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MOTIVATION The emergence of SARS-CoV-2 variants with resistance to existing COVID-19 treatments
and evasion from prior vaccination reinforces the need for drugs targeting host entry factors. Nonetheless,
there is a lack of methods that systematically and rapidly prioritize host-targeting drugs for viral infection.
High-throughput functional screens provide an unbiased and broadly accessible means of identifying
genes that influence the infection of host cells. However, it remains challenging to infer pharmacologic sig-
natures from functional screening data.
SUMMARY
We demonstrate that integrative analysis of CRISPR screening datasets enables network-based prioritiza-
tion of prescription drugs modulating viral entry in severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) by developing a network-based approach called Rapid proXimity Guidance for Repurposing
Investigational Drugs (RxGRID). We use our results to guide a propensity-score-matched, retrospective
cohort study of 64,349 COVID-19 patients, showing that a top candidate drug, spironolactone, is associated
with improved clinical prognosis, measured by intensive care unit (ICU) admission andmechanical ventilation
rates. Finally, we show that spironolactone exerts a dose-dependent inhibitory effect on viral entry in human
lung epithelial cells. Our RxGRID method presents a computational framework, implemented as an open-
source software package, enabling genomics researchers to identify drugs likely to modulate a molecular
phenotype of interest based on high-throughput screening data. Our results, derived from this method
and supported by experimental and clinical analysis, add additional supporting evidence for a potential pro-
tective role of the potassium-sparing diuretic spironolactone in severe COVID-19.
INTRODUCTION

Host cell entry represents a critical stage of the severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2) replication cycle

that determines the tropism and virulence of emerging variants.1

SARS-CoV-2 entry relies canonically on binding between viral

spike protein and host ACE2, as well as processing of the spike
Cell
This is an open access article under the CC BY-N
protein by endogenous proteases, most notably TMPRSS2 and

furin.2,3 However, the complete entry process relies both directly

and indirectly on a network of hundreds of host genes that re-

mains poorly understood.4,5

Heterogeneity in expression patterns of accessory entry fac-

tors, which facilitate viral adhesion, cleavage events, and mem-

brane fusion, is a chief determinant of viral susceptibility in terms
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Figure 1. Integrated analysis of SARS-CoV-

2 entry networks for drug repositioning

In RxGRID, functional genetic hits for a phenotype

of interest are first obtained from one or more

screens. These are combined with drug-target in-

teractions from DrugBank to generate drug-gene

subnetworks for hit genes from each screen. In

parallel, drugs are prioritized based on normalized

degree centrality within each subnetwork, and top

drugs are defined based on mutual overlap among

screens. Top drugs may then be validated in

additional downstream analysis, such as targeted

inhibition assays or retrospective cohort studies.
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of both tissue types and patient subgroups.6,7 Consequently,

drug interactions with such host factors can promote or inhibit

viral entry in vitro and have, in certain, subgroups demonstrated

clinical benefit in large-scale studies.8–10 With the emergence of

SARS-CoV-2 variants with significant genome-wide mutational

load, therapeutics and vaccines targeting viral proteins of early

strains have shown reduced efficacy in recent outbreaks.11–13

Further, structural and functional study of the Omicronmutational

landscape revealed a range of adaptive mutations that facilitate

escape from antibody neutralization and vaccine protection while

preserving high-affinity viral interactionswith host receptor.12,14,15

There consequently exists a pressing need to identify therapies

that modulate host entry factors, which may be both more robust

to future variants and complementary to existing direct-acting an-

tivirals such as nirmatrelvir and molnupiravir.16,17

High-throughput functional genetic screens, primarily per-

formed with CRISPR-Cas9 systems in knockout (CRISPR-KO)

and activation (CRISPRa) formats, provide a powerful tool to iden-

tify host genes that facilitate viral entry.18–25 Suchmethods enable

causal inference of single-gene effects thatmay be confounded in

gene expression assays by both epistatic patterns and immune

mechanisms distinct from viral entry. CRISPR screens can also

quantify gene effects in distinct cell types and different perturba-
2 Cell Reports Methods 3, 100503, July 24, 2023
tion schemas, which provide specific

mechanistic insights but can limit the

generalizability of findings from any indi-

vidual experiment.26

We hypothesized that integrated anal-

ysis of multiple viral-entry functional

screens would reveal a shared network

of host entry genes with more generaliz-

able implications for drug repurposing

than would be possible using individual

datasets. We performed drug-target

network analysis using all publicly avail-

able, genome-wide CRISPR screens of

SARS-CoV-2 viral entry, which identified

three common drugs, spironolactone,

carvedilol, and quetiapine, as potential

modulators of viral entry. Furthermore,

we conducted a retrospective clinical

outcome analysis of these drugs using

medical records from 64,349 COVID-19

patients, which supported a significant
protective role for spironolactone. Finally, we demonstrated

that spironolactone exerts a time-dependent inhibitory effect

on SARS-CoV-2 viral entry in human lung cells, suggesting that

spironolactone may mediate a milder disease course by sup-

pressing viral entry.

RESULTS

To identify host subnetworks that facilitateSARS-CoV-2viral entry

(Figure 1), we obtained genome-wideCRISPR screensmeasuring

the impact of individual genes’ expression on viral infection in hu-

mancells. The screensaccounted for a variety of cellular contexts,

including both lung and non-lung cell types, and functional pertur-

bations, namely loss-of-function (i.e., CRISPR-KO) and increase-

of-expression (i.e., CRISPRa) screens (Table S1). The final dataset

collection included five CRISPR-KO and three CRISPRa screens,

enabling resolution of context-dependent entry mechanisms that

could not be identified by only the KO datasets.

The eight screens exhibited variable levels of correlation at the

single-gene level, consistent with their heterogeneous cellular

contexts (Figure 2A). 88% (7/8) of screens were significantly

correlated with at least one other screen, while 32% (9/28)

of all pairwise comparisons revealed a significant positive



Figure 2. Correlations and functional enrichment patterns among screens demonstrate significant variations, requiring RxGRID for cross-

screen integration and interpretation

(A) Cluster map of individual gene ranks for all screens. Red bars indicate knockdown screens, and blue bars indicate activation screens.

(B) Pairwise correlation measurements among screens. Annotations indicate significance at the nominal level (*), after correcting for multiple testing among

screens (**), and after correcting for multiple testing among all pairs (***). A majority of knockdown screens demonstrate correlation at a nominal or higher

significance.

(C) Pathways with significant enrichment in multiple screens involve cellular adhesion and synaptic transport. Annotations indicate significance at false discovery

rate (FDR) values of 0.4 (*), 0.05 (**), and 0.001 (***).

(D) Interscreen correlations for KEGG pathway enrichment scores are stronger than for individual gene scores. Annotations are the same as in (B).
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correlation (Figure 2B). Gene-level agreement was higher within

each class of screen, with a significant positive correlation

among 70% (7/10) of CRISPR-KO and 33% (1/3) of CRISPRa

screen pairs. Both pairs of screens performed in lung-derived

tissue were significantly positively correlated at the single-gene

level, although cellular context was not significantly associated

with gene-level correlation overall.

We next quantified functional pathway enrichment among

each screen using gene set enrichment analysis. 20 KEGG path-

ways were significantly enriched in at least two screens,

including several pathways with known involvement in SARS-
CoV-2 entry (Figure 2C). Pathways involved in glycosamino-

glycan and phosphoglyceride production weremost strongly en-

riched, consistent with their essential role in viral attachment.27

We also observed significant de-enrichment of pathways

involved in neurodegenerative disease, including Alzheimer’s,

Huntington’s, and Parkinson’s diseases, as well as synaptic

signaling broadly. Correlations among normalized pathway

enrichment scores for each screen were generally higher than

correlations for individual genes, although screens with higher

gene-level correlations tended to have higher pathway correla-

tions as well (Figure 2D).
Cell Reports Methods 3, 100503, July 24, 2023 3
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We next constructed unweighted networks representing

known interactions between existing drugs and entry genes

identified in individual screens (Figure 3A). Each network con-

tained an average of 117 (standard deviation 8.86) genes, 608

(210) drugs, and 773 (334) edges each, corresponding to an

average density of 1.07% (0.118%). The mean degree of each

graph was 6.63 (2.90) for gene nodes, 1.24 (0.105) for drug no-

des, and 2.07 (0.257) overall.

We prioritized drugs for downstream analysis based on cen-

trality within each hit network. As both local (normalized degree

centrality [NDC]) and global (betweenness) measures of central-

ity yielded similar rankings (⍴ = 0.99, p < 0.001), we used NDC for

subsequent analyses due to its interpretability. No drug met sig-

nificance in all screens, while 209 drugs were significant in at

least one dataset (Figure S1). 25 drugs met significance in at

least three datasets (Figure 3B). Drug hits encompassed a range

of functional categories, with a predominance of ion-channel-

targeting compounds. Tricyclic antidepressants were the most

common category, comprising 20% (5/25) of hits, followed by

dopamine agonists and atypical antipsychotics, both of which

comprised 12% (3/25).

We next performed a propensity-score-matched (PSM) retro-

spective clinical analysis to evaluate whether use of candidate

drugs was associated with COVID-19 disease severity

(Figures 4A and S2). We obtained electronic medical records

from a large academic hospital system, which yielded 64,349 pa-

tient records with a positive COVID-19 test. Of the drugsmeeting

centrality significance, only three medications had a sufficient

treatment cohort size for PSM analysis: carvedilol, quetiapine,

and spironolactone (Figure 4B). Additionally, we included met-

formin as a comparative control, as it has a negative association

with COVID-19 severity reproduced in a variety of clinical

studies.9,28–31

We observed a significant negative association between spi-

ronolactone use and progression to intensive care unit (ICU)

admission (odds ratio [OR] 0.34; CI95 0.17–0.68; p = 0.002).

The association between spironolactone use and progression

to mechanical ventilator status was also significantly negative

(OR 0.19; CI95 0.055–0.645; p = 0.006). The comparator, metfor-

min, also exhibited a significant negative association with pro-

gression to ICU admission (OR 0.49; CI95 0.35–0.68; p < 0.001)

and a nominally significant association with progression to me-

chanical ventilator status (OR 0.50; CI95 0.29–0.85; p = 0.014),

consistent with the secondary findings of the COVID-OUT ran-

domized controlled trial.31We did not observe a significant asso-

ciation with progression to either ICU admission or mechanical

ventilator status for either carvedilol or quetiapine following mul-

tiple hypothesis correction.

Given that spironolactone use was associated with a signifi-

cant reduction in risk of severe COVID-19 in our cohort analysis,
Figure 3. Network-based prioritization of candidate drugs using RxGR

(A) Summary network after performing RxGRID, showing overlap among the indivi

frequency at which they were labeled a hit in individual screens. Psychotropic dru

aggregate centrality, while calcium and potassium channels represent highly tar

(B) Aggregate ranking of candidate drugs. Bars indicate normalized centrality ac

indicate screens in which the given drug was labeled as significant, and bold

investigation.
we evaluated whether its mechanism could be mediated by inhi-

bition of viral entry. We performed a SARS-CoV-2 virus entry

assay in a human lung epithelial cell line, alongside a rabies virus

(RABV) control. Across varying doses of spironolactone, we

observed a time- and dose-dependent drug inhibitory effect on

viral entry (Figure 4C), with a strong negative correlation between

spironolactone dose and infected cell count, amounting at the

highest dose to a 68% reduction in infected cell levels

(p < 0.001; Figure 4D). Further, the parallel RABV control did

not show an equivalent effect, confirming that this spironolac-

tone inhibition is specific to SARS-CoV-2 spike-mediated entry

(Figures 4E and 4F). We observed a similar inhibitory effect for

spironolactone in a separate, non-lung cell line, where there

was again a significant decrease in infected cell levels for

increasing doses of spironolactone, amounting to a 14% reduc-

tion in infected cell levels at the highest dose (p = 0.002;

Figure S4).

DISCUSSION

Our analysis demonstrates that genome-wide CRISPR screens

provide a basis for systematic prioritization of drug candidates

in COVID-19, many of which are not evident in methods reliant

on gene expression studies or association hits alone. We identify

three common medications, spironolactone, quetiapine, and

carvedilol, as potential modulators of SARS-CoV-2 infection

based on their interactions with host entry factors. We perform

a propensity-score-matched, retrospective cohort study of clin-

ical outcomes for COVID-19 patients on these medications,

showing that spironolactone use is associated with reduced like-

lihood of ICU admission. We further show that spironolactone in-

hibits SARS-CoV-2 pseudoviral entry in a human lung epithelial

cell line in a dose-dependent manner, providing a potential

mechanism for the observed therapeutic effect.

Functional genomic screens enable measurement of the effect

of individual host genes on viral entry, but their noise levels and

context dependence can limit direct clinical applicability. We ad-

dressed this barrier by combining data from multiple genome-

wide CRISPR screens across several experimental and cellular

contexts, inferring drug activity based on an abundance of known

drug targets among hits, and selecting drugs with high represen-

tation among screens for follow-up analysis. Such a prioritization

method benefits from direct biological interpretability, as top

candidate drugs modulate large numbers of entry factors while

enabling higher sensitivity for detecting potential effects. Our

method, based on the principle that centrality with respect to hit

genes implies pharmacologic relevance, provides unique advan-

tages compared with existing methods. Physics-guided ap-

proaches, such as quantitative structure-activity relationship

(QSAR) and similarity ensemble approach (SEA), generally apply
ID

dual screen networks. Drug and gene nodes are labeled by centrality and by the

gs, particularly tricyclic antidepressants and atypical antipsychotics, show high

geted entry genes.

ross all screens. Heatmap shows percentile rank in each screen. Red boxes

text indicates drugs with sufficient representation for retrospective clinical

Cell Reports Methods 3, 100503, July 24, 2023 5



Figure 4. Retrospective clinical validation, coupled with a cell-based drug inhibition assay, provides real-world validation and amechanistic
view on the effects of candidate antiviral drugs

(A) Study design. Propensity-score-matched treatment and control groups were defined for each drug of interest in patients with a COVID-19 diagnosis. Clinical

endpoints were ICU admission and mechanical ventilation.

(B) Cohort sizes, odds ratios, and significance levels for individual drugs and endpoints. Bold text indicates drug-endpoint combinations that were significant after

Bonferroni correction (ɑ = 0.05; n = 8). Statistically significant negative associations with ICU admission were observed for both spironolactone and metformin,

which was included as a comparative control.

(C) Infected cell density over time at increasing doses of spironolactone using replicating SARS-CoV-2 pseudoviral particles in lung epithelial cell line A549-ACE2

(A549 cells expressing human ACE2; n = 3 replicates).

(legend continued on next page)
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once a single protein of interest has been identified, which is not

feasible for large datasets like CRISPR screens and precludes

consideration of effects among target ensembles.32,33 Enrich-

ment methods, including gene set enrichment analysis (GSEA)

and gene set proximity analysis (GSPA), generally rely on biolog-

icallymotivated null distributions that render the resulting analysis

more specific at the expenseof sensitivity andmay also be vulner-

able to experimental noise.34,35 By representing screen collec-

tions as subgraphs within a drug-target network, RxGRID (Rapid

proXimity Guidance for Repurposing Investigational Drugs)

avoids such issues and enables rapid prioritization of drugs likely

to modulate a common phenotype among multiple functional

screens. While differences in data requirements and intended

use case make direct comparison of such methods challenging,

we note that future efforts to compare drug prediction methods

for functional genomics data might find our method useful as a

benchmark.

Pharmacologic antagonists of the renin-angiotensin-aldoste-

ronesystem (RAAS), suchasspironolactone, havebeenproposed

as potential inhibitors of SARS-CoV-2 infection due to their role as

indirect modulators of ACE2 expression.36,37 For instance, spiro-

nolactone has been observed to decrease expression of soluble

ACE2, which can promote viral endocytosis, while simultaneously

increasing activity of themembrane-associated form.38–40 Its anti-

androgenic action may also decrease expression of TMPRSS2,

leading to impaired spike protein proteolysis and activation.41

Finally, given that COVID-19 is strongly associated with both hy-

pokalemia and hypocalcemia, RAAS antagonists that maintain

cation homeostasis, such as spironolactone, may mitigate both

ion-channel-mediatedviral entry and theclinical sequelaeof asso-

ciated electrolyte imbalances.42,43Wenote that, excluding the cy-

tochromeP450 family, all spironolactone-targeted entry factors in

our analysis classify as either androgen signaling proteins or

voltage-gated cation channels, supporting a possible combina-

tion of mechanisms. Further studies in relevant cell or tissue con-

texts could help to elucidate the physiological role of these puta-

tive host factors and pathways during viral infection.

Despite a variety of mechanistic hypotheses, few investiga-

tions of either clinical efficacy or in vitro effect have been per-

formed for spironolactone in COVID-19. A recent interventional

study of spironolactone-sitagliptin combination therapy in 263

patients showed statistically non-significant improvements in

clinical outcomes, including mortality, ICU admission, intubation

rate, and end-organ damage, for patients on spironolactone.44

Another interventional trial of 55 patients showed lower mortality

for COVID-19 patients on potassium canrenoate, a mineralocor-

ticoid receptor antagonist similar to spironolactone, although

this also did not reach statistical significance.45 However, both

studies were conducted in small cohorts and may have been un-

derpowered to detect an effect. Our retrospective study design

enables both the analysis of a substantially larger treatment

cohort and the study of dosing prior to infection.
(D) Cell density at increasing doses of spironolactone at 24 h post-infection, showi

differences.

(E) Infected cell density over time at increasing doses of spironolactone using re

(F) Cell density at increasing doses of spironolactone at 24 h post-infection, show

mean ± standard error.
In addition to spironolactone, RxGRID also prioritized ion-chan-

nel-targeting drug classes, such as tricyclic antidepressants and

atypical antipsychotics, as potential modulators of viral entry. This

is consistent with both previous observational studies of such

drugs and the putative role that cation channels, such as mem-

brane-associated calcium and voltage-gated potassium chan-

nels, may play in viral entry.46–49 We also note that, as mentioned

previously, network-centrality-based methods such as RxGRID

may tend to favor drugs with non-specific protein interactions,

which includes many psychoactive medications.

Collectively, our results provide a generalizable method,

RxGRID, for applying functional genomics data, such as

CRISPR screens, in drug repurposing efforts. The method bene-

fits from relative simplicity and mechanistic interpretability,

increasing its value to genomics researchers. Our in vitro exper-

iments and clinical investigation provide compelling evidence for

a potential protective role of spironolactone in severe COVID-19,

strongly warranting a large-scale randomized controlled trial to

resolve this timely and high-impact proposition.

Limitations of the study
Our study has several limitations, including the use of a single

healthcare system (across 11 hospitals) for clinical analysis

and the use of pseudotyped virus for validation. It is further

important to note that observational drug associations do not

necessarily imply causal therapeutic roles, owing both to the

necessary presence of unmodeled confounders and to practical

restrictions on prescription of the drug of interest, such as safety

or cost. Further investigations, including detailed mechanistic

analysis and well-powered randomized controlled trials,

including specific subgroup analyses by demographic factors,

will be necessary to determine any potential therapeutic role

for spironolactone in COVID-19.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

VSVdG-GFP-CoV2-S Dieterle, et al.50 https://doi.org/10.1016/j.chom.2020.06.020.

VSVdG-RABV-G SAD-B19 Dieterle, et al.50 https://doi.org/10.1016/j.chom.2020.06.020.

Chemicals, peptides, and recombinant proteins

Poly-D-Lysine Thermo Fisher Cat# A3890401

Spironolactone Sigma Aldrich Cat# S3378

SARS-CoV-2 S GenBank Cat# MN908947.3

Critical commercial assays

Incucyte Sartorius Cat# 4647

Deposited data

Schneider CRISPR screen Schneider et al.18 GEO: GSE162038

Wang CRISPR screen Wang et al.19 EMBL-EBI ArrayExpress: E-MTAB-9638

Daniloski CRISPR screen Daniloski et al.20 GEO: GSE158298

Baggen CRISPR screen Baggen et al.21 NCBI BioProject: PRJNA685335

Zhu Y CRISPR screen Zhu Y et al.22 https://doi.org/10.1038/s41467-021-21213-4

Rebendenne CRISPR screen Rebendenne et al.23 GEO: GSE175666

Biering CRISPR screen Biering et al.24 https://doi.org/10.1038/s41588-022-01131-x

Zhu S CRISPR screen Zhu S et al.25 https://doi.org/10.1007/s11427-021-1990-5

Experimental models: Cell lines

A549-ACE2 cell line This study N/A

HEK293T-ACE2 cell line This study N/A

VeroE6 ATCC # CRL-1586

Recombinant DNA

pLenti-ACE2 Addgene Plasmid #202533

VSV-eGFP-dG Addgene Plasmid #31842

Software and algorithms

RxGRID This study https://doi.org/10.5281/zenodo.7789897
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Le Cong

(congle@stanford.edu).

Materials availability
Plasmid used to generate the ACE2 cell lines in this study (pLenti-EF1A-hACE2-2A-Puro) has been deposited to Addgene for open

distribution, with plasmid ID: 202533.

Data and code availability
All CRISPR screening data analyzed are publicly available from their respective source publications as listed in the key resources

table. Patient medical record data is not publicly available due to patient privacy regulations. Pseudoviral inhibition assay data will

be shared by the lead contact upon request.

All original code has been deposited at https://github.com/henrycousins/RxGRID and archived on Zenodo (https://doi.org/10.

5281/zenodo.7789897) and is publicly available as of the date of publication.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines
A549-ACE2 or HEK293T-ACE2 cells were used in the current study. For both A549-ACE2 and HEK293T-ACE2 cells, the cells were

originally obtained from the American type culture collection (ATCC). All cells were cultured in Dulbecco’s Modified Eagle Medium

(DMEM) with 10% Fetal Bovine Serum (FBS, Thermo Fisher Scientific). Cells were cultured at 37�C and in 5% CO2 incubator.

According to supplier, A549-ACE2 cells were isolated from the lung tissue of a male with lung cancer. The HEK293T-ACE2 cells

were derived from human embryonic kidney cells grown in tissue culture taken from a female. All cells were authenticated by the

supplier and double checked via STR analysis performed by American type culture collection (ATCC).

Medical records
Patient medical records were obtained from the Northwestern Medicine Electronic Data Warehouse. Summaries of the cohort defi-

nition and characteristics are available in Figures 4 and S3, respectively. The investigation comprised 1,462 patients (72.1% [1,054]

female, 27.9% [408] male) with a mean age of 55.4 (standard deviation 20.7) years. Ethical approval was obtained from the North-

western University IRB (STU00212845) prior to initiation of the study.

METHOD DETAILS

CRISPR screening data
We identified published, genome-wide CRISPR-KO (loss-of-function) screens of SARS-CoV-2 entry in human cells available as of

May 2022, with five screens meeting criteria. Three screens were performed in HuH-7 liver cells, and two were performed in A549

lung epithelial cells. Multiplicities of infection (MOI) for each screen ranged from 0.01 to 3. We also identified genome-wide

CRISPRa (increase-of-expression) screens in human cells available as of May 2022, with three screens meeting criteria. These

included two screens in Calu-3 lung epithelial cells and one in HEK293T embryonic kidney cells, with MOI ranging from 0.005 to

0.5. Raw data for each screen was obtained from the respective source publication.

Functional enrichment analysis
Enrichment analyses were performed using the prerank gene set enrichment analysis (GSEA) algorithm using the default runtime pa-

rameters, using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway gene sets.51 We defined significance as a false dis-

covery rate (FDR) less than 0.05.

Network-based drug rankings
Drug-gene interactions for known drugs from DrugBank were used to construct a bipartite graph G = (V,E), with the set of nodes V

representing either drugs or genes and the set of edges E representing known interactions between protein-coding genes and

drugs.52,53 The complete network contained 7,233 nodes (4,927 compounds and 2,306 genes) and 14,863 edges.

For each screen, a unique subgraph gk = (Vk, Ek) encompassing only screen-specific genetic hits was defined. Equivalently,

Vk = fvj v ˛ HkgW fvj v ˛ Dkg
where Hk is the set of hit genes from screen k (top 5% by default) in the network, and Dk is the set of drugs connected to at least one

gene in Hk.

In each subgraph gk, compounds were ranked by normalized degree centrality, defined as node degree normalized to the total

number of possible neighbors (NDCn = degree(vn)/rHkr), reflecting each compound’s proximity to host entry factors identified in

the screen. Alternativemeasures of centrality, including betweenness centrality and eigenvector centrality, were also evaluated. Their

agreement with degree centrality rankings was assessed by Spearman correlation owing to non-normality.

Aggregation of screen-specific results into a final ranking was done was performed by computing the intersection of screen-spe-

cific drug hits, reasoning that this method better accommodates screen-level variability than does mean or median pooling. Specif-

ically, we defined the set of screen-specific drug hits Rk as the top 1% of compounds by degree centrality for each screen k and

ranked drugs by the frequency at which they were a hit in any screen. Equivalently,

rankj =
X

K

1
�
vj ˛ Rk

�

whereRk is the set of screen-specific drug hits for screen k. We selected for follow-up all drugs identified as hits in at least one-third of

all screens, excluding narcotics, anesthetics, and dietary supplements.

Cohort construction
De-identified patient medical records were obtained from the Northwestern Medicine Electronic Data Warehouse. Records were

filtered to include only patients who had a positive COVID-19 test by means of reverse transcription-polymerase chain reaction

(RT-PCR) testing. Patients who had more than one positive test were sorted by date, and the first was selected to create a unique
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set of patient identifiers. A 6-month time window preceding the first positive COVID-19 test was created for use as a filter for medi-

cation treatment status.

Patient characteristics that served as covariates considered in the analysis included race, gender, age, postal code, and medical

comorbidities such as hypertension, diabetes, metastatic cancer, rheumatological disease, autoimmune disorders, and kidney fail-

ure, which are reported according to Charlson Comorbidities.54 The full list of comorbidities is provided as supplementary material

(Figure S3). Records in which both race and postal code were missing (n = 8,201) were removed, as data was not missing at random.

The final database included 64,349 unique patients with a positive COVID-19 test and complete comorbidity labels.

For each of the medications under investigation, treatment groups were identified by string matching to generic/brand names for

themedication of interest. We defined users as those with medication orders occurring within 6months preceding their first recorded

COVID-19-positive specimen, such that treatment status connotes drug exposure prior to COVID-19 diagnosis.

In addition to the candidate drugs from RxGRID, we also analyzed metformin as a widely prescribed comparator drug with a well-

documented association with COVID-19 outcomes. Specifically, metformin use has been associated with reduced COVID-19

severity in at least 8 separate observational studies, as well as in a meta-analysis of 19 observational studies, which found an aggre-

gate OR of 0.73 for hospitalization.9 Furthermore, the COVID-OUT randomized controlled trial identified a protective effect (OR 0.58)

for metformin against emergency department visit, hospitalization, or death in a secondary analysis.31

Propensity score matching
Propensity score matching was performed using the psmpy package in Python 3.7.55 In our use case, logistic regression was

executed where the treatment state (for the medication of interest) was regressed on the set of covariates defined previously.

Due to the size imbalance between treatment and control group sizes, logistic regression was run repeatedly on a balanced sample

to generate a probability integer for each observation by folding iteratively over the larger class and averaging over repeated patient

indexes. The logit of the logistic regression prediction was calculated for control and treatment observations, as it more closely ap-

proximates a normal distribution.56 Following this, a unidimensional k-nearest neighbors (k-NN) algorithm was fitted to the logit

scores of the control group. The treatment group was then fitted to the model, calculating Euclidean distance as the similarity metric.

Am exclusionary caliper size of 0.25 of the standard deviation of the distance was implemented to reduce distant matches. To pre-

vent samples from sharing the closest first match, matching was performed without replacement. In this way, treatment-control pa-

tient pairs were identified in which each subject had an approximate equal likelihood of receiving the drug of interest.

To verify adequate matching, a Cohen’s D statistic (standardized mean difference) was calculated before and after matching,

ensuring that the matched cohort had smaller covariate effect sizes. Additionally, the two cohorts’ logit scores and the number of

patients in each category were compared to confirm similarity.

Software
Computational analyses were performed in a Python 3.7 environment using NetworkX 2.2, NumPy 1.21.6, pandas 1.2.3, Matplotlib

3.5.3, and seaborn 0.12.2, in addition to the standard Python library.

Replicating vesicular stomatitis virus (VSV) pseudovirus generation
Recombinant VSV expressing eGFP (VSVdG-GFP-CoV2-S) was generated using plasmid-based methods. The plasmid to rescue

this virus was generated by inserting a codon optimized SARS-CoV2-S based on the Wuhan-Hu-1 isolate (GenBank:MN908947.3),

which was mutated to remove a putative ER retention domain (K1269A and H1271A) into a VSV-eGFP-dG vector (pVSV eGFP dG

was a gift from Connie Cepko,57 Addgene plasmid # 31842; http://n2t.net/addgene:31842; RRID:Addgene_31842), in frame with

the deleted VSV-G. The control virus VSVdG-RABV-G SAD-B19 was also generated by inserting Rabies virus G in the same vector.

Both viruses were rescued in 293FT/VeroE6 cell co-culture and amplified in VeroE6 cells and titrated in VeroE6 cells over-expressing

TMPRSS2. Sequencing of the amplified virus revealed an early C-terminal Stop signal (1274STOP) and a partial mutation at A372T

(�50%) in the ectodomain, as previously reported.50

Pseudovirus infection assay using replicating VSV pseudovirus
A549-ACE2 or HEK293FT-ACE2 cells were plated in clear 96-well plates at 2x104 cells per well approximately 24 hours prior to infec-

tion in 100 uL of media (DMEM) containing 10% FBS. Cells were infected with VSVdG-CoV2-S or VSVdG-RABV-G at an MOI of 0.1.

Infection was performed by diluting virus in media without FBS and adding 150 uL of diluted virus per well. After addition of the virus,

the plate was spun at 900 x g for 60 minutes at 30�C. Infection was tracked over time using an Incucyte system (Sartorius) in a 37�C
and 5% CO2 incubator using 4x magnification and detecting GFP. GFP+ cells were counted using Incucyte Analysis software and

data were reported as GFP positive foci per well after normalization to confluence.

In vitro viral entry inhibition experiments
All inhibitor assays use 96-well plates coated with Poly-D-Lysine (Thermo Fisher, A3890401) at a concentration of 50 ug/mL for 2

hours at room temperature. The plates were then washed with PBS three times, and 1 x 104 cells were plated in a final volume of

100 uL of culture media. The next day, 20 uL of media was removed from each well and replaced with a 5X concentration of the in-

hibitor in culture media at the indicated dilution. The cells were then returned to 37�C. Two hours later, diluted SARS-CoV-2 Spike
Cell Reports Methods 3, 100503, July 24, 2023 e3
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pseudotyped lentiviruses (for an �MOI of 0.05-0.15) were added to each well. Plates were spinfected and assayed as described

above. Drugs (Sigma-Aldrich) were diluted in PBS via vigorously vortexing to a concentration of 100 mM prior to dilution in culture

media.

QUANTIFICATION AND STATISTICAL ANALYSIS

Clinical outcomes under investigation included admission to the intensive care unit (ICU) and initiation of mechanical ventilation.

Odds ratios for each clinical endpoint, with corresponding confidence intervals and p-values, were calculated using McNemar’s

test for matched treatment-control pairs. Pseudoviral infectivity at specific time points was measured using Student’s T-tests,

applying Bonferroni’s correction for multiple hypothesis testing. In all cases, two-tailed null hypotheses with a significance threshold

of 0.05 were used.

ADDITIONAL RESOURCES

RxGRID is available as a command-line Python package with supporting documentation at https://github.com/henrycousins/

RxGRID.
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