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ABSTRACT

While crowdsourcing is commonly used for objective labeling, elic-
iting subjective annotations, like estimating mental states or per-
ception of other’s intention, remains challenging. This study in-
vestigates crowdsourcing’s potential to predict pedestrian behav-
ioral intentions. We recruited 120 participants to predict pedestrian
intentions at different prediction horizons in 24 diverse videos.
Our findings revealed that the status-quo bias significantly im-
pacts intention estimation. Specifically, when asked what status
the pedestrian will be, predictions inclined towards current state’s
continuation over transition, with an overall accuracy of 53% at
one-second prediction length on a balanced dataset. Rephrasing
the annotation question mitigates this bias and improved the esti-
mation accuracy to 79% for one-second ahead predictions, though
accuracy drops with longer horizons and is affected by pedestrian
actions and contextual information. Overall, this study provides
insights into the factors affecting collective estimation of pedestrian
intentions and aims to improve crowdsourcing cognitive labels for
training better AV-pedestrian interaction algorithms.

CCS CONCEPTS

•Human-centered computing→ Empirical studies in HCI;
HCI design and evaluation methods; • Applied computing→
Psychology; • Computing methodologies → Theory of mind.

KEYWORDS

Human Cognitive State, Crowdsourcing, Behavior Prediction
ACM Reference Format:

Md Fazle Elahi, Tianyi Li, and Renran Tian. 2024. Exploring Collective
Theory of Mind on Pedestrian Behavioral Intentions. In Extended Abstracts
of the CHI Conference on Human Factors in Computing Systems (CHI EA ’24),
May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3613905.3650930

1 INTRODUCTION

The integration of AI and machine learning in everyday environ-
ments such as vehicles and workplaces requires endowing these
systems with human-like comprehension of communication, an un-
derstanding of interpersonal information conveyance methods with
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the recognition of the pivotal role played by contextual information
[4, 51]. From a computational standpoint, one of the linchpins in
this evolving interaction model is the capacity to comprehend and
emulate human cognition in intricate naturalistic settings [37].

One prominent example is the navigation of Autonomous Ve-
hicles (AVs) alongside human-controlled vehicles and pedestrians
where deciphering human intentions and their actions is challeng-
ing and widely discussed [11, 12, 15, 21, 39, 42]. Reports from public-
road AV tests shows that 80% to 90% of automation failures occur in
city streets, often due to sub-optimal interactions with pedestrians
[5]. Furthermore, typical kinematics-based pedestrian-detection al-
gorithms has short response times of 0.5 to 1.5 seconds [44], leaving
little room for human drivers to react and thus causing fatalities
including pedestrian accidents [6, 35]. Hence, better prediction of
pedestrian behavioral intentions is indispensable for safer urban
automated driving.

To enhance algorithm performance, many benchmark datasets [17,
24, 40, 41] and prediction algorithms towards pedestrian behaviors,
from actions, trajectories, to intentions [7, 18, 53] are being actively
developed. The prediction of pedestrian intention primarily adopts
two [54] distinct approaches: one focuses on predicting the future ac-
tions to represent the current behavioral intention [17, 53], while the
other employs crowdsourcing to label pedestrian crossing intentions
and use those labels directly as ground truth to develop sequential
prediction models [24, 40]. Both approaches have many models
developed, but the reliability of intention labels remains arguable,
and the overall pedestrian intention prediction accuracy is not yet
satisfactory enough to support driving decisions.

Given the current limitations in algorithmic approaches, it be-
comes crucial to explore the human ability to predict pedestrian
intentions, bridging the gap in decision-making where technology
falls short. In the broader domain, while collective intelligence and
crowdsourcing excel in various physical world tasks, their efficacy
in cognitive tasks like intention estimation in non-verbal human-
human interactions varies by tasks [2]. Understanding the role of
collective intelligence in intention prediction is critical to improve
the crowdsourcing process towards intention labels and correspond-
ing AI algorithm evaluation for practical implementations.

In this work, we investigate the research question: "How well

can human annotators collectively predict behavioral in-

tentions of pedestrians to conduct certain future actions

in recorded naturalistic Pedestrian-Vehicle (PV) interaction

scenarios?" Specifically, we assess how the crowd’s intention es-
timation quality are influenced by these four factors: (1) Action
continuity, (2) Current action of the pedestrians, (3) Prediction
horizon, and (4) Contextual Cues.
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1. Action continuity refers to the behavior to continue the
pedestrians’ current action. If the current action maintains
the same state after the moment of prediction, it is called
“continued.” If it transitions into a different state, it is called
“transition” cases.

2. Current action refers to the pedestrian’s present activity
before and at the moment of prediction, which can be walk-
ing, running, or standing. For simplicity, we only included
data that contains “walking” and “standing” states.

3. Prediction Horizon refers to the duration of future to be
predicted. In this work, we investigate how well humans can
estimate pedestrians’ future actions after one, three, and five
seconds from the prediction moment.

4. Contextual Cues consist of different traffic and environ-
mental factors. We categorize cases into two groups based on
the road locations to represent the different levels of contex-
tual cues. “non-midblock” locations have clear right-of-way
controls such as traffic signals, signs, crosswalks, and road
markings, whereas “midblock” locations lack those.

2 RELATED WORK

2.1 Cognitive Models in Driver-Pedestrian

Negotiation

In navigating everyday social interactions, humans possess a ca-
pacity known as “Theory of Mind” (ToM) [50] to understand other
people’s beliefs, desires, and intention, recognizing that these can
diverge from their own perceptions [1]. According to simulation
theory [19], mirror neurons [10] allow people utilise ToM to ana-
lyze, judge, and infer others’ actions without direct access to others’
mind [38] rather by adopting others’ perspectives [31].

When people share similar experiences, they develop similar
ToM within a specific context since they operate within similar
hierarchical cognitive frameworks [46]. Along this line of work,
Shteynberg et al. [45] introduced the concept of the theory of col-
lective mind, defining it as “the human ability to perceive others’
mental states as aligned with one’s own.” However, in the context
of autonomous driving, the mutual awareness between drivers and
pedestrians is constrained by spatial separation (being inside the
car vs. on the road) and other factors. To address this, we suggest
the term “collective theory of mind,” which emphasizes the use
of crowdsourcing to gather diverse individual perspectives (from
different drivers) without shared awareness, each contributing to a
more comprehensive understanding of the collective reality (pedes-
trian’s current behavioral intention state).

The automatic and voluntarymentalization process [20] of driver-
pedestrian dynamics can be explained through the lens of event
segmentation theory [52], where the drivers spontaneously seg-
ment the pedestrian’s action [28] dictated by pedestrian’s current
action and final goal. However, few have explored the validity of ap-
plying such theory in predicting pedestrian intentions and actions
during interactions.

2.2 Crowdsourcing Subjective Tasks

Recently, increasing research interests have been devoted to sub-
jective crowd annotation tasks [2, 3, 9, 14, 23]. It was found that
annotators’ culture, background, experiences, educational contexts,

and their own opinions all interplay to influence the annotators’
perceptions and judgments [16, 48]. Prior strategies to elicit more re-
liable judgement on subjective matters with crowdsourcing include
providing additional contexts such as sequential video clips [26],
post-hoc filtering or aggregation methods [22, 25], collecting pair-
wise comparisons rather than item-level annotations [33], and using
probabilistic distribution rather than a one-hot encoded label [49].
Yet, these task design strategies cannot be directly applied to pedes-
trian intention annotation, due to the complexity of the surrounding
traffic and social norms. This study draws on prior subjective anno-
tation research and investigates the feasibility of using crowdsourc-
ing to elicit “collective theory of mind” for pedestrian intention
prediction.

3 METHOD

3.1 Dataset: Video Trials Sampling

The study uses 24 videos randomly sampled from the TASI-110 driv-
ing dataset [47] ensuring each video includes at least one pedestrian
encounter in a naturalistic environment. The driving dataset fea-
tures diverse location, daylight, and weather conditions (Figure 1a,
1b). While sampling, we controlled three factors: the current action
(walking/standing), action continuity (continued/transition),
and contextual cues (midblock/non-midblock). This resulted in
three videos for each of the eight combinations of these factors.

The pedestrian-actions in these videos were labeled every 0.1s as
“walking” or “standing” by two team members using the BORIS
tool [13]. For each of the videos containing “transition” cases, a
reference timestamp is set at the moment when the current action
changes to another state. For the videos with “continued” actions,
the reference timestamp is randomly sampled between 7 seconds
and the video’s end-time. Then, each of these 24 videos is clipped
at 1, 3, and 5 seconds before the reference timestamp, and a total of
72 video-trials are generated. Two video-trials were discarded for
being too short, resulting in final 70 video-trials. The duration of
these video-trials ranges from three to nine seconds.

3.2 Prediction Task Design: Question Phrasing

and Video Trial Distribution

We employed a nested experiment design where three separate
experiments were conducted to investigate the impact of action
continuity and prediction horizons. Within each experiment, we
ensured an equal distribution of tasks representative of the other
conditions. The three experiments used different question phrasing
that emphasize different aspects of action continuity. The question
phrasing used in the experiments are (also shown in Figure 2):

• Experiment without emphasis on action continuity (Exp-
Pre): The pedestrian is currently [standing/walking],what

status do you think the pedestrian is going to be in [1/3/5]
second(s)?

• Experimentwith emphasis onTransition (Exp-T): The pedes-
trian is currently [standing/walking], do you think the
pedestrian will start [walking/standing] (transition to the
other state) after [1/3/5] second(s)?

• Experiment with emphasis on Continuity (Exp-C): The
pedestrian is currently [standing/walking], do you think
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(a) A pedestrian-group is trying to

cross in rain with walk sign and

crosswalk marking.

(b) A pedestrian crossing in front

of a car in the dark in a parking

lot.

(c) Attention Check 1: Is the scene

recorded at night?

(d) Attention Check 2: Is the color

of the car in front is yellow?

Figure 1: (a,b): Screenshots of video samples used in the experiment. The videos cover diverse daylight and weather conditions,

single or group of pedestrians, locations, traffic control signals, signs, and road markings. (c,d): These two attention-check

questions are unambiguous and same for all the participants.

the pedestrian will continue [standing/walking] after
[1/3/5] second(s)?

3.3 Participants and Procedure

The study procedure was reviewed and approved by the Institu-
tional Review Board for Human Subject Research at Indiana Uni-
versity. We recruited U.S. participants (≥ 18 years) with over 1000
approved Human Intelligence Tasks (HITs) and a 95% approval rate,
who own a car, as human annotators from Amazon Mechanical
Turk (MTurk) 1. We set a 3-hour time limit and paid $3.5 for an-
notating up to 20 video trials. For each of the three experiments:
Exp-Pre, Exp-T, and Exp-C, we collected 10 independent responses
from different human annotators for each of the 70 video trials. This
resulted in a total of 700 individual responses in each experiment.
These 70 video trials were evenly distributed into four batches
among 40 annotators. On average, each annotator is assigned 17 to
18 video trials excluding the two attention-check videos.

After accepting the HIT, each participant first completes a ques-
tionnaire containing seven demographic questions [36], including
age, gender, residence state, and driving habits like current driving
status, last month driven, transportation preference, and weekly
driving frequency. After that, they sequentially watch a set of 19 or
20 video-trials where a pedestrian either in “walking” or “stand-
ing” state is designated using a red bounding box. When each
video-trial finishes playback, the participants can predict the pedes-
trian’s intention by answering the question-phrasing specific to
one of the three rounds of experiments (see Figure 2). The par-
ticipant can watch the same video multiple times if they wish to
and refine their answers. Among the assigned 19 or 20 video-trials,
two attention-check videos were included as the 7th and 14th
annotation tasks of each HIT, as shown in Figure 1c and 1d. The
sequence of the other 17-18 video trials is randomized for each
annotator. Additionally, we ensured that participants did not view
multiple cases originating from the same parent video.

To evaluate the crowd’s prediction ability, we computed the pre-
diction metrics at two levels: response-level and case-level for each
round of experiments. At response level, the metrics are calculated
on individual annotations made by each crowd worker on each
video trial to measure the performance of the crowd annotators
across the whole dataset disregarding the differences among video

1https://www.mturk.com/

trials. At case level, annotations on the same video trial are aggre-
gated with majority voting. A case is considered to be predicted
correctly if five or more of the 10 annotations are correct.

A total of 138 workers participated in three rounds of the exper-
iment: 43 in Exp-Pre, 46 in Exp-T, and 49 in Exp-C. We analyzed
the data from 120 workers who passed both attention checks and
excluded the data from 18 workers who failed either or both of the
attention checks (3 from Exp-Pre, 6 from Exp-T, and 9 from Exp-C).
Among these 120 participants, 65% are male (Mean Age=36.2 years,
SD=8.48) and 35% are female (Mean Age=39.1 years, SD=13.45).
90% of all participants currently drive with an average of 5 days
(SD=1.62) per week.

4 RESULTS

4.1 Effect of Action Continuity

4.1.1 Annotation Performance of the Crowd are Influenced by Sta-
tus Quo Bias. The results indicate a tendency of humans to predict
that pedestrians will continue their current action at both the re-
sponse and case levels (see Figure 3a), despite an equal distribution
of “continued” and “transition” scenarios in the experiment.
Of the 700 responses, 532 (76%) predicted future states identical to
the pedestrian’s state at the video’s pause in Exp-Pre, and a similar
percentage in Exp-C predicted “Yes” (pedestrian will continue their
current action). This inclination to predict “continued” actions is
also evident at the case level, where 61 out of 70 cases (87%) are pre-
dicted as “continued” in Exp-Pre and a similar result was observed
in Exp-C. The prevalence of predictions mirroring the pedestrian’s
current state is confirmed by a strong positive correlation indicated
by the Chi-squared test [𝜒2 (1) = 189.66, 𝑝 < .001]. We attribute
this observation to the status quo bias [43] among human annota-
tors, where human predictions can be biased towards the current
states of pedestrians.

4.1.2 Question Rephrasing has Significant Impact on BiasMitigation.
The results from Exp-T provided positive evidence for the framing
effect [34] on the status quo bias [43]. Regarding the accuracy met-
ric, crowds in Exp-Pre and Exp-C conditions predicted around 51%
of the cases correctly at the case-level (see Table 1). Conversely, in
Exp-T, where annotators were specifically instructed to contem-
plate the possibility of transitions in pedestrian states, the accuracy
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Video Exp-Pre Exp-T Exp-C

What status do 
you think the 
pedestrian is 
going to be in 
[1/3/5] 
second(s)?

Do you think the 
pedestrian will 
[start walking] 
after [1/3/5] 
second(s)?

Do you think the 
pedestrian will 
[continue standing] 
after [1/3/5] 
second(s)?

Response

standing walking

continued

Response

transition

No Yes

continued transition

Response

Yes No

continued transition

The pedestrian is currently [standing].

Figure 2: Instructions to predict the behavioral intention of the pedestrian inside the red box in three experiments: Exp-Pre,

Exp-T, and Exp-C. In different experiments, participants are asked using three different question phrasings. In Exp-Pre, the

question specifically asks to choose the next status from either “standing” or “walking.” Exp-T and Exp-C uses yes/no

questions. In Exp-T, the question emphasizes on “opposite action”: walking. In contrast, in Exp-C, the question emphasizes on

the “current action”: standing.
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Figure 3: (a) Distributions of predictions at response-level, (b) Confusion Matrices of predictions at case-level. (c) Comparison

between accuracy at case-level and at response-level, across three experiments.

became much higher (67%). Similar patterns were observed in Pre-
cision and Recall, except the Recall of “continued” cases. This
exception is not surprising, as when crowd workers predict most
cases as “continued”, a significant portion of the “continued”
cases — approximately 86.5% (32 out of 37) and 86% (31 out of 36)
were predicted correctly. In addition to superior performance, the
predictions in Exp-T were also more balanced: of the 47 correctly
predicted cases, 43% (20/47) were “continued” and 57% (27/47)
were “transition”(Figure 3b.) We conducted a Chi-squared test to
assess the similarity of responses when different question phrasing
were used in the tasks. The responses in Exp-T are significantly
different from that of both Exp-Pre [𝜒2 (1) = 129.98, 𝑝 < .001] and
Exp-C [𝜒2 (1) = 107.25, 𝑝 < .001]. Responses in the Exp-C condition
are not significantly different from Exp-Pre [𝜒2 (1) = 1.09, 𝑝 = .29].
Furthermore, a two-proportion z-test comparing the proportions of
correct cases between Exp-T and Exp-C indicated a marginally sig-
nificant improvement (𝑧−𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 1.89, 𝑝 = .0585). This suggests
that the changes in question phrasing had a notable but nuanced
effect on the accuracy of the responses.

While it is not surprising that the case-level accuracy is higher
than response-level accuracy, there was an especially high increase
in Exp-T (see Figure 3c.) Aggregating predictions from different
people led to an increase in accuracy by 15% in Exp-T and ≈ 2% in
both Exp-Pre and Exp-C. This result shows that data aggregation
with majority vote is effective for improving the collective accuracy
of intention prediction, especially when the instructions emphasize
on transitions.

As Exp-T is the least influenced by the status quo bias, we will
focus on results from this experiment for the other three factors in
the following sections.

4.2 Effect of Current Action

In Exp-T, there are 36 video trials with the current-action labeled as
“standing” and 34 video trials with the current-action labeled as
“walking.” The influence of the pedestrian’s current action, either
“walking” or “standing,” on the accuracy of crowd predictions is
illustrated in Figure 4a. Notably, when videos depicted pedestrians
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Table 1: Prediction Metrics at case level across three experiments when averaged across three prediction horizons. (Highest

scores are in bold format. cont: continued, tran: transition)

Experiments Accuracy Precision (cont) Precision (tran) Recall (cont) Recall (tran)

Exp-Pre 52.86% 52.46% 55.56% 88.89% 14.71%
Exp-T 67.14% 74.07% 62.80% 55.56% 79.41%

Exp-C 51.43% 51.67% 50.00% 86.11% 14.71%

in the act of walking at the moment of pause, the accuracy of human
predictions exhibited modest variability, with performance metrics
ranging between 61% and 67% (see Figure 4a). In contrast, when the
pedestrians were shown as standing, the accuracy of human pre-
dictions increased. Specifically, the predictions were notably more
precise in correctly identifying pedestrians who would continue to
stand (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑜𝑛𝑡𝑑 = 90%), and catching most instances where
pedestrians would initiate walking (𝑅𝑒𝑐𝑎𝑙𝑙𝑡𝑟𝑎𝑛𝑠 = 93.8%.)

To further analyze the impact of a pedestrian’s current action
on the prediction performance, we applied a Chi-Square test to the
data from Exp-T. This test aimed to explore the potential association
between the current action of the pedestrian and the correctness
of crowd predictions (correct is coded as 1 and incorrect as 0). The
results of the test indicated no significant influence of the pedes-
trian’s current action on the predictions [𝜒2 (1) = 0.117, 𝑝 = .732].
In other words, the crowd workers did not predict the pedestrian’s
intentions differently based on their current action.

This discrepancy between observational trends and statistical
findings could stem from several factors. It is possible that while
the precision and recall metrics show noticeable differences, these
differences may not be reflected through the binary correctness
coding of the the predictions. Alternatively, the statistical power of
the test might not be sufficient to detect the effect, as the sample is
now smaller with only results from the Exp-T included.

4.3 Effect of Prediction Horizon

We summarized the influence of prediction horizon on prediction
accuracy using the data obtained from Exp-T as shown in Figure 4b.
The prediction performance was the highest with the shortest hori-
zon of 1 second. However, an intriguing pattern emerged at longer
horizons: predictions made with a 5-second horizon consistently
outperformed those with a 3-second horizon across most metrics.
This counter-intuitive finding suggests that certain dynamics, per-
haps related to human perception or pedestrian movement patterns,
become more discernible or predictable over this slightly extended
period, thereby enhancing predictive accuracy.

Similar to the “current action” factor, there was no significant dif-
ferences in correctness across different prediction horizons [𝜒2 (2) =
2.54, 𝑝 = .281]. Nonetheless, human prediction shows promising
performance in comparison to state-of-the-art algorithms. At pre-
diction horizon of 1 second, the performance of humans and algo-
rithm [30] is comparable with accuracy of ≈ 79%. However, while
the algorithm’s prediction accuracy drops below 59% beyond a 2-
second horizon [27], humans can remarkably maintain an accuracy
of ≈ 58% even after 3 seconds. This stability demonstrates the po-
tential for training the algorithms beyond 1-2 seconds of prediction
horizon.

4.4 Effect of Contextual Cues

Lastly, we analyze the influence of contextual cues on crowd’s
prediction accuracy at case-level. Each experiment includes 34 video
trials at “midblock” locations, while 36 trials are at “non-midblock.”
As opposed to “non-midblock” locations, “midblock” locations
lack traffic and road factors, generating less contextual cues.

Overall, human predictions had much higher scores across all
metrics in scenarios where pedestrians are at non-midblock loca-
tions, illustrated in Figure 4c. This suggests that the environmental
context, such as traffic control mechanisms and unambiguous traffic
norms experienced in the non-midblock settings, plays a crucial
role in predicting pedestrian intention.

Similarly, Chi-Square test did not reveal significant difference
regarding the correctness of the predictions in these two conditions
[𝜒2 (1) = 1.406, 𝑝 = .236].

5 DISCUSSION AND TAKEAWAYS

In this section, we discuss the factors affecting crowdsourcing to
elicit post-hoc estimations of behavioral intentions based on the
current results. For future research, we suggest design strategies for
annotation tasks to explore the collective theory of mind, benefiting
the HCI community.

Crafting instructions to counteract status quo biases. Our
results suggest that post-hoc intention estimations with humans
can be challenged by the status quo bias, wherein annotators are
inclined to assume subjects will maintain their existing behavior. As
a result, the accuracy of these predictions is only marginally better
than the chance level, at 52.86%. Moreover, majority of the correct
predictions fall into the category of predicting that behaviors will
continue as they are. To address this, we implemented instructions
that emphasize behavioral transitions. This approach effectively
reduced the bias, guiding annotators away from default assumptions
of behavioral continuity without unduly influencing them towards
contrary predictions. This design change improved the estimation
accuracy of the annotators by 14.28% compared to the conditions
where the bias is not mitigated.

In addition to modifying instructional phrasing, future work is
needed to explore other interventions, particularly in the realm of
interface design, to mitigate human cognitive biases in intention
estimation. Another avenue worthy of exploration is incorporating
interactive and engaging elements, such as gamifying [29, 32] the
tasks. For example, asking annotators to role-play as the subjects
they are annotating could foster a deeper, more logical understand-
ing of the scenarios, moving beyond instinctive reactions.

Smaller steps for choosing predictionhorizons.Our findings
indicate that a longer prediction horizon of three to five seconds
does not necessarily decrease the accuracy of intention prediction.
This suggests a promising future task design consideration where
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the prediction horizons can range at smaller intervals of 100ms
when the time-window is closer to Time-To-Event (TTE). Further,
reliable crowd-sourced labels can increase the prediction horizon
of existing algorithms from 1-2 seconds [27] to over three seconds.
This allows passengers more time to react, thereby enhancing safety
and trust. Another potential area for exploration lies in identify-
ing scenarios where human judgment and algorithmic approaches
excel or falter in terms of predicting further ahead, with the aim
of uncovering opportunities to effectively complement these two
methods.

Scaffolding in less favorable cases. Our results suggest that
the intent prediction performance can be sensitive to factors such
as pedestrian’s current action and contextual cues in the videos. For
instance, the prediction accuracy is lower when the current action
is walking as opposed to standing. Additionally, the accuracy
decreases at non-midblock locations compared to midblock loca-
tions. In other words, the intention prediction performance may
vary dramatically in different cases. Future task design should con-
sider scaffolding the intention predictions in less favorable cases.
An interesting approach will be the integration of AI-assisted tools
to recognize and emphasize contextual information and behavioral
cues, thereby augmenting the human predictions.

Redefine what to annotate. This study explored ability of hu-
mans to collectively predict pedestrian behavioral intentions. The
results indicated that intention prediction can be influenced by or
inferred from various factors, such as contextual cues and observed
actions. Therefore, it is valuable to explore alternative human-AI
collaboration mechanisms for predicting pedestrian’s intentions.
For example, rather than directly predicting pedestrian behavioral
intention themselves, humans may be better at annotating contex-
tual cues to inform AI models to make the prediction. Collecting
contextual information can also help newmodels to be developed to
proactively predict pedestrian intentions. This study considered the
contextual cues as a sampling criteria but future research designs
can facilitate acquisition of various levels of contextual information
to enhance AI’s perception.

Continuous labels and measures in intent prediction. The
discrepancy between the observational trends and the Chi-Square
statistical findings suggests that binary coding (correct/incorrect)
might not capture the nuances of prediction performance. Future
task designs could benefit from employing more granular or con-
tinuous measures of eliciting intention labels, such as soft labels

aggregated from the crowd [3, 8], to capture more nuanced under-
standing of human prediction.

6 CONCLUSION

In this work, we explored the concept of collective theory of mind
by investigating four factors affecting the crowd capability in es-
timating pedestrian behavioral intentions. Key findings include
that the status quo bias affects the collective performance in inten-
tion prediction tasks, which can be mitigated by simple question
rephrasing methods. Prediction horizon affects the intention estima-
tion capability as well; and collectively, human crowd can estimate
pedestrian intention more accurately than trained AI algorithms in
longer duration. Observed pedestrian actions and contextual cues
are not found to have statistically significant effects. However, the
observational trends in the data suggests that certain type of pedes-
trian action and contextual cues affect the crowd’s performance,
highlighting the need for future researchwith a larger sample size to
explore the potential interactions among these factors. Overall, our
findings emphasize on the feasibility and necessity of employing
collective theory of mind to help establish the threshold of predic-
tion error which can dictate the degree of accuracy for smooth and
proactive human-machine interaction.
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