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ABSTRACT

Realizing products that meet targeted performance requires careful consideration of the material
processing to identify appropriate material microstructures and associated mechanical properties. The
integrated design of such systems involving products, materials, and manufacturing processes necessitates
facilitating co-design - a collective and coordinated effort by the product, materials, and process designers
at multilevel to share their resources, information, and knowledge for making effective design decisions using
the Processing-microStructure-Property-Performance (PSPP) relations. Goal-oriented Inverse Design
(GolD) is one approach to co-designing these systems. In GolD, multilevel decisions are targeted at meeting
the goals propagated inversely from the top level in the design hierarchy. Nevertheless, achieving the
inversely propagated goals from one level may not be feasible at another level owing to the goal targets,
established constraints, and available bounds. This results in design conflicts between multilevel decisions,
leading to a loss in multilevel and system performance.

In this paper, we propose an information-decision framework to model goal-directed, multilevel
decision-making and interactions for products, materials, and manufacturing processes, detect potential
conflicts between the multilevel decisions, and regulate the decisions to achieve improved multilevel and
system performance. Decision regulation is achieved by studying the sensitivity of the goals to dominant
design variables and constraints and making appropriate design modifications. We use a hot rod rolling
problem to showcase the efficacy of the proposed framework in systematically detecting and managing
conflicts while co-designing the product, material, and manufacturing processes involved. The framework is
generic and facilitates the top-down co-design of multilevel systems involving products, materials, and
manufacturing processes.

Keywords: Information-decision framework, Co-design, Multilevel design, Processing-microstructure-
property-performance linkages, Inverse design, Decision-based design

1. FRAME OF REFERENCE

Manufacturers must produce products with targeted performance to meet the market requirements.
Targeted product performance is achieved by ensuring an appropriate range of mechanical properties and
material microstructures, which sometimes require the use of multi-material components [1-3]. The material
processing during manufacturing influences the material microstructure, thus defining the mechanical
properties and product performance. This interconnect among processing, microstructure, properties, and
performance is illustrated using the hot rod rolling (HRR) process chain example. In HRR, cast steel billets
are reheated and further processed in rolling and cooling mills to produce hot-rolled steel rods as products.
The mechanical properties that identify the steel rod performance [4] are determined by the steel
microstructure produced as a result of the above thermo-mechanical processing. Hence, the prudent
management of the manufacturing processes involved in realizing the product is required to tailor the material
microstructure and attain a specific range of mechanical properties, thereby satisfying the targeted product
performance [5]. Given the inherent relationships between material processing, microstructure, achieved
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mechanical properties, and end product performance, realizing products that meet targeted performance
requires an integrated consideration of the system constituted by the products, its materials, and associated
manufacturing processes.

Material selection approaches [6-8] are traditionally employed to achieve targeted product performance.
It involves choosing materials with suitable properties from a set of available materials. Classical material
selection approaches do not facilitate tailoring the material microstructures to meet specific mechanical
property requirements. Realization of products with specific microstructure and mechanical properties
typically involves many plant trials and lab-scale experiments [9] that are expensive and time-consuming.
The relatively cheaper and quicker alternative is to use simulation-supported approaches for the integrated
design of systems involving products, materials, and manufacturing processes. Simulation-supported
integrated design approaches focus on meeting multiple conflicting mechanical property requirements in a
top-down, inverse manner by intentionally engineering the material microstructure and identifying the
appropriate processing paths. Such a conscious effort to engineer materials that meet specific mechanical
properties and microstructure requirements is the focus of ‘materials design.” Direction for materials design
is provided by the Integrated Computational Materials Engineering (ICME) program [10], where the
Processing-microStructure-Property-Performance (PSPP) design hierarchy proposed by Olson [11] is
exploited to realize the integrated, top-down design of products and materials with the support of simulations.
Here, product performance requirements are inversely mapped onto material properties, followed by mapping
the material properties onto materials structure to realize the top-down, inverse design of materials that satisfy
product performance requirements. McDowell and Olson [12] propose a systems approach to materials
design in line with ICME, where the PSPP relations are utilized to realize an inverse, multilevel design of
products with a targeted performance range and the material structural hierarchy. McDowell [13]
recommends that integrated, multilevel materials design approaches should facilitate an understanding of the
sensitivity of the material properties to material microstructure and material microstructure to its processing.
The sensitivity analysis helps designers i) identify key design variables with significant sensitivities across
the material structure and design hierarchy and ii) perform solution space exploration to identify design
solutions that meet a targeted range of performance [4].

The simulation-supported, integrated, multilevel materials design approaches require the collaborative
effort of distributed domain experts for the different levels of the design process, such as product designers,
materials designers, and process designers. The domain experts make decisions regarding the material choice
for the product, the development of materials with improved performance, and the processing of materials to
produce the product based on their domain expertise. Nellippallil and co-authors [4] present the design of
such systems as a collaborative effort of a group of distributed experts, defined as ‘co-design.” In this paper,
we adopt this definition of co-design as the ability of a group of distributed domain experts that involves
product, materials, and process designers to share their resources, information, and knowledge for the
integrated design of the products, materials, and manufacturing processes. The primary role of domain
experts in co-design is that of decision-makers or designers who make decisions regarding the design problem
that requires their expertise, given the information available. Independent domain expert decisions at
individual levels can cause unintended impacts on other levels [14] due to limitations in the other levels'
available resources, resulting in design conflicts. The resource limitations at a level are defined using
constraints, bounds, and goal targets. If left unresolved, design conflicts can result in poor performance at
different levels that accumulate and lead to poor system performance, where products fail to meet targeted
performance. In this paper, we address the issue of managing design conflicts in the multilevel co-design of
products, materials, and manufacturing processes from a systems-based inverse design viewpoint.

Several works in the literature address multilevel material design and establish inverse PSPP linkages
for design. Adams and co-authors [15] present a framework to support inverse materials and process design
problems by employing spectral representation to establish invertible relationships between material
processing, resultant material structure, and properties. Kalidindi and co-authors [16, 17] present the
materials knowledge systems (MKS) approach, which supports inverse materials design problems by
facilitating the bi-directional information flow between different length scales during the concurrent
multiscale modeling and simulation of different materials phenomenon. Chen and co-authors [18] present an
inverse materials design approach that combines generative inverse design networks, backpropagation, and
an active learning strategy. Kumar and co-authors [19] propose an inverse design framework for realizing
metamaterials with desired properties by identifying optimal topologies using deep neural networks. Qian
and co-authors [20] present an inverse design method that employs artificial neural networks to design
architectured composite materials. Kim and co-authors discuss the inverse design of porous Zeolite material
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using artificial neural networks [21]. Tsai and coauthors [22] present an inverse model that uses an artificial
neural network coupled with a genetic algorithm to realize optical lenses with form accuracy using injection
molding. The above approaches are characterized by the need for considerable knowledge or data and a clear
understanding of the different material phenomena, material hierarchy, and flow of information in the
hierarchy. Hence, these approaches are unsuitable for early-stage design exploration, with limited data
availability and a rudimentary understanding of the various phenomena and information flows.

Approaches such as the analytical target cascading (ATC) [23], collaborative optimization (CO) [24],
and bilevel integrated system synthesis (BLISS) [25] are proposed by the multidisciplinary optimization
(MDO) [26-29] community for optimizing multilevel systems. In general, the focus of MDO approaches is
on identifying point solutions at each level using rigorous optimization techniques. They usually involve a
substantial number of iterations within and between levels using optimization loops until convergence is
achieved. This is particularly challenging in early-stage design exploration, where the focus is on quickly
identifying satisfactory design regions instead of a single unique point solution [30]. Moreover, fundamental
limitations exist in using MDO approaches in a materials design environment involving the product and the
manufacturing processes. When considering product and manufacturing process aspects during materials
design, it is sensible to distribute the design activities to (i) efficiently utilize the knowledge and expertise of
the designers across various domains in the synthesis process and (ii) avoid formulating and solving system-
level problems that are overly large and computationally burdensome. In a recent effort, Ituarte and co-
authors [14] put forth a computer-aided expert system to explore the PSPP linkages and carry out trade-off
exploration and optimization in digital manufacturing. This is realized by coupling product design,
manufacturing processes, and materials systems using surrogate models and MDO. The work demonstrates
exploring optimization solutions in multiple disciplines, specifically product, material, and manufacturing,
ensuring overall system performance. However, the issue of design conflicts that can arise when there are
many objectives at individual levels or disciplines, especially at the early stages of design, needs further
attention.

The fundamental assumption in MDO is the identification and passing of single-point optimum solutions
among designers and a central decision-maker. This assumption is challenged by approaches that seek to
identify and share ranged sets of solutions with distributed designers across design levels [31, 32]. By
identifying ranged sets of solutions, designers are free to choose a solution from the set based on their
preference. Systematic top-down, system-based approaches that support early-stage materials design
exploration are discussed limitedly in the literature. Choi and co-authors [33] present a multilevel, top-down
design method that facilitates distributed design, the Inductive Design Exploration Method (IDEM). IDEM
is suitable for hierarchical design problems and managing uncertainty propagation across levels in the early
design stages. Kern and co-authors [34] present a generic Python implementation of the IDEM, named
pyDEM, which employs an open-source Python tool. IDEM has certain noted limitations, such as flexibility
in design, discretization errors, the increased computational expense for improved accuracy, and restrictions
on the number of design variables that can be considered, as discussed in [35]. Nellippallil and co-authors
propose the Goal-oriented Inverse Design (GolID) approach to address some of these limitations [35]. Wang
and co-authors [36] present a template-based ontological method based on the GolD approach to support
design space exploration. In GolD, decision-making is considered a sequential process, with decisions at
different levels of the design process being made by domain experts. These decisions are directed towards
the goal targets that are inversely propagated from the succeeding level in the sequence, starting with the
system performance requirements. The sequential decision-making in GoID may result in conflicts among
decisions across different levels, subsequently resulting in the inability to achieve the required material
microstructures and mechanical properties and reduced product performance. Hence, there exists a need to
manage the potential design conflicts that can arise when using the GolD approach in the multilevel co-
design of systems involving products, materials, and manufacturing processes.

We consider design from a systems design standpoint as a simulation-supported, integrated, top-down,
decision-based process to satisfy a targeted range of performance requirements. We follow the Decision-
Based Design (DBD) paradigm [37] that considers design a decision-making process, where the designers
make a series of decisions, some sequentially while others concurrently. Decision Support Problem (DSP)
techniques are developed by Mistree and co-authors [37] to support decision-making in DBD. DSP
techniques are anchored in the notion of bounded rationality proposed by Herbert A. Simon [38]. We view
the design problem from the philosophy of a “satisficer” and seek a ranged set of satisficing solutions. A
‘satisficing solution’ [39] satisfies the design requirements for the conflicting goals and showcases good
enough performance given the available information and models used. The compromise Decision Support
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Problem (cDSP) [40] is one well-established DSP construct in the literature that is useful in exploring
satisficing design solution sets for design problems with multiple conflicting goals. Ming and co-authors [41]
present a computational platform named Platform for Decision Support in the Design of Engineering Systems
(PDSIDES), where DSPs are represented as computational decision templates to facilitate the storage and
reuse of decision-related knowledge. In this paper, we use the cDSP construct and templates within PDSIDES
to i) capture problem-specific information, ii) formulate multilevel design problems involving the product,
material, and manufacturing process, and iii) explore ranged sets of design solutions for multiple conflicting
goals across multilevel.

From a DBD perspective, we hypothesize that the issue of design conflicts can be addressed using a
decision support framework that facilitates i) goal-directed decision-making across the different levels of the
design process, ii) cooperative decision-making between the levels by managing the interactions, and iii)
regulation of the design space and decision-making at different levels to attain improved performance. We
define cooperation as a situation where 1) the design conflicts among decisions at various levels are managed
to ensure coordination (MDC - Manage Design Conflicts), and ii) decisions are made in a manner that
facilitates the achievement of the goals at other levels (FG = Facilitate Goals) [42, 43]. The management of
design conflicts by regulating decisions at different levels requires a clear understanding of the impact of the
decision variables at a level on the corresponding goals. As discussed previously, simulation-supported
integrated materials design approaches, including GolD, are well suited to support sensitivity analysis, which
will aid designers in identifying key design variables across different levels. Identifying key variables will
enable more effective conflict management in the proposed framework by allowing decision regulation with
minimum changes to the variables. Minimum changes to variables correspond to a situation where the least
amount of additional resources is utilized in managing the conflict, which is beneficial.

The outline of this paper is as follows. The description of the problem is presented in Section 2. In
Section 3, we present an information-decision framework for the multilevel co-design of products, materials,
and manufacturing processes. We also discuss using the PDSIDES platform to formulate and execute DSPs
and explore the solution space across multiple design levels in Section 3. We showcase the framework's
efficacy in supporting the management of design conflicts using the HRR test problem in Section 4. In the
HRR test problem, we focus on the interactions between the levels of the design process that involve
processing (manufacturing process), microstructure (material), and mechanical properties of the rod
(product). We close the paper with our contributions and closing remarks in Section 5. We present the
empirical models used in the test problem and the problem formulations in Appendix A.

2. PROBLEM DESCRIPTION — DESIGN CONFLICTS IN THE MULTILEVEL, TOP-DOWN
CO-DESIGN OF PRODUCTS, MATERIALS, AND MANUFACTURING PROCESSES
Realizing products with targeted performance involves tailoring the properties and associated material

microstructure to required ranges by carefully managing material processing. The inherent relationship
among material processing, microstructure, mechanical properties, and product performance necessitates the
multilevel co-design of the system involving products, their materials, and manufacturing processes to realize
products with targeted performance. The multilevel co-design of such systems involves integrated decision-
making across the PSPP design hierarchy. Integrated decision-making is realized through a collaborative
effort of domain experts, such as process, materials, and product designers, who make decisions across
different levels of decision-making based on their expertise.

In this paper, we consider the use of the GoID approach [35] for the multilevel co-design of products,
materials, and manufacturing processes, as depicted in Figure 1. The sequential decision-making in GolD
begins with identifying satisficing solutions for the DSP at Level 1- ¢cDSP ‘1, as indicated by ‘Start’ in Figure
1. At Level 1, product performance requirements defined in terms of the multiple mechanical property goals
are considered. cDSP ‘1’ is formulated to help the product designer determine satisficing solutions that fulfill
product performance requirements propagated from the end product. Given the design variable bounds, the
design space for cDSP ‘1’ is limited to a small region depicted by the grey area marked ‘X’ in ¢cDSP ‘1.
Additionally, requirements regarding acceptable mechanical property goal values are set as constraints that
will result in different feasible design spaces for each mechanical property goal. The feasible design spaces
corresponding to two mechanical property goals of cDSP ‘1’ are indicated by the red region marked ‘a’ and
the blue region marked ‘b.” In a situation with conflicting mechanical property goals, achieving all the goal
targets might not be possible. The product designer seeks ‘satisficing solutions’ regarding material
microstructure that fulfills the designer's requirements for the mechanical property goals and picks the green
Region 1 in ¢cDSP ‘1’. Hence, at Level 1, the designer considers the materials and product design aspects
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together, with the material microstructure as inputs and mechanical properties of the product as outputs for
cDSP “1°.
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FIGURE 1: An illustration of the possible situation of conflict between multilevel decisions when
using the GolD approach and subsequent loss in performance

The microstructure solutions identified are then propagated as goal targets for the DSP of the next level
in the sequence - Level 2, as depicted by the blue ‘Mapped Goals’ region in cDSP ‘2.” At Level 2, the material
requirements defined in terms of microstructure at the end of the final manufacturing process in the
processing sequence are considered. The feasible design spaces corresponding to two microstructure goals
of ¢cDSP 2’ are indicated by regions marked ‘c’ (blue) and ‘d’ (red) in the grey area marked ‘Y.’ The
materials designer explores the feasible design spaces, seeking satisficing solutions in terms of processing
variables that fulfill the designer's requirements for the potentially conflicting microstructure goals. The
exploration ends with the materials designer picking the green Region 2 in ¢cDSP ‘2’. Hence, at Level 2, the
materials designer considers the materials and manufacturing processing aspects together, with processing
variables as inputs and material microstructure as outputs for cDSP ‘2.” Since the microstructure goals are
propagated to the cDSP 2’ in a top-down manner, there is a lack of a way in GoID for the product and
material designers at the interacting Levels 1 and 2 to collaborate and check if the microstructure goals
mapped from Level 1 are achievable at Level 2, given the resources available. Design conflicts occur between
the product and materials designers if the microstructure goal values corresponding to the satisficing solution
picked at Level 2 do not meet the mapped microstructure goals from Level 1. The design conflicts arise
primarily due to the limited resources defined in terms of constraints, bounds, and goals of conflicting nature
in cDSP 2’ that restrict the design space of the next level in the sequence, Level 2. The design conflicts lead
to a loss in performance of both interacting levels, which is schematically represented in Figure 1. At Level
2, the achievable satisficing solution depicted by the green Region 2 does not match the targeted ‘Mapped
Goals’ from Level 1, indicating a loss in performance at Level 2. The yellow Region 1’ that depicts the goal
values achieved at Level 1 by mapping back the satisficing solutions from Level 2 does not match the initially
identified satisficing solutions at Level 1 indicated by the green Region 1, thus indicating a loss in
performance at Level 1.

The inverse sequential propagation of decisions from one level to the next and subsequent decision-
making is continued along the multilevel system until all remaining manufacturing processes that influence
the material microstructure are considered, as depicted by Level 3 in Figure 1. With the solutions being
propagated inversely, further conflicts may arise between multilevel decisions, resulting in performance
losses and accumulation across the different levels, thus leading to poor system performance. Poor system
performance will result in products failing to meet targeted performance. To address the above issue, top-
down design approaches such as the GolD require a way to model the multilevel interactions and facilitate
collaboration between the multilevel decisions. Facilitating the modeling of interactions will help the
designers regulate the multilevel decisions to support cooperative decision-making, thereby ensuring
multilevel and system performance in situations where design conflict exists. An information-decision
framework to address the issue of design conflicts and ensure multilevel and system performance in the
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multilevel, top-down co-design of products, materials, and manufacturing processes is presented in detail in
the next section. We begin the next section by introducing the computational platform PDSIDES used to
formulate the cDSPs, execute them, and explore satisficing solutions at different design levels.

3. INFORMATION-DECISION FRAMEWORK TO SUPPORT MULTILEVEL, TOP-DOWN CO-
DESIGN OF PRODUCTS, MATERIALS, AND MANUFACTURING PROCESSES AND THE
USE OF THE PDSIDES PLATFORM IN THE FRAMEWORK
In this section, we present an information-decision framework to facilitate cooperative decision-making

and support multilevel, top-down co-design of products, materials, and manufacturing processes. Using the

framework, we facilitate sequential, goal-directed decision-making across different levels and cooperative
decision-making between the interacting levels by regulating design spaces and decisions at these levels. The
regulation of decision-making at the interacting levels will aid design conflict management, thereby helping
attain improved multilevel and system performance. We begin with Section 3.1, where we discuss the

PDSIDES platform developed by Ming and co-authors [41] used to formulate and execute cDSPs and carry

out solution space exploration in the framework.

3.1. Platform for Decision Support in the Design of Engineering Systems (PDSIDES)

PDSIDES is a ‘knowledge-based’ computational platform that is anchored in modeling decision-related
knowledge using DSP templates that are executable and reusable. Different ‘knowledge-based engineering
approaches’ have been discussed extensively in the literature, where the focus is on the automation of the
design process and not on supporting designers to make better decisions [44, 45]. The utility of the PDSIDES
platform lies in its capability to provide designers with decision support during design. Through its various
templates, PDSIDES facilitates the modeling of multilevel decision-making and their interactions [46] and
systematic solution space visualization and exploration [36]. This is supported by predefined problem-
specific information and information regarding the information and decision workflows connecting the
multiple levels. The primary constructs that help realize various decisions within the PDSIDES platform are
i) the Decision Support Problem (DSP) construct and ii) Ontology - the explicit formal specifications of terms
used in the PDSIDES platform to formally represent the knowledge. In PDSIDES, DSPs are represented as
computational decision templates called DSP templates used to model decision-making. As depicted in
Figure 2, DSP templates - specifically cDSP templates, are modularized to separately capture the problem-
specific declarative knowledge and the domain-independent procedural knowledge related to the procedure
for solving the problem. The modules in the cDSP template, such as goals, variables, parameters, preferences,
constraints, objectives, and responses, capture declarative knowledge. The analysis module captures the
procedural knowledge required to execute the cDSP template. The computational environment for executing
the ¢cDSP template, DSIDES (Decision Support in the Engineering Systems) [47], is integrated into
PDSIDES. The response module of the cDSP template stores the output results of the execution of the cDSP
template. The use of ontologies, modularization of the DSP construct, and separation of declarative and
procedural knowledge facilitate the execution and reuse of the templates in the PDSIDES platform. These
templates are also editable and customizable, allowing adding additional functionalities as required. Using
ontologies also helps facilitate knowledge sharing, population, and retrieval in the PDSIDES platform.

| PROBLEM MODEL (PM)

l DSE Template

|
[ PROBLEM SPECIFIC INFORMATION ]

| POST-SOLUTION ANALYSIS (PSA)

FIGURE 2: Modeling decision-making using templates, sub-templates, and modules in PDSIDES
platform
In PDSIDES, the identification of satisficing solutions by solution space visualization and exploration
is supported using the Design Space Exploration (DSE) template [36] depicted in Figure 2. The DSE template
is composed of three separate sub-templates: i) Problem Model (PM) sub-template, ii) cDSP template, and
iii) Post Solution Analysis (PSA) sub-template. Each of these sub-templates is composed of different modules
that help capture declarative and procedural knowledge. The PM sub-template is composed of i) the
theoretical/empirical model module that captures declarative knowledge in the form of models relating the
problem-specific variables and responses and ii) the surrogate modeling module that provides designers
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access to surrogate modeling tools and techniques that help develop surrogate or reduced-order models, if
required. The PSA sub-template facilitates various computations, analyses, and visualization associated with
the cDSP template, such as i) the creation of different design scenarios for executing the cDSP template using
the Solution Space Exploration (SSE) experiment module, ii) the determination of the desired solution region
using the Weight Sensitivity Analysis (WSA) module, iii) estimation of the sensitivity of cDSP responses to
changes in constraint limits using Constraint Sensitivity Analysis (CSA) module, iv) other relevant post
solution computations specific to the design problem, using the Additional Requirements Analysis (ARA)
module, v) computation and storage of deviation of goals from their targets using the Deviation Response
module, and vi) visualization and exploration of the solution space using ternary plots, by employing the
ternary plot sub-module build into the PSA sub-template. The PSA sub-template produces outputs such as
sensitivity values, deviation values, ternary plots, and so on that support designers in making decisions. The
interactions among different decision models in PDSIDES in terms of information and decision flows can be
modeled using interaction templates as presented in [46]. The PDSIDES platform also allows designers to
create new templates, edit and customize existing ones, and use existing ones by modifying their parameters.
For more details on PDSIDES, readers are directed to [36], [41], and [46]. The PDSIDES platform, with its
various templates, sub-templates, and modules described above, is used to formulate and execute the cDSPs
and explore the solution space across interacting levels in the information-decision framework presented
below. The framework structure is depicted in Figure 3 and is described in Section 3.2. The use of the
framework and the PDSIDES platform is discussed in Section 3.3.
3.2. Structure of the Information-Decision Framework

The framework comprises two distinct parts, as depicted in Figure 3. They are:

1) Decision models formulated for each level in a multilevel system, denoted in this paper as Levels

‘n,” ‘n+1’°, and so on, to generalize interactions between any two consecutive decision levels and
2) Interaction Space
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Information & rL
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\/ Information and decision storage, and sharing |
/ Regulated decisions | Detecting and Managing Conflict |
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support multilevel, top-down co-design of product, material, and manufacturing processes
3.2.1. Decision model of interacting levels

In the framework, multilevel decision-making is represented using simulation-based decision models.
The modeling of the interactions of the multilevel decision models is inspired by the human-assistance system
interaction model described by Lemoine and co-authors [43]. The foundational concepts of this interaction
or cooperation model are based on the Know-How (KH) and Know-How-to-Cooperate (KHC) constructs
defined by Lemoine and co-authors for interacting decisional entities in a system [43].

a. KH deals with collecting level-specific information to support decision-making at a level without
considering exchanges with other interacting levels.

b. KHC is concerned with understanding decision-making at interacting levels and exchanging pertinent
information between the interacting levels to support cooperative decision-making.

The KH and KHC constructs are introduced by Millot and Lemoine [43] to establish generic concepts
for human-machine cooperation. Since then, these constructs have been widely used in the fields of air traffic
control [48], manufacturing [43, 49], and robotics [50] to facilitate human-human and human-machine
cooperation. The above applications showcase the KH and KHC construct’s generic nature and utility in
facilitating cooperation between interacting levels through information sharing. Using these constructs, the
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designer can systematically identify the information required for multilevel decision-making and the ones
that need to be shared for improved cooperation between interacting levels. These characteristics make these
constructs suitable to be adapted as mental models in the proposed information-decision framework to help
the designers model multilevel interactions and collaboration in the decision model at each level. As depicted
in Figure 3, the decision model of each level in the system is composed of the KH and KHC constructs. The
KH construct allows decision-makers to model multilevel decision-making. The KHC construct enables
decision-makers to identify information and decisions specific to a level or its interacting levels that can be
modified, controlled, or shared to achieve improved cooperation between the interacting levels.

In this paper, KH corresponding to a level is modeled as a cDSP [40], given the possibility of each level
having multiple conflicting objectives to achieve. In cDSP, both traditional mathematical programming and
goal programming concepts are incorporated, enabling the exploration of satisficing design solutions for
multiple conflicting goals. As depicted in Figure 4, the Given, Find, Satisfy, and Minimize keywords in the
cDSP help capture information related to the problem, thus making the cDSP construct generic. The designer
emphasizes achieving the goal targets defined in the cDSP as closely as possible by exploring the solution
space. In the KH construct, level-specific information such as i) goals and goal targets, ii) variable bounds,
and iii) constraints are used to make decisions at the respective levels. The goals are explicitly specified for
the first design level. The goals are propagated inversely from higher levels in the design hierarchy for the
remaining levels.

Given
* Well-established mathematical models for the problem at hand
* Goal and goal target values (G;)
* The system parameters:

m  number of design/system variables,

J number of system goals,

q equality constraints,

r inequality constraints,

g +r number of system constraints,

gilXp) system constraint function
Find
a. System variables (X, ): Values of independent system variables, where =1, 2, 3,.., m
b. Deviation variables {d;, d; ): Values of deviation of the goal values from their target values (indicates the extent to which goals are
achieved), wherei=1, 2, 3,...,
Satisfy
a. System Constraints (must be satisfied for solutions to be feasible and can be linear or non-linear)

gilXp)=0,wherei=1,2,3,.,q
gi(Xp)20,wherei=qg+1,.,q+r
b. System Goals (need to achieve a specified target value and can be linear or non-linear)
A Xp)+di -d} =G;, wherei=1,2,3,.,j
c. Bounds (Upper and lower limits for the system variables)
Xmin g X, < XI9Y where P=1,2,3,..,m
df,d; 20,df *d; =0, wherei=1,2,3,..,j

Minimize
Deviation function: A function that quantifies the deviation of the system performance from that implied by the set of goals and their
associated relative weights.
MinZ =Y W;(d +dj)
wherei=1,2,3,.,m0sW;<l,and Y W; =1

FIGURE 4: Capturing problem-specific information using the keywords of the compromise-
Decision Support Problem (¢cDSP) construct [40]

In PDSIDES, the decision-making Know How (KH) at a level is modeled using the PM sub-template
and cDSP template. Level-specific information, including satisficing solutions identified for the specific
level, is created using i) the PSA sub-template and ii) the responses stored in the response module of the
cDSP template. The information generated is shared with related levels using interaction templates. The
response module of the cDSP template and the PSA sub-template constitute the Know How to Cooperate
(KHC) at a level in the framework.

3.2.2. Interaction Space

The interaction space is the domain that allows two major tasks to be performed using the framework.
The first task is the storage and sharing of level-specific decisions and information. The second task is
detecting and managing design conflicts between decisions at interacting levels. The designer uses stored
information and decisions to detect and quantify design conflicts and manage these conflicts by 1) identifying
possible means for the interacting levels to collaborate and ii) providing corrective feedback. The procedure
used to detect and quantify conflicts, identify potential corrective feedback, and its implementation in
PDSIDES is discussed in the next section.




3.3. Decision support using the framework and use of the PDSIDES platform to model multilevel
decision-making and their interactions, explore the solution spaces, and detect and manage conflicts

The use of the framework is explained in terms of the decisions made and the flow of information and
decisions between interacting levels — Levels n, n+1, and n+2, as depicted in Figure 3. The framework
involves the execution of three steps — Steps 1, 2, and 3. The decision-making in the framework takes place
in Steps 1, 2, and 3. The decision workflow- the order in which decisions are made and their interconnections,
is represented using the arrows connecting the steps. This represents the procedural knowledge aspect
concerned with how the information is transformed and how the transformation is executed via a decision
workflow. The necessary information to make decisions in Steps 1, 2, and 3 represents the problem-specific
declarative knowledge concerned with what information gets transformed. The problem-specific declarative
knowledge is depicted by the information and decision flows connecting the steps. Steps 1, 2, and 3 and the
flow of information and decisions in the framework are described as follows.

Step 1: The KH of Level ‘n” concerned with the product requirements at the top of the design hierarchy
is formulated using level-specific information - declarative knowledge, such as goals (G, where ‘J' - goal
index and J =1, 2,..., j), constraints (C,), design variables (Xp,, where P - design variable index and P =1,
2,..., m) design variable bounds (Xus r.» — upper bound and X;zp, — lower bound) and models relating the
goals and design variables. At this level, goals are specified explicitly based on product performance
requirements identified in terms of mechanical property goals. The product designer, the decision-maker at
Level ‘n,” uses this information and the cDSP construct to formulate and solve the DSP of Level ‘n.” The
feasible solutions that satisfy the bounds and constraints are identified by exercising the cDSP ‘n’ for different
design scenarios, where each design scenario describes a specific combination of the designer's preference
for the various goals expressed in terms of the weights assigned to the goals; see [35] for more details. From
the feasible solutions, the designer identifies a collection of satisficing solutions referred to as a ‘ranged set
of satisficing solutions.” The ranged set of satisficing solutions identified ‘satisfices’ and ‘suffices’ the
designer’s requirements for the multiple goals. A ranged set of satisficing solutions for cDSP ‘n’ are identified

through the ternary plot-based visualization of the feasible solution space and its exploration by settin
acceptable thresholds for the multiple conflicting goals.
A more

detailed discussion on visualization and exploration of the feasible solution space using terna
identify a satisficing solution is provided in Section 4.

. Therefore, there exists propagation of goals between interacting levels in an inverse manner. To
summarize, in Step 1, the product designer formulates and solves the cDSP at Level ‘n’ and explores the
feasible solution space to identify a satisficing solution that is propagated as the goal target for the next design
level in the inverse sequence, Level ‘n+1.’

Step 2: The materials designer, the decision-maker at Level ‘nt1,” uses the decision propagated to its
KHC from Level 'n’ to identify goals and goal targets to work towards. The KH of Level ‘n+1’ concerned
with meeting the materials requirements identified and propagated from Level 'n’ is provided with level-
specific information - declarative knowledge, such as goals (Gj+;), constraints (C,+;), design variable
(Xpn+1), design variable bounds (Xus p.+; — upper bound and X p,»+; — lower bound) and models relating the
goals and design variables, as in Step 1. The final processing in the manufacturing process chain influences
the goals at Level ‘n+1.” Similar to Step 1, the materials designer uses level-specific information to formulate
and solve ¢cDSP ‘n+1” and identify feasible solutions. The ranged set of satisficing solutions for Level ‘n+1’
are identified using a ternary plot-based feasible solution space visualization. Acceptable thresholds for the
oals are identified, and the solution space within the ternary space is explored.

achieved by mapping the goal values at Level ‘n+1’ as design variable values for Level

In Step 2, the materials designer, using the information propagated down from Level ‘n’ and level-specific
information, formulates and solves the cDSP at Level ‘n+1’ to identify satisficing solutions. The materials
designer further explores the satisficing solution space to identify satisficing solutions at Level ‘n+1.” The
corresponding Level ‘n’ goal values are subsequently propagated to the interaction space to detect conflicts.

In PDSIDES, Steps 1 and 2 are modeled using separate instances of the DSE template. In the DSE
template instances, the declarative knowledge in Steps 1 and 2 is captured using the goals, variables,
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constraints, parameters, preferences, and objectives modules of the cDSP template. Additional declarative
knowledge in the form of models relating the variables and goals for both steps is captured in the PM sub-
templates theoretical/empirical model module. If no models are available, surrogate models are developed
using the surrogate modeling module of the PM sub-template. Using the procedural knowledge in the analysis
module of the cDSP template, the cDSPs in Steps 1 and 2 are executed to generate feasible solutions. The
visualization and exploration of the solution space at both levels are supported using i) the SSE experiment
and WSA modules of the PSA sub-template and ii) the ternary plot sub-module built into the PSA sub-
template. The information and decision flow between the separate instances of the DSE templates for Steps
1 and 2 are established using the interaction templates in PDSIDES.

Step 3: The decisions made at Levels ‘n’ and ‘n+1" in Steps 1 and 2 are shared with the interaction space
as depicted by the dotted red line from Level ‘n’ and the solid red line from Level ‘n+1’ to interaction space.
The decisions are jointly analyzed in the interaction space to detect and manage design conflicts. A flowchart
representing the sequence of computations performed as part of Step 3 is shown in Figure 5.

o

|
Detecting conflicts between interacting levels I
Compute Loss L_G; , for each goal I’ of Level 'n’ :

I

I

compared to the Level ‘n’ goal values achieved by
mapping Level ‘n+1’ satisficing solution

Propagate solutions

as goals
(from Level ‘n+1’ to
BLOCK 2 Level 'n+2’)
o] [~ Approach 1: Design Variable (ov) |
] STEP A — Identification of X, ...,’s
Identify all active design variables (Xy n.1)
H of Level ‘n+1’
¥

STEP B — Goal sensitivity computation for X, ..,

Compute sensitivity of all ')’ goals of level ‘n+1’ to all

K Xgnsaa'S Y,

¥
STEP C — Goal deviation computation
Compute deviations of all ')’ goals of Level ‘n+1'in
comparison with their corresponding targets
propagated f’rom Level ‘n’

Updated Solutions

STEP D — Computation of updated bounds of
DV’s g
Compute the updated bounds of all 'K’ X n.1's

‘ Approach 2: Constraints + DV l

Approach 1 + Identify active constraints/goals !
i and modify the active limits i

| Step 2 (Framework) |
| Reformulate the DSP for Level ‘n+1’ ]
; and carry out design space exploration to
| identify new solution !

FIGURE 5: Steps involved in detecting and managing design conflicts between decisions at
interacting levels

Step 3 comprises two blocks, as described below.
Block 1 - Detecting design conflicts between decisions at interacting levels

In this block, the loss in each goal ‘J’ of Level ‘n’ (L_Gjy,) is computed as per Equation 1. The loss
metric is quantified by comparing values achieved for each goal ‘J” of Level ‘n’ (G, ) identified in Step 1 to
the goal values that are achieved by mapping Level ‘n+1’ goal values from Step 2 as design variable values
for Level ‘n.” The goal values achieved at Level ‘n+1’ are depicted as G+, G24+; and G3,,+; in Figure 6.
The loss metric is used to detect and quantify the extent of the conflict between interacting levels.

-G
I satisficing M qchieved

LG = (D

I satisficing
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where G, is the satisficing value of G;,; G, is the value achieved for G,

satisficing achieved
corresponding to the satisficing solution picked at Level ‘n+1’ in Step 2.

MinZ =Wqdy + Wad; + W d;

Level ‘n+1’

Target value of goals, Gj » , 1

Achieved Goalvalues: | = |~~~ ~~~ Variable Bounds, (X5 or Xyg)
Gin, 1,620y 1,G3n 1

Constraints (C)

Chosen Solution

Feasible Design
Space

1
‘Xtﬁ‘l.n+1 XUEII‘n‘l X1‘n+1

Goal values achieved at Level ‘n+1’

Gjn satisficing Gin achieved

Gin

L-Gj',n -

satisficing

CONFLICT DETECTION

FIGURE 6: Detecting conflicts between interacting Levels ‘n’ and ‘n+1°

Calculating the loss requires the use of the KHC of Level ‘n+1°, where the goal values of Level ‘n+1’
are mapped to the empirical models of Level ‘n’ goals — KHC of Level ‘n+1,” to find corresponding goal
values for Level ‘n.” In Figure 6, given the constraints and variable bounds at Level ‘n,” the achieved goal
value for the maximization goal - G, 44, 1S below its target value, indicating an underachievement as
indicated by d5 . Hence, the best solution for Level ‘n+1° does not meet all the goal targets propagated from
Level ‘n, resulting in a loss at Level ‘n.’

In cases where the designer aims to maximize a goal, conflict occurs when the best value achieved for
the goal is less than the satisficing value chosen. In such a case, the numerator of Equation 1 will be positive,
resulting in a positive value for the loss metric. When minimizing a goal value is the designer's focus, conflict
occurs when the best value achieved for the goal is greater than the satisficing value chosen for the goal.
Consequently, the numerator of Equation 1 will be negative, resulting in a negative value for the loss metric.
Hence, positive values of loss (L_G; ) indicate conflict when the designer aims at maximizing the goal values.
In cases where the designer seeks to minimize the goal values, negative loss values indicate conflict. The loss
values are normalized, and the larger the magnitude of loss computed for any of the ‘J' goals of Level ‘n,’
the more significant the conflict between interacting multilevel decisions. In a case where multiple conflicts
are identified, the one with the largest magnitude of loss value takes priority.

Hence, in Block 1 of Step 3, the designer seeks to detect conflicts between the decisions at Levels ‘n’
and ‘n+1’ by identifying the lack of achievement of satisficing goal targets at Level ‘n’ due to decisions made
at Level ‘n+1’. If no conflicts are detected in any goals, the satisficing solution at Level ‘n+1’ is propagated
to the next level in the inverse design sequence - Level ‘n+2.” Level ‘n+2’ is concerned with meeting the
materials requirements influenced by the second to last manufacturing process in the material processing
sequence. Subsequently, Levels ‘n+1° and ‘n+2’ in the framework become the new Level ‘n and ‘n+1°,
respectively, and Steps 2 and 3 are then re-executed. If any conflicts are detected, they are managed using
Approach 1 or 2 in Block 2, as discussed below. This is continued till all the processing operations in the
manufacturing sequence are accounted for. In PDSIDES, the conflict detection by computation of loss values
is added as additional functionality to the ARA module of the PSA sub-template by leveraging the capability
of the templates to be edited or customized.

11



Block 2 - Managing conflicts

Conflicts identified in Block 1 between decisions at interacting levels must be managed to achieve the
required multilevel and system performance. Two approaches — Approach 1 and 2, depicted in Block 2 of
Figure 5, are proposed for managing conflicts in the framework. These approaches are detailed below.
Approach 1

Step A: Block 2 starts with the identification of all active design variables at Level ‘n+1° (X »+1, where
‘K’ - index of active design variables, K= 1, 2, ..., k and k<m - number of design variables as depicted in
Figure 4) and active constraints (C,,,). Active design variables are those with values at the upper or lower
bounds.

Step B: The sensitivity of goal ‘J” of level ‘n+1” (Gj41) to the Xka+s's - §jx, ., is calculated as per

Equation 2. The sensitivity computation is based on the Nominal Range Sensitivity metric, S [51, 52],
depicted in Figure 7. To use Equation 2, it is assumed that the goals are monotonic and that design variables
are independent.

S _ G]'XUB,K,n+1 B G]tXLB,K,n+1 _ dG]'XK,n+1 )
JXKkn+1 _ -
Xupkn+1 = Xign+1 AdXgn+1

where, Gy x 0y, a0d Gyx ., are the values of Gy, at the upper and lower bounds of Xk,

respectively, for a specific combination of the remaining X,+; values; and Xyp g n4+1 and X;p g n4+1 are the
upper bound and lower bound of Xk -+, respectively.

r 3

ac
GI. 4l Nominal Range Senstivity (§) = "«

41
dXgn 1

XipKn 1 qu‘x‘n |

e —
Gon, 1 1dXy,, 1!
“ 1 ' LGina
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1
1 X
. K‘n+1

»
>

FIGURE 7: Sensitivity of goals of Level ‘n+1’ to active design variable Xk n+

The sensitivity computation is performed for various combinations of all the remaining X+, values at
their upper, lower, or nominal (average value of the variable bounds) values. The largest of the sensitivity
values computed for a goal ‘J’ in magnitude is considered its sensitivity to the specific Xk ,+;. Higher
sensitivity values indicate that a slight change in Xk ,+; value can significantly change the goal value, enabling
the designer to achieve improved performance by modifying Xk .+; by a small amount. The above scenario
is illustrated in Figure 7, where the nominal range sensitivity is the highest for Goal 2 (G, ,,+1) amongst all
three goals of Level ‘n+1’, since for a given change in Xy 1 values - dXy ,, 1, Goal 2 has the most significant
change in its value.

This corresponds to a situation in the physical system where a slight increase in resource utilization will
help the designer realize more significant performance improvements. The sensitivity computation is
repeated for all the remaining G, ,1’s to estimate the sensitivity of all ‘J” goals of Level ‘n+1’ to a particular
Xk.n+1. As discussed above, Step B is repeated for all Xk ,+;’s identified in Step A.

Step C: Next, the deviations of the achieved values of all ‘J” goals at Level ‘n+1° compared to their
targets from Level ‘n’ are computed using Equation 3.

DG].TIH = G]'n+1 target G]'n+1achieved 3)
where, Dg; iy is the deviation of Gjj4q; G]'n"'ltarget is the propagated target values of Gj,,;; and

G I+ genieved is the value of G, .1 achieved from the satisficing solution chosen in Step 2.

The Dg, ,,..>Dq, ., and D, ., values at Level ‘n+1’ that are computed as per Equation 3 are equivalent
to the df,d5,and d¥ values in Figure 6. It is observed that df and d3 are over achievements that positively
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influence the maximization of goals G, ,,.; and G, 4, With goal values greater than their targets. However,
d; represents an under-achievement that is deleterious for the maximization goal G, ,,.; with the goal value
lower than the target. The deviation function of the cDSP for Level ‘n+1’ looks at minimizing the weighted
sum of under-achievements of the maximization goals - d;, d5, and d3 from the target values as depicted by
function Z in Figure 6. Hence, any change that can help achieve a solution that reduces the under-achievement
of goals is beneficial for the scenario represented in Figure 6.

Step D: The updated bound of Xk .+, identified in Step A, is computed in this step. First, the update

required in Xg .+, value to achieve the target value of goal ‘J” of Level ‘n+1’ - U I Xk is calculated using

Equation 4.
DG],n+1

= o 4)
J XKn+1
The above computation is also carried out for the remaining ‘J-1" goals of Level ‘n+1°. The rules for

choosing a final update value for X /- U Xknan” from the values computed using Equation 4 for different

JXKn+1

goals are given below.

a. If Xg,+; is at its lower bound, the largest negative value in magnitude, if any, is chosen as the update
required for Xk ,+;. Otherwise, the updated value is set to zero. A negative value is selected to reduce the
active lower bound and thereby relax Xk ,+;. The largest value in magnitude is selected as it would help
meet the largest goal deviations identified in Step D.

b. If Xk.+ is at the upper bound, the largest positive value in magnitude, if any, is chosen as the change
required for that X ,+;. Otherwise, the updated value is set to zero. A positive value is selected as it will
increase the active upper bound and thereby relax Xk ,+;. The largest value in magnitude is chosen as it
would help meet the largest goal deviations identified in Step D.

Using the U Xinin value, the updated bound of the Xx,+; (Xgn+1 Updated boun 2 is computed as per

Equation 5.

XK,n+1 Updated bound XK‘”H Original bound + UXK,n+1 ©)

The updated active design variable bounds will help designers improve the solution by bringing the
updated under-achievement deviation term (d;,,;,) to zero, as depicted in Figure 8. Hence, all the goal values
are either at their target values or greater. This improved solution at Level ‘n+1’can potentially help mitigate
or manage (reduce) conflicts computed in Block 1.

3

X2ni1

Level ‘n+1’

.................... Target value of goals, Gm 1 target

— Original Constraint, C

------- Updated (relaxed/tightened) Constraint, C*

Improved Solution
(Approach 2)

Improved Solution
(Approach 1)

XK n1 Updated houna Xl_ nyl

FIGURE 8: Updating active design variable bounds and constraints to achieve improved solutions
corresponding to Level ‘n+1’

In Approach 1, the designer seeks to manage conflicts and help achieve improved satisficing
solutions closer to the goal targets by identifying active design variables and relaxing their bounds within
acceptable limits. The extent of relaxation of the active variable bounds is computed by considering i) the
sensitivity of the goals with respect to the active design variables and ii) the degree of underachievement of
goals. The updated active design variable bounds are determined based on the extent of relaxation computed
above and the designer's domain knowledge.
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Approach 2
Approach 2 is used when there are both active constraints and active design variables (Xx.+;). Here,

Xk n+1 bounds are modified as in Approach 1, and the active constraint limits are also relaxed within feasible
limits based on the designer’s domain knowledge. The benefit of relaxation of the limits of the active
constraints along with the updating of active variable bounds can be explained using Figure 8, where the
active constraint C, is relaxed by an amount dC,. The above relaxation and the updated bound for the active
design variable, helps achieve an improved solution at Level ‘n+1°. The improved solution results in the
deviation of Goal 2 - d;,,, being replaced by the over achievement term dj. Hence, the relaxation of the
limits of the active constraints along with the modification of active variable bounds helps achieve an
improved solution at Level ‘n+1’ that results in goal values greater than targets. This improved solution
potentially aids in managing conflict computed in Block 1. Therefore, in Approach 2, the designer seeks to
manage conflicts and help achieve improved satisficing solutions closer to the goal targets by modifying
active design variable bounds and relaxing the active constraint limits based on the designer's domain
knowledge. Changing the limits of active constraints that are not purely bound-based requires designers to
perform constraint function evaluations and assess the impact on the decision support problem. Systematic
approaches for constraint function evaluation are beyond the scope of the current paper and are not discussed.
In this paper, we rely on the designer’s domain knowledge to modify the active constraint limits.

The updated bound values of Xk ,+;, along with the relaxed, active constraint limits, if any, are provided
as corrective feedback to the KHC of Level ‘n+1’° to help MDC and FG. Using the information from the
updated KHC, Step 2 is repeated, where the materials designer formulates an updated cDSP for Level ‘n+1°,
followed by solution space exploration to arrive at a new solution or decision. The new solution is then
propagated to the interaction space, and Block 1 of Step 3 is repeated to detect conflicts. If no conflicts are
detected, the updated solution or decision — the regulated decision at Level ‘n+1’ is propagated as goals for
Level ‘n+2°. If conflicts are detected, Block 2 of Step 3 is executed to exploit further opportunities to modify
active variables and constraints. If there are no possibilities of such a modification, the product designer at
Level ‘n’ will need to reformulate the product design cDSP with new goals that are achievable and consistent
with the requirements at Level ‘n+1°. The entire process is repeated at all other levels with specific material
requirements that correspond to the different processing operations in the sequence.

In the PDSIDES platform, conflict management, which involves i) identification of active design
variables and constraints, ii) computation of sensitivity of goals to design variables, and iii) computation of
updated active variable bounds and constraint limits, are functionalities that are added to the ARA module of
the PSA sub-template by leveraging the capability of the templates to be edited or customized. The CSA
module within the PSA sub-module can support designers in estimating the updated limits of active
constraints, which is not used in this work. The updated active design variable bounds and active constraint
limits are provided as new values to the constraint and variable modules of the cDSP template using the
interactions template.

4. DEMONSTRATION USING HOT ROD ROLLING (HRR) TEST PROBLEM

The HRR problem is used to showcase the efficacy of the proposed framework for co-designing the hot
rolled rod product, steel material, and rolling and cooling manufacturing processes. The material considered
is C-Mn steels to realize round steel rods that are to be used as gear blanks to produce gears. The problem is
based on the industry-inspired HRR problem presented by Nellippallil and co-authors [35]. The empirical
models used for the HRR problem are provided in Tables Al and A2 of Appendix A.

HRR of steel is a complex manufacturing process used to produce hot-rolled steel rods. It comprises a
series of manufacturing processes executed sequentially, starting with reheating the input primary steel
obtained from the casting unit in the form of slabs or blooms, referred to here as the ‘reheating process.” This
is followed by plastic deformation of the material by passing the material through several rollers in rolling
mills, referred to here as the ‘rolling process.” Further, cooling of the rolled product is carried out in a run-
out table, referred to here as the ‘cooling process.” The above thermo-mechanical processing causes
microstructural evolution and macrostructural changes in the steel material, resulting in hot-rolled steel rods
with specific microstructural characteristics and corresponding mechanical properties [35], as depicted in
Figure 9.
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FIGURE 9: Information and decision flow across the HRR system that involves product, materials,
and manufacturing processes.

The performance requirements of the hot-rolled steel rods are identified in terms of the target mechanical
properties values of the gears to be produced using the rods. Realizing hot rolled rods with targeted
mechanical properties requires a collective consideration of the material microstructure and composition and
its processing. In showcasing the framework's utility, we consider the rolling and cooling manufacturing
processes, the resulting microstructure of the steel material, and the resultant steel rod products. In Figure 9,
we depict decision workflows across three levels of decision-making: i) Level 1 - considering the information
and decision flows between product and materials: where decisions are made with regard to the material
microstructure at the end of the cooling process, in order to meet the mechanical property/performance
requirements of the product, ii) Level 2 - considering the information and decision flows between materials
and manufacturing process: where decisions are made regarding materials processing during the cooling
process and material microstructural characteristics at the start of the cooling process to meet the
microstructural requirements at the end of the cooling process (identified at Level 1), and iii) Level 3
considering the information and decision flows between materials and manufacturing process: where
decisions are made regarding the materials processing during the rolling process to meet the microstructural
requirements at the start of the cooling process (identified at Level 2). The decision-making at these levels is
represented using simulation-based decision models using cDSP’s. Through the multilevel decisions, we
achieve the co-design of the hot rolled rod product, steel material, and hot rolling and cooling manufacturing
processes.

Decision-making at the different levels in HRR systems is in itself a challenging task. This involves
choosing the appropriate combination of design variables values, given several conflicting goals or objectives
that must be achieved while satisfying several constraints and bounds. With the decision-making in the HRR
system taking place sequentially, the output of one level - a result of the decisions made at the level, acts as
the input for the next level. Hence, decisions are interconnected based on the forward sequential information
flow from one level to the next. In Figure 9, we depict this information flow between decisions across the
different levels in the HRR system. The forward information flow starts with the rolling process, receiving
input data about the characteristics of the steel in terms of shape, size, composition, and microstructure after
the reheating process. Decisions are made regarding the rolling process variable values using these inputs
and other rolling-specific data. These decisions include identifying the values for rolling temperature, strain,
strain rate, and so on that determine the intermediate product's resultant microstructure, shape, and size. The
microstructure information is subsequently propagated as input to the cooling process. The decisions made
during the cooling process determine the final material microstructural characteristics, such as steel phase
fractions and grain size, which determine the mechanical properties of the hot-rolled rod product and its
performance.

In this paper, to showcase the proposed framework's efficacy, we only consider the potential design
conflicts arising from the interactions between the decisions made at Levels 1 and 2. At Level 1, three
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important mechanical properties, Yield Strength (YS), Tensile strength (TS), and Hardness (HV) of the hot-
rolled rod, are considered, as they are intended to be used subsequently as gear blanks to produce gears.
Using the GolID approach, the inverse decision workflow begins with the decisions at Level 1 that are directed
toward achieving maximum Y'S, TS, and HV values. The target values for these goals are specified based on
the mechanical property requirements of the gear. The decisions at Level 1 regarding the microstructure
characteristics of the hot rod rolled rod, defined by ferrite grain size, ferrite fraction, and pearlite interlamellar
spacing, are propagated to Level 2 as its targets. Hence, at Level 1, the product-material interactions are
considered.The decisions at Level 2 are directed toward identifying the right combination of design variable
values for austenite grain size after the rolling process and cooling rate during the cooling process that will
help realize the target microstructures. Hence, at Level 2, the materials-manufacturing process interactions
are considered. By considering Levels 1 and 2, we are able to showcase the co-design of the products,
materials, and manufacturing processes. The set targets at Level 2 may not be realized during exploration
due to the constraints under which the Level 2 decisions are made. A satisficing solution is identified after
exploring the generated solution space. If the solutions identified at Level 2 differ from those already
identified at Level 1, design conflicts between decisions made at Levels 1 and 2 arise. The above conflict
between the decision made at Levels 1 and 2 and the use of the framework to manage this conflict is
demonstrated below. We start by identifying the Levels ‘n’ and ‘n+1°, discussed in Section 3.2. In the
problem defined, Level ‘n’ refers to Level 1, and Level ‘n+1’ refers to Level 2.

Step 1: The formulation of cDSP for Level 1 is carried out by the product designer using microstructure
and mechanical property relations - empirical models, design variables (Xp zever 1), bounds (X vg,p,rever 1 — Upper
bound and Xz p rever i— lower bound), constraints (Crever 1), and mechanical property goals (G zever 1) of the hot
rolled rod. This is the KH of Level 1, passed to its KHC, summarized in Table 2. The KHC of Level 1 is
further propagated to the KHC of Level 2, outlined in Table 3. In the PDSIDES platform, the microstructure-
mechanical property relations are stored in the PM sub-template, and the Level 1 design variables, bounds,
constraints, and goals are captured using the corresponding modules in the cDSP template. Here, Level 1
goals are set to maximize the Y'S, TS, and HV values as close to the target values of 330 MPa, 750 MPa, and
170, respectively. The cDSP formulation for Level 1 is given in Table A3 of Appendix A.

A set of design solutions that meet the conflicting design goals at Level 1 is identified by executing the
above cDSP formulation for 25 different design scenarios, named A to Y. The set of solutions corresponding
to the 25 design scenarios defines the solution space at Level 1. The scenarios are defined by the weights
assigned for the deviations of goals from the target values in the deviation function. The weights
corresponding to each design scenario are identified by uniformly sampling the design space and based on
the designer’s judgment to effectively capture the HRR problem's solution space. The deviation function
formulated captures the designer’s preference while solving the particular cDSP. For example, a weight of 1
to the first goal and zero to the others indicates that the designer’s preference using the deviation function
formulated is to achieve goal 1 to the target as closely as possible. These scenarios and appropriate satisficing
solution space for the goals at Level 1 are visualized and identified using ternary plots. The search for a
satisficing solution space for the goals begins by specifying acceptable threshold values for each goal. YS is
the mechanical property of focus in this paper. Therefore, the satisficing solution space is defined by the
thresholds: YS > 290 MPa, TS > 500 MPa, and HV > 130. These acceptable threshold values are marked on
the ternary plots of the individual goals to identify satisficing solution space for each goal; see Figures 10a,
10b, and 10c. The ternary plots indicating the satisficing solution space for the goals at Level 1 are
superimposed to identify the common satisficing solution region and the corresponding common design
scenarios at Level 1, see Figure 10d. The ternary plots for Y'S, TS, and HV goals, along with the superposed
plot for Level 1, are shown in Figures 10a, 10b, 10c, and 10d, respectively. The solution space in the direction
of the arrows, starting from the yellow dashed line in Figure 10a, indicates the satisficing solution space for
YS. The entire solution space for TS and HV is satisficing, as indicated by the arrows in Figures 10b and
10c. The highlighted region in Figure 10d depicts the satisficing solution space for Level 1.
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FIGURE 10: Ternary plots for 10a. YS, 10b. TS, 10c. HV, and 10d. Superposed plot for Level 1

. This choice results in the following goal values: YS = 329.96

MPa, TS =520.79 MPa, and HV = 131.84.
X¢=0.883, do=8 um, Sp = 0.15 um, Si = 0.3%, N = 0.009%, and Mn = 1.5 %

At Level 2, the materials designer uses the X, dq, and Sy values from its KHC as goal targets, thereby
promoting cooperation with Level 1.
TABLE 1: Level 1 solutions

DEEn Weight on Goals (W) = Goa;: (Gin) = Design Variables (X»)
Scenario | Wi | W> | Wi | (li/’IIPa) TS(;;IP " Hj\; Xt de (um) IS0 (um)
A 1 0 0 329.97 515.77 131.01 0.900 8.00 0.15
F 0.5 0 0.5 329.96 520.79 131.84 0.883 8.00 0.15
I 0.75 0 0.25 329.96 520.79 131.84 0.883 8.00 0.15
J 0.75 0.25 0 329.96 520.79 131.84 0.883 8.00 0.15
Q 0.6 0.2 0.2 329.96 520.79 131.84 0.883 8.00 0.15
() 0.5 0.2 0.3 329.96 520.79 131.84 0.883 8.00 0.15
TABLE 2: Information contained in the KHC of Level 1
SI. No. Information
Level 1 design variable values (corresponding to the satisficing solution picked) that need
a. to be propagated to Level 2 as its goal targets: X¢= 0.883, d,= 8.000 pm, Sp = 0.150 pm, Si
=0.300 %, N = 0.009 % and Mn = 1.500 %.
b. Microstructure-mechanical property models from cDSP of Level 1.
TABLE 3: Information contained in the ‘initial KHC’ of Level 2
SI. No. Information
a. Goal target values propagated from Level 1: X¢= 0.883, do=8.000 pm, So = 0.150 pm.
b. Microstructure-mechanical property models from cDSP of Level 1.
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Step 2: The cDSP for Level 2 is formulated by the materials designer using information regarding models
relating to processing and microstructure; design variables (Xp,rever 2), and their bounds (Xug p,rever 2 — Upper
bound and X5 prever 2 — lower bound); constraints (Crever 2), and goals (G rever 2)- The initial cDSP formulation
for Level 2 and the empirical models used in this formulation are provided in Tables A3 and A2, respectively,
of Appendix A. In the PDSIDES platform, the processing-microstructure relations are stored in the PM sub-
template. Level 2 design variables, bounds, constraints, and goals are captured using the corresponding
modules in the cDSP template. The goals for this level are set to maximize Xy and minimize d, and Sy values.
This choice is based on a comparison of the target values from the KHC of Level 2 - design variable values
corresponding to the design scenario U chosen in Step 1 and design variable bounds from the KH of the same
level, as specified by the variable bound values in the cDSP formulation for Level 2 in Table A3 of Appendix
A.

In a manner similar to Step 1, a set of satisficing design variable values that meet the conflicting goals is
identified by executing Level 2 ¢cDSP formulation for the 25 different design scenarios, named A to Y. The
appropriate satisficing solution space for Level 2 is visualized using ternary plots. The satisficing solution
space is defined by d, <25.1um, Sp < 0.155um, and X¢> 0.7. The ternary plots for dg, So, and X¢ are shown
in Figures 1la, 11b, and 1lc, respectively, and Figure 11d shows the superposed plot for Level 2
corresponding to the initial solutions.
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FIGURE 11: Ternary plots for goals da (11a), So (11b), Xr (11c), and the superposed plot (11d) for
Level 2 corresponding to the initial Level 2 solutions

The yellow dashed line in Figures 11a and 11d, the orange dotted lines in Figures 11b and 11d, and the
red chain line in Figures 11c and 11d represent the satisficing boundaries of d,, So, and Xj, respectively. The
arrows indicate their feasible directions. The overall satisficing solution space corresponding to the initial
Level 2 solution is highlighted in Figure 11d. The goal values corresponding to different design scenarios
that fall in the satisficing space are listed in Table 4. The microstructure goal values achieved are mapped to
the microstructure-mechanical property relations of Level 1 from KHC of Level 2, to compute the
corresponding Level 1 goal values. For example, for design scenario Y in Table 4, the goal values d, = 25.01
um, So = 0.15 pm, and X¢ = 0.72 of Level 2, when mapped to the empirical relations between mechanical
properties and microstructure at Level 1, will result in YS =279.81 MPa, TS = 502.45 MPa and HV = 139.57.
This is repeated for all design scenarios listed in Table 4.
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TABLE 4: Initial Level 2 solutions

Design Weight on Goals (W) Goals (Gn+1) Design Variables (Xu-+1)
. Gi,2 G2 Gs,2 C Mn d CR
Seenario | Wi | Wo | W | ) | Ssem) | Xe | (&) | (%) | m) | (Cly)
B 0 1 0 25.01 0.15 0.72 0.18 1.46 30.01 0.27
C 0 0 1 25.01 0.15 0.72 0.18 1.45 30.01 0.27
E 0 0.5 0.5 25.01 0.15 0.72 0.18 1.46 30.01 0.27
F 0.5 0 0.5 2431 0.15 0.71 0.19 1.50 30.00 0.26
G 0.25 0.75 0 25.01 0.15 0.72 0.19 1.50 30.01 0.24
H 0.25 0 0.75 25.01 0.15 0.72 0.19 1.50 30.01 0.24
I 0.75 0 0.25 25.01 0.15 0.72 0.18 1.46 30.01 0.27
K 0 0.25 0.75 25.01 0.15 0.72 0.18 1.46 30.01 0.27
L 0 0.75 0.25 25.01 0.15 0.72 0.18 1.46 30.01 0.27
M 0.33 0.34 0.33 25.01 0.15 0.72 0.18 1.46 30.01 0.27
N 0.2 0.2 0.6 25.01 0.15 0.72 0.18 1.46 30.01 0.27
(0] 0.4 0.2 0.4 25.00 0.15 0.72 0.18 1.50 30.00 0.24
P 0.2 0.4 0.4 25.01 0.15 0.72 0.18 1.46 30.01 0.27
S 0.2 0.6 0.2 25.01 0.15 0.72 0.18 1.46 30.01 0.27
U 0.5 0.2 0.3 25.00 0.15 0.72 0.18 1.50 30.00 0.24
\% 0.3 0.5 0.2 25.01 0.15 0.72 0.19 1.50 30.01 0.24
w 0.2 0.5 0.3 25.01 0.15 0.72 0.18 1.46 30.01 0.27
X 0.3 0.2 0.5 25.01 0.15 0.72 0.18 1.46 30.01 0.27
Y 0.2 0.3 0.5 25.01 0.15 0.72 0.18 1.46 30.01 0.27

Step 3. In this step, the conflicts between the interacting Levels 1 and 2 are detected and managed through
the designer's intervention. First, the loss in all three goals of Level 1 (Gyrever 1, where J = 1, 2, 3) due to the
choice of the solution for Level 2 is computed according to Equation 1. In the HRR problem, Level ‘n’ is
Level 1, and Level ‘n+1’ is Level 2.

L_GlyLevel = Gl,Level 1saatisficing - Gl,Level 1achieved _ 290 ;9?)7981 _ 00351
LLevel 1gqtisficing
Slmllarly L—GZ,Level 1 = —0.0049 and L_G3' Levell — —0.0736.

Since all three goals are maximization goals, only positive loss values indicate conflict. Hence, conflict
only exists for Goal 1, YS. The ARA module in the PDSIDES platform's PSA sub-template facilitates the
above loss computation to detect conflicts. The designer checks for active design variables (X rever 1) of Level
2 (total, m = 4) and active constraints to resolve this conflict. By comparing the Xk e 2 values in Table 4
with the variable bounds specified in the initial cDSP formulation of Level 2 — the KH of Level 2, the Xk rever
2, dy (K =1) is found to be near its lower variable bounds. Constraints on the lower limit of goal Sy and the
upper limit of goal d. are found to be active. Hence, Approach 2 is chosen. The ARA module in the PSA sub-
template of the PDSIDES platform facilitates the identification of active design variables and constraints.

The sensitivity of all three goals of Level 2 (G zever 2, where J = 1, 2, 3), independently with respect to
Xk Level 2, dy, 1s computed using Equation 2. The sensitivity computations are performed for various
combinations of all the remaining X,+; values at either upper or lower bounds or nominal values. The above
computation is illustrated here for the case of sensitivity of Goal 2 (d«, J = 2) to the active design variable,
dy. This requires the KH of Level 2 concerning the mathematical relations between Xieye; 2 and G zever 2 to be
used. Hence, for C = 0.24%, Mn = 1.1%, and CR = 0.54 °C/s (all at their nominal values)

— GZvXUB,l,Levelz - GZvXLB,l,Levelz — 33.11 — 24.00 = 0.1303
XUB,l,LevelZ - XLB,l,LevelZ 100 - 30

SZ:XLLevel 2

The sensitivity values for different combinations of the remaining Xz, » are computed as above and are
listed in Table 5 below. The largest value in magnitude from these calculated sensitivity values for Goal ‘2’
is its sensitivity to X; zeves 2 (dy). Hence, the sensitivity of Goal 2 (da) to dy, Sz x, e, = 0-1303. Similarly,
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the sensitivity of Goal 1 (Xy) to dy is Sy x,,,,.;, = —0.00061. The sensitivity of Goal 3 (So) to dy, is

S3rX1,Le1;elz = O
TABLE 5: Sensitivity values of d« to dy for various combinations of other design variables
C (%) Mn (%) CR (°C/s) S2.x, Level2
0.24 1.1 0.1833 0.1303
0.24 1.1 0.9 0.1303
0.24 1.1 0.54 0.1303
0.18 1.1 0.54 0.1303
0.3 1.1 0.54 0.1303
0.24 0.7 0.54 0.1303
0.24 1.5 0.54 0.1303

The deviations of all ‘J* goal values achieved at Level 2 compared to their targets are computed according
to Equation 3, as given below.
= 0.882 — 0.725 = 0.158

DG1.Leve12 = Gl,Level 2 target Gl,Level 2achieved

Similarly, =8-2501 = —17.01 gmand Dg, ., = 0.150 — 0.150 = 0 m

DGZ,Level 2

Using the above goal deviations and the sensitivity values, the update required for design variable d, for
a goal ‘J’ is computed using Equation 4. An example of the same is given below.
D6yrevetz _ —17.01 _

= = = —130.544 ym

S 2,X1 Level 2 0.1303

2,X1,Level 2

TABLE 6: Design Variable update values for various goals and sensitivity values

Jin Gy rever 2 DGI,LeVel 2 | XkLeverz | Spx K Level 2 Y J.XK Level 2

1 (Xy) 0.158 dy (K=1) | -0.00061 -259.016

2 (dg, pm) -17.01 d, 0.1303 -130.544
3 (So, pm) 0 dy 0 0

The results of these computations are presented in Table 6. Only negative design variable update values
are considered since the dy is at its lower bound. The largest value in magnitude in Table 6 is -259.016. This
value is chosen to update the lower bound of d,. The above value is then used to compute the updated lower
bound of the active design variable (dy) using Equation 5, as given below.
= 30-259.016 =—229.016 pm

X1 Level 2 Updated bound X1 Level 2 Original bound + UX1,Level

The calculated updated bound for dy is practically infeasible. Thus, a practically feasible lower bound
of 10 um is selected based on values obtained from the literature [53]. Also, the constraint on the lower limit
of Goal Sy is relaxed to a smaller value of 0.10 um, and the constraint on the upper limit of Goal X is relaxed
to a larger value of 30 um, based on the designer’s domain knowledge. The design variable sensitivity
computations and computation of updated active design variable bounds are facilitated by the ARA module
in the PSA sub-template of the PDSIDES platform. The calculation of the updated limits of the active
constraints can be facilitated by the CSA module in the PSA sub-template of the PDSIDES platform, which
is not employed in this work.

TABLE 7: Information contained in the ‘updated KHC’ of Level 2

SI. No. Information

Goal target values propagated from Level 1: Xr=0.883, du=8.000 pm, So =0.150 um.

a
b. Microstructure-mechanical property models from cDSP of Level 1.

©

Updated active design variable bounds: i) X7 zever 2 u (dy) = 10 pm.

=

Updated active constraint limits: i) Lower limit on So=0.10 um, and ii) Upper limit on Xr= 30 pm.

The updated variable bounds and relaxed constraint limit are propagated to the KHC of Level 2,
summarized in Table 7. Level 2 cDSP is reformulated with these updated bounds and the relaxed constraint
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limit as specified in Table A3 of Appendix A. Step 2 is repeated by executing the updated cDSP for different
design scenarios. These scenarios and the satisficing solution space are visualized using ternary plots. The
new satisficing solution space is defined by d, < 15pum, Sp <0.125um, and X¢> 0.7. Using Figures 12a, 12b,
and 12c, we represent the ternary plot for dq, So, and X, respectively, corresponding to the updated Level 2
solutions. The superposed plot for Level 2 corresponding to the updated solutions is shown in Figure 12d.
The yellow dashed line in Figures 12a and 11d, the orange dotted lines in Figures 12b and 12d, and the red
chain line in Figures 12c and 12d represent the satisficing boundaries of dq, So, and Xy, respectively, and the
arrows indicate their feasible directions. The overall satisficing solution space of Level 2 corresponding to
the updated solutions is highlighted in Figure 12d.
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FIGURE 12: Ternary plots for goals d« (12a), So (12b), Xr (12¢), and the superposed plot (12d) for
Level 2 corresponding to the updated Level 2 solutions
The goal values corresponding to different design scenarios listed in Table 8 that fall in the
satisficing space are mapped to the microstructure-mechanical property relations of Level 1 from the KHC

The selection is
based on the computed values of Level 1 goals corresponding to the achieved Level 2 goal values and by
looking into the designer’s preference. The choice of design scenario O results in YS =295.13 MPa, TS =
545.48 MPa, and HV = 140.72.

TABLE 8: Updated Level 2 solutions

Weight on Goals (W) Goals (Gn+1) Design Variables (Xu+1)
Scenario G,z G2 Gs,2 C Mn d CR

Wil W Ws | gm | Seem) | Xe | (R (%) | m) | (Ch)
B 0 1 0 13.100 0.119 0.707 0.18 1.50 10.04 0.79
E 0 0.5 0.5 13.100 0.119 0.707 0.18 1.50 10.04 0.79
G 0.25 0.75 0 13.094 0.119 0.707 0.18 1.50 10.02 0.79
H 0.25 0 0.75 13.089 0.119 0.707 0.18 1.50 10.00 0.79
K 0 0.25 0.75 13.761 0.122 0.714 0.18 1.50 10.00 0.68
L 0 0.75 0.25 13.100 0.119 0.707 0.18 1.50 10.04 0.79
M 0.33 0.34 0.33 13.100 0.119 0.707 0.18 1.50 10.04 0.79
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N 0.2 0.2 0.6 13.100 0.119 0.707 0.18 1.50 10.04 0.79
(0] 0.4 0.2 0.4 12.543 0.117 0.701 0.18 1.50 10.00 0.90
P 0.2 0.4 0.4 13.100 0.119 0.707 0.18 1.50 10.04 0.79
S 0.2 0.6 0.2 13.100 0.119 0.707 0.18 1.50 10.04 0.79
\4 0.3 0.5 0.2 13.094 0.119 0.707 0.18 1.50 10.02 0.79
W 0.2 0.5 0.3 13.100 0.119 0.707 0.18 1.50 10.04 0.79
X 0.3 0.2 0.5 13.100 0.119 0.707 0.18 1.50 10.04 0.79
Y 0.2 0.3 0.5 13.100 0.119 0.707 0.18 1.50 10.04 0.79

The updated solution and computed Level 1 goal values (G 1eper 1) corresponding to the updated Level
2 goal values are then propagated to the interaction space, and Step 3 is repeated to detect conflicts. The
updated loss in all three goals of Level 1 (L_Gy eper1'» Where J =1 to 3) due to the choice of the updated
solution at Level 2, is recomputed according to Equation 1. This computation is carried out on the PDSIDES
platform using the ARA module of the PSA sub-template.

Gl,Level 1 TSP Gl,Level 1’ 290 — 295.13
L_Gl_Leyel 1, — - satisficing — =50 = 00176
LLevel 1 gqtisficing
Similarly, L—GZ,Level 1, = —0.0909 and L—G3,L€‘U8l 1, = —0.0824

Since all three goals are maximization goals, only positive loss values indicate conflict. Hence, no
conflicts are detected. As no further conflicts are not detected, the updated solution or decision at Level 2 is
propagated inversely to the next level in the HRR system - Level 3, as its goals.

Using the information-decision framework, the designer can systematically identify and formulate the
KH and KHC of Levels 1 and 2 and model the decision-making and interactions. Using the framework, the
designer can detect conflicts between the decisions at the interacting levels regarding the YS goal of Level 1
not being satisfied by the initial set of solutions at Level 2. By using Approach 2, the designer is able to
modify (expand) the design space at Level 2 and identify improved solution points that result in an improved
value of YS by 13.32 MPa (approximately 4.6%) to 295.13 MPa. This brings all Level 1 goals to within
satisficing limits. Using the information-decision framework, the designer is able to manage design conflict
(MDC) between the interacting decisions at Levels 1 and 2 by realizing improved Level 2 solutions. With
the improved Level 2 solutions, satisficing goal values for Level 1 are realized, thereby facilitating goal (FG)
achievement and supporting the multilevel, top-down co-design of products, materials, and manufacturing
processes. Using the HRR test problem, the capability offered by the information-decision framework to a
designer in facilitating cooperative decision-making and supporting multilevel, top-down co-design in the
design of products, materials, and manufacturing processes is demonstrated. The focus of the problem
discussed is on the fulfillment of multiple conflicting product and process-related goals through the design
of the material microstructure and processing paths in an inverse manner. PSPP relationships are used to
model the problem as an integrated design of products, materials, and manufacturing processes. The proposed
framework can be applied to support systematic information flow and cooperative decision-making across
different levels to fulfill the end goals for complex problems characterized by the sequential information flow
across models at different levels. The generic mathematical decision support constructs and the systematic
information-decision workflow of the proposed framework facilitate this.

The proposed framework can also be utilized in a similar manner as discussed above to facilitate the co-
design of the next set of interacting levels in the HRR system — Levels 2 and 3. For the next set of interacting
levels, Level 2 will be considered Level ‘n,” and Level 3 will be considered Level ‘n+1’ in the framework.
The satisficing solution identified at Level 2 will become the goal target values at Level 3. The framework
implementation will start with Step 2 by modeling the decision-making at Level 3 to achieve the goal targets
propagated from Level 2. This is followed by Step 3 for conflict detection and management like the one
demonstrated for Levels 1 and 2 interactions. By facilitating co-design between Levels 2 and 3 using the
framework, designers can identify a satisficing set of rolling process parameters that meet the microstructure
requirements propagated from Level 2. In this paper, we scope the use of the HRR test problem to
demonstrate the framework's efficacy in supporting the co-design of products, materials, and manufacturing
processes, which is realized by considering the interactions between Levels 1 and 2. The facilitation of the
co-design between Levels 2 and 3 is beyond the scope of this paper and hence not presented.
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5. CLOSING REMARKS
The realization of products or complex components that meet targeted performance requires the

multilevel co-design of the product, materials, and manufacturing processes using PSPP relations. Design
conflicts arise during the multilevel co-design of such systems when decisions made at one level with the
constraints, bounds, and goals differ from the decisions of another interacting level. These design conflicts
get propagated in a top-down manner for multilevel systems, adversely impacting the multilevel and system
performance. Hence, there is a need to manage design conflicts by facilitating cooperation between decisions
made across different levels. Enabling cooperation will help ensure improved multilevel and system
performance and support multilevel co-design of products, materials, and manufacturing processes.

The information-decision framework presented in this paper allows the decision-maker to a) identify and
formulate the Know-How (KH) and Know-How-to-Cooperate (KHC) of the interacting levels, b) model the
decision-making of the interacting levels using the KH and KHC, ¢) detect conflicts between the interacting
levels and d) manage conflicts by regulating decisions at the different levels using Approach 1 and Approach
2. To manage conflicts, Approach 1 uses a modification of design variable bounds, and Approach 2 combines
Approach 1 with the modification of active constraint limits. The framework allows the designer to control
the design space and decision-making of the interacting levels, facilitating cooperative decision-making
during the top-down, multilevel co-design of systems involving products, materials, and manufacturing
processes. The collaborative nature of multilevel decision-making using the framework helps realize
improved multilevel and system performance by allowing the management of design conflicts and facilitating
goal realization at the different levels. Based on the above contributions, the key functionalities offered to
materials, product, and manufacturing process designers by the framework include:

e the capability to systematically detect and quantify the extent of conflicts between decisions at the
interacting levels. Using the quantification of loss in goal values, the designer can establish priority
between conflicts detected (in case of multiple conflicts) and choose the most important conflict to
resolve;

o the capability to identify key active design variables (microstructure variables) and active constraints
(process constraints), which, when appropriately modified (considering the practical feasibility of
making changes), lead to reduced conflicts between multilevel decisions;

e a systematic approach using the proposed sensitivity metric to identify and manage key active design
variables for achieving performance improvements or reducing conflicts. The approach, together with
the metric, enables the designer to identify performance improvements possible with minimum resource
utilization;

e asystematic approach to estimate the amount by which the key active variable bounds need to be changed
to resolve design conflict. The estimate will serve as a guide for the designer to establish new bounds
for active design variables for the next iteration;

o the capability to visualize the improvements in the solution spaces of the multilevel goals (using the
ternary plots) between iterations. Using the visualization, the designer can make design choices among
satisficing solutions more intuitively according to their preference, which is a benefit over other top-
down design exploration approaches like IDEM,;

o the capability to handle many design variables and goals (‘n’ number), which provides it an advantage
in comparison with IDEM and other design exploration methods, which are limited by the number of
goals and design variables that can be studied in multilevel systems design problems; and

o the capability to define new or updated requirements and goals at each level by formulating individual
distributed but coupled cDSPs. This results in more flexible designs, leading to consistent system design
where multilevel and system goals are physically feasible given the available resources— a benefit
compared to IDEM and similar methods (which are based on mapping) and approaches that use an all-
in-one formulation.

The framework is tested for the above functionalities using the HRR system design problem. Using the
framework, the management of design conflicts between interacting Levels 1 and 2 is demonstrated. The
design space regulation and decision-making are carried out using the framework by modifying design
variable bound values and active constraints at Level 2, resulting in an improved Level 2 design space. The
above improvement enables the designer to choose improved Level 2 solutions closer to target goals,
resulting in a 4.6 percent improvement in the YS value (Level 1 goal), meeting the satisficing system goal
targets. We also present the use of the template-based computational platform PDSIDES in formulating and
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executing the cDSPs, exploring the solution space at multiple levels, and detecting and managing conflicts
between interacting levels. The framework and related design constructs discussed are generic. The
framework facilitates the top-down, sequential, multilevel co-design of systems involving products,
materials, and manufacturing processes by promoting cooperative design decision-making to manage design
conflicts. The top-down design of engineering systems characterized by sequential information flow can be
accomplished using the framework presented.
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APPENDIX A

In Table A1, the models that relate the steel microstructure and composition design variables after the

cooling process with the mechanical property goals are presented. These models are used at Level 1 in the
HRR problem; see Step 1 in Section 4.

TABLE Al: Empirical models for mechanical properties at Level 1
Tmf: 700 OC, p = 6 lJ.m, t carb = 0025 },Lm)

Mechanical Property Empirical Model Source
X (77.7+59.9[Mn]+9.1(d*0.001)0) + .
YS 478[N]05 + IZOO[P] 45 (I-Xf) (1455"'3580-05) Kuziac et.al. (1997) [54]
Xr(20+2440[N1%3 + 18.5(0.001*dy) 0 + i
TS 750(1-Xt) 4 3(1-Xtﬂ'5) SO-O,S + 925*[81] Kuziac et.al. (1997) [54]
HY X£(361-0.357Tmet50[Si]) + 175(1-X¢) Yada (1987) [55]

In Table A2, the models that relate the cooling process parameters with the steel microstructure after

the cooling process are presented. These models are used at Level 2 in the HRR problem; see Step 2 in
Section 4.

TABLE A2: Empirical models for microstructure characteristics at the end of the cooling process at

Level 2
Microstructure characteristics Empirical Models Source
(1-0.458: 5) *{(-0.4 + 6.37*C ¢q) +(24.2 — .
de 59*C o) CROS422%(1-exp (-0.015%d 1))} Hodgson & Gibbs (1992) [56]
0.1307+1.027[C]-1.993[C]? - .
S() 0.1 108[MH]+00305*CR'052 Kuziac et.al. (1997) [54]
1 - ([C)/(0.789-0.1671[Mn]+(0.1607[Mn]?) — .
Xt eq (0.0448[Mn]))) Kuziac et.al. (1997) [54]
Xteq — 5.48(1-exp(-0.0106CR)) —(0.723*(1- .
Xr exp(-0.0009d,))) Kuziac et.al. (1997) [54]
Ceq ([C] + [Mn])/6 Hodgson & Gibbs (1992) [56]

In Table A3, the cDSP formulations for Levels 1 and 2 of the HRR problem are presented. The cDSPs

are discussed in Section 4, Steps 1 and 2. In Table A3, the values in bold font and the ‘*’ symbol adjacent to
it indicate locations where changes are made to the initial cDSP formulation at Level 2. The changes made
to the cDSP are discussed in Section 4, Step 3. These changes are listed below in bold font, along with the
‘#> symbol adjacent to it.

Level constraints i, ii, and v for Level 2

i, 8 <d, <307 (um)
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ii. 0.10% < Sy < 0.25 (um)
v.10* < d, < 100

Variable bound iii for Level 2
iii. 10* < Xo < 100 (um)

TABLE A3: cDSP formulations of interacting Levels 1 and 2 in the HRR system

Level 1

Level 2

GIVEN

a. End requirements of Level 1 in terms of
Mechanical properties required
1. Goal Gi: Maximize YS [MPa]
il. Goal Gy: Maximize TS [MPa]
1. Goal G3: Maximize HV

a. End requirements of Level 2 in terms of
microstructure characteristics at the end of cooling
process
i Maximize X
il. Minimize d,
iii. Minimize So

b. Well-established mathematical models for these
properties in terms of the design variables, see
Table Al above

b. Well established mathematical models for the
above requirements in terms of the design variables,
see Table A2 above

c. Design variables (X;) and their bounds:

X: Ferrite fraction, X¢

X,: Ferrite grain size, dq (Lm)

X3: Pearlite interlamellar spacing, Sp (um)

X4: Silicon concentration, [Si] (%)

Xs: Nitrogen concentration, [N] (%)

Xes: Manganese concentration after cooling process,
[Mn] (%)

c. Design variables (Xp) and their bounds

X7: Carbon concentration, [C] (%)

Xg: Manganese concentration after rolling, [Mn]
(%0)

Xo: Austenite grain size, d y

Xio: Cooling rate, CR (°C/s)

FIND v

alues of

a. Design variables: Xp (for P =1,2,3,4,5,6)

a. Design variables: Xp (for P =7,8,9,10)

b. Deviation variables: d;, d,, and d3

b. Deviation variables: ds, ds, and de

SATISFY

a. Level constraints
i. 220 < YS <330 (MPa)
ii. 450 < TS <750 (MPa)
iii. 131 <HV <170

a. Level constraints
i 8 <dy <25 * (um)
ii. 0.15 * < S <0.25 (um)

fii.  0.5<X<0.9
iv.  Ce<035

v.  30*<d,<100
vi.  0.1833<CR<0.9

b. Level goals:
i.

{YS (Xp)/YS target} +dim - di*
11 {TS (Xp)/TS target} + dz_ - dz+
iii.  {HV (X)VHV rget} +d3 -ds" =1

b. Level goals:
i {da target/d(x (XP)} + (14+ -dy=1
ii. {SO target/SO (XP)} +ds"-ds =1
iii. {X¢ (Xp)/Xs target} +d6 -ds" =1

¢. Variable bounds
i 0.1<X;<09
ii. 8 <X, <25 (um)
iii. 0.15<X3<0.25 (um)

iv.  0.18<X4<0.3 (%)
v.  0.007 <Xs<0.009 (%)
vi.  0.7<Xe<1.5(%)

c¢. Variable bounds
i 0.18 <X7<0.30 (%)
ii. 0.7<Xs<1.5 (%)
iii. 30 * < X9 <100 (um)
iv. 0.1833 < X0 <0.9 (°C/s)

d. Deviation variable bounds

d. Deviation variable bounds

dit,di=0and di* *di =0

di*,dr>0and di"* di' =0
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MINIMIZE

The deviation function (Zi).

Min Z; = Z W;(di" + dy),
where, W; = weights assigned to the deviations of
the individual goals from the target values, 2 W; =
l,andi=1, 2, 3.

The deviation function (Z>).

Min Z, = £ Wi (di"+ dy),
where, W; = weights assigned to the deviations of
the individual goals from the target values, ¥ W; =
landi=4,5,6
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