solution region exist for all the goals across the levels?”

= If“No,” the designer proceeds to Step 2.

= If*“Yes,” co-design exploration is complete, and common satisficing solutions for all goals across levels
are identified.

Step 2: Identifying a goal to be excluded from satisficing limit relaxation.

The designer identifies a goal across the different levels whose satisficing limits cannot be relaxed due
to its critical nature. The following goals are candidates to be excluded from satisficing limit relaxation: 1)
goals formulated as DCIs or EMIs with low satisficing limit values, typically less than 1.5, and ii) other goals
deemed critical by designers. All the remaining goals are collectively called ‘non-excluded’ goals.

Step 3: Relaxation of satisficing limits for non-excluded goals.

The designer begins by grouping all non-excluded goals into two sets: i) Set 1 - All non-excluded goals
formulated as DCIs or EMIs with satisficing limit values greater than 1.5, and ii) Set 2 - All remaining non-
excluded goals. The relaxation of satisficing limits of non-excluded goals starts with the goals in Set 1,
followed by the goals in Set 2.

Step 3a: Relaxation of satisficing limits for Set 1 goals.

=  The designer picks the goal in Set 1 with the highest satisficing limit defined in terms of DCI
or EMI value.

=  For the chosen goal, the designer checks for any common iSOM grid points between the
satisficing solution regions of the excluded and chosen goals.

o Ifany common iSOM grid points exist, the satisficing limits of the chosen goal are not
relaxed. The designer then picks the goal in Set 1 with the next highest DCI or EMI
satisficing limit value and repeats the check.

o Ifno common iSOM grid points are identified, the designer relaxes the satisficing limit
by the least possible amount till common iSOM grid points are identified. The relaxed
DCI or EMI satisficing limits can be as low as 1.5.

o The above step is repeated till all goals in Set 1 are considered.

Step 3b: Relaxation of satisficing limits for Set 2 goals.

* Based on the designer’s judgment, a goal in Set 2 with a greater scope for satisficing limits
relaxation is chosen.

»  For the chosen goal, the designer repeats the procedure to check for common iSOM grid points
described in Step 3a until all goals in Set 2 are considered.

At the end of Step 3b, designers identify a common satisficing region for all the goals across different
levels, as depicted by the plot labeled ‘common robust satisficing design region for all goals across levels’ in
Step D2 of Figure 6. Based on the common region identified, the designer then determines the design
scenarios mapped to the common region and the corresponding design variable and goal values. The designer
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can also use the input and output iSOM component plots to understand the effect of varying the weights and
changing variable values on the goals across multiple levels and other performance indicators in PMMP
systems. In the next section, we demonstrate the CoDE-MU framework’s efficacy in supporting the design
of multilevel PMMP systems using an industry-inspired steel manufacturing process chain problem.

4. THE HOT ROD ROLLING (HRR) PMMP SYSTEM DESIGN PROBLEM

The CoDE-MU framework’s efficacy is tested using the industry-inspired Hot Rod Rolling (HRR)
problem. In this problem, we look at the co-design of the HRR PMMP system composed of the hot rolled
rod product, C-Mn steel material, and the cooling manufacturing process. HRR of steel is a complex
manufacturing process chain used to produce hot-rolled steel rods as products. HRR comprises a series of
manufacturing processes executed sequentially, as depicted in Figure 7, starting with the ‘reheating process,’
where the primary input steel in the form of billets is reheated. The reheated steel billets are then plastically
deformed to steel rods in the ‘hot rolling process’ by passing the material through several rollers in rolling
mills. Further, the ‘cooling process’ is carried out where rolled products are cooled in a run-out table to
produce steel rods as products.

FOCUS
\ MANUFACTURING 7‘\%} c DESIGN LEVEL ‘1" |

n ing int steel rod products |
I ! z

Reheating process i i and s.leel n:|alena| -
T UNCERTAINTIES | | Decisions regarding the material microstructure (D, Xy, and | 1
------------- < T Microstructure (after processing)
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N

* Rolling ] i
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strain, strain rate) required to achieve the targeted end of hot
rolling microstructure (d,)

HOT ROD ROLLING (HRR) PMMP SYSTEM

FIGURE 7: Multilevel decision-making and their interrelations in the HRR PMMP system

The above thermo-mechanical processing during manufacturing causes microstructural evolution and
macrostructural changes in the material, resulting in hot-rolled steel rods with specific microstructural
characteristics and corresponding mechanical properties. The performance requirements of the steel rods are
identified in terms of the target mechanical properties of the rods. Realizing hot rolled rods with targeted
performance requires the collective consideration of i) manufacturing processing, ii) material microstructure
and composition, and iii) product properties. In this paper, to demonstrate the efficacy of the CoDE-MU
framework, we bound the HRR PMMP system design problem to consider only the cooling process in the
HRR process chain. The design of the HRR PMMP system using the CoODE-MU framework is discussed
below.
Block A: The HRR PMMP system and design level-specific information collection.

The design of the HRR PMMP system starts at Step Al in Block A of the CoODE-MU framework.

Step Al: The levels of decisions in the HRR PMMP system are identified. The design of the HRR PMMP
system involves decisions at three levels — Design Levels 1, 2, and 3, as depicted in Figure 7. Design Level
1 involves decisions regarding materials that affect product properties and performance. Design Levels 2 and
3 involve decisions regarding the cooling and rolling manufacturing processing, respectively, that affect the
material. To demonstrate the efficacy of the CoDE-MU framework, we focus on Design Levels 1 and 2 and
their interactions only. This aspect is clarified in Figure 7 using the block labeled ‘FOCUS’ beside Design
Levels 1 and 2.

Step A2: Information specific to Design Levels 1 and 2 is collected. At Design Level 1, decisions are
made regarding i) the steel microstructure design variables identified by the Ferrite grain size (D), Ferrite
fraction (Xy), and Pearlite interlamellar spacing (S,) and ii) the steel composition design variable identified
by Manganese concentration [Mn] to achieve required mechanical properties for the steel rods. The
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mechanical property requirements are to achieve targeted Yield strength (YS), Tensile strength (TS), and
Hardness (HV) values of 330MPa, 750MPa, and 170, respectively. The corresponding minimum acceptable
values of 220MPa, 450MPa, and 130 define the lower requirement limits. The YS, TS, and HV property
requirements have different behaviors, and simultaneously realizing these properties requires compromises
or trade-offs. In Appendix Al, the models that relate the mechanical properties to the steel microstructure
and composition design variables at Design Level 1 are listed. The concentration of other elements that
determine the steel composition (Fe, C, Si, N, P, and Cu) is assumed to be fixed. The Design Level 1 specific
information is listed in the Given Section of Table 1.

At Design Level 2, decisions are made regarding i) the cooling process design variable - Cooling Rate
(CR), ii) the input steel microstructure design variable - Austenite grain size (dy), and iii) the input steel
composition design variable - [Mn] to achieve the required end of cooling steel microstructure. The end of
cooling steel microstructure requirements are to achieve the targeted Dq, So, and Xy values of Sum, 0.15pm,
and 1.0, respectively. The acceptable values D, = 20um, S, = 0.2um, and Xy= 0.6 define the upper
requirement limits for D, and S, and the lower requirement limit for Xr. The models that relate the steel
microstructure at the end of cooling to the cooling processing and input material microstructure and
composition design variables at Design Level 2 are provided in Appendix A2. The Design Level 2 specific
information is provided in the Given Section of Table 1.

The decisions at Design Levels 1 and 2 are subject to uncertainties associated with design variables. We
consider uncertainty in the model that relates YS to the steel microstructure at Design Level 1 using three
different YS models. Based on the values predicted for Y'S, we assume the model by Gladman and co-authors
[42] as the mean model - f,(x) or Y Smean, the model by Hodgson and Gibbs [43] as the upper bound - f; (x)
or Y Supper, and the model by Kuziak and co-authors [44] as the lower bound model - f,(x) or YSiower. These
models are presented in Appendix Al. We assume no model uncertainties for the remaining requirements
across Design Levels 1 and 2. The uncertainties associated with the design variables at Design Levels 1 and
2 are listed in the Given Section of Table 1.

Step A3: The design level-specific information from Step A3 is employed to identify the relationship
between the design levels regarding shared design variables. [Mn] is the shared design variable between
Design Levels 1 and 2. Hence, a copy of this variable, [Mncopy], is used at Design Level 2 as its level-specific
variables. Additionally, a consistency constraint is imposed at Design Level 2 to ensure that the value of the
[Mn] design variable at both levels remains the same. These details are provided in the Given and Satisfy
Sections of Table 1.

Block B: Modeling decision problems across multiple levels in the HRR PMMP system and their interactions

Using the information from Block A, decisions at Design Levels 1 and 2 and their interactions are
modeled in steps B1 and B2.

Step B1: Based on the uncertainty information from Step A2, the goals at Design Levels 1 and 2 are
formulated as robust goals using the EMI and DCI constructs. At Design Level 1, the YS requirement is
formulated as an EMI goal to account for uncertainties in the YS model. The formulation of the EMI YS goal
using Equation 3 is discussed below.

uy — LRL
EMIYS = =——
AYlower
where,
LRL=220MPa
Wy is the YSmean or f,(x) model in Table Al, Appendix A
AYper = fo(X)= Y,
Y .= Min| f]-(x) — 4Y;], where j= 0, 1, and 2 corresponding to the mean, upper and lower bound

models for YS, respectively, in Table Al, Appendix A
a .
AY; = i a_];]i | * Ax;, where i= 1, 2, 3, and 4 corresponding to design variables X; to X4 at Design

Level 1, for every j=0, 1, and 2.
The TS and HV goals at Design Level 1 are formulated as DCI goals to account for design variable
uncertainties that arise from the variability in steel microstructure - Dy, So, and Xy and steel composition
[Mn]. The DCI TS goal formulation using Equation 1 is presented below as an example.

i, — LRL

DCI =
AY

where,
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LRL=450MPa
W, or f is the TS model in Table A1, Appendix A

AY =¥ | :—; | * Ax;, where i= 1, 2, 3, and 4 corresponding to design variables X; to X4 at Design

Level 1

The Dy, So, and Xr goals at Design Level 2 are formulated as DCI goals to facilitate the consideration of
design variable uncertainties that arise from the variability in cooling processing parameter — CR, steel
microstructure - dy, and steel composition - [Mncopy]. The EMI and DCI goal formulations at Design Levels
1 and 2 are maximization goals to achieve higher EMI and DCI values, thereby ensuring greater robustness
to uncertainties. The EMI YS, DCI TS, and DCI HV goal targets are set as 3, 8, and 8, respectively. The goal
targets for DCI D, DCI S,, and DCI Xy are set as 3, 10, and 10, respectively.

Step B2: Using the information from Block A, the decisions at Design Levels 1 and 2 and interactions
are modeled using the c-cDSP construct. In the c-cDSP, a copy of the [Mn] shared design variable and a
consistency constraint are employed at Design Level 2 to account for the interactions, as listed in the Satisfy
Section in Table 1. The DCI and EMI goal formulations from Step B1 are used as goals for the c-cDSP. The
DCI and EMI goals and the c-cDSP together form the rc-cDSP for the HRR PMMP system, as detailed in
Table 1. Further design requirements pertaining to cost or other production considerations may be added as
goals at the appropriate design level in the rc-cDSP. Additionally, constraints, as listed in the Satisfy Section
in Table 1, are established to 1) ensure DCI and EMI goal values greater than one and guarantee robust
solutions and ii) to account for any limitations associated with the manufacturing processing. The deviation
function of the rc-cDSP is modeled using a combination of Preemptive and Archimedean formulations. The
decisions in the HRR PMMP system are made hierarchically, with decisions at Design Level 1 being made
before the decisions at Design Level 2. The Preemptive formulation is employed to help account for the
hierarchical relation between Design Levels 1 and 2. The difference in preferences among the many design
goals at the individual levels - Design Levels 1 and 2, is modeled using the Archimedean formulation, as
given in the Minimize Section in Table 1. By combining the Preemptive and Archimedean formulations in
the rc-cDSP, designers can consider many goals at Design Levels 1 and 2 and relations between Design
Levels 1 and 2 in a coupled decision problem formulation.

TABLE 1: Robust coupled ¢cDSP (rc-cDSP) for the HRR PMMP system considering interactions between
Design Levels 1 and 2

GIVEN
a. HRR PMMP system information
Constants:
i Elemental composition of C-Mn steel:
[Cu]= 0.08%; [P]= 0.019%; [C]= 0.18%; [N]= 0.007%; [Si]= 0.36%

ii.  Average Austenite to Ferrite transition temperature, Tme= 700°C
1. Pearlite colony size, p= 6um,
iv. Carbide thickness, tca=0.025um

v. Residual strain at the end of rolling, &= 0 (assumed)

b. Design variables (x;), their bound, and uncertainties at Design Level 1
i 0.1= x1(Xy) £1.0
ii. 55 x2(Dy) £25 (um)
ii. 0.15= x3(So) £0.25 (um)
iv. 0.7= x4([Mn]) £1.5 (%) (shared)
e Uncertainty: Dy=+ 3um; Xi== 0.1; S¢=+ 0.01um; [Mn]=+0.1%
Design variables (x;), their bounds, and uncertainties at Design Level 2
i 30< x5 (dy)<100 (um)
il. 0.1833 <x¢ (CR) <1.66 (°C/s)
iii. 0.7< x7 ([Mngopy]) <1.5 (%) (shared)
e  Uncertainty: d,==+ 10um; CR= + 0.166°C/s; [Mngopy]= + 0.1%
c. End requirements at Design Level 1 in terms of steel rod mechanical properties
i.  Achieve targeted YS [MPa]
ii. Achieve targeted TS [MPa]
iii. Achieve targeted HV
Corresponding requirement on the rc-cDSP goals (Gy) at Design Level 1 (k=1.2.3)
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1. Goal G|: Maximize EMI YS

ii. Goal G;: Maximize DCI TS

iii. Goal G3: Maximize DCI HV
Goal Targets: Gi arget = 35 G2 tareet = 85 G3 target = 8

End requirements at Design Level 2 in terms of steel microstructural characteristics

1. Achieve targeted Dy
il. Achieve targeted Sy
1. Achieve targeted Xy

Corresponding requirement on the rc-cDSP goals (Gy) at Design Level 2 (k=4.5.,6)

1. Goal G4: Maximize DCI D,

ii. Goal Gs: Maximize DCI S,

iii. Goal G¢: Maximize DCI X;
Goal Targets: Ga arget = 3; Gs target = 10; G rarget =10

e  The models for the end requirements at Design Levels 1 and 2 are provided in Appendix Al and

A2, respectively.

e Uncertainty associated with the YS model is represented by the YSmean, Y Supper, and Y Siower

models listed in Appendix Al.

d. Requirement limits at Design Level 1: Lower Requirement Limit (LRL) for YSmean= 220MPa; LRL

for TS= 450MPa; LRL for HV= 130

Requirement limits at Design Level 2: Upper Requirement Limit (URL) for Dg= 25um; URL for S¢p=

0.25um; LRL for X¢= 0.5

FIND values of

a. Design variables: X; where i=1,2,3,4,5,6,7

b. Deviation variables: di" and di” where k=1,2,3.4,5,6

SATISFY

a. Design Level 1 constraints

ii. EMIYS >1
iil. DCITS>1
iv. DCIHV > 1

Design Level 2 constraints

. d, <100

ii. d, =30
iil. CR £1.66
iv. CR >0.1833

V. Mncopy= Mn (consistency constraint for shared design variable)

Vi. DCIDq= 1
vii. DCISo= 1
viii. DCIXs=>1

b. Variable bounds at Design Level 1
i 0.1 X¢<1.0
ii. 55D, <25
iii. 0.15< 80 <0.25
iv. 0.7< [Mn] <1.5
Variable bounds at Design Level 2
i 30<d,<100
ii. 0.1833<CR <1.66
iii. 0.7< [Mncopy] <1.5
Deviation variable bounds
di,di>=0and di" *di =0

MINIMIZE

Preemptive formulation at two levels.
The deviation function (Z) needs to be minimized.
Min Z= (f], fz)
Priority 1: Design Level 1 (Archimedean Formulation)
fi= X Wi (d" + dy),
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where, Wi= weights assigned to the deviations of the individual goals from the target values, £ Wi= 1,
and k=1, 2, 3.
Priority 2: Design Level 2 (Archimedean Formulation)
fr= 2 Wi (d'+ dy),

where, W= weights assigned to the deviations of the individual goals from the target values, & Wi =1 and
k=4,5,6
Block C: Generation of robust design solutions across Design Levels 1 and 2

The rc-cDSP is executed for various multilevel design scenarios to generate robust design solutions
across Design Levels 1 and 2.

Step C1: Multilevel design scenarios are created by considering all combinations of individual-level
design scenarios at Design Levels 1 and 2. Individual-level design scenarios are created by assigning different
combinations of weights to the goals at the level using a Latin hypercube sampling (LHS) design. Using the
LHS design helps cover the design space effectively. 13 design scenarios are considered at the individual
levels, leading to 169 multilevel design scenarios across the two design levels. Some sample multilevel design
scenarios are listed in Table 2.

TABLE 2: Sample multilevel design scenarios

Design Level 1 weights (Wk=1,23) | Design Level 2 weights (Wk=4,,)
Scenario # Wi W2 W3 kak Wy Ws Ws kak
1 0.33 | 0.13 | 0.54 1 033 | 0.13 | 0.54 1
2 0.33 | 0.13 | 0.54 1 0.35 1 042 | 0.23 1
55 0.16 | 042 | 0.42 1 0.06 | 0.06 | 0.88 1
169 0.33 | 0.18 | 0.49 1 033 | 0.18 | 0.49 1

Step C2: The HRR PMMP system rc-cDSP is executed for the multilevel design scenarios to generate
robust design solutions for the goals across Design Levels 1 and 2.

Block D: Visualization and co-design exploration of the solution spaces

In Block D, the visualization and co-design exploration of the robust solution spaces across Design
Levels 1 and 2 is carried out in Steps D1 and D2, respectively.

Step D1: The weight combinations corresponding to different multilevel design scenarios and goal
values generated for these scenarios at Design Levels 1 and 2 are used to train the iSOM algorithm. The
trained iISOM helps visualize the solution spaces across the levels simultaneously by generating six iSOM
plots for the six goals across Design Levels 1 and 2, as shown in Figure 8.

ONO!
el

Gy(DCIHV) > 6

O
()
Q

°°

G,(DCIDa) = 2 Gs(DCISo) =9 G4(DCIXf) = 10
Design Level 2 : G, to Gg

FIGURE 8: Initial iSOM plots for goals at Design Levels 1 and 2, with yellow and dark blue regions
representing relatively high and low robustness regions, respectively. The hexagonal iSOM grid points
highlighted in red indicate satisficing solutions regions for goals. The red dots indicate design scenarios being
mapped to the iSOM grid points.
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Step D2: The iSOM plots for the goals are used to conduct co-design exploration of Design Levels 1 and
2 by simultaneously exploring the solution spaces. Co-design exploration of the levels helps identify common
robust satisficing solutions for the goals across the two levels.

The co-design exploration of Design Levels 1 and 2 begins by establishing the satisficing limits for all
the goals to identify robust satisficing solution regions on the iSOM plots for each goal. The designer focuses
on ensuring greater safety against uncertainties by choosing regions with higher EMI or DCI values. Hence,
the satisficing limits for the goals at Design Levels 1 and 2 are initially set to the higher end of the achievable
EMI or DCI values, as follows.

At Design Level 1 At Design Level 2
1. EMIYS, G; >1.3 i. DCI Dg, G4 >2
ii. DCI TS, G2 >6 ii. DCI S,, G5 >9
iii. DCI HV, G3 >6 iii. DCI X, G >10

For the above satisficing goal limits, iISOM grid points highlighted with a red border in Figure 8 indicate
the initial satisficing solution regions.
Systematic co-design exploration

Step 1: With the satisficing limits set to the above values, the designer identifies no common region in
terms of iSOM grid points for all six goals across Design Levels 1 and 2. The designer, therefore, proceeds
to Step 2.

Step 2: Since all the goals are formulated as EMIs or DCls, the designer picks the goal with the lowest
satisficing limit as the goal to be excluded from satisficing limit relaxation. Hence, G1, with a satisficing limit
of less than 1.5, is picked as the goal to be excluded from the satisficing limit relaxation. G to Ge constitute
the non-excluded goals.

Step 3: The designer groups all non-excluded goals (G to Gg) into Set 1 as they are all formulated as
DCIs or EMIs.

Step 3a: The designer picks G with the largest satisficing limit value. Since common grid points with
the excluded goal G; are identified, as depicted by the iISOM grid points highlighted in black for G; and Ge
in Figure 9, the satisficing limit of Gg is not relaxed. The designer then picks the goals with the next highest
satisficing limit, Gs. The designer checks for common grid points and decides not to relax the satisficing limit
for Gs as common grid points exist. The designer then considers Gs. Since G3 has no common iSOM grid
points with the excluded goal Gi, G3’s satisficing limit is relaxed to 5. This results in the iSOM grid points
highlighted in black in Figure 9 becoming common for G3 and G;. The above step is repeated for G, resulting
in its satisficing limit being relaxed to 3.5. Finally, the designer considers G4 with the smallest satisficing
limit in Set 1. Since G4 has common iSOM grid points with the excluded goal G, G4’s satisficing limit is not
relaxed.

G 14

135

00000‘

G4(EMIYS) > 1.3 G,(DCITS) = 3.5 G3(DCIHV) =5
Excluded goal Relaxed satisficing limit Relaxed satisficing limit
Design Level 1: G, to G,
" S s Q |7
26 - 12
24 ‘°°°‘ 1o ‘ 1.5
SPo00000" . Jig ool k
18 . ‘ 10.5
16 ! ‘ 10

B8
15
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G,(DCI Da) > 2 G5(DCIS0) > 9 Gg(DCIX) = 10
Design Level 2 : G, to Gg

FIGURE 9: iSOM plots for all goals across Design Levels 1 and 2 after systematically updating the satisficing
goal limits. The iISOM grid points highlighted in red indicate the satisficing solutions regions for the goals. The
black iSOM grid points indicate the common satisficing solution region for all Design Levels 1 and 2 goals.
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With the updated satisficing limits, three iISOM grid points are determined to be the common satisficing
region for all the goals, as depicted by the black iSOM grid points in Figure 9. These grid points have six
design scenarios mapped against them, resulting in six common robust satisficing design solutions across
Design Levels 1 and 2 of the HRR PMMP system. Hence, using the combination of the rc-cDSP and iSOM
in the CoDE-MU framework, designers can simultaneously explore the solution spaces across Design Levels
1 and 2 to identify common robust satisficing design solutions. The CoODE-MU framework thereby facilitates
the robust co-design of the HRR PMMP system. The six design scenarios and the corresponding goal values
at Design Levels 1 and 2 are listed in Table 3.

TABLE 3: Common solutions identified after co-design exploration of Design Levels 1 and 2 in the HRR
PMMP system

Robust goal values
Design Scenario # Design Level 1 Design Level 2

EMI YS DCITS DCI HV DCI Dq DCI So DCI Xt
40 1.45 3.25 4.62 2.00 10.40 10.21
44 1.45 3.25 4.62 1.67 9.75 10.84
49 1.45 3.25 4.62 2.00 10.40 10.21
50 1.45 3.25 4.62 1.67 9.75 10.84
52 1.45 3.25 4.62 2.00 10.40 10.21
144 1.45 3.25 4.62 2.00 10.40 10.21

On analyzing the EMI and DCI values in Table 3, all solutions identified are robust with EMI and DCI
values greater than 1. The design variables values, steel rod properties, and steel microstructure
corresponding to the six common robust satisficing design solutions are listed in Table 4.

identified after co-design exploration of Design Levels 1 and 2 in the HRR PMMP system

TABLE 4: Design variables, properties, and microstructure corresponding to the common robust satisficing solutions

Design Variables Properties and Microstructure

Design Design Level 1 Design Level 2 Design Level 1 Design Level 2

Scenario # X, D, So Mn dy CR Mn.opy YSiean TS HV D, Sy X,

pm pm % pm °C/s % MPa MPa pm pm

40 0.52 | 850 | 0.15 | 1.50 | 42.50 | 1.16 1.50 | 341.53 | 617.03 151.23 18.87 0.11 0.67

44 0.52 | 8.50 | 0.15 | 1.50 | 42.50 | 0.98 1.50 | 341.53 | 617.03 151.23 19.51 0.12 0.68

49 0.52 | 8.50 | 0.15 | 1.50 | 42.50 | 1.16 1.50 | 341.53 | 617.03 151.23 18.87 0.11 0.67

50 0.52 | 850 | 0.15 | 1.50 | 42.50 | 0.98 1.50 | 341.53 | 617.03 151.23 19.51 0.12 0.68

52 0.52 | 850 | 0.15 | 1.50 | 42.50 | 1.16 1.50 | 341.53 | 617.03 151.23 18.87 0.11 0.67

144 0.52 | 8.50 | 0.15 | 1.50 | 42.50 | 1.16 1.50 | 341.53 | 617.03 151.23 18.87 0.11 0.67
724 Upon analyzing the mechanical properties of steel rods listed in Table 4, a mean YS of 341.53MPa, TS
725 of 617.03MPa, and HV of 151.23 are achieved by ensuring a steel microstructure with moderate to high Xy
726 (0.52), low Dg (8.5um), low So (0.15um), and steel composition with [Mn] of 1.5%. At Design Level 2, the
727 cooling process parameter (CR), input steel microstructure (dy), and composition ([Mn]) variable values
728 identified help achieve targeted Xy, Dy, and So values, given the cooling process constraints and uncertainties
729 involved. This results in D, values between 18.9 and 19.5pm, Sp values between 0.11 and 0.12um, and X¢
730 values between 0.67 and 0.68, as listed in Table 4. Correspondingly, the cooling rate during the cooling
731 process is identified to be between 0.98 and 1.16°C/s, and the input steel microstructure, d, of 42.5pum. Based
732 on the CR value range, it is evident that higher cooling rates are necessary to realize the required steel
733 microstructure and steel rod properties. Therefore, designers can assess the impact of process variables on

734 the product and materials using the CoDE-MU framework.

735 From the iSOM plots in Figure 9, the relations among the goals at the individual levels can also be
736 ascertained. For example, at Design Level 1, a focus on achieving high EMI YS, depicted by the yellow
737 regions on the iISOM plot for Gy, will result in lower DCI TS and DCI HV values, shown by the blue regions
738 on the G; and G3 iSOM plots. Similarly, at Design Level 2, a focus on maximizing DCI Xy, depicted by the
739 yellow regions in the iSOM plot for Gs, will result in lower DCI S, and DCI D, values, shown by the blue
740 regions on the G4 and Gs iISOM plots. Moreover, the relations among the goals across levels can also be
741 established based on the iISOM plots. For example, a focus on achieving high DCI S, and DCI D,, values at
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Design Level 2, depicted by the yellow regions on the G4 and Gs iSOM plots, will result in high EMI YS
value, represented by the yellow regions in the G; iSOM plot, and low DCI TS and DCI HV values,
represented by the blue regions in the G, and G3 iSOM plots, at Design Level 1. Therefore, the CoDE-MU
framework also supports designers in understanding the relations within and between levels during the design
of the HRR PMMP system.

5. CLOSING REMARKS

Realizing products that simultaneously meet many performance requirements with different behaviors
requires careful consideration of the relations among the product, materials, and manufacturing processes
across multiple decision levels in PMMP systems. Failure to account for the relations among individual levels
will result in design conflicts that will adversely impact the realization of targeted product performance.
Uncertainties arising from the variability associated with processing and microstructure and uncertainties in
the models employed will also adversely affect product performance. Hence, it is vital to consider the
relations among individual levels and manage the design conflicts and uncertainties during PMMP systems
design. This necessitates the support for co-design exploration of individual design levels to identify ranged
sets of common robust satisficing solutions across the levels.

In this paper, we present a decision support framework that facilitates the co-design exploration of
multiple levels of the PMMP systems under uncertainty, namely CoDE-MU. In the CoDE-MU framework,
the c-cDSP construct is combined with EMI and DCI robust design constructs and machine-learning-based
iSOM visualization to facilitate multilevel robust co-design exploration. Using the framework, designers can
1) model decision problems across individual levels and their interactions using a coupled decision problem
formulation, ii) visualize and simultaneously explore the design spaces across multiple levels, iii) manage
the impact of uncertainties, and iv) identify important processing and microstructure variables that influence
the product performance. The framework enhances the ability of designers to account for the interactions
among the products, materials, and manufacturing processes and, at the same time, manage the inherent
uncertainties in PMMP systems. This is achieved by employing the rc-cDSP, where the c-cDSP construct is
used with the EMI and DCI robust design constructs. In the rc-cDSP, a combination of the Preemptive and
Archimedean formulations is employed to help account for i) the hierarchical relationships among the
individual levels and ii) the many design goals requiring trade-offs at individual levels of a multilevel
decision problem. Using the framework, designers can perform efficient, robust co-design exploration. This
is realized by employing the iSOM visualization tool to simultaneously explore the individual-level design
spaces formulated using the rc-cDSP. iISOM visualization involves training iSOM using weight combinations
corresponding to multilevel design scenarios of the rc-cDSP and goal values generated for these scenarios.
Two-dimensional plots for the output goals across multiple levels are generated via iSOM. Using the
simultaneous solution space visualization capability offered by iISOM, designers are further able to explore
and seek common robust satisficing regions for the many goals across multiple levels, thereby facilitating
co-design and the joint management of design conflicts and uncertainties. The framework supports designers
in accounting for various soft and hard requirements across the design levels by facilitating their modeling
in the rc-cDSP as goals and constraints, respectively. This allows consideration of any additional
requirements relating to cost, production considerations, and process limitations during PMMP system
design.

The framework's capability in supporting the above functionalities is demonstrated using an industry-
inspired steel manufacturing process chain problem — HRR of steel. Using the framework, the co-design of
the HRR PMMP system that involves the steel rod product, steel material, and the cooling process at two
different levels - Design Levels 1 and 2, their interactions and inherent uncertainties are demonstrated. The
design conflicts arising from the hierarchically related levels are managed by simultaneously exploring the
solution spaces across Design Levels 1 and 2 to identify common robust satisficing solutions for the goals
across the levels. In the HRR test problem, we consider model uncertainties in the YS design goal by
assuming different mean, upper, and lower models. We assume that TS and HV functions are not subject to
model uncertainties and thus consider their models mean models. The uncertainty associated with the
function parameters of TS and HV are considered. This assumption is made to demonstrate the efficacy of
the robust design constructs for various sources of uncertainties in the problem, namely model structure
uncertainty (via EMI metric) and model parameter uncertainty (via DCI metric). The limitation of such an
assumption is that the design solutions found will be sensitive to model variability since models are always
abstractions of reality. The formulation of model uncertainty requires designers to have data sets that capture
the variability of the function with respect to the design variables. This could be practically difficult for
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certain materials design problems with limited information. The integrated mean response model and
prediction interval approach presented by McDowell and co-authors [34] allows the efficient estimation of
the mean function model and prediction intervals, defining the upper and lower bounds if simulation-assisted
or experimental data is available. Extending the current framework with efficient data-driven approaches to
consider model uncertainty and its propagation across levels is a focus for future research.

The generic nature of the framework is made evident by the generic nature of the constructs and tools
employed. Using the framework, we facilitate the robust co-design of multilevel PMMP systems
characterized by many design goals requiring trade-offs at individual levels and hierarchical relations among
the levels. From an ICME perspective, the CoDE-MU framework supports the need to consider the influence
of manufacturing processing in materials design. This is achieved by facilitating the consideration of
manufacturing processing decisions and their influences during PMMP systems design. The CoDE-MU
framework can also facilitate location-specific materials design, a significant focus area in ICME. Location-
specific materials design can be realized by supporting the designers to account for the influence of the
manufacturing process to tailor material microstructure and properties at desired locations.

The proposed CoDE-MU framework can be further expanded to account for all the manufacturing
processing decisions and their interactions by modifying the rc-cDSP formulation with additional levels. The
changes to the rc-cDSP required to facilitate the same involve creating additional priority levels in the
Preemptive formulation of the deviation function. Consequently, the multilevel design scenarios need to be
modified to account for the new design levels in the PMMP system.
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APPENDIX A

In Table A1, we present the empirical models that relate the steel microstructure and composition with

the steel rod properties. These models are employed in modeling the decision problem at Design Level 1, as
described in Block B of Section 4. The Y Siower, Y Smean, and Y Supper models depict the uncertainties in the YS
model, as described in Step A2, Block A of Section 4.

TABLE A1l: Empirical models for mechanical property goals at Design Level 1
(Twe= 700°C, p= 6um, t car= 0.025um)

Mechanical Property Empirical Model Source
X¢(77.7 + 59.9[Mn] + 9.1(De*0.001)-9-5) + .
YSiower [f2(x)] 47ff(§[N]°-5 N 12()[0[P]] "t —(Xf)(145.5)+3.)580‘°-5) Kuziac and co-authors (1997) [44]
vs £.00] 63[Si] + 425[N]% + X¢ 3 (35 + 58[Mn] + Gladman and co-authors (1972)
mean [fo 17(0.001Da) 95) + (1 — X¢ 1) (179 + 3.984705) [42]
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958

960
961
962
963

964

62.6 +26.1[Mn] + 60.2[Si] + 759[P] + .
YSupper [f1 ()] 212.9[Cu] ! 32g6[N] +[1 9?7(0.0051)10) 05 Hodgson & Gibbs (1992) [43]
X£(20 + 2440[N]%3+ 18.5(0.001*Dg) 0> + .
TS 750(1 - Xg) + 3(1 - X5) S¢03 + 92.5%[Si] Kuziac and co-authors (1997) [44]
HV X£(361 - 0.357Tme+ 50[Si]) + 175(1 - Xy) Yada (1988) [45]

In Table A2, we present the empirical models that relate the steel microstructure and composition
before cooling and the cooling processing parameters with the steel microstructure at the end of the cooling
process. These models are employed in modeling the decision problem at Design Level 2, as described in

Block B of Section 4.

TABLE A2: Empirical models for steel microstructure characteristics at the end of cooling at Design Level 2

Microstructure characteristics Empirical Models Source
D (1 — 0.45&%%) *{(-0.4 + 6.37*Ceq) + (24.2 — | Hodgson & Gibbs (1992)
¢ 59%Ceq) CR05 + 22%(1-exp(-0.015*dy))} [43]
S 0.1307 + 1.027[C] - 1.993[C]? -0.1108[Mn] + Kuziac and co-authors
0.0305*CR-2 (1997) [44]
X 1-([C]/(0.789 - 0.1671[Mn] + (0.1607[Mn]?) Kuziac and co-authors
= -(0.0448[Mn] %)) (1997) [44]
X Xt eq - 5.48(1-exp(-0.0106CR)) - (0.723*(1- Kuziac and co-authors
exp(-0.0009dy))) (1997) [44]
Ceq ([C] + [Mn])/6 Hodgson 8;4%};bbs (1992)
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