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Markov Chain Monte Carlo for Koopman-Based
Optimal Control
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Abstract—We propose a Markov Chain Monte Carlo
(MCMC) algorithm based on Gibbs sampling with parallel
tempering to solve nonlinear optimal control problems. The
algorithm is applicable to nonlinear systems with dynamics
that can be approximately represented by a finite dimen-
sional Koopman model, potentially with high dimension.
This algorithm exploits linearity of the Koopman represen-
tation to achieve significant computational saving for large
lifted states. We use a video-game to illustrate the use of
the method.

Index Terms—Koopman operator, optimal control,
optimization, randomized algorithms, switched systems.

I. INTRODUCTION

WHILE pioneering work is almost a century old, its use
as a practical tool to model complex dynamics is much

more recent and only became practical when computational
tools became available for the analysis of systems with hun-
dreds to thousands of dimensions. The use of Koopman models
for control is even more recent, but has attracted significant
attention in the last few years [2], [3], [4], [5], [6], [7].

The linear structure of the Koopman representation permits
very efficient solutions for optimal control when the lifted
dynamics are linear on the control input, as in [2], [3], [4].
However, linearity in the control severely limits the class of
applicable dynamics. Bilinear representations are more widely
applicable [5], [6], [7], but are also harder to control.

When the set of admissible control inputs is finite, the
Koopman representation can be viewed as a switched linear
system, where the optimal control selects, at each time step,
one out of several admissible dynamics [9]. Solving optimal
control problems for switched systems is typically difficult
[10], [11], [12], [13], but when the optimization criterion is
linear in the lifted state, the dynamic programming cost-to-go
is concave and piecewise linear, with a simple representation
in terms of a minimum over a finite set of linear functions.
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This observation enabled the design of efficient algorithms that
combine dynamic programming with dynamic pruning [9].

This letter exploits the structure of the Koopman repre-
sentation to develop efficient Markov Chain Monte Carlo
(MCMC) sampling methods for optimal control. Following
the pioneering work of [14], [15], [16], we draw samples
from a Boltzmann distribution with energy proportional to the
criterion to minimize. The original use of MCMC methods
for combinatorial optimization relied on a gradual decrease in
temperature, now commonly known as simulated annealing,
to prevent the chain from getting trapped into states that do not
minimize energy. An alternative approach relies on the use of
multiple replicas of a Markov chain, each generating samples
for a different temperature. The introduction of multiple
replicas of a Markov chain to improve the mixing time can
be traced back to [17]. The more recent form of parallel
tempering (also known as Metropolis–coupled MCMC, or
exchange Monte Carlo) is due to [18], [19].

Our key contribution is an MCMC algorithm that combines
Gibbs sampling [16], [20] with parallel tempering to solve the
switched linear optimizations that arise from the Koopman
representation of nonlinear optimal control problems. This
algorithm is computationally efficient due to the combination
of two factors: (i) the linear structure of the cost function
enables the full variable sweep need for Gibbs sampling to
be performed with computation that scales linearly with the
horizon length T and (ii) parallel tempering can be fully
parallelized across computation cores, as noted in [21]. With
regard to (i), the computational complexity of evaluation
Gibbs’ conditional distribution for each optimization variable
is of order Tn2

ψ , where nψ denotes the size of the lifted
state. Our algorithm computes the conditional distributions
for all T variables in a full Gibbs’ sweep with computation
still just of order Tn2

ψ . With regard to (ii), while here we
only explore parallelization across CPU cores, in the last
few years hardware parallelization using GPUs and FPGAs
has achieved orders of magnitude increase in the number of
samples generated with MCMC sampling [22], [23].

The remaining of this letter is organized as follows:
Section II shows how a nonlinear control problem can be
converted into a switching linear systems optimization, using
the Koopman operator. Section III provides basic background
on MCMC, Gibbs sampling, and parallel tempering. Our
optimization algorithm is described in Section IV and its use is
illustrated in Section V in the context of a video game. While
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this letter is self-contained, details of some of the algebraic
derivations are omitted, but can be found in [24].

II. OPTIMAL CONTROL OF KOOPMAN MODELS

Given a discrete-time nonlinear system of the form

xt+1 = f (xt, ut), ∀t ∈ T, xt ∈ X, ut ∈ Ut, (1)

with the time t taking values over T := {1, . . . , T}, our goal
is to solve a final-state optimal control problem of the form

J∗ := min
u∈U

J(u), J(u) := g(xT), (2)

where u := (u1, . . . , uT) ∈ U := U1 × · · · × UT denotes the
control sequence to be optimized, which we assume finite but
potentially with a large number of elements.

For each input u ∈ Ut, t ∈ T, the Koopman operator Ku
for the system (1) operates on the linear space of functions F
from X to R and is defined by

ϕ(·) ∈ F &→ ϕ(f (·, u)) ∈ F.

Assuming there is a finite dimensional linear subspace Finv of
F that is invariant for every Koopman operator in the family
{Ku : ∀u ∈ Ut, t ∈ T}, there is an associated family of matrices
{A(u) ∈ Rnψ×nψ : ∀u ∈ Ut, t ∈ T} such that

ψt+1 = A(ut)ψt, ∀t ∈ T, ψt ∈ Rnψ , ut ∈ Ut, (3)

where ψt :=
[
ϕ1(xt) · · · ϕnψ (xt)

]′ ∈ Rnψ and the functions
{ϕ1(·), . . . ,ϕnψ (·)} form a basis for Finv [9], [25], [26]. If in
addition, the function g(·) in (2) also belongs to Finv, there
also exists a row vector c ∈ R1×nψ such that

g(xT) = cψT , (4)

which enables re-writing the optimization criterion (2) as

J(u) := cψT = cA(uT) · · · A(u1)x1. (5)

We can thus view the original optimal control problem for the
nonlinear system (1) as a switched linear control problem [9].
Note that it is always possible to make sure that (4) hold for
some vector c by including g(xt) as one of the entries of ψt.

It is generally not possible to find a finite-dimensional
subspace Finv that contains g(·) and is invariant for every
{Ku : u ∈ Ut, t ∈ T}. Instead, we typically work with a finite
dimensional space for which (3)–(4) hold up to some error.
However, to make this error small, we typically need to work
with high-dimensional subspaces, i.e., large nψ .

III. MCMC METHODS FOR OPTIMIZATION

To solve a combinatorial minimization of the form

J∗ := min
u∈U

J(u). (6)

over a finite set U, it is convenient to consider the following
Boltzmann distribution with energies J(u), u ∈ U:

p(u;β) := e−βJ(u)

Q(β)
, ∀u ∈ U, Q(β) :=

∑

ū∈U
e−βJ(ū), (7)

for some constant β ≥ 0. For consistency with statistical
mechanics, we say that values of β close to zero correspond

to high temperatures, whereas large values correspond to low
temperatures. The normalization function Q(β) is called the
canonical partition function.

For β = 0 (high temperature), the Boltzmann distribution
becomes uniform and all u ∈ U are equally probable. However,
as we increase β (lower the temperature) all probability mass
is concentrated on the subset of U that minimizes the energy
J(u). This motivates a procedure to solve (6): draw samples
from a random variable uβ with Boltzmann distribution given
by (7) with β sufficiently high (temperature sufficiently low)
so that all samples correspond to states with the minimum
energy/cost.

A. Markov Chain Monte Carlo Sampling
Consider a discrete-time Markov chain {u[1], u[2], . . . } on

a finite set U, with transition probability

p
(
u′|u

)
= P

(
u[k + 1] = u′ | u[k] = u), ∀u′, u ∈ U, k ≥ 1.

Combining the probabilities of all possible realizations of
u[k] in a row vector p[k] and organizing the values of the
transition probabilities p(u′|u) as a transition matrix P, with
one u′ ∈ U per column and one u ∈ U per row, enables us to
express the evolution of the p[k] as

p[k + K] = p[k]PK, ∀k, K ≥ 1.

A Markov chain is called regular if that there exists an integer
N such that all entries of PN are strictly positive. In essence,
this means that any ū ∈ U can be reached in N steps from any
other ũ ∈ U through a sequence of transitions with positive
probability p(u′|u) > 0, u, u′ ∈ U. The following result
adapted from [27, Ch. IV] is the key property behind MCMC
sampling:

Theorem 1 (Fundamental Theorem of Markov Chains): For
every regular Markov chain on a finite set U and transition
matrix P, there exists a vector π such that:

1) The Markov chain is geometrically ergodic, meaning
that there exists constants c > 0, λ ∈ [0, 1) such that

‖p[k]PK − π‖ ≤ cλK, ∀k, K ≥ 0. (8)

2) The vector π is called the invariant distribution and is
the unique solution to the global balance equation:

πP = π, π1 = 1, π ≥ 0. (9)

To use an MCMC method to draw samples from a desired
distribution p(u;β), we construct a discrete-time Markov
Chain that is regular and with an invariant distribution π that
matches p(u;β). We then “solve” our sampling problem by
only accepting a subsequence of samples u[K + 1], u[2K +
1], . . . with K “sufficiently large” so that the distribution p[K+
1] = p[1]PK of the sample u[K + 1] satisfies

‖p[1]PK − π‖ ≤ ε
(8)⇐= K ≥ log c + log ε−1

log λ−1 . (10)

for some “sufficiently small” ε. Such K guarantees that the
samples u[K + 1], u[2K + 1], . . . may not quite have the
desired distribution, but are away from it by no more than ε.
Since ε−1 appears in (10) “inside” a logarithm, we can get
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Algorithm 1 Gibbs Sampling
• Pick arbitrary u[1] ∈ U.
• Set k = 1 and repeat until enough samples are collected:
• Variable sweep: For each t ∈ T:

– Sample ut[k + 1] with the desired conditional distribution of ut ,
given u−t[k]:

p(ut, u−t[k];β)∑
ūt p(ūt, u−t[k];β)

, (12)

– Set u−t[k + 1] = u−t[k] and increment k.

ε extremely small without having to increase K very much.
The factor 1/ log λ−1 in (10) is often called the mixing time
of the Markov chain and is a quantity that should be small to
minimize the number of “wasted samples.”

To make sure that the chain’s invariant distribution π

matches a desired sampling distribution p(u;β), u ∈ U, we
need the latter to satisfy the global balance equation (9), which
can be re-written in non-matrix form as

p
(
u′;β

)
=

∑

u∈U
p
(
u′|u

)
p(u;β), ∀u′ ∈ U.

A sufficient (but not necessary) condition for global balance
is detailed balance [28], which instead asks for

p
(
u|u′)p

(
u′;β

)
= p

(
u′|u

)
p(u;β), ∀u′, u ∈ U. (11)

B. Gibbs Sampling
Gibbs sampling starts with a function p(u;β), u ∈ U

that defines a desired multi-variable joint distribution up to
a normalization constant. We use the subscript notation ut to
refer to the variable t ∈ T in u and u−t to refer to the remaining
variables. The algorithm operates as in Algorithm 1.

The Gibbs transition probability for a sample corresponding
to the update of each variable ut[k], t ∈ T satisfies the
detailed balance equation (11) for the desired distribution
p(u;β) [28], which means that we also have global balance.
Detailed balance is not preserved through the full variable
sweep, but global balance is. The condition

p(u;β) > 0, ∀u ∈ U, (13)

guarantees that for every two possible values of the Markov
chain’s state, there is one path of nonzero probability that takes
the state from one value to the other over a full variable sweep
(essentially by changing one variable at a time). This means
that the Markov chain generated by Gibbs sampling is regular
over the T steps of a variable sweep.

C. Parallel Tempering
Tempering decreases the mixing time of a Markov chain

by creating high-probability “shortcuts” between states. It is
applicable whenever we can embed the desired distribution
into a family of distributions parameterized by a parameter
β ∈ [βmin,βmax], with the property that we have slow mixing
for the desired distribution, which corresponds to β = βmax,
but we have fast mixing for the distribution corresponding to

Algorithm 2 Tempering
1) Pick arbitrary u[1] = (uβ [1] ∈ U : β ∈ B).
2) Set k = 1 and repeat until enough samples are collected:

a) For each β ∈ B, sample uβ [k+1] with probability p(u′|uβ [k];β)
and increment k.

b) Tempering sweep: For each j ∈ {1, . . . , M − 1}:
• Compute the flip probability

pflip = fflip

(
uβj [k], uβj+1 [k]

)
(16)

and set

u[k + 1] =
{

ũ[k] with prob. pflip,
u[k] with prob. 1 − pflip,

where ũ[k] is a version of u[k] with the entries uβj [k] and
uβj+1 [k] flipped; and increment k.

β = βmin; which is typical for the Boltzmann distribution (7).
The key idea behind tempering is then to select M values

B := {β1 := βmin < β2 < β3 < · · · < βM := βmax}
and generate samples from the joint distribution

p
(
uβ : β ∈ B

)
:=

∏

β∈B
p
(
uβ;β

)
(14)

that corresponds to M independent random variables uβ , one
for each parameter value β ∈ B. We group these variables as
an M-tuple and denote the joint Markov chain by

u[k] :=
(
uβ [k] : β ∈ B

)
,

Eventually, from each M-tuple we only use the samples uβ [k],
β = βmax that correspond to the desired distribution.

1) General Algorithm: Tempering can be applied to any
MCMC method associated with a regular Markov chain
with transition probabilities p(u′|u;β) and strictly positive
transition matrices Pβ , β ∈ B. The algorithm uses a flip
function defined by

fflip
(
uβj , uβj+1

)
= min

{ p
(
uβj+1;βj

)

p
(
uβj+1;βj+1

)
p
(
uβj;βj+1

)

p
(
uβj;βj

) , 1
}
, (15)

and operates as in Algorithm 2.
Step 2a corresponds to one step of a base MCMC algorithm

(e.g., Gibbs sampling), for each value of β ∈ B. For the
Boltzmann distribution (7), the flip function is given by

fflip
(
uβj , uβj+1

)
= min

{
e
−(βj−βj+1)

(
J(uβj+1 )−J(uβj )

)

, 1
}
,

which means that the variables uβj [k] and uβj+1 [k] are flipped
with probability one whenever J(uβj) < J(uβj+1). Intuitively,
the tempering sweep in step 2b quickly brings to uβmax [k] low-
energy/low-cost samples that may have been “discovered” by
other uβ [k], β < βmax with better mixing.

2) Balance: Since the sample extractions in step 2a are
independent, the transition probability corresponding to this
step is given by

p
((

u′β :β ∈ B
)

|
(
uβ : β ∈ B

))
=

∏

β∈B
p
(

u′β |uβ;β
)
,

which satisfies the global balance equation for the joint
distribution in (14). The flip function in (15) guarantees
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detailed balance for all M −1 steps in 2b and therefore global
balance for all the combined steps in 2a and 2b, within a full
tempering sweep [24].

3) Regularity and Convergence: Assuming that for each
β ∈ B, the Markov chain generated by p(u′|u;β) is regular
with a strictly positive transition matrix Pβ , any possible
combination of states u[k] = (uβ [k] : β ∈ B) at time k can
transition in one time step to any possible combination of
states u[k+1] = (uβ [k] : β ∈ B) at time k+1 at step 2a. This
means that this step corresponds to a transition matrix P with
strictly positive entries. In contrast, each flip step corresponds
to a transition matrix Pflip j that is non-negative and right-
stochastic, but typically has many zero entries. However, each
matrix Pflip j cannot have any row that is identically zero
(because rows must add up to 1). This suffices to conclude
that any product of the form

Q = Pflip 1Pflip 2, . . . Pflip M−1P

must have all entries strictly positive. This transition matrix
corresponds to the transition from the start of step 2b in one
“tempering sweep” to the start of the same step at the next
sweep and defines a regular Markov chain. Theorem 1 thus
allow us to conclude that the distribution at the start of step 2b
converges to the desired invariant distribution. Since every step
satisfies global balance, the invariant distribution is preserved
across every step, so the distributions after every step also
converges to the invariant distribution.

IV. MCMC FOR OPTIMAL CONTROL

Our goal is to optimize a criterion of the form (5). In the
context of MCMC sampling from the Boltzmann distribution
(7), this corresponds to a Gibbs update for the control uβt [k+1]
with a distribution (12) that can be computed using

e
−βJ

(
ut,u

β
−t[k]

)

∑
ūt

e
−βJ

(
ūt,u

β
−t[k]

) = e−βcβt [k]A(ut)x
β
t [k]

∑
ūt

e−βe−βcβt [k]A(ūt)x
β
t [k]

,

and a tempering flip probability in (16) computed using

pflip = min
{

e
−(βj−βj+1)c

(
x
βj+1
T [k]

)
−x

βj
T [k]))

, 1
}
,

where

cβt [k] := cA
(

uβT [k]
)

· · · A
(

uβt+1[k]
)
, (17)

xβt [k] := A
(

uβt−1[k]
)

· · · A
(

uβ1 [k]
)

x1. (18)

The following algorithm implements Gibbs sampling with
tempering using recursive formulas to evaluate (17)–(18).

Computation Complexity and Parallelization: The bulk of
the computation required by Algorithm 3 lies in the compu-
tation of the matrix-vector products that appear in (19), (20),
and (21), each of these products requiring O(n2

ψ ) floating-
point operation for a total of O(MT(2 + |U|)n2

ψ ) operations.
The tempering step, does not use any additional vector-matrix
multiplications. In contrast, a naif implementation of Gibbs
sampling with tempering would require MT|U| evaluations
of the cost function (5), each with computational complexity

Algorithm 3 Tempering for Koopman Optimal Control

1) Pick arbitrary u[1] = (uβt [1] ∈ U:t ∈ T,β ∈ B).
2) Set k = 1 and repeat until enough samples are collected:

a) Gibbs sampling: For each β ∈ B:
• Set xβ1 [k] = x1, cβT [k] = c and, ∀t ∈ T,

cβt [k] = cβt+1[k]A
(

uβt+1[k]
)
. (19)

• Variable sweep: For each t ∈ T
– Sample uβt [k + 1] with distribution

e−βcβt [k]A(ut)x
β
t [k]

∑
ūt e−βe−βcβt [k]A(ūt)x

β
t [k]

, (20)

– Set uβ−t[k + 1] = uβ−t[k], update

xβt+1[k + 1] = A
(

uβt [k + 1]
)

xβt [k], (21)

and increment k.
b) Tempering sweep: For each j ∈ {1, . . . , M − 1}

• Compute the flip probability

pflip = min
{

e
−

(
βj−βj+1

)
c
(

x
βj+1
T [k]

)
−x

βj
T [k]))

, 1
}
,

and set

u[k + 1] =
{

ũ[k] with prob. pflip
u[k] with prob. 1 − pflip,

where ũ[k] is a version of u[k] with the entries uβj [k] and
uβj+1 [k] flipped; and increment k.

O(Tn2
ψ ). The reduction in computation complexity by a factor

of T|U|/(2 + |U|) is especially significant when the time
horizon is large. The price paid for the computational savings
is that we need to store the vectors (19), (21), with memory
complexity O(MTnψ ).

The computations of the matrix-vector products mentioned
above are independent across different values of β ∈ B and
can be performed in parallel. This means that tempering across
M temperatures can be computationally very cheap if enough
computational cores and memory are available.

V. NUMERICAL EXAMPLE

We tested the algorithm proposed in this letter on a
Koopman model for the Atari 2600 Assault video game. The
goal of the game is to protect earth from small attack vessels
deployed by an alien mothership. The mother ship and attack
vessels shoot at the player’s ship and the player uses a joystick
to dodge the incoming fire and fire back at the alien ships.
The player’s ship is destroyed either if it is hit by enemy fire
or if it “overheats” by shooting at the aliens. The player earns
points by destroying enemy ships.

We used a Koopman model with |U| = 4 control action,
which correspond to “move left”, “move right”, “shoot up”,
and do nothing. The optimization minimizes the cost

J(u) :=
{− 1

T

∑T
t=1 rt if player’s ship not destroyed

+10 − 1
T

∑T
t=1 rt if player’s ship destroyed

where rt denotes the points earned by the player at time
t. This cost balances the tradeoff between taking some risk
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Fig. 1. Typical run of Algorithm 3: The first 5 plots show the cost (y-
axis) at the end of each iteration (x-axis), as well as the minimum cost
found so far, for a specific temperature β. For this run, 12 logarithmic
scaled temperatures were used, but only 5 are shown here. In each
plot, red and blue dots mark iterations where flips occurred during the
tempering sweep. The bottom-right plot shows the total number of flips
across “adjacent” temperatures (in the x-axis), as a percentage of the
total number of iterations (in the y-axis).

to collect points to decrease − 1
T

∑T
t=1 rt, while not getting

destroyed and incurring the +10 penalty. For game play,
this optimization is solved at every time step with a receding
horizon starting at the current time t and ending at time
t + T , with only the first control action executed. However,
because the focus of this letter is on the solution to (1)–(2),
we present results for a single optimization starting from a
typical initial condition. A time horizon T = 40 was used in
this section, which corresponds to a total number of control
options |U|T ≈ 1.2 × 1024.

The state of the system is built directly from screen pixel
information. Specifically, the pixels are segmented into 5
categories corresponding to the player’s own ship, the player’s
horizontal fire, the player’s vertical fire, the attacker’s ships
and fire, and the temperature bar. For the player’s own ship and
the attacker’s ships/fire, we consider pixel information from
the current and last screenshot, so that we have “velocity”
information. The pixels of each category are used to construct
“spatial densities” using the entity-based approach described
in [9], with observables of the form

ϕ'j(x) :=
∑

i

e−λ‖p'i−c'j‖2
, (22)

where the index ' ranges over the 5 categories above, the
summation is taken over the pixels p'i associated with category
', and the c'j are fixed points in the screen. The densities
associated with the 5 categories are represented by 50, 50,
100, 200, 16 points c'j, respectively. The observables in (22),
together with the value of the optimization criterion, are used
to form a lifted state ψt with dimension nψ = 667. The
matrices A(u) in (5) were estimated using 500 game traces
using random inputs. Collecting data from the Atari simulator
and lifting the state took about 1h45min, whereas solving the
least-squares problems needed to obtain the Koopman matrices
took less than 1 sec.

Figure 1 depicts a typical run of Algorithm 3, showing
flipping of samples across adjacent temperatures in 40-80%
of the tempering sweeps. In the remainder of this section we
compare the performance of Algorithm 3 with several alterna-
tives. All run times refer to Julia implementations on a 2018
MacBook Pro with a 2.6GHz Intel Core i7 CPU.

Fig. 2. Run-time comparison between Algorithm 3 (purple) and the
dynamic programming algorithm in [9] (green). The x-axis denotes run-
time and the y-axis the cost achieved, with the solid lines showing the
average cost across 15 different runs and the shaded areas the whole
range of costs obtained over those runs. The different plots correspond
to different values for the number of temperatures M.

Fig. 3. Run-time comparison between Algorithm 3 with 18 temper-
atures (purple) and a gradient descent algorithm (top, orange) and a
genetic algorithm (bottom, blue). The meaning of the solid lines and
shaded areas is the same as in Figure 2.

Figure 2 compares Algorithm 3 with the algorithm in [9],
which exploits the piecewise-linear structure of the cost-to-go
to efficiently represent and evaluate the value function and
also to dynamically prune the search tree. Due to the need
for exploration, this algorithm “protects” from pruning a
random fraction of tree-branches (see [9] for details). Both
algorithms used 6 CPU cores. For Algorithm 3, each core
executed one sweep of the tempering algorithm and for the
algorithm in [9], the 6 cores were used by BLAS to speedup
matrix multiplication. Both algorithms were executed multiple
times and the plots show the costs obtained as a function
of run time. For Algorithm 3, the run time is controlled
by the number of samples drawn. For the algorithm in [9],
the run time is controlled by the number of vectors used
to represent the value function. Both algorithms eventually
discover comparable “optimal” solutions, but Algorithm 3
consistently finds a lower cost faster.

The top plot in Figure 3 compares Algorithm 3 with a gra-
dient descent solver that minimizes the following continuous
relaxation of the cost (5):

Jrelax(µ) := cψT , ψt+1 =
( ∑

u∈U
µu(t)A(u)

)
ψt (23)
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where the optimization variables µu(t) ∈ [0, 1] are required to
satisfy

∑
u∈U µu(t) = 1, ∀t ∈ T. The global minimum J∗

relax
of (23) would match that of (5), if we forced the µu(t) to
take binary values in {0, 1}. Otherwise, J∗

relax provides a lower
bound for (6). We minimized (23) using the toolbox [29].
The results shown were obtained using Nesterov-accelerated
adaptive moment estimation [29], with η = 0.5, which resulted
in the best performance among the algorithms supported
by [29]. The constraints on µu(t) were enforced by minimum-
distance projection into the constraint set. In general, gradient
descent converges quickly, but to a local minima of (23) with
cost higher then the minimum found by Algorithm 3 for (6);
in spite of the fact that the global minima of (23) is potentially
smaller than that of (6).

The bottom plot in Figure 3 compares Algorithm 3 with a
genetic optimization algorithm that also resorts to stochastic
exploration. This type of algorithm simulates a “population” of
candidate solutions to the optimization (6), which evolves by
mutation, crossover, and selection. We minimized (23) using
the toolbox [30]. The results in Figure 3 used a population size
P = 50, selection based on uniform ranking (which selects the
best µ = 2 individuals with probability 1/µ), binary crossover
(which combines the solution of the two parent with a single
crossover point), a mutation rate of 10%, and a probability of
mutation for each “gene” of 5%. These parameters resulted in
the lowest costs we could achieve among the options provided
by [30], but still significantly higher than the costs obtained
with Algorithm 3.

VI. OUTLOOK

We showed that Koopman-based representations of optimal
control problems can be efficiently solved for large lifted state-
spaces, even when the inputs do not enter linearly. Among
the important open issues in this area, we highlight the need
to quantify the impact of errors arising from observables
that do not span Koopman-invariant subspaces, with notable
progress reported in [26], [31]. An additional issue relates to
the use of continuous observables, as the ones used in (22)
in our example, which are known to introduce fundamental
limitations in what they can represent [32], [33].
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