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ABSTRACT 

Realizing products that meet targeted performance requires careful consideration of the material 

processing to identify appropriate material microstructures and associated mechanical properties. The 

integrated design of such systems involving products, materials, and manufacturing processes necessitates 

facilitating co-design - a collective and coordinated effort by the product, materials, and process designers 

at multilevel to share their resources, information, and knowledge for making effective design decisions using 

the Processing-microStructure-Property-Performance (PSPP) relations. Goal-oriented Inverse Design 

(GoID) is one approach to co-designing these systems. In GoID, multilevel decisions are targeted at meeting 

the goals propagated inversely from the top level in the design hierarchy. Nevertheless, achieving the 

inversely propagated goals from one level may not be feasible at another level owing to the goal targets, 

established constraints, and available bounds. This results in design conflicts between multilevel decisions, 

leading to a loss in multilevel and system performance. 

In this paper, we propose an information‐decision framework to model goal-directed, multilevel 

decision-making and interactions for products, materials, and manufacturing processes, detect potential 

conflicts between the multilevel decisions, and regulate the decisions to achieve improved multilevel and 

system performance. Decision regulation is achieved by studying the sensitivity of the goals to dominant 

design variables and constraints and making appropriate design modifications. We use a hot rod rolling 

problem to showcase the efficacy of the proposed framework in systematically detecting and managing 

conflicts while co-designing the product, material, and manufacturing processes involved. The framework is 

generic and facilitates the top-down co-design of multilevel systems involving products, materials, and 

manufacturing processes. 

Keywords: Information-decision framework, Co-design, Multilevel design, Processing-microstructure-

property-performance linkages, Inverse design, Decision-based design 

 

1. FRAME OF REFERENCE 

Manufacturers must produce products with targeted performance to meet the market requirements. 

Targeted product performance is achieved by ensuring an appropriate range of mechanical properties and 

material microstructures, which sometimes require the use of multi-material components [1-3]. The material 

processing during manufacturing influences the material microstructure, thus defining the mechanical 

properties and product performance. This interconnect among processing, microstructure, properties, and 

performance is illustrated using the hot rod rolling (HRR) process chain example. In HRR, cast steel billets 

are reheated and further processed in rolling and cooling mills to produce hot-rolled steel rods as products. 

The mechanical properties that identify the steel rod performance [4] are determined by the steel 

microstructure produced as a result of the above thermo-mechanical processing. Hence, the prudent 

management of the manufacturing processes involved in realizing the product is required to tailor the material 

microstructure and attain a specific range of mechanical properties, thereby satisfying the targeted product 

performance [5]. Given the inherent relationships between material processing, microstructure, achieved 
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mechanical properties, and end product performance, realizing products that meet targeted performance 

requires an integrated consideration of the system constituted by the products, its materials, and associated 

manufacturing processes. 

Material selection approaches [6-8] are traditionally employed to achieve targeted product performance. 

It involves choosing materials with suitable properties from a set of available materials. Classical material 

selection approaches do not facilitate tailoring the material microstructures to meet specific mechanical 

property requirements. Realization of products with specific microstructure and mechanical properties 

typically involves many plant trials and lab-scale experiments [9] that are expensive and time-consuming. 

The relatively cheaper and quicker alternative is to use simulation-supported approaches for the integrated 

design of systems involving products, materials, and manufacturing processes. Simulation-supported 

integrated design approaches focus on meeting multiple conflicting mechanical property requirements in a 

top-down, inverse manner by intentionally engineering the material microstructure and identifying the 

appropriate processing paths. Such a conscious effort to engineer materials that meet specific mechanical 

properties and microstructure requirements is the focus of ‘materials design.’ Direction for materials design 

is provided by the Integrated Computational Materials Engineering (ICME) program [10], where the 

Processing-microStructure-Property-Performance (PSPP) design hierarchy proposed by Olson [11] is 

exploited to realize the integrated, top-down design of products and materials with the support of simulations. 

Here, product performance requirements are inversely mapped onto material properties, followed by mapping 

the material properties onto materials structure to realize the top-down, inverse design of materials that satisfy 

product performance requirements. McDowell and Olson [12] propose a systems approach to materials 

design in line with ICME, where the PSPP relations are utilized to realize an inverse, multilevel design of 

products with a targeted performance range and the material structural hierarchy. McDowell [13] 

recommends that integrated, multilevel materials design approaches should facilitate an understanding of the 

sensitivity of the material properties to material microstructure and material microstructure to its processing. 

The sensitivity analysis helps designers i) identify key design variables with significant sensitivities across 

the material structure and design hierarchy and ii) perform solution space exploration to identify design 

solutions that meet a targeted range of performance [4].  

The simulation-supported, integrated, multilevel materials design approaches require the collaborative 

effort of distributed domain experts for the different levels of the design process, such as product designers, 

materials designers, and process designers. The domain experts make decisions regarding the material choice 

for the product, the development of materials with improved performance, and the processing of materials to 

produce the product based on their domain expertise. Nellippallil and co-authors [4] present the design of 

such systems as a collaborative effort of a group of distributed experts, defined as ‘co-design.’ In this paper, 

we adopt this definition of co-design as the ability of a group of distributed domain experts that involves 

product, materials, and process designers to share their resources, information, and knowledge for the 

integrated design of the products, materials, and manufacturing processes. The primary role of domain 

experts in co-design is that of decision-makers or designers who make decisions regarding the design problem 

that requires their expertise, given the information available. Independent domain expert decisions at 

individual levels can cause unintended impacts on other levels [14] due to limitations in the other levels' 

available resources, resulting in design conflicts. The resource limitations at a level are defined using 

constraints, bounds, and goal targets. If left unresolved, design conflicts can result in poor performance at 

different levels that accumulate and lead to poor system performance, where products fail to meet targeted 

performance. In this paper, we address the issue of managing design conflicts in the multilevel co-design of 

products, materials, and manufacturing processes from a systems-based inverse design viewpoint. 

Several works in the literature address multilevel material design and establish inverse PSPP linkages 

for design. Adams and co-authors [15] present a framework to support inverse materials and process design 

problems by employing spectral representation to establish invertible relationships between material 

processing, resultant material structure, and properties. Kalidindi and co-authors [16, 17] present the 

materials knowledge systems (MKS) approach, which supports inverse materials design problems by 

facilitating the bi-directional information flow between different length scales during the concurrent 

multiscale modeling and simulation of different materials phenomenon. Chen and co-authors [18] present an 

inverse materials design approach that combines generative inverse design networks, backpropagation, and 

an active learning strategy. Kumar and co-authors [19] propose an inverse design framework for realizing 

metamaterials with desired properties by identifying optimal topologies using deep neural networks. Qian 

and co-authors [20] present an inverse design method that employs artificial neural networks to design 

architectured composite materials. Kim and co-authors discuss the inverse design of porous Zeolite material 
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using artificial neural networks [21]. Tsai and coauthors [22] present an inverse model that uses an artificial 

neural network coupled with a genetic algorithm to realize optical lenses with form accuracy using injection 

molding. The above approaches are characterized by the need for considerable knowledge or data and a clear 

understanding of the different material phenomena, material hierarchy, and flow of information in the 

hierarchy. Hence, these approaches are unsuitable for early-stage design exploration, with limited data 

availability and a rudimentary understanding of the various phenomena and information flows. 

Approaches such as the analytical target cascading (ATC) [23], collaborative optimization (CO) [24], 

and bilevel integrated system synthesis (BLISS) [25] are proposed by the multidisciplinary optimization 

(MDO) [26-29] community for optimizing multilevel systems. In general, the focus of MDO approaches is 

on identifying point solutions at each level using rigorous optimization techniques. They usually involve a 

substantial number of iterations within and between levels using optimization loops until convergence is 

achieved. This is particularly challenging in early-stage design exploration, where the focus is on quickly 

identifying satisfactory design regions instead of a single unique point solution [30]. Moreover, fundamental 

limitations exist in using MDO approaches in a materials design environment involving the product and the 

manufacturing processes. When considering product and manufacturing process aspects during materials 

design, it is sensible to distribute the design activities to (i) efficiently utilize the knowledge and expertise of 

the designers across various domains in the synthesis process and (ii) avoid formulating and solving system-

level problems that are overly large and computationally burdensome. In a recent effort, Ituarte and co-

authors [14] put forth a computer-aided expert system to explore the PSPP linkages and carry out trade-off 

exploration and optimization in digital manufacturing. This is realized by coupling product design, 

manufacturing processes, and materials systems using surrogate models and MDO. The work demonstrates 

exploring optimization solutions in multiple disciplines, specifically product, material, and manufacturing, 

ensuring overall system performance. However, the issue of design conflicts that can arise when there are 

many objectives at individual levels or disciplines, especially at the early stages of design, needs further 

attention. 

The fundamental assumption in MDO is the identification and passing of single-point optimum solutions 

among designers and a central decision-maker. This assumption is challenged by approaches that seek to 

identify and share ranged sets of solutions with distributed designers across design levels [31, 32]. By 

identifying ranged sets of solutions, designers are free to choose a solution from the set based on their 

preference. Systematic top-down, system-based approaches that support early-stage materials design 

exploration are discussed limitedly in the literature. Choi and co-authors [33] present a multilevel, top-down 

design method that facilitates distributed design, the Inductive Design Exploration Method (IDEM). IDEM 

is suitable for hierarchical design problems and managing uncertainty propagation across levels in the early 

design stages. Kern and co-authors [34] present a generic Python implementation of the IDEM, named 

pyDEM, which employs an open-source Python tool. IDEM has certain noted limitations, such as flexibility 

in design, discretization errors, the increased computational expense for improved accuracy, and restrictions 

on the number of design variables that can be considered, as discussed in [35]. Nellippallil and co-authors 

propose the Goal-oriented Inverse Design (GoID) approach to address some of these limitations [35]. Wang 

and co-authors [36] present a template-based ontological method based on the GoID approach to support 

design space exploration. In GoID, decision-making is considered a sequential process, with decisions at 

different levels of the design process being made by domain experts. These decisions are directed towards 

the goal targets that are inversely propagated from the succeeding level in the sequence, starting with the 

system performance requirements. The sequential decision-making in GoID may result in conflicts among 

decisions across different levels, subsequently resulting in the inability to achieve the required material 

microstructures and mechanical properties and reduced product performance. Hence, there exists a need to 

manage the potential design conflicts that can arise when using the GoID approach in the multilevel co-

design of systems involving products, materials, and manufacturing processes.  

We consider design from a systems design standpoint as a simulation-supported, integrated, top-down, 

decision-based process to satisfy a targeted range of performance requirements. We follow the Decision-

Based Design (DBD) paradigm [37] that considers design a decision-making process, where the designers 

make a series of decisions, some sequentially while others concurrently. Decision Support Problem (DSP) 

techniques are developed by Mistree and co-authors [37] to support decision-making in DBD. DSP 

techniques are anchored in the notion of bounded rationality proposed by Herbert A. Simon [38]. We view 

the design problem from the philosophy of a “satisficer” and seek a ranged set of satisficing solutions. A 

‘satisficing solution’ [39] satisfies the design requirements for the conflicting goals and showcases good 

enough performance given the available information and models used. The compromise Decision Support 
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Problem (cDSP) [40] is one well-established DSP construct in the literature that is useful in exploring 

satisficing design solution sets for design problems with multiple conflicting goals. Ming and co-authors [41] 

present a computational platform named Platform for Decision Support in the Design of Engineering Systems 

(PDSIDES), where DSPs are represented as computational decision templates to facilitate the storage and 

reuse of decision-related knowledge. In this paper, we use the cDSP construct and templates within PDSIDES 

to i) capture problem-specific information, ii) formulate multilevel design problems involving the product, 

material, and manufacturing process, and iii) explore ranged sets of design solutions for multiple conflicting 

goals across multilevel.  

From a DBD perspective, we hypothesize that the issue of design conflicts can be addressed using a 

decision support framework that facilitates i) goal-directed decision-making across the different levels of the 

design process, ii) cooperative decision-making between the levels by managing the interactions, and iii) 

regulation of the design space and decision-making at different levels to attain improved performance. We 

define cooperation as a situation where i) the design conflicts among decisions at various levels are managed 

to ensure coordination (MDC - Manage Design Conflicts), and ii) decisions are made in a manner that 

facilitates the achievement of the goals at other levels (FG = Facilitate Goals) [42, 43]. The management of 

design conflicts by regulating decisions at different levels requires a clear understanding of the impact of the 

decision variables at a level on the corresponding goals. As discussed previously, simulation-supported 

integrated materials design approaches, including GoID, are well suited to support sensitivity analysis, which 

will aid designers in identifying key design variables across different levels. Identifying key variables will 

enable more effective conflict management in the proposed framework by allowing decision regulation with 

minimum changes to the variables. Minimum changes to variables correspond to a situation where the least 

amount of additional resources is utilized in managing the conflict, which is beneficial.  

The outline of this paper is as follows. The description of the problem is presented in Section 2. In 

Section 3, we present an information-decision framework for the multilevel co-design of products, materials, 

and manufacturing processes. We also discuss using the PDSIDES platform to formulate and execute DSPs 

and explore the solution space across multiple design levels in Section 3. We showcase the framework's 

efficacy in supporting the management of design conflicts using the HRR test problem in Section 4. In the 

HRR test problem, we focus on the interactions between the levels of the design process that involve 

processing (manufacturing process), microstructure (material), and mechanical properties of the rod 

(product). We close the paper with our contributions and closing remarks in Section 5. We present the 

empirical models used in the test problem and the problem formulations in Appendix A. 

 

2. PROBLEM DESCRIPTION – DESIGN CONFLICTS IN THE MULTILEVEL, TOP-DOWN 

CO-DESIGN OF PRODUCTS, MATERIALS, AND MANUFACTURING PROCESSES   

Realizing products with targeted performance involves tailoring the properties and associated material 

microstructure to required ranges by carefully managing material processing. The inherent relationship 

among material processing, microstructure, mechanical properties, and product performance necessitates the 

multilevel co-design of the system involving products, their materials, and manufacturing processes to realize 

products with targeted performance. The multilevel co-design of such systems involves integrated decision-

making across the PSPP design hierarchy. Integrated decision-making is realized through a collaborative 

effort of domain experts, such as process, materials, and product designers, who make decisions across 

different levels of decision-making based on their expertise.  

In this paper, we consider the use of the GoID approach [35] for the multilevel co-design of products, 

materials, and manufacturing processes, as depicted in Figure 1. The sequential decision-making in GoID 

begins with identifying satisficing solutions for the DSP at Level 1- cDSP ‘1,’ as indicated by ‘Start’ in Figure 

1. At Level 1, product performance requirements defined in terms of the multiple mechanical property goals 

are considered. cDSP ‘1’ is formulated to help the product designer determine satisficing solutions that fulfill 

product performance requirements propagated from the end product. Given the design variable bounds, the 

design space for cDSP ‘1’ is limited to a small region depicted by the grey area marked ‘X’ in cDSP ‘1.’ 

Additionally, requirements regarding acceptable mechanical property goal values are set as constraints that 

will result in different feasible design spaces for each mechanical property goal. The feasible design spaces 

corresponding to two mechanical property goals of cDSP ‘1’ are indicated by the red region marked ‘a’ and 

the blue region marked ‘b.’ In a situation with conflicting mechanical property goals, achieving all the goal 

targets might not be possible. The product designer seeks ‘satisficing solutions’ regarding material 

microstructure that fulfills the designer's requirements for the mechanical property goals and picks the green 

Region 1 in cDSP ‘1’. Hence, at Level 1, the designer considers the materials and product design aspects 
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together, with the material microstructure as inputs and mechanical properties of the product as outputs for 

cDSP ‘1’. 

    
FIGURE 1:  An illustration of the possible situation of conflict between multilevel decisions when 

using the GoID approach and subsequent loss in performance  

The microstructure solutions identified are then propagated as goal targets for the DSP of the next level 

in the sequence - Level 2, as depicted by the blue ‘Mapped Goals’ region in cDSP ‘2.’ At Level 2, the material 

requirements defined in terms of microstructure at the end of the final manufacturing process in the 

processing sequence are considered. The feasible design spaces corresponding to two microstructure goals 

of cDSP ‘2’ are indicated by regions marked ‘c’ (blue) and ‘d’ (red) in the grey area marked ‘Y.’ The 

materials designer explores the feasible design spaces, seeking satisficing solutions in terms of processing 

variables that fulfill the designer's requirements for the potentially conflicting microstructure goals. The 

exploration ends with the materials designer picking the green Region 2 in cDSP ‘2’. Hence, at Level 2, the 

materials designer considers the materials and manufacturing processing aspects together, with processing 

variables as inputs and material microstructure as outputs for cDSP ‘2.’ Since the microstructure goals are 

propagated to the cDSP ‘2’ in a top-down manner, there is a lack of a way in GoID for the product and 

material designers at the interacting Levels 1 and 2 to collaborate and check if the microstructure goals 

mapped from Level 1 are achievable at Level 2, given the resources available. Design conflicts occur between 

the product and materials designers if the microstructure goal values corresponding to the satisficing solution 

picked at Level 2 do not meet the mapped microstructure goals from Level 1. The design conflicts arise 

primarily due to the limited resources defined in terms of constraints, bounds, and goals of conflicting nature 

in cDSP ‘2’ that restrict the design space of the next level in the sequence, Level 2. The design conflicts lead 

to a loss in performance of both interacting levels, which is schematically represented in Figure 1. At Level 

2, the achievable satisficing solution depicted by the green Region 2 does not match the targeted ‘Mapped 

Goals’ from Level 1, indicating a loss in performance at Level 2. The yellow Region 1’ that depicts the goal 

values achieved at Level 1 by mapping back the satisficing solutions from Level 2 does not match the initially 

identified satisficing solutions at Level 1 indicated by the green Region 1, thus indicating a loss in 

performance at Level 1.  

The inverse sequential propagation of decisions from one level to the next and subsequent decision-

making is continued along the multilevel system until all remaining manufacturing processes that influence 

the material microstructure are considered, as depicted by Level 3 in Figure 1. With the solutions being 

propagated inversely, further conflicts may arise between multilevel decisions, resulting in performance 

losses and accumulation across the different levels, thus leading to poor system performance. Poor system 

performance will result in products failing to meet targeted performance. To address the above issue, top-

down design approaches such as the GoID require a way to model the multilevel interactions and facilitate 

collaboration between the multilevel decisions. Facilitating the modeling of interactions will help the 

designers regulate the multilevel decisions to support cooperative decision-making, thereby ensuring 

multilevel and system performance in situations where design conflict exists. An information-decision 

framework to address the issue of design conflicts and ensure multilevel and system performance in the 
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multilevel, top-down co-design of products, materials, and manufacturing processes is presented in detail in 

the next section. We begin the next section by introducing the computational platform PDSIDES used to 

formulate the cDSPs, execute them, and explore satisficing solutions at different design levels. 

 

3. INFORMATION-DECISION FRAMEWORK TO SUPPORT MULTILEVEL, TOP-DOWN CO-

DESIGN OF PRODUCTS, MATERIALS, AND MANUFACTURING PROCESSES AND THE 

USE OF THE PDSIDES PLATFORM IN THE FRAMEWORK 
In this section, we present an information-decision framework to facilitate cooperative decision-making 

and support multilevel, top-down co-design of products, materials, and manufacturing processes. Using the 

framework, we facilitate sequential, goal-directed decision-making across different levels and cooperative 

decision-making between the interacting levels by regulating design spaces and decisions at these levels. The 

regulation of decision-making at the interacting levels will aid design conflict management, thereby helping 

attain improved multilevel and system performance. We begin with Section 3.1, where we discuss the 

PDSIDES platform developed by Ming and co-authors [41] used to formulate and execute cDSPs and carry 

out solution space exploration in the framework.  

3.1. Platform for Decision Support in the Design of Engineering Systems (PDSIDES) 

PDSIDES is a ‘knowledge-based’ computational platform that is anchored in modeling decision-related 

knowledge using DSP templates that are executable and reusable. Different ‘knowledge-based engineering 

approaches’ have been discussed extensively in the literature, where the focus is on the automation of the 

design process and not on supporting designers to make better decisions [44, 45]. The utility of the PDSIDES 

platform lies in its capability to provide designers with decision support during design. Through its various 

templates, PDSIDES facilitates the modeling of multilevel decision-making and their interactions [46] and 

systematic solution space visualization and exploration [36]. This is supported by predefined problem-

specific information and information regarding the information and decision workflows connecting the 

multiple levels. The primary constructs that help realize various decisions within the PDSIDES platform are 

i) the Decision Support Problem (DSP) construct and ii) Ontology - the explicit formal specifications of terms 

used in the PDSIDES platform to formally represent the knowledge. In PDSIDES, DSPs are represented as 

computational decision templates called DSP templates used to model decision-making. As depicted in 

Figure 2, DSP templates - specifically cDSP templates, are modularized to separately capture the problem-

specific declarative knowledge and the domain-independent procedural knowledge related to the procedure 

for solving the problem. The modules in the cDSP template, such as goals, variables, parameters, preferences, 

constraints, objectives, and responses, capture declarative knowledge. The analysis module captures the 

procedural knowledge required to execute the cDSP template. The computational environment for executing 

the cDSP template, DSIDES (Decision Support in the Engineering Systems) [47], is integrated into 

PDSIDES. The response module of the cDSP template stores the output results of the execution of the cDSP 

template. The use of ontologies, modularization of the DSP construct, and separation of declarative and 

procedural knowledge facilitate the execution and reuse of the templates in the PDSIDES platform. These 

templates are also editable and customizable, allowing adding additional functionalities as required. Using 

ontologies also helps facilitate knowledge sharing, population, and retrieval in the PDSIDES platform. 

 
FIGURE 2: Modeling decision-making using templates, sub-templates, and modules in PDSIDES 

platform 

In PDSIDES, the identification of satisficing solutions by solution space visualization and exploration 

is supported using the Design Space Exploration (DSE) template [36] depicted in Figure 2. The DSE template 

is composed of three separate sub-templates: i) Problem Model (PM) sub-template, ii) cDSP template, and 

iii) Post Solution Analysis (PSA) sub-template. Each of these sub-templates is composed of different modules 

that help capture declarative and procedural knowledge. The PM sub-template is composed of i) the 

theoretical/empirical model module that captures declarative knowledge in the form of models relating the 

problem-specific variables and responses and ii) the surrogate modeling module that provides designers 
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access to surrogate modeling tools and techniques that help develop surrogate or reduced-order models, if 

required. The PSA sub-template facilitates various computations, analyses, and visualization associated with 

the cDSP template, such as i) the creation of different design scenarios for executing the cDSP template using 

the Solution Space Exploration (SSE) experiment module, ii) the determination of the desired solution region 

using the Weight Sensitivity Analysis (WSA) module, iii) estimation of the sensitivity of cDSP responses to 

changes in constraint limits using Constraint Sensitivity Analysis (CSA) module, iv) other relevant post 

solution computations specific to the design problem, using the Additional Requirements Analysis (ARA) 

module, v) computation and storage of deviation of goals from their targets using the Deviation Response 

module, and vi) visualization and exploration of the solution space using ternary plots, by employing the 

ternary plot sub-module build into the PSA sub-template. The PSA sub-template produces outputs such as 

sensitivity values, deviation values, ternary plots, and so on that support designers in making decisions. The 

interactions among different decision models in PDSIDES in terms of information and decision flows can be 

modeled using interaction templates as presented in [46]. The PDSIDES platform also allows designers to 

create new templates, edit and customize existing ones, and use existing ones by modifying their parameters. 

For more details on PDSIDES, readers are directed to [36], [41], and [46]. The PDSIDES platform, with its 

various templates, sub-templates, and modules described above, is used to formulate and execute the cDSPs 

and explore the solution space across interacting levels in the information-decision framework presented 

below. The framework structure is depicted in Figure 3 and is described in Section 3.2. The use of the 

framework and the PDSIDES platform is discussed in Section 3.3. 

3.2. Structure of the Information-Decision Framework 

The framework comprises two distinct parts, as depicted in Figure 3. They are: 

1) Decision models formulated for each level in a multilevel system, denoted in this paper as Levels 

‘n,’ ‘n+1’, and so on, to generalize interactions between any two consecutive decision levels and 

2) Interaction Space  

 
FIGURE 3:  Information-Decision framework to facilitate cooperative decision-making and 

support multilevel, top-down co-design of product, material, and manufacturing processes  
3.2.1. Decision model of interacting levels 

In the framework, multilevel decision-making is represented using simulation-based decision models. 

The modeling of the interactions of the multilevel decision models is inspired by the human-assistance system 

interaction model described by Lemoine and co-authors [43]. The foundational concepts of this interaction 

or cooperation model are based on the Know-How (KH) and Know-How-to-Cooperate (KHC) constructs 

defined by Lemoine and co-authors for interacting decisional entities in a system [43].  

a. KH deals with collecting level-specific information to support decision-making at a level without 

considering exchanges with other interacting levels.  

b. KHC is concerned with understanding decision-making at interacting levels and exchanging pertinent 

information between the interacting levels to support cooperative decision-making. 

The KH and KHC constructs are introduced by Millot and Lemoine [43] to establish generic concepts 

for human-machine cooperation. Since then, these constructs have been widely used in the fields of air traffic 

control [48], manufacturing [43, 49], and robotics [50] to facilitate human-human and human-machine 

cooperation. The above applications showcase the KH and KHC construct’s generic nature and utility in 

facilitating cooperation between interacting levels through information sharing. Using these constructs, the 
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designer can systematically identify the information required for multilevel decision-making and the ones 

that need to be shared for improved cooperation between interacting levels. These characteristics make these 

constructs suitable to be adapted as mental models in the proposed information-decision framework to help 

the designers model multilevel interactions and collaboration in the decision model at each level. As depicted 

in Figure 3, the decision model of each level in the system is composed of the KH and KHC constructs. The 

KH construct allows decision-makers to model multilevel decision-making. The KHC construct enables 

decision-makers to identify information and decisions specific to a level or its interacting levels that can be 

modified, controlled, or shared to achieve improved cooperation between the interacting levels.  

In this paper, KH corresponding to a level is modeled as a cDSP [40], given the possibility of each level 

having multiple conflicting objectives to achieve. In cDSP, both traditional mathematical programming and 

goal programming concepts are incorporated, enabling the exploration of satisficing design solutions for 

multiple conflicting goals. As depicted in Figure 4, the Given, Find, Satisfy, and Minimize keywords in the 

cDSP help capture information related to the problem, thus making the cDSP construct generic. The designer 

emphasizes achieving the goal targets defined in the cDSP as closely as possible by exploring the solution 

space. In the KH construct, level-specific information such as i) goals and goal targets, ii) variable bounds, 

and iii) constraints are used to make decisions at the respective levels. The goals are explicitly specified for 

the first design level. The goals are propagated inversely from higher levels in the design hierarchy for the 

remaining levels. 

 
FIGURE 4:  Capturing problem-specific information using the keywords of the compromise-

Decision Support Problem (cDSP) construct [40]  

In PDSIDES, the decision-making Know How (KH) at a level is modeled using the PM sub-template 

and cDSP template. Level-specific information, including satisficing solutions identified for the specific 

level, is created using i) the PSA sub-template and ii) the responses stored in the response module of the 

cDSP template. The information generated is shared with related levels using interaction templates. The 

response module of the cDSP template and the PSA sub-template constitute the Know How to Cooperate 

(KHC) at a level in the framework. 

3.2.2. Interaction Space 

The interaction space is the domain that allows two major tasks to be performed using the framework. 

The first task is the storage and sharing of level-specific decisions and information. The second task is 

detecting and managing design conflicts between decisions at interacting levels. The designer uses stored 

information and decisions to detect and quantify design conflicts and manage these conflicts by i) identifying 

possible means for the interacting levels to collaborate and ii) providing corrective feedback. The procedure 

used to detect and quantify conflicts, identify potential corrective feedback, and its implementation in 

PDSIDES is discussed in the next section. 
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3.3. Decision support using the framework and use of the PDSIDES platform to model multilevel 

decision-making and their interactions, explore the solution spaces, and detect and manage conflicts 

The use of the framework is explained in terms of the decisions made and the flow of information and 

decisions between interacting levels – Levels n, n+1, and n+2, as depicted in Figure 3. The framework 

involves the execution of three steps – Steps 1, 2, and 3. The decision-making in the framework takes place 

in Steps 1, 2, and 3. The decision workflow- the order in which decisions are made and their interconnections, 

is represented using the arrows connecting the steps. This represents the procedural knowledge aspect 

concerned with how the information is transformed and how the transformation is executed via a decision 

workflow. The necessary information to make decisions in Steps 1, 2, and 3 represents the problem-specific 

declarative knowledge concerned with what information gets transformed. The problem-specific declarative 

knowledge is depicted by the information and decision flows connecting the steps. Steps 1, 2, and 3 and the 

flow of information and decisions in the framework are described as follows. 

Step 1: The KH of Level ‘n’ concerned with the product requirements at the top of the design hierarchy 

is formulated using level-specific information - declarative knowledge, such as goals (GJ,n, where ‘J' - goal 

index and J = 1, 2,…, j), constraints (Cn), design variables (XP,n, where P - design variable index and P = 1, 

2,…, m) design variable bounds (XUB,P,n – upper bound and XLB,P,n – lower bound) and models relating the 

goals and design variables. At this level, goals are specified explicitly based on product performance 

requirements identified in terms of mechanical property goals. The product designer, the decision-maker at 

Level ‘n,’ uses this information and the cDSP construct to formulate and solve the DSP of Level ‘n.’ The 

feasible solutions that satisfy the bounds and constraints are identified by exercising the cDSP ‘n’ for different 

design scenarios, where each design scenario describes a specific combination of the designer's preference 

for the various goals expressed in terms of the weights assigned to the goals; see [35] for more details. From 

the feasible solutions, the designer identifies a collection of satisficing solutions referred to as a ‘ranged set 

of satisficing solutions.’ The ranged set of satisficing solutions identified ‘satisfices’ and ‘suffices’ the 

designer’s requirements for the multiple goals. A ranged set of satisficing solutions for cDSP ‘n’ are identified 

through the ternary plot-based visualization of the feasible solution space and its exploration by setting 

acceptable thresholds for the multiple conflicting goals. The satisficing solution space identified is further 

explored to select a solution that fulfills the designer’s preference for the goal values at Level ‘n.’ A more 

detailed discussion on visualization and exploration of the feasible solution space using ternary plots to 

identify a satisficing solution is provided in Section 4. The above decision – the satisficing solution identified, 

along with the information regarding the KH of Level ‘n,’ is passed to the KHC of Level ‘n,’ from where 

they are then propagated to the KHC of Level ‘n+1’ that corresponds to the next level in the inverse design 

sequence. Therefore, there exists propagation of goals between interacting levels in an inverse manner. To 

summarize, in Step 1, the product designer formulates and solves the cDSP at Level ‘n’ and explores the 

feasible solution space to identify a satisficing solution that is propagated as the goal target for the next design 

level in the inverse sequence, Level ‘n+1.’ 

Step 2: The materials designer, the decision-maker at Level ‘n+1,’ uses the decision propagated to its 

KHC from Level 'n’ to identify goals and goal targets to work towards. The KH of Level ‘n+1’ concerned 

with meeting the materials requirements identified and propagated from Level 'n’ is provided with level-

specific information - declarative knowledge, such as goals (GJ,n+1), constraints (Cn+1), design variable 

(XP,n+1), design variable bounds (XUB,P,n+1 – upper bound and XLB,P,n+1 – lower bound) and models relating the 

goals and design variables, as in Step 1. The final processing in the manufacturing process chain influences 

the goals at Level ‘n+1.’ Similar to Step 1, the materials designer uses level-specific information to formulate 

and solve cDSP ‘n+1’ and identify feasible solutions. The ranged set of satisficing solutions for Level ‘n+1’ 

are identified using a ternary plot-based feasible solution space visualization. Acceptable thresholds for the 

multiple conflicting goals are identified, and the solution space within the ternary space is explored. The 

materials designer identifies a satisficing solution from the ranged set that fulfills their preference for the goal 

values of Level ‘n,’ achieved by mapping the goal values at Level ‘n+1’ as design variable values for Level 

‘n.’ The above decision – the chosen satisficing solution and corresponding goal values of Level ‘n’ are then 

propagated to the interaction space, where decisions at the interacting levels are compared to detect conflicts. 

In Step 2, the materials designer, using the information propagated down from Level ‘n’ and level-specific 

information, formulates and solves the cDSP at Level ‘n+1’ to identify satisficing solutions. The materials 

designer further explores the satisficing solution space to identify satisficing solutions at Level ‘n+1.’ The 

corresponding Level ‘n’ goal values are subsequently propagated to the interaction space to detect conflicts.  

In PDSIDES, Steps 1 and 2 are modeled using separate instances of the DSE template. In the DSE 

template instances, the declarative knowledge in Steps 1 and 2 is captured using the goals, variables, 
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constraints, parameters, preferences, and objectives modules of the cDSP template. Additional declarative 

knowledge in the form of models relating the variables and goals for both steps is captured in the PM sub-

templates theoretical/empirical model module. If no models are available, surrogate models are developed 

using the surrogate modeling module of the PM sub-template. Using the procedural knowledge in the analysis 

module of the cDSP template, the cDSPs in Steps 1 and 2 are executed to generate feasible solutions. The 

visualization and exploration of the solution space at both levels are supported using i) the SSE experiment 

and WSA modules of the PSA sub-template and ii) the ternary plot sub-module built into the PSA sub-

template. The information and decision flow between the separate instances of the DSE templates for Steps 

1 and 2 are established using the interaction templates in PDSIDES. 

Step 3: The decisions made at Levels ‘n’ and ‘n+1’ in Steps 1 and 2 are shared with the interaction space 

as depicted by the dotted red line from Level ‘n’ and the solid red line from Level ‘n+1’ to interaction space. 

The decisions are jointly analyzed in the interaction space to detect and manage design conflicts. A flowchart 

representing the sequence of computations performed as part of Step 3 is shown in Figure 5.  

    
FIGURE 5: Steps involved in detecting and managing design conflicts between decisions at 

interacting levels 

Step 3 comprises two blocks, as described below.  

Block 1 - Detecting design conflicts between decisions at interacting levels 

In this block, the loss in each goal ‘J’ of Level ‘n’ (L_GJ,n) is computed as per Equation 1. The loss 

metric is quantified by comparing values achieved for each goal ‘J’ of Level ‘n’ (GJ,n ) identified in Step 1 to 

the goal values that are achieved by mapping Level ‘n+1’ goal values from Step 2 as design variable values 

for Level ‘n.’ The goal values achieved at Level ‘n+1’ are depicted as G1,n+1 , G2,n+1 and G3,n+1 in Figure 6. 

The loss metric is used to detect and quantify the extent of the conflict between interacting levels. 

 

𝐿_𝐺𝐽,𝑛 =  
 𝐺𝐽,𝑛 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑐𝑖𝑛𝑔

−  𝐺𝐽,𝑛 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑

𝐺𝐽,𝑛 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑐𝑖𝑛𝑔

 (1) 
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where 𝐺𝐽,𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑐𝑖𝑛𝑔
 is the satisficing value of 𝐺𝐽,𝑛; 𝐺𝐽,𝑛 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑

 is the value achieved for 𝐺𝐽,𝑛 

corresponding to the satisficing solution picked at Level ‘n+1’ in Step 2.  

 

FIGURE 6: Detecting conflicts between interacting Levels ‘n’ and ‘n+1’ 

Calculating the loss requires the use of the KHC of Level ‘n+1’, where the goal values of Level ‘n+1’ 

are mapped to the empirical models of Level ‘n’ goals – KHC of Level ‘n+1,’  to find corresponding goal 

values for Level ‘n.’ In Figure 6, given the constraints and variable bounds at Level ‘n,’ the achieved goal 

value for the maximization goal -  𝐺2,𝑛+1, is below its target value, indicating an underachievement as 

indicated by 𝑑2
−. Hence, the best solution for Level ‘n+1’ does not meet all the goal targets propagated from 

Level ‘n, resulting in a loss at Level ‘n.’  

In cases where the designer aims to maximize a goal, conflict occurs when the best value achieved for 

the goal is less than the satisficing value chosen. In such a case, the numerator of Equation 1 will be positive, 

resulting in a positive value for the loss metric. When minimizing a goal value is the designer's focus, conflict 

occurs when the best value achieved for the goal is greater than the satisficing value chosen for the goal. 

Consequently, the numerator of Equation 1 will be negative, resulting in a negative value for the loss metric. 

Hence, positive values of loss (𝐿_𝐺𝐽,𝑛) indicate conflict when the designer aims at maximizing the goal values. 

In cases where the designer seeks to minimize the goal values, negative loss values indicate conflict. The loss 

values are normalized, and the larger the magnitude of loss computed for any of the ‘J' goals of Level ‘n,’ 

the more significant the conflict between interacting multilevel decisions. In a case where multiple conflicts 

are identified, the one with the largest magnitude of loss value takes priority.  

Hence, in Block 1 of Step 3, the designer seeks to detect conflicts between the decisions at Levels ‘n’ 

and ‘n+1’ by identifying the lack of achievement of satisficing goal targets at Level ‘n’ due to decisions made 

at Level ‘n+1’. If no conflicts are detected in any goals, the satisficing solution at Level ‘n+1’ is propagated 

to the next level in the inverse design sequence - Level ‘n+2.’ Level ‘n+2’ is concerned with meeting the 

materials requirements influenced by the second to last manufacturing process in the material processing 

sequence. Subsequently, Levels ‘n+1’ and ‘n+2’ in the framework become the new Level ‘n and ‘n+1’, 

respectively, and Steps 2 and 3 are then re-executed. If any conflicts are detected, they are managed using 

Approach 1 or 2 in Block 2, as discussed below. This is continued till all the processing operations in the 

manufacturing sequence are accounted for. In PDSIDES, the conflict detection by computation of loss values 

is added as additional functionality to the ARA module of the PSA sub-template by leveraging the capability 

of the templates to be edited or customized.  
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Block 2 - Managing conflicts 

Conflicts identified in Block 1 between decisions at interacting levels must be managed to achieve the 

required multilevel and system performance. Two approaches – Approach 1 and 2, depicted in Block 2 of 

Figure 5, are proposed for managing conflicts in the framework. These approaches are detailed below. 

Approach 1 

Step A: Block 2 starts with the identification of all active design variables at Level ‘n+1’ (XK,n+1, where 

‘K’ - index of active design variables, K= 1, 2, …, k and k<m - number of design variables as depicted in 

Figure 4) and active constraints (𝐶𝑛+1). Active design variables are those with values at the upper or lower 

bounds. 

Step B: The sensitivity of goal ‘J’ of level ‘n+1’ (𝐺𝐽,𝑛+1) to the XK,n+1‘s - 𝑆𝐽,XK,n+1
is calculated as per 

Equation 2. The sensitivity computation is based on the Nominal Range Sensitivity metric, 𝑆 [51, 52], 

depicted in Figure 7. To use Equation 2, it is assumed that the goals are monotonic and that design variables 

are independent.  

 

𝑆𝐽,𝑋𝐾,𝑛+1
 =  

𝐺𝐽,𝑋𝑈𝐵,𝐾,𝑛+1
 −  𝐺𝐽,𝑋𝐿𝐵,𝐾,𝑛+1

𝑋𝑈𝐵,𝐾,𝑛+1 −  𝑋𝐿𝐵,𝐾,𝑛+1

=  
𝑑𝐺𝐽,𝑋𝐾,𝑛+1

𝑑𝑋𝐾,𝑛+1

 (2) 

where, 𝐺𝐽,𝑋𝑈𝐵,𝐾,𝑛+1
 and 𝐺𝐽,𝑋𝐿𝐵,𝐾,𝑛+1

 are the values of 𝐺𝐽,𝑛+1 at the upper and lower bounds of XK,n+1, 

respectively, for a specific combination of the remaining Xn+1 values; and 𝑋𝑈𝐵,𝐾,𝑛+1 and 𝑋𝐿𝐵,𝐾,𝑛+1 are the 

upper bound and lower bound of XK,n+1, respectively. 

  
FIGURE 7: Sensitivity of goals of Level ‘n+1’ to active design variable XK,n+1 

The sensitivity computation is performed for various combinations of all the remaining Xn+1 values at 

their upper, lower, or nominal (average value of the variable bounds) values. The largest of the sensitivity 

values computed for a goal ‘J’ in magnitude is considered its sensitivity to the specific XK,n+1. Higher 

sensitivity values indicate that a slight change in XK,n+1 value can significantly change the goal value, enabling 

the designer to achieve improved performance by modifying XK,n+1 by a small amount. The above scenario 

is illustrated in Figure 7, where the nominal range sensitivity is the highest for Goal 2 (𝐺2,𝑛+1) amongst all 

three goals of Level ‘n+1’, since for a given change in 𝑋𝐾,𝑛+1 values - 𝑑𝑋𝐾,𝑛_1, Goal 2 has the most significant 

change in its value. 

This corresponds to a situation in the physical system where a slight increase in resource utilization will 

help the designer realize more significant performance improvements. The sensitivity computation is 

repeated for all the remaining 𝐺𝐽,𝑛+1’s to estimate the sensitivity of all ‘J’ goals of Level ‘n+1’ to a particular 

XK,n+1. As discussed above, Step B is repeated for all XK,n+1’s identified in Step A. 

Step C: Next, the deviations of the achieved values of all ‘J’ goals at Level ‘n+1’ compared to their 

targets from Level ‘n’ are computed using Equation 3. 

 

𝐷𝐺𝐽,𝑛+1
 =  𝐺𝐽,𝑛+1 𝑡𝑎𝑟𝑔𝑒𝑡

− 𝐺𝐽,𝑛+1𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑
 (3) 

where, 𝐷𝐺𝐽,𝑛+1
 is the deviation of 𝐺𝐽,𝑛+1; 𝐺𝐽,𝑛+1 𝑡𝑎𝑟𝑔𝑒𝑡

 is the propagated target values of 𝐺𝐽,𝑛+1; and 

𝐺𝐽,𝑛+1𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑
 is the value of 𝐺𝐽,𝑛+1 achieved from the satisficing solution chosen in Step 2.  

The 𝐷𝐺1,𝑛+1
, 𝐷𝐺2,𝑛+1

 and 𝐷𝐺3,𝑛+1
 values at Level ‘n+1’ that are computed as per Equation 3 are equivalent 

to the  𝑑1
+, 𝑑2

−, and 𝑑3
+ values in Figure 6. It is observed that 𝑑1

+ and 𝑑3
+ are over achievements that positively 
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influence the maximization of goals 𝐺1,𝑛+1  and 𝐺3,𝑛+1 with goal values greater than their targets.  However, 

𝑑2
− represents an under-achievement that is deleterious for the maximization goal 𝐺2,𝑛+1 with the goal value 

lower than the target. The deviation function of the cDSP for Level ‘n+1’ looks at minimizing the weighted 

sum of under-achievements of the maximization goals - 𝑑1
−, 𝑑2

−, and 𝑑3
−from the target values as depicted by 

function Z in Figure 6. Hence, any change that can help achieve a solution that reduces the under-achievement 

of goals is beneficial for the scenario represented in Figure 6. 

Step D: The updated bound of XK,n+1, identified in Step A, is computed in this step. First, the update 

required in XK,n+1 value to achieve the target value of goal ‘J’ of Level ‘n+1’ - 𝑈 𝐽,𝑋𝐾,𝑛+1
 is calculated using 

Equation 4. 

𝑈 𝐽,𝑋𝐾,𝑛+1
 =  

𝐷𝐺𝐽,𝑛+1

𝑆𝐽,𝑋𝐾,𝑛+1

 (4) 

The above computation is also carried out for the remaining ‘J-1’ goals of Level ‘n+1’. The rules for 

choosing a final update value for XK,n+1 - 𝑈 XK,n+1
, from the values computed using Equation 4 for different 

goals are given below. 

a. If XK,n+1 is at its lower bound, the largest negative value in magnitude, if any, is chosen as the update 

required for XK,n+1. Otherwise, the updated value is set to zero. A negative value is selected to reduce the 

active lower bound and thereby relax XK,n+1. The largest value in magnitude is selected as it would help 

meet the largest goal deviations identified in Step D. 

b. If XK,n+1 is at the upper bound, the largest positive value in magnitude, if any, is chosen as the change 

required for that XK,n+1. Otherwise, the updated value is set to zero.  A positive value is selected as it will 

increase the active upper bound and thereby relax XK,n+1. The largest value in magnitude is chosen as it 

would help meet the largest goal deviations identified in Step D. 

Using the 𝑈 𝑋𝐾,𝑛+1
 value, the updated bound of the XK,n+1 (𝑋𝐾,𝑛+1 𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝑏𝑜𝑢𝑛𝑑

) is computed as per 

Equation 5. 

 

The updated active design variable bounds will help designers improve the solution by bringing the 

updated under-achievement deviation term (𝑑2,𝑢𝑝
− ) to zero, as depicted in Figure 8. Hence, all the goal values 

are either at their target values or greater. This improved solution at Level ‘n+1’can potentially help mitigate 

or manage (reduce) conflicts computed in Block 1. 

  
FIGURE 8: Updating active design variable bounds and constraints to achieve improved solutions 

corresponding to Level ‘n+1’  

In Approach 1, the designer seeks to manage conflicts and help achieve improved satisficing 

solutions closer to the goal targets by identifying active design variables and relaxing their bounds within 

acceptable limits. The extent of relaxation of the active variable bounds is computed by considering i) the 

sensitivity of the goals with respect to the active design variables and ii) the degree of underachievement of 

goals. The updated active design variable bounds are determined based on the extent of relaxation computed 

above and the designer's domain knowledge. 

𝑋𝐾,𝑛+1 𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝑏𝑜𝑢𝑛𝑑
 =  𝑋𝐾,𝑛+1 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑏𝑜𝑢𝑛𝑑

+ 𝑈 𝑋𝐾,𝑛+1
 (5) 
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Approach 2 

Approach 2 is used when there are both active constraints and active design variables (XK,n+1). Here, 

XK,n+1 bounds are modified as in Approach 1, and the active constraint limits are also relaxed within feasible 

limits based on the designer’s domain knowledge. The benefit of relaxation of the limits of the active 

constraints along with the updating of active variable bounds can be explained using Figure 8, where the 

active constraint 𝐶2 is relaxed by an amount 𝑑𝐶2. The above relaxation and the updated bound for the active 

design variable, helps achieve an improved solution at Level ‘n+1’. The improved solution results in the 

deviation of Goal 2 -  𝑑2,𝑢𝑝
−  being replaced by the over achievement term 𝑑2

+. Hence, the relaxation of the 

limits of the active constraints along with the modification of active variable bounds helps achieve an 

improved solution at Level ‘n+1’ that results in goal values greater than targets. This improved solution 

potentially aids in managing conflict computed in Block 1. Therefore, in Approach 2, the designer seeks to 

manage conflicts and help achieve improved satisficing solutions closer to the goal targets by modifying 

active design variable bounds and relaxing the active constraint limits based on the designer's domain 

knowledge. Changing the limits of active constraints that are not purely bound-based requires designers to 

perform constraint function evaluations and assess the impact on the decision support problem. Systematic 

approaches for constraint function evaluation are beyond the scope of the current paper and are not discussed. 

In this paper, we rely on the designer’s domain knowledge to modify the active constraint limits. 

The updated bound values of XK,n+1, along with the relaxed, active constraint limits, if any, are provided 

as corrective feedback to the KHC of Level ‘n+1’ to help MDC and FG. Using the information from the 

updated KHC, Step 2 is repeated, where the materials designer formulates an updated cDSP for Level ‘n+1’, 

followed by solution space exploration to arrive at a new solution or decision. The new solution is then 

propagated to the interaction space, and Block 1 of Step 3 is repeated to detect conflicts. If no conflicts are 

detected, the updated solution or decision – the regulated decision at Level ‘n+1’ is propagated as goals for 

Level ‘n+2’. If conflicts are detected, Block 2 of Step 3 is executed to exploit further opportunities to modify 

active variables and constraints. If there are no possibilities of such a modification, the product designer at 

Level ‘n’ will need to reformulate the product design cDSP with new goals that are achievable and consistent 

with the requirements at Level ‘n+1’. The entire process is repeated at all other levels with specific material 

requirements that correspond to the different processing operations in the sequence.  

In the PDSIDES platform, conflict management, which involves i) identification of active design 

variables and constraints, ii) computation of sensitivity of goals to design variables, and iii) computation of 

updated active variable bounds and constraint limits, are functionalities that are added to the ARA module of 

the PSA sub-template by leveraging the capability of the templates to be edited or customized. The CSA 

module within the PSA sub-module can support designers in estimating the updated limits of active 

constraints, which is not used in this work. The updated active design variable bounds and active constraint 

limits are provided as new values to the constraint and variable modules of the cDSP template using the 

interactions template. 

 

4. DEMONSTRATION USING HOT ROD ROLLING (HRR) TEST PROBLEM 

The HRR problem is used to showcase the efficacy of the proposed framework for co-designing the hot 

rolled rod product, steel material, and rolling and cooling manufacturing processes. The material considered 

is C-Mn steels to realize round steel rods that are to be used as gear blanks to produce gears. The problem is 

based on the industry-inspired HRR problem presented by Nellippallil and co-authors [35]. The empirical 

models used for the HRR problem are provided in Tables A1 and A2 of Appendix A.  

HRR of steel is a complex manufacturing process used to produce hot-rolled steel rods. It comprises a 

series of manufacturing processes executed sequentially, starting with reheating the input primary steel 

obtained from the casting unit in the form of slabs or blooms, referred to here as the ‘reheating process.’ This 

is followed by plastic deformation of the material by passing the material through several rollers in rolling 

mills, referred to here as the ‘rolling process.’ Further, cooling of the rolled product is carried out in a run-

out table, referred to here as the ‘cooling process.’ The above thermo-mechanical processing causes 

microstructural evolution and macrostructural changes in the steel material, resulting in hot-rolled steel rods 

with specific microstructural characteristics and corresponding mechanical properties [35], as depicted in 

Figure 9.  
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FIGURE 9: Information and decision flow across the HRR system that involves product, materials, 

and manufacturing processes. 

The performance requirements of the hot-rolled steel rods are identified in terms of the target mechanical 

properties values of the gears to be produced using the rods. Realizing hot rolled rods with targeted 

mechanical properties requires a collective consideration of the material microstructure and composition and 

its processing. In showcasing the framework's utility, we consider the rolling and cooling manufacturing 

processes, the resulting microstructure of the steel material, and the resultant steel rod products. In Figure 9, 

we depict decision workflows across three levels of decision-making: i) Level 1 - considering the information 

and decision flows between product and materials: where decisions are made with regard to the material 

microstructure at the end of the cooling process, in order to meet the mechanical property/performance 

requirements of the product, ii) Level 2 - considering the information and decision flows between materials 

and manufacturing process: where decisions are made regarding materials processing during the cooling 

process and material microstructural characteristics at the start of the cooling process to meet the 

microstructural requirements at the end of the cooling process (identified at Level 1), and iii) Level 3 

considering the information and decision flows between materials and manufacturing process: where 

decisions are made regarding the materials processing during the rolling process to meet the microstructural 

requirements at the start of the cooling process (identified at Level 2). The decision-making at these levels is 

represented using simulation-based decision models using cDSP’s. Through the multilevel decisions, we 

achieve the co-design of the hot rolled rod product, steel material, and hot rolling and cooling manufacturing 

processes. 

Decision-making at the different levels in HRR systems is in itself a challenging task. This involves 

choosing the appropriate combination of design variables values, given several conflicting goals or objectives 

that must be achieved while satisfying several constraints and bounds. With the decision-making in the HRR 

system taking place sequentially, the output of one level - a result of the decisions made at the level, acts as 

the input for the next level. Hence, decisions are interconnected based on the forward sequential information 

flow from one level to the next. In Figure 9, we depict this information flow between decisions across the 

different levels in the HRR system. The forward information flow starts with the rolling process, receiving 

input data about the characteristics of the steel in terms of shape, size, composition, and microstructure after 

the reheating process. Decisions are made regarding the rolling process variable values using these inputs 

and other rolling-specific data. These decisions include identifying the values for rolling temperature, strain, 

strain rate, and so on that determine the intermediate product's resultant microstructure, shape, and size. The 

microstructure information is subsequently propagated as input to the cooling process. The decisions made 

during the cooling process determine the final material microstructural characteristics, such as steel phase 

fractions and grain size, which determine the mechanical properties of the hot-rolled rod product and its 

performance.  

In this paper, to showcase the proposed framework's efficacy, we only consider the potential design 

conflicts arising from the interactions between the decisions made at Levels 1 and 2. At Level 1, three 
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important mechanical properties, Yield Strength (YS), Tensile strength (TS), and Hardness (HV) of the hot-

rolled rod, are considered, as they are intended to be used subsequently as gear blanks to produce gears. 

Using the GoID approach, the inverse decision workflow begins with the decisions at Level 1 that are directed 

toward achieving maximum YS, TS, and HV values. The target values for these goals are specified based on 

the mechanical property requirements of the gear. The decisions at Level 1 regarding the microstructure 

characteristics of the hot rod rolled rod, defined by ferrite grain size, ferrite fraction, and pearlite interlamellar 

spacing, are propagated to Level 2 as its targets. Hence, at Level 1, the product-material interactions are 

considered.The decisions at Level 2 are directed toward identifying the right combination of design variable 

values for austenite grain size after the rolling process and cooling rate during the cooling process that will 

help realize the target microstructures. Hence, at Level 2, the materials-manufacturing process interactions 

are considered. By considering Levels 1 and 2, we are able to showcase the co-design of the products, 

materials, and manufacturing processes. The set targets at Level 2 may not be realized during exploration 

due to the constraints under which the Level 2 decisions are made. A satisficing solution is identified after 

exploring the generated solution space. If the solutions identified at Level 2 differ from those already 

identified at Level 1, design conflicts between decisions made at Levels 1 and 2 arise. The above conflict 

between the decision made at Levels 1 and 2 and the use of the framework to manage this conflict is 

demonstrated below. We start by identifying the Levels ‘n’ and ‘n+1’, discussed in Section 3.2. In the 

problem defined, Level ‘n’ refers to Level 1, and Level ‘n+1’ refers to Level 2. 

Step 1: The formulation of cDSP for Level 1 is carried out by the product designer using microstructure 

and mechanical property relations - empirical models, design variables (XP,Level 1), bounds (X UB,P,Level 1 – upper 

bound and XLB,P,Level 1– lower bound), constraints (CLevel 1), and mechanical property goals (GJ,Level 1) of the hot 

rolled rod. This is the KH of Level 1, passed to its KHC, summarized in Table 2. The KHC of Level 1 is 

further propagated to the KHC of Level 2, outlined in Table 3. In the PDSIDES platform, the microstructure-

mechanical property relations are stored in the PM sub-template, and the Level l design variables, bounds, 

constraints, and goals are captured using the corresponding modules in the cDSP template. Here, Level 1 

goals are set to maximize the YS, TS, and HV values as close to the target values of 330 MPa, 750 MPa, and 

170, respectively. The cDSP formulation for Level 1 is given in Table A3 of Appendix A.  

A set of design solutions that meet the conflicting design goals at Level 1 is identified by executing the 

above cDSP formulation for 25 different design scenarios, named A to Y. The set of solutions corresponding 

to the 25 design scenarios defines the solution space at Level l. The scenarios are defined by the weights 

assigned for the deviations of goals from the target values in the deviation function. The weights 

corresponding to each design scenario are identified by uniformly sampling the design space and based on 

the designer’s judgment to effectively capture the HRR problem's solution space. The deviation function 

formulated captures the designer’s preference while solving the particular cDSP. For example, a weight of 1 

to the first goal and zero to the others indicates that the designer’s preference using the deviation function 

formulated is to achieve goal 1 to the target as closely as possible. These scenarios and appropriate satisficing 

solution space for the goals at Level 1 are visualized and identified using ternary plots. The search for a 

satisficing solution space for the goals begins by specifying acceptable threshold values for each goal. YS is 

the mechanical property of focus in this paper. Therefore, the satisficing solution space is defined by the 

thresholds: YS ≥ 290 MPa, TS ≥ 500 MPa, and HV ≥ 130. These acceptable threshold values are marked on 

the ternary plots of the individual goals to identify satisficing solution space for each goal; see Figures 10a, 

10b, and 10c. The ternary plots indicating the satisficing solution space for the goals at Level 1 are 

superimposed to identify the common satisficing solution region and the corresponding common design 

scenarios at Level 1, see Figure 10d. The ternary plots for YS, TS, and HV goals, along with the superposed 

plot for Level 1, are shown in Figures 10a, 10b, 10c, and 10d, respectively. The solution space in the direction 

of the arrows, starting from the yellow dashed line in Figure 10a, indicates the satisficing solution space for 

YS. The entire solution space for TS and HV is satisficing, as indicated by the arrows in Figures 10b and 

10c. The highlighted region in Figure 10d depicts the satisficing solution space for Level 1.  
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FIGURE 10: Ternary plots for 10a. YS, 10b. TS, 10c. HV, and 10d. Superposed plot for Level 1 

Level 1 goal values at different design scenario points within this satisficing solution space - scenarios 

A, F, I, J, Q, and U listed in Table 1 are evaluated in accordance with the designer’s preference. The designer's 

preference is to select a solution that results in goal values near the target values for all the goals. Based on 

the preference, the designer picks the satisficing solution corresponding to design scenario U as there is no 

clear preference among these five alternatives. This choice results in the following goal values: YS = 329.96 

MPa, TS = 520.79 MPa, and HV = 131.84. The design variables values corresponding to the above decision 

(Xf = 0.883, dα = 8 µm, S0 = 0.15 µm, Si = 0.3%, N = 0.009%, and Mn = 1.5 %) are passed to the KHC of 

Level 1 summarized in Table 2, which will, in turn, be propagated to the KHC of Level 2 summarized in 

Table 3. At Level 2, the materials designer uses the Xf, dα, and S0 values from its KHC as goal targets, thereby 

promoting cooperation with Level 1. 

TABLE 1: Level 1 solutions 

Design 

Scenario 

Weight on Goals (WJ)  Goals (GJ,n) Design Variables (Xn) 

W1 W2 W3 
G1,1 

YS(MPa) 

G2,1 

TS(MPa) 

G3,1 

HV 
Xf dα (µm) S0 (µm) 

A 1 0 0 329.97 515.77 131.01 0.900 8.00 0.15 

F 0.5 0 0.5 329.96 520.79 131.84 0.883 8.00 0.15 

I 0.75 0 0.25 329.96 520.79 131.84 0.883 8.00 0.15 

J 0.75 0.25 0 329.96 520.79 131.84 0.883 8.00 0.15 

Q 0.6 0.2 0.2 329.96 520.79 131.84 0.883 8.00 0.15 

U 0.5 0.2 0.3 329.96 520.79 131.84 0.883 8.00 0.15 

 

TABLE 2: Information contained in the KHC of Level 1 

Sl. No. Information 

a. 

Level 1 design variable values (corresponding to the satisficing solution picked) that need 

to be propagated to Level 2 as its goal targets: Xf = 0.883, dα = 8.000 µm, S0 = 0.150 µm, Si 

= 0.300 %, N = 0.009 % and Mn = 1.500 %. 

b. Microstructure-mechanical property models from cDSP of Level 1. 

 

TABLE 3: Information contained in the ‘initial KHC’ of Level 2 

Sl. No. Information 

a. Goal target values propagated from Level 1:  Xf = 0.883, dα = 8.000 µm, S0 = 0.150 µm. 

b. Microstructure-mechanical property models from cDSP of Level 1. 
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Step 2: The cDSP for Level 2 is formulated by the materials designer using information regarding models 

relating to processing and microstructure; design variables (XP,Level 2), and their bounds (XUB,P,Level 2 – upper 

bound and XLB,P,Level 2 – lower bound); constraints (CLevel 2), and goals (GJ,Level 2). The initial cDSP formulation 

for Level 2 and the empirical models used in this formulation are provided in Tables A3 and A2, respectively,  

of Appendix A. In the PDSIDES platform, the processing-microstructure relations are stored in the PM sub-

template. Level 2 design variables, bounds, constraints, and goals are captured using the corresponding 

modules in the cDSP template. The goals for this level are set to maximize Xf and minimize dα and S0 values. 

This choice is based on a comparison of the target values from the KHC of Level 2 - design variable values 

corresponding to the design scenario U chosen in Step 1 and design variable bounds from the KH of the same 

level, as specified by the variable bound values in the cDSP formulation for Level 2 in Table A3 of Appendix 

A. 

In a manner similar to Step 1, a set of satisficing design variable values that meet the conflicting goals is 

identified by executing Level 2 cDSP formulation for the 25 different design scenarios, named A to Y. The 

appropriate satisficing solution space for Level 2 is visualized using ternary plots. The satisficing solution 

space is defined by dα ≤ 25.1µm, S0 ≤ 0.155µm, and Xf ≥ 0.7. The ternary plots for dα, S0, and Xf are shown 

in Figures 11a, 11b, and 11c, respectively, and Figure 11d shows the superposed plot for Level 2 

corresponding to the initial solutions.  
 

  
FIGURE 11: Ternary plots for goals dα (11a), S0 (11b), Xf (11c), and the superposed plot (11d) for 

Level 2 corresponding to the initial Level 2 solutions 

The yellow dashed line in Figures 11a and 11d, the orange dotted lines in Figures 11b and 11d, and the 

red chain line in Figures 11c and 11d represent the satisficing boundaries of dα, S0, and Xf, respectively. The 

arrows indicate their feasible directions. The overall satisficing solution space corresponding to the initial 

Level 2 solution is highlighted in Figure 11d. The goal values corresponding to different design scenarios 

that fall in the satisficing space are listed in Table 4. The microstructure goal values achieved are mapped to 

the microstructure-mechanical property relations of Level 1 from KHC of Level 2, to compute the 

corresponding Level 1 goal values. For example, for design scenario Y in Table 4, the goal values dα = 25.01 

µm, S0 = 0.15 µm, and Xf = 0.72 of Level 2, when mapped to the empirical relations between mechanical 

properties and microstructure at Level 1, will result in YS = 279.81 MPa, TS = 502.45 MPa and HV = 139.57. 

This is repeated for all design scenarios listed in Table 4. The designer’s preference is to pick a design 

scenario in Table 4 that yields the value closest to the satisficing targets of the goal of primary importance 

(YS) picked in Step 1 while still meeting the remaining two goals (TS and HV). A solution is selected using 

the computed values of the Level 1 goals that correspond with the Level 2 goal values and after considering 

the designer’s preference. The solution corresponding to design scenario Y is chosen as the Level 2 solution. 

The above solution and corresponding computed goal values in Level 1 are propagated to the interactions 

space to compare and detect conflicts in the next step. 
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TABLE 4: Initial Level 2 solutions 

Design 

Scenario 

Weight on Goals (WJ) Goals (GJ,n+1) Design Variables (Xn+1) 

W1 W2 W3 
G1,2 

dα (µm) 

G2,2 

S0 (µm) 

G3,2 

Xf 

C 

(%) 

Mn 

(%) 

dγ 

(µm) 

CR 

(oC/s) 

B 0 1 0 25.01 0.15 0.72 0.18 1.46 30.01 0.27 

C 0 0 1 25.01 0.15 0.72 0.18 1.45 30.01 0.27 

E 0 0.5 0.5 25.01 0.15 0.72 0.18 1.46 30.01 0.27 

F 0.5 0 0.5 24.31 0.15 0.71 0.19 1.50 30.00 0.26 

G 0.25 0.75 0 25.01 0.15 0.72 0.19 1.50 30.01 0.24 

H 0.25 0 0.75 25.01 0.15 0.72 0.19 1.50 30.01 0.24 

I 0.75 0 0.25 25.01 0.15 0.72 0.18 1.46 30.01 0.27 

K 0 0.25 0.75 25.01 0.15 0.72 0.18 1.46 30.01 0.27 

L 0 0.75 0.25 25.01 0.15 0.72 0.18 1.46 30.01 0.27 

M 0.33 0.34 0.33 25.01 0.15 0.72 0.18 1.46 30.01 0.27 

N 0.2 0.2 0.6 25.01 0.15 0.72 0.18 1.46 30.01 0.27 

O 0.4 0.2 0.4 25.00 0.15 0.72 0.18 1.50 30.00 0.24 

P 0.2 0.4 0.4 25.01 0.15 0.72 0.18 1.46 30.01 0.27 

S 0.2 0.6 0.2 25.01 0.15 0.72 0.18 1.46 30.01 0.27 

U 0.5 0.2 0.3 25.00 0.15 0.72 0.18 1.50 30.00 0.24 

V 0.3 0.5 0.2 25.01 0.15 0.72 0.19 1.50 30.01 0.24 

W 0.2 0.5 0.3 25.01 0.15 0.72 0.18 1.46 30.01 0.27 

X 0.3 0.2 0.5 25.01 0.15 0.72 0.18 1.46 30.01 0.27 

Y 0.2 0.3 0.5 25.01 0.15 0.72 0.18 1.46 30.01 0.27 

Step 3: In this step, the conflicts between the interacting Levels 1 and 2 are detected and managed through 

the designer's intervention. First, the loss in all three goals of Level 1 (GJ,Level 1, where J = 1, 2, 3) due to the 

choice of the solution for Level 2 is computed according to Equation 1. In the HRR problem, Level ‘n’ is 

Level 1, and Level ‘n+1’ is Level 2. 

𝐿_𝐺1,𝐿𝑒𝑣𝑒𝑙 1 =  
 𝐺1,𝐿𝑒𝑣𝑒𝑙 1𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑐𝑖𝑛𝑔

−  𝐺1,𝐿𝑒𝑣𝑒𝑙 1𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑

𝐺1,𝐿𝑒𝑣𝑒𝑙 1𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑐𝑖𝑛𝑔

=
 290 −  279.81

290
= 0.0351 

 

Similarly   𝐿_𝐺2,𝐿𝑒𝑣𝑒𝑙 1   =  −0.0049 and 𝐿_𝐺3,   𝐿𝑒𝑣𝑒𝑙 1    =  −0.0736. 

Since all three goals are maximization goals, only positive loss values indicate conflict. Hence, conflict 

only exists for Goal 1, YS. The ARA module in the PDSIDES platform's PSA sub-template facilitates the 

above loss computation to detect conflicts. The designer checks for active design variables (XK,Level 1) of Level 

2 (total, m = 4) and active constraints to resolve this conflict. By comparing the XK,Level 2 values in Table 4 

with the variable bounds specified in the initial cDSP formulation of Level 2 – the KH of Level 2, the XK, Level 

2, dγ (K = 1) is found to be near its lower variable bounds. Constraints on the lower limit of goal S0 and the 

upper limit of goal dα are found to be active. Hence, Approach 2 is chosen. The ARA module in the PSA sub-

template of the PDSIDES platform facilitates the identification of active design variables and constraints. 

The sensitivity of all three goals of Level 2 (GJ,Level 2, where J = 1, 2, 3), independently with respect to 

XK,Level 2, dγ, is computed using Equation 2. The sensitivity computations are performed for various 

combinations of all the remaining Xn+1 values at either upper or lower bounds or nominal values. The above 

computation is illustrated here for the case of sensitivity of Goal 2 (d, J = 2) to the active design variable, 

dγ. This requires the KH of Level 2 concerning the mathematical relations between XLevel 2 and GJ,Level 2 to be 

used. Hence, for C = 0.24%, Mn = 1.1%, and CR = 0.54 oC/s (all at their nominal values) 

𝑆2,𝑋1,𝐿𝑒𝑣𝑒𝑙 2
=  

𝐺2,𝑋𝑈𝐵,1,𝐿𝑒𝑣𝑒𝑙 2
 −  𝐺2,𝑋𝐿𝐵,1,𝐿𝑒𝑣𝑒𝑙 2

𝑋𝑈𝐵,1,𝐿𝑒𝑣𝑒𝑙 2 −  𝑋𝐿𝐵,1,𝐿𝑒𝑣𝑒𝑙 2

=  
33.11 −  24.00

100 −  30
 =  0.1303 

 
The sensitivity values for different combinations of the remaining XLevel 2 are computed as above and are 

listed in Table 5 below. The largest value in magnitude from these calculated sensitivity values for Goal ‘2’ 

is its sensitivity to X1,Level 2 (dγ). Hence, the sensitivity of Goal 2 (d) to dγ, 𝑆2,𝑋1,𝐿𝑒𝑣𝑒𝑙 2
= 0.1303. Similarly, 
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the sensitivity of Goal 1 (Xf) to dγ is 𝑆1,𝑋1,𝐿𝑒𝑣𝑒𝑙 2
= −0.00061. The sensitivity of Goal 3 (S0) to dγ, is 

𝑆3,𝑋1,𝐿𝑒𝑣𝑒𝑙 2
= 0. 

TABLE 5: Sensitivity values of d to dγ for various combinations of other design variables 

C (%) Mn (%) CR (oC/s) 𝑺𝟐,𝑿𝟏,𝑳𝒆𝒗𝒆𝒍 𝟐
 

0.24 1.1 0.1833 0.1303 

0.24 1.1 0.9 0.1303 

0.24 1.1 0.54 0.1303 

0.18 1.1 0.54 0.1303 

0.3 1.1 0.54 0.1303 

0.24 0.7 0.54 0.1303 

0.24 1.5 0.54 0.1303 

 

The deviations of all ‘J’ goal values achieved at Level 2 compared to their targets are computed according 

to Equation 3, as given below. 

𝐷G1,Level 2
=  G1,Level 2 𝑡𝑎𝑟𝑔𝑒𝑡

−  G1,Level 2𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑
= 0.882 − 0.725 = 0.158 

 

Similarly, 𝐷𝐺2,Level 2
= 8 − 25.01 =  −17.01 𝑚 and 𝐷𝐺3,Level 2

 = 0.150 − 0.150 =  0 𝑚 

 

Using the above goal deviations and the sensitivity values, the update required for design variable dγ for 

a goal ‘J’ is computed using Equation 4. An example of the same is given below. 

𝑈 2,𝑋1,𝐿𝑒𝑣𝑒𝑙 2
 =  

𝐷 𝐺2,𝐿𝑒𝑣𝑒𝑙 2

𝑆 2,𝑋1,𝐿𝑒𝑣𝑒𝑙 2

 =  
−17.01

0.1303
= −130.544 𝑚 

 

TABLE 6: Design Variable update values for various goals and sensitivity values 

J in 𝑮𝑱,𝑳𝒆𝒗𝒆𝒍 𝟐 𝑫𝑮𝑱,𝑳𝒆𝒗𝒆𝒍 𝟐
 XK,Level 2 𝑺𝑱,𝑿𝑲,𝑳𝒆𝒗𝒆𝒍 𝟐

 𝑼 𝑱,𝑿𝑲,𝑳𝒆𝒗𝒆𝒍 𝟐
 

1 (Xf) 0.158 d (K=1) -0.00061 -259.016 

2 (d, 𝐦) -17.01 d  0.1303 -130.544 

3 (S0, 𝐦) 0 d  0 0    

 

The results of these computations are presented in Table 6. Only negative design variable update values 

are considered since the d is at its lower bound. The largest value in magnitude in Table 6 is -259.016. This 

value is chosen to update the lower bound of d. The above value is then used to compute the updated lower 

bound of the active design variable (d) using Equation 5, as given below. 
X1,Level 2 𝑈𝑝𝑑𝑎𝑡𝑒𝑑  𝑏𝑜𝑢𝑛𝑑

 =  X1,Level 2 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑏𝑜𝑢𝑛𝑑
+ 𝑈 X1,Level 2

 = 30 – 259.016 = – 229.016 m 

 

The calculated updated bound for d is practically infeasible. Thus, a practically feasible lower bound 

of 10 m is selected based on values obtained from the literature [53]. Also, the constraint on the lower limit 

of Goal S0 is relaxed to a smaller value of 0.10 m, and the constraint on the upper limit of Goal Xf is relaxed 

to a larger value of 30 m, based on the designer’s domain knowledge. The design variable sensitivity 

computations and computation of updated active design variable bounds are facilitated by the ARA module 

in the PSA sub-template of the PDSIDES platform. The calculation of the updated limits of the active 

constraints can be facilitated by the CSA module in the PSA sub-template of the PDSIDES platform, which 

is not employed in this work. 

TABLE 7: Information contained in the ‘updated KHC’ of Level 2 
Sl. No. Information 

a. Goal target values propagated from Level 1:  Xf = 0.883, dα = 8.000 µm, S0 = 0.150 µm. 

b. Microstructure-mechanical property models from cDSP of Level 1. 

c. Updated active design variable bounds: i) X1,Level 2 UB (d) = 10 m. 

d. Updated active constraint limits: i) Lower limit on S0 = 0.10 m, and ii) Upper limit on Xf = 30 m. 

 

The updated variable bounds and relaxed constraint limit are propagated to the KHC of Level 2, 

summarized in Table 7. Level 2 cDSP is reformulated with these updated bounds and the relaxed constraint 
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limit as specified in Table A3 of Appendix A. Step 2 is repeated by executing the updated cDSP for different 

design scenarios. These scenarios and the satisficing solution space are visualized using ternary plots. The 

new satisficing solution space is defined by dα ≤ 15µm, S0 ≤ 0.125µm, and Xf ≥ 0.7. Using Figures 12a, 12b, 

and 12c, we represent the ternary plot for dα, S0, and Xf, respectively, corresponding to the updated Level 2 

solutions. The superposed plot for Level 2 corresponding to the updated solutions is shown in Figure 12d. 

The yellow dashed line in Figures 12a and 11d, the orange dotted lines in Figures 12b and 12d, and the red 

chain line in Figures 12c and 12d represent the satisficing boundaries of dα, S0, and Xf, respectively, and the 

arrows indicate their feasible directions. The overall satisficing solution space of Level 2 corresponding to 

the updated solutions is highlighted in Figure 12d. 

  

 
FIGURE 12: Ternary plots for goals dα (12a), S0 (12b), Xf (12c), and the superposed plot (12d) for 

Level 2 corresponding to the updated Level 2 solutions 

The goal values corresponding to different design scenarios listed in Table 8 that fall in the 

satisficing space are mapped to the microstructure-mechanical property relations of Level 1 from the KHC 

of Level 2 to compute the corresponding Level 1 goal values. The designer’s preference here is to pick a 

design scenario from Table 8 that yields the value closest to the satisficing targets (when the value is lower 

than the set satisficing targets) or exceeds the satisficing target by the greatest margin (when the value is 

larger than the set satisficing targets). In this case, the design scenario is selected by giving prime importance 

to the YS goal picked in Step 1 while still meeting the TS and HV goal requirements. Based on this criterion, 

the solution corresponding to design scenario O is chosen as the updated Level 2 solution. The selection is 

based on the computed values of Level 1 goals corresponding to the achieved Level 2 goal values and by 

looking into the designer’s preference. The choice of design scenario O results in YS = 295.13 MPa, TS = 

545.48 MPa, and HV = 140.72.  

TABLE 8: Updated Level 2 solutions 

Scenario 

Weight on Goals (WJ) Goals (GJ,n+1) Design Variables (Xn+1) 

W1 W2 W3 
G1,2 

dα (µm) 

G2,2 

S0 (µm) 

G3,2 

Xf 

C 

(%) 

Mn 

(%) 

dγ 

(µm) 

CR 

(oC/s) 

B 0 1 0 13.100 0.119 0.707 0.18 1.50 10.04 0.79 

E 0 0.5 0.5 13.100 0.119 0.707 0.18 1.50 10.04 0.79 

G 0.25 0.75 0 13.094 0.119 0.707 0.18 1.50 10.02 0.79 

H 0.25 0 0.75 13.089 0.119 0.707 0.18 1.50 10.00 0.79 

K 0 0.25 0.75 13.761 0.122 0.714 0.18 1.50 10.00 0.68 

L 0 0.75 0.25 13.100 0.119 0.707 0.18 1.50 10.04 0.79 

M 0.33 0.34 0.33 13.100 0.119 0.707 0.18 1.50 10.04 0.79 
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N 0.2 0.2 0.6 13.100 0.119 0.707 0.18 1.50 10.04 0.79 

O 0.4 0.2 0.4 12.543 0.117 0.701 0.18 1.50 10.00 0.90 

P 0.2 0.4 0.4 13.100 0.119 0.707 0.18 1.50 10.04 0.79 

S 0.2 0.6 0.2 13.100 0.119 0.707 0.18 1.50 10.04 0.79 

V 0.3 0.5 0.2 13.094 0.119 0.707 0.18 1.50 10.02 0.79 

W 0.2 0.5 0.3 13.100 0.119 0.707 0.18 1.50 10.04 0.79 

X 0.3 0.2 0.5 13.100 0.119 0.707 0.18 1.50 10.04 0.79 

Y 0.2 0.3 0.5 13.100 0.119 0.707 0.18 1.50 10.04 0.79 

The updated solution and computed Level 1 goal values (𝐺𝐽,𝐿𝑒𝑣𝑒𝑙 1′) corresponding to the updated Level 

2 goal values are then propagated to the interaction space, and Step 3 is repeated to detect conflicts. The 

updated loss in all three goals of Level 1 (𝐿_𝐺1,𝐿𝑒𝑣𝑒𝑙 1′, where J = 1 to 3) due to the choice of the updated 

solution at Level 2, is recomputed according to Equation 1. This computation is carried out on the PDSIDES 

platform using the ARA module of the PSA sub-template. 

𝐿_𝐺1,𝐿𝑒𝑣𝑒𝑙 1′ =  
 𝐺1,𝐿𝑒𝑣𝑒𝑙 1 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑐𝑖𝑛𝑔

−  𝐺1,𝐿𝑒𝑣𝑒𝑙 1′

𝐺1,𝐿𝑒𝑣𝑒𝑙 1 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑐𝑖𝑛𝑔

=  
 290 −  295.13

290
= −0.0176 

 

Similarly, 𝐿_𝐺2,𝐿𝑒𝑣𝑒𝑙 1′  =  −0.0909 and 𝐿_𝐺3,𝐿𝑒𝑣𝑒𝑙 1′   =  −0.0824 

 

Since all three goals are maximization goals, only positive loss values indicate conflict. Hence, no 

conflicts are detected. As no further conflicts are not detected, the updated solution or decision at Level 2 is 

propagated inversely to the next level in the HRR system - Level 3, as its goals.  

Using the information-decision framework, the designer can systematically identify and formulate the 

KH and KHC of Levels 1 and 2 and model the decision-making and interactions. Using the framework, the 

designer can detect conflicts between the decisions at the interacting levels regarding the YS goal of Level 1 

not being satisfied by the initial set of solutions at Level 2. By using Approach 2, the designer is able to 

modify (expand) the design space at Level 2 and identify improved solution points that result in an improved 

value of YS by 13.32 MPa (approximately 4.6%) to 295.13 MPa. This brings all Level 1 goals to within 

satisficing limits. Using the information-decision framework, the designer is able to manage design conflict 

(MDC) between the interacting decisions at Levels 1 and 2 by realizing improved Level 2 solutions. With 

the improved Level 2 solutions, satisficing goal values for Level 1 are realized, thereby facilitating goal (FG) 

achievement and supporting the multilevel, top-down co-design of products, materials, and manufacturing 

processes. Using the HRR test problem, the capability offered by the information-decision framework to a 

designer in facilitating cooperative decision-making and supporting multilevel, top-down co-design in the 

design of products, materials, and manufacturing processes is demonstrated. The focus of the problem 

discussed is on the fulfillment of multiple conflicting product and process-related goals through the design 

of the material microstructure and processing paths in an inverse manner. PSPP relationships are used to 

model the problem as an integrated design of products, materials, and manufacturing processes. The proposed 

framework can be applied to support systematic information flow and cooperative decision-making across 

different levels to fulfill the end goals for complex problems characterized by the sequential information flow 

across models at different levels. The generic mathematical decision support constructs and the systematic 

information-decision workflow of the proposed framework facilitate this. 

The proposed framework can also be utilized in a similar manner as discussed above to facilitate the co-

design of the next set of interacting levels in the HRR system – Levels 2 and 3. For the next set of interacting 

levels, Level 2 will be considered Level ‘n,’ and Level 3 will be considered Level ‘n+1’ in the framework. 

The satisficing solution identified at Level 2 will become the goal target values at Level 3. The framework 

implementation will start with Step 2 by modeling the decision-making at Level 3 to achieve the goal targets 

propagated from Level 2. This is followed by Step 3 for conflict detection and management like the one 

demonstrated for Levels 1 and 2 interactions. By facilitating co-design between Levels 2 and 3 using the 

framework, designers can identify a satisficing set of rolling process parameters that meet the microstructure 

requirements propagated from Level 2. In this paper, we scope the use of the HRR test problem to 

demonstrate the framework's efficacy in supporting the co-design of products, materials, and manufacturing 

processes, which is realized by considering the interactions between Levels 1 and 2. The facilitation of the 

co-design between Levels 2 and 3 is beyond the scope of this paper and hence not presented. 
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5. CLOSING REMARKS 

The realization of products or complex components that meet targeted performance requires the 

multilevel co-design of the product, materials, and manufacturing processes using PSPP relations. Design 

conflicts arise during the multilevel co-design of such systems when decisions made at one level with the 

constraints, bounds, and goals differ from the decisions of another interacting level. These design conflicts 

get propagated in a top-down manner for multilevel systems, adversely impacting the multilevel and system 

performance. Hence, there is a need to manage design conflicts by facilitating cooperation between decisions 

made across different levels. Enabling cooperation will help ensure improved multilevel and system 

performance and support multilevel co-design of products, materials, and manufacturing processes.  

The information‐decision framework presented in this paper allows the decision-maker to a) identify and 

formulate the Know‐How (KH) and Know‐How‐to‐Cooperate (KHC) of the interacting levels, b) model the 

decision-making of the interacting levels using the KH and KHC, c) detect conflicts between the interacting 

levels and d) manage conflicts by regulating decisions at the different levels using Approach 1 and Approach 

2. To manage conflicts, Approach 1 uses a modification of design variable bounds, and Approach 2 combines 

Approach 1 with the modification of active constraint limits. The framework allows the designer to control 

the design space and decision-making of the interacting levels, facilitating cooperative decision-making 

during the top-down, multilevel co-design of systems involving products, materials, and manufacturing 

processes. The collaborative nature of multilevel decision-making using the framework helps realize 

improved multilevel and system performance by allowing the management of design conflicts and facilitating 

goal realization at the different levels. Based on the above contributions, the key functionalities offered to 

materials, product, and manufacturing process designers by the framework include: 

• the capability to systematically detect and quantify the extent of conflicts between decisions at the 

interacting levels. Using the quantification of loss in goal values, the designer can establish priority 

between conflicts detected (in case of multiple conflicts) and choose the most important conflict to 

resolve;  

• the capability to identify key active design variables (microstructure variables) and active constraints 

(process constraints), which, when appropriately modified (considering the practical feasibility of 

making changes), lead to reduced conflicts between multilevel decisions;  

• a systematic approach using the proposed sensitivity metric to identify and manage key active design 

variables for achieving performance improvements or reducing conflicts. The approach, together with 

the metric, enables the designer to identify performance improvements possible with minimum resource 

utilization; 

• a systematic approach to estimate the amount by which the key active variable bounds need to be changed 

to resolve design conflict. The estimate will serve as a guide for the designer to establish new bounds 

for active design variables for the next iteration; 

• the capability to visualize the improvements in the solution spaces of the multilevel goals (using the 

ternary plots) between iterations. Using the visualization, the designer can make design choices among 

satisficing solutions more intuitively according to their preference, which is a benefit over other top-

down design exploration approaches like IDEM;  

• the capability to handle many design variables and goals (‘n’ number), which provides it an advantage 

in comparison with IDEM and other design exploration methods, which are limited by the number of 

goals and design variables that can be studied in multilevel systems design problems; and 

• the capability to define new or updated requirements and goals at each level by formulating individual 

distributed but coupled cDSPs. This results in more flexible designs, leading to consistent system design 

where multilevel and system goals are physically feasible given the available resources— a benefit 

compared to IDEM and similar methods (which are based on mapping) and approaches that use an all-

in-one formulation. 

The framework is tested for the above functionalities using the HRR system design problem. Using the 

framework, the management of design conflicts between interacting Levels 1 and 2 is demonstrated. The 

design space regulation and decision-making are carried out using the framework by modifying design 

variable bound values and active constraints at Level 2, resulting in an improved Level 2 design space. The 

above improvement enables the designer to choose improved Level 2 solutions closer to target goals, 

resulting in a 4.6 percent improvement in the YS value (Level 1 goal), meeting the satisficing system goal 

targets. We also present the use of the template-based computational platform PDSIDES in formulating and 
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executing the cDSPs, exploring the solution space at multiple levels, and detecting and managing conflicts 

between interacting levels. The framework and related design constructs discussed are generic. The 

framework facilitates the top-down, sequential, multilevel co-design of systems involving products, 

materials, and manufacturing processes by promoting cooperative design decision-making to manage design 

conflicts. The top-down design of engineering systems characterized by sequential information flow can be 

accomplished using the framework presented.  
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APPENDIX A  

In Table A1, the models that relate the steel microstructure and composition design variables after the 

cooling process with the mechanical property goals are presented. These models are used at Level 1 in the 

HRR problem; see Step 1 in Section 4. 

TABLE A1: Empirical models for mechanical properties at Level 1 

(Tmf = 700 0C, p = 6 µm, t carb = 0.025 µm) 
Mechanical Property Empirical Model Source 

YS 
Xf (77.7+59.9[Mn]+9.1(dα*0.001)-0.5) + 

478[N]0.5 + 1200[P] + (1-Xf) (145.5+3.5S0
-0.5) 

Kuziac et.al. (1997) [54] 

TS 
Xf (20+2440[N]0.5 + 18.5(0.001*dα)-0.5 +    

750(1-Xf) + 3(1-Xf
0.5) S0

-0.5 + 92.5*[Si] 
Kuziac et.al. (1997) [54] 

HV Xf (361-0.357Tmf+50[Si]) + 175(1-Xf) Yada (1987) [55] 

 

In Table A2, the models that relate the cooling process parameters with the steel microstructure after 

the cooling process are presented. These models are used at Level 2 in the HRR problem; see Step 2 in 

Section 4. 

 

TABLE A2: Empirical models for microstructure characteristics at the end of the cooling process at 

Level 2 
Microstructure characteristics Empirical Models Source 

dα 
(1−0.45εr 0.5) *{(-0.4 + 6.37*C eq) +(24.2 – 

59*C eq) CR-0.5+22*(1-exp (-0.015*d γ))} Hodgson & Gibbs (1992) [56] 

S0 
0.1307+1.027[C]-1.993[C]2 -

0.1108[Mn]+0.0305*CR-0.52 
Kuziac et.al. (1997) [54] 

Xf eq 
1 – ([C]/(0.789-0.1671[Mn]+(0.1607[Mn]2) –

(0.0448[Mn] 3))) 
Kuziac et.al. (1997) [54] 

Xf 
Xf eq – 5.48(1-exp(-0.0106CR)) –(0.723*(1-

exp(-0.0009dγ))) 
Kuziac et.al. (1997) [54] 

C eq ([C] + [Mn])/6 Hodgson & Gibbs (1992) [56] 

 

In Table A3, the cDSP formulations for Levels 1 and 2 of the HRR problem are presented. The cDSPs 

are discussed in Section 4, Steps 1 and 2. In Table A3, the values in bold font and the ‘*’ symbol adjacent to 

it indicate locations where changes are made to the initial cDSP formulation at Level 2. The changes made 

to the cDSP are discussed in Section 4, Step 3. These changes are listed below in bold font, along with the 

‘#’ symbol adjacent to it. 

Level constraints i, ii, and v for Level 2 

i.  8 ≤ dα ≤ 30 # (µm) 
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ii. 0.10 # ≤ S0 ≤ 0.25 (µm) 

v. 10 # ≤ dγ ≤ 100  

 

Variable bound iii for Level 2 

       iii. 10 # ≤ X9 ≤ 100 (µm) 

 

 

 

 

 

TABLE A3: cDSP formulations of interacting Levels 1 and 2 in the HRR system 

Level 1 Level 2 

GIVEN 

a. End requirements of Level 1 in terms of 

Mechanical properties required 

i. Goal G1: Maximize YS [MPa]  

ii. Goal G2: Maximize TS [MPa] 

iii. Goal G3: Maximize HV 

a. End requirements of Level 2 in terms of 

microstructure characteristics at the end of cooling 

process 

i. Maximize Xf  

ii. Minimize dα  

iii. Minimize S0  

b. Well-established mathematical models for these 

properties in terms of the design variables, see 

Table A1 above 

b. Well established mathematical models for the 

above requirements in terms of the design variables, 

see Table A2 above  

c. Design variables (Xp) and their bounds: 

X1: Ferrite fraction, Xf 

X2: Ferrite grain size, dα (µm) 

X3: Pearlite interlamellar spacing, S0 (µm) 

X4: Silicon concentration, [Si] (%) 

X5: Nitrogen concentration, [N] (%) 

X6: Manganese concentration after cooling process, 

[Mn] (%) 

c. Design variables (XP) and their bounds 

 

X7: Carbon concentration, [C] (%) 

X8: Manganese concentration after rolling, [Mn] 

(%) 

X9: Austenite grain size, d γ 

X10: Cooling rate, CR (oC/s) 

 

FIND values of 

a. Design variables: XP (for P = 1,2,3,4,5,6) a. Design variables: XP (for P = 7,8,9,10)  

 

b. Deviation variables: d1, d2, and d3 b. Deviation variables: d4, d5, and d6 

SATISFY 

a. Level constraints 

i. 220 ≤ YS ≤ 330 (MPa) 

ii. 450 ≤ TS ≤ 750 (MPa) 

iii. 131 ≤ HV ≤ 170 

a. Level constraints 

i. 8 ≤ dα ≤ 25 * (µm) 

ii. 0.15 * ≤ S0 ≤ 0.25 (µm) 

iii. 0.5 ≤ Xf ≤ 0.9 

iv. C eq < 0.35  

v. 30 * ≤ dγ ≤ 100 

vi. 0.1833 ≤ CR ≤ 0.9 

b. Level goals: 

i. {YS (Xp)/YS target} + d1
- - d1

+ = 1 

ii. {TS (Xp)/TS target} + d2
- - d2

+ = 1 

iii. {HV (Xp)/HV target} + d3
- - d3

+ = 1 

b. Level goals: 

i. {dα target/dα (XP)} + d4
+ - d4

- = 1 

ii. {S0 target/S0 (XP)} + d5
+ - d5

- = 1 

iii. {Xf (XP)/Xf target} + d6
- - d6

+ = 1 

c. Variable bounds 

i. 0.1 ≤ X1 ≤ 0.9 

ii. 8 ≤ X2 ≤ 25 (µm) 

iii. 0.15 ≤ X3 ≤ 0.25 (µm) 

iv. 0.18 ≤ X4 ≤ 0.3 (%) 

v. 0.007 ≤ X5 ≤ 0.009 (%) 

vi. 0.7 ≤ X6 ≤ 1.5 (%) 

c. Variable bounds 

i. 0.18 ≤ X7 ≤ 0.30 (%) 

ii. 0.7 ≤ X8 ≤ 1.5 (%) 

iii. 30 * ≤ X9 ≤ 100 (µm) 

iv. 0.1833 ≤ X10 ≤ 0.9 (oC/s) 

d. Deviation variable bounds 

di
+, di

- ≥ 0 and di
+ * di

- = 0 

d. Deviation variable bounds 

di
+, di

- ≥ 0 and di
+ * di

1 = 0 
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MINIMIZE 

The deviation function (Z1). 

Min Z1 = 𝜮 Wi (di
+ + di

-), 

where, Wi = weights assigned to the deviations of 

the individual goals from the target values, 𝜮 Wi = 

1, and i = 1, 2, 3. 

The deviation function (Z2). 

Min Z2 = 𝜮 Wi (di
++ di

-),  

where, Wi = weights assigned to the deviations of 

the individual goals from the target values, 𝜮 Wi = 

1 and i = 4, 5, 6 

 


