2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO) | 979-8-3503-9509-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/CG057630.2024.10444817

Representing Data Collections in an SSA Form

Tommy McMichen, Nathan Greiner, Peter Zhong, Federico Sossai, Atmn Patel, Simone Campanoni
Northwestern University
Evanston, IL, USA

Abstract—Compiler research and development has treated
computation as the primary driver of performance improvements
in C/C++ programs, leaving memory optimizations as a secondary
consideration. Developers are currently handed the arduous task of
describing both the semantics and layout of their data in memory,
either manually or via libraries, prematurely lowering high-level
data collections to a low-level view of memory for the compiler.
Thus, the compiler can only glean conservative information about
the memory in a program, e.g., alias analysis, and is further
hampered by heavy memory optimizations. This paper proposes
the Memory Object Intermediate Representation (MEMOIR), a
language-agnostic SSA form for sequential and associative data
collections, objects, and the fields contained therein. At the core
of MEMOIR is a decoupling of the memory used to store data
from that used to logically organize data. Through its SSA form,
MEMOIR compilers can perform element-level analysis on data
collections, enabling static analysis on the state of a collection
or object at any given program point. To illustrate the power of
this analysis, we perform dead element elimination, resulting in
a 26.6% speedup on mcf from SPECINT 2017. With the degree
of freedom to mutate memory layout, our MEMOIR compiler
performs field elision and dead field elimination, reducing peak
memory usage of mef by 20.8%.

Keywords—compilers, intermediate representation, optimization

I. INTRODUCTION

Imperative programming languages require developers to
describe their programs via direct updates to the program
state. Some of these languages, namely C, give developers
direct access to memory, making the ceiling for manual
memory optimizations nearly unlimited. Using this degree of
freedom, developers have been able to build operating systems,
optimizing compilers, and interpreters.

However this manual control comes with the caveat that
all memory optimizations must be created manually. This
spawned mostly out of necessity, as compilers of the time were
almost solely translation units, taking C as a portable assembly
language and translating it to the target machine code. As such,
developers were required to prematurely optimize [1] memory,
before the compiler could perform meaningful optimizations.

For projects where performance is a primary goal, manual
memory optimizations are prevalent throughout the source code.
Anytime a developer wants to change a data structure, they must
consider the implications of that change on existing memory
optimizations. A daunting task, as memory optimizations are
performed by careful consideration of both the data structure
definition and its multitude of allocations. However this leaves
compilers with lacking degrees of freedom, as these decisions
are fixed before compilation.

As a result, production compiler optimizations either focus
on scalar values or are limited in their applicability when

memory is involved. Modern compilers seek to perform more
aggressive transformations, such as automatic vectorization
and parallelization [2-14], to fully utilize modern, multi-core
processors. Such transformations require precise information
about data and control dependencies in the program [15-17].
For programs operating on scalars, these dependencies can
be easily analyzed with SSA forms [18,19]. However these
techniques are severely limited when dealing with applications
operating on complex data structures holding increasingly large
amounts of data that must be stored in memory.

At present, only fixed-length arrays and objects have SSA
forms [20,21]. Compilers, therefore, must rely on pointer
analyses for data flow information about memory objects.
This information can be improved by field-sensitive [22] and
type-based [23] analyses, however common manual memory
optimizations create spurious dependencies and ambiguity that
the compiler cannot resolve. An example of this is allocation
reuse, wherein a memory location is used to represent multiple
objects over the execution of the program. This optimization is
common for vectors, which may use the same memory location
for different elements throughout its lifetime. This aggregates
the disjoint lifetimes of individual elements into a single,
long-lived lifetime. Through such premature optimizations,
the compiler cannot distinguish between dependencies injected
by the developer and those logically necessary.

The problems facing modern compilers are the culmination
of ambiguous memory behavior and lacking degrees of freedom
for dependency breaking transformations. To remedy this, the
compiler requires unambiguous memory operations via strong
guarantees about the type, allocation, and usage of memory
within the program. Memory behavior must be presented in a
form that can be meaningfully analyzed and transformed.

This paper proposes the Memory Object Intermediate
Representation (MEMOIR). MEMOIR provides the compiler
with an SSA representation for sequential and associative
data collections. Additionally it defines a representation for
objects and their fields. By decoupling the representation of
memory used to store data from the memory used to
logically organize data, MEMOIR grants powerful guarantees
for transformation and enables sparse data flow analysis for
elements of collections and fields of objects via def-use chains.
MEMOIR also grants the degrees of freedom necessary to
change the memory layout of individual objects as well as the
broader memory structure of a program. By providing an IR
that is amenable to both analysis and transformation, MEMOIR
compilers can emit performant code without placing the burden
of memory optimization on developers.

979-8-3503-9509-9/24/$31.00 © 2024 IEEE 308
Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

This paper makes the following contributions:

« Makes the empirical observation that the majority of
memory used within well-established C/C++ benchmark
suites has a higher-level data structure (§III).

o Proposes MEMOIR, an SSA IR for associative and
sequential collections, objects and their fields (§IV).

e Presents dead element elimination, redundant indirection
elimination, and field elision, novel transformations that
rely on element-level analyses (§V).

o Implements algorithms to generate and lower MEMOIR
without incurring spurious copies (§VI).

« Evaluates the impact of MEMOIR compiler transforma-
tions on well-established C/C++ benchmarks (§VII).

Our MEMOIR compiler implementation is publicly available
at https://github.com/arcana-lab/memoir.

II. BACKGROUND

Compilers rely on data flow analyses to perform opti-
mizations, such as dead code elimination and common sub-
expression elimination. The SSA form [18] was introduced to
provide a sparse representation for the data flow of variables
throughout a program via def-use chains. This representation
enables compilers to perform data flow analyses more effi-
ciently and succinctly [24]. As such, SSA has become the de
facto standard for modern, optimizing compiler intermediate
representations (IR) such as LLVM [25] and GCC [26].

The Jalapefio compiler [27] sought to represent a subset
of memory objects in Java programs with an SSA form.
Their work made use of Array SSA form [20] to capture
the semantics of fixed-size arrays and the Extended Array SSA
form [21] to represent the fields of statically-, strongly-typed
objects. This enabled the compiler to perform parallelization
of array processing applications and load-store propagation
for accesses to object fields by analyzing elements of these
simple data collections at any given program point. While
this work enabled compilers to more easily analyze simple
array and object structures in a program, it does not provide a
general representation for data structures that are sequential or
associative. These data structures have operational semantics
that cannot be represented as simple arrays or individual objects.
Without abstracting these collections into a general form, the
compiler is unable to provide a unified analysis.

In dealing with a similar problem, tensor compilers have pro-
vided an inspiring generalization for higher-dimensional array
structures. Efficient memory layout of tensors is heavily tied to
the structure of the data stored therein, commonly classified as
either sparse or dense. Sparse tensors are commonly stored as
tree structures to reduce memory usage, limiting the ability for
compilers to perform optimizations because of the linked data
structure. To remedy this, the TACO compiler [28-30] provides
a general representation for tensor operations, abstracting away
the storage structure as either sparse or dense. The compiler can
thus perform unified analysis of tensors while still reasoning
about the structure of the stored data when generating code,
illustrating the power of generalized representations while still
maintaining rich semantics.

III. MOTIVATIONS

At present, TACO and Jalapefio’s representations do not
generalize to common data structures. These include, linked
lists, key-value stores, and memory allocations that grow and
shrink throughout program execution. To illustrate the preva-
lence of these data structures in modern programs, we inspected
the memory usage and accesses of C/C++ benchmarks in the
SPECspeed 2017 Integer suite (SPECINT 2017).

[N Unstructured [Graph [Tree
I Associative [Sequential [Object

(a) Breakdown of bytes allocated for each collection class.

100%
80%
60%
40%
20%

0%

(b) Breakdown of bytes read from each collection class.

(c) Breakdown of bytes written to each collection class.

100%
80%
60%
40%
20%

0%

100%
80%
60%
40%
20%

0%

~ = & X N
$5§ 555588 .8.838 & F & & 5 ¢
5§ T 5 2 g 8% g 3 S g £ 2
SESESSE WAL &3 s 3 £
55 58 5% & 7 § 3§ 8
&,50 T 1 & s g S

Fig. 1: Classification of SPECINT 2017 heap memory usage.

Figure 1 shows the breakdown of heap memory usage, as
reported by Valgrind’s dynamic heap analysis tool [31]. These
benchmarks use a negligible amount of stack memory. We
manually classify collections into one of six classes. Sequential
collections are contiguous in index space, e.g., arrays, vectors
and linked lists. Associative collections store a relation between
key-value pairs and have an index space composed of the
keys stored therein. Objects are fixed-length data structures
composed of heterogeneously-typed fields. Trees and graphs
represent any tree or graph-based data structure, making
no distinction between their storage formats. Unstructured
collections have no well-defined structure or are dictated by an
externally defined memory layout, such as a file. Of note, the
existing work on SSA forms described in §II does not fully
cover sequences as Array SSA does not provide a representation
for the reallocation of sequential collections; associative arrays,
trees and graphs do not have any SSA representation; and
unstructured data has no representation at present, aside from
file readers represented as streams [32].

As illustrated above, modern applications utilize complex
data structures. However, these data structures entail increas-
ingly complex memory dependencies in the IR due to ambigui-
ties in their representation. These memory dependencies result
in overly-conservative analyses, limiting existing techniques
and constricting the compiler’s optimization space. This paper
focuses on three sources of ambiguity in modern compiler
representations. These are linked data structures, stateful data
accesses, and premature memory optimizations.

309

Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

Linked data structures are the source of the undecideability of
memory alias analysis [33]. These data structures hinder static
analyses, as they are unable to determine with certainty where
in the list a value came from. However, these data structures
do possess an underlying index space that the compiler can
use to disambiguate accesses. By representing linked lists as a
sequence of values, similarly to an array, the index space can
be exploited by the compiler. This comes from decoupling the
representation of the memory used to store the data from the
memory used to logically organize the data.

Stateful data accesses create data dependencies between
unrelated memory operations. Listing 1 illustrates a piece of
code that is unoptimizable by language-agnostic IR optimiza-
tions. Even though the key o0 is statically known to be unique
from 1, neither clang++, g++, nor icpc can propagate the
constant 10 to the return statement: to the compiler every
write to the map may update the state of the entire collection.
In the code example, this is caused by a premature lowering
of std::unordered_map to its implementation in the standard
library.

Listing 1: Example of stateful data access in C++.
int work (std::unordered_map<int,
map[0] = 10;
map[l] = 11;
return map[0];

}

Memory optimizations performed by developers, such as
over-provisioning of arrays, cause memory analyses to fail
when details about element-level liveness is needed. This results
from memory locations with disjoint lifetimes being aggregated
into the same, long lived lifetime. As a result, the compiler
cannot disambiguate accesses between unique objects, creating
unresolvable false dependencies.

To remedy these shortcomings of the compiler we propose
MEMOIR, an SSA representation for associative and sequential
data collections, objects and the fields contained therein.
MEMOIR provides a representation for the most commonly
used memory classes in SPECINT 2017: objects, sequences
and associative arrays. MEMOIR’s SSA form enables the
analyses needed by modern optimizations, which require a
detailed understanding of the memory locations being accessed
throughout the program. To guarantee this SSA form, we
propose the use of the MEMOIR type system, which enforces
static-, strong-typing for SSA collection variables.

int> &map) {

[T ST -

IV. SSA FORM FOR COLLECTIONS AND OBJECTS

MEMOIR is an intermediate representation with data
collections as first-class citizens. To enable element-level
analysis and transformation on generalized data collections,
MEMOIR provides three main properties for collections.

o Collections have a static single assignment (SSA).

o Collections are value types.

¢ Collections and their elements have static, strong types.
These properties make MEMOIR data collections immutable.

MEMOIR consists of named variables for collections, instruc-
tions for construction, access, and data flow of collections and

objects, and a type system to represent object layout. MEMOIR
instructions allow the creation of new collections from existing
ones with unambiguous operations to add, remove or redefine
elements. The syntax for MEMOIR collections, objects and
types is shown in Figure 2.

A. Collections

We define a collection to be an index-value mapping. Indices
and values stored within a collection have static, strong types.
We refer to an individual index-value pair in the collection as
an element. We refer to the set of indices present in the index-
value mapping as the index space of a collection. In this paper
we explore two variants of collections with different constraints
on the index space, sequential and associative, explained in
§IV-C and §IV-D, respectively. These variants harken back
to the concepts of position- and value-dependent containers
introduced by prior work [34].

B. Operations on SSA Collections

Reading elements of a collection is performed with the
ReEAD operator, of the form v = rREaD (¢, i), where c is the
collection being accessed and i is the index being read from.
The value held at that index is stored in the variable v. Reading
from an uninitialized element is considered undefined behavior.
Reading from an index not in the index space of the collection
is similarly undefined behavior.

The USE¢@, as introduced in prior work [21], links accesses
to the same collection in control flow order. This allows sparse
data flow analyses to associate a lattice variable with each
access, disaggregating use information from the definition.
As USE@’s are not needed for every analysis, and increase
program size by an additional instruction per-read, they can be
constructed and destructed on demand via copy-folding [24].

Redefinition of elements in MEMOIR is accomplished by
the write operation. Write operations are of the form c;=
WRITE (co, i, v), where c; is a copy of the input collection
co with the exception of c; (1] = v. With the write operation,
a fixed-size collection is put in SSA form. Write operations
in MEMOIR are similar to functional updates or DEF¢’s, as
introduced in prior work [20,21].

Insertion and Removal of elements in an SSA form is
provided by the insert and remove operations. These operations
are the only way changes to the index space of collections can
be represented. Insert operations are of the form c;= INSERT
(co, i, v), where c; is a copy of ¢, with index i inserted
and ¢’ [1] = v if v is defined. Remove operations, of the form
ci1= REMOVE (cq, i), where c; is a copy of ¢, except for the
element at index i being removed. The semantics of these
operations depends on the type of collection being operated on,
the details of which are expanded upon in §IV-C and §IV-D.

Copying Elements of a Collection is performed by the
copy operation, of the form c;= copy(cq), which creates a
new collection, c;, with the same index-value mapping of co.
Additional semantics for sequences are explained in §IV-C.

The Size of a Collection can be queried with the size
operation, of the form ¢n = size(co). The result of this query
is the number of index-value pairs in the collection.

310
Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

id ::= unique identifier, x € Name
Types Instructions inst € Instructions
T ::= PrimT | Tid | &Tid inst = seq = new Seq<T> (i)
PrimT = i64 | i32 | il6 | i8 | assoc = new Assoc<T, T>
| u64 | u32|ul6 | us |bool | obj = new Tig | delete (obj)
| index | £64 | £32 | ptr | elem = READ(c, idx)
CollT = Seq<T> | Assoc<T, T> | c = USE¢ (c)
DefT ::= type Tig= { x: T, ...} | ¢ = WRITE(c, idx, elem)
Variables | ¢ = INSERT (c, idx, [elem]) | seq = INSERT (seq, i, seq)
idx = i | elem | c = REMOVE (c, idx) ‘ seq = REMOVE (seq, 1, 1i)
elem ::= %id: PrimT ‘ obj | c = COPY (| seq = COPY (seq, i, 1)
in= %$id: index \ end | seq[,seq] = SWAP (seq, i, [i,] [seq,] 1)
obj = @id: RefT | %$id: index = size (c)
c = seq | assoc ‘ Figq: Assoc<&Tiq, T> | %$id: bool = HAS (assoc, elem)
seq = Sig: Seq<T> | seq = keys (assoc)
assoc := Ajq: Assoc<T,T> | c = RET¢(c,...) | c = ARG (c) | c = ¢l(c,)

Fig. 2: The syntax for MEMOIR types, collections, objects and instructions.

C. Sequences

A sequence is a collection of data organized with a
contiguous index space. This index space is defined as the
linear order of {n € N | 0 < n < [}, where [is the sequence’s
length. SSA sequence variables are denoted as ciq, €.g., So:

Seq<i32> is a sequence with elements of 32-bit signed integers.

More information about element types is included in §IV-E.

A new sequence with n elements of type T" can be created via
a new Seq<T>(n) instruction; n need not be statically known,
but the length of the sequence is fixed upon allocation. Elements
are uninitialized upon allocation. For operations on sequences,
the end symbol is used as syntactic sugar for the size of the
sequence being accessed.

On account of their sequential index space, sequences have

additional semantics for the remove, copy and swap operations.

A visual summary of these differences is shown in Figure 3
The first is the ability to operate on ranges, as the index space
is contiguous. This is done by specifying a second index for
the argument, which is the end of the range. We will use
the shorthand s(a:b] to represent the range of a sequence
from a to b (exclusive) when explaining the semantics of
such operations. For example, s;= REMOVE (So, i, j) creates Si,
where s;[0:1] So[0:1] and S; [i:end]

Additionally, the insert operation can insert elements from

olJj:end].

= REMOVE(S,, i, j)

s; = SWAP(s,, i, j, k)

S, = INSERT(sl, i, s0)

] I [, , - SWAP(s, 1,50
COPY(SO’I ST -_ I
sw S -) :m:

Fig. 3: Visualization of operations on sequence ranges.

a sequence at a given index. For example, s,= INSERT(S;, i,
So), which creates s,, where s, [0:1]=5:
(Sp) 1=So[0:end], and Sy [i+size (Sp) :end]=S;[J:end].

The swap operation provides a means to swap ranges of
sequences with one operation. For example, s;= swap (s, i
,3j, k) creates si, a copy of s, except for the ranges i:
and k:k+3j-i swapped. Similarly, s;, so= SWAP (S1,1, 3, So, k)
swaps ranges i:3j and k:k+3-i between sequences s; and so.

[0:1], Sp[i:i+size

D. Associative Arrays

An associative array is a mapping from keys to values. For
example, A;: Assoc<£32, bool>, iS an associative array of
32-bit floating point keys to boolean values.

In addition to the collection operations defined in §IV-B, the
has operator, denoted sh = HAS (a9, k), checks if the given
key x is contained in the associative array a,. If it is, then
a true value is written to the boolean variable sh, otherwise
false is written. Additionally, the keys operator S;= keys (2Ag),
creates a sequence s; containing the keys of aq; there are no
guarantees on the order of keys in s;.

Identity equality is used for key comparisons on primitive
types. MEMOIR uses shallow equality for reference types,
where keys alias iff they reference the same object. For object
types MEMOIR checks equality for each element and field.

E. Field Arrays, Objects and Types

Objects flow throughout a program via object references,
denoted as eid. Individual objects have explicit creation and
deletion sites with the new and delete operators, respectively.
Semantically, nested objects are stored as unique references
within read-only elements of the collection, these references
can be read into a variable via the REaD operator.

Fields of objects are accessed via field arrays, borrowed
from the concept of heap arrays [21]. Field arrays are an
associative array, mapping an object reference to a field value.
Each field of an object type—defined below—has a unique field
array and are instantiated with the object type definition. By
construction, a field array cannot alias with any other field
of the object. This representation for fields allows MEMOIR

311
Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

compilers to easily track all accesses of a given field, even
when its owning object is an element of a collection. It also
decouples the access of fields from the layout of fields within
the object, enabling myriad degrees of freedom to MEMOIR
compilers. Among these is the ability to reorder, add or delete
fields within an object.

To specify the layout of objects and provide a mechanism for
such transformations, MEMOIR includes the object type: an
ordered list of individually addressable, typed data fields. For
example, rr={a:132, b:£32} defines a new type rr containing
two fields. The first having unique identifier a and is of 32-bit
signed integer type. The second being b of 32-bit floating
point type. The field arrays for them being Fr .: sm—a and
Fr.p: &Tr—b, respectively.

MEMOIR includes support for unsigned and signed inte-
gers (e.g., i32), booleans, floating point values, and C-style
pointers. C-style pointers are included to support operations
that require access to locations within conventional memory
allocations, such as memory-mapped regions. Reference types
are also supported, being nullable references to an object of a
given object type. For example, seq<s7:> is a sequence type
containing elements that are references to structs of type rr.

Object types can contain nested object types, but may not
be recursively defined. This ensures that object types have a
finite, and statically-known, size in memory and a finite depth
equality function when used as keys of associative arrays.

V. EMPOWERING THE COMPILER

By providing a more comprehensive representation for
collections, MEMOIR enables automatic transformations on
both the computation performed on data and its memory layout.
In this section we will explore this optimization space.

We will operate on a constrained form of LLVM [25], where
irreducible loops [35] are not permitted. The p-operation [36] is
used to represent a ¢ in the context of a loop; the first operand
is the initial value and the second is used by later iterations.
The ARG¢ and RET¢ functions are used for interprocedural
data flow. ARG s are attached to each parameter of a function,
mapping a parameter to its incoming argument from each
possible call site. RET ¢s are attached to each call function
and map live-out variables from each possible return statement.
During partial compilation, externally visible functions have
an unknown operand from an unknown call site added to their
ARG ¢s, similarly, RET ¢s of indirect calls have an unknown
incoming value from an unknown function.

For analysis, we define an expression tree, representing an
expression and the expressions that compose it, as well as a
range, describing a contiguous subspace of a sequence via
expression trees. We then define an analysis for the range of
live elements in a sequence at each program point.

Def. 1. An expression tree is a tree where every internal node
is an operator and every leaf is either a variable or a constant.
We will define a partial ordering of expression trees, t1 C to
iff t9 contains ¢; as a subtree.

TABLE I: CONSTRAINT RULES FOR SEQUENCES. WHERE |S;| =
SIZE(S;), AND %a, %b ARE NEW PARAMETERS OF THE FUNCTION.

Operation Constraints

Sa2 = ¢(S1, S0) S2 T 51,52 C So

... = READ(So, 1) i+[0:1]E So

S1 = USE¢(So) S1 E So

Sl = WRITE(SQ,i, 1)) S1 E So

Sy = INSERT(So,i,v) | S1A[0:i] C So,
SiA[i+1:end]—1C Sy

Sy = INSERT(Sl,i, So) Sa A [0 : ’L] C Sy,

Sg/\[iii+|50|]—iESO,
Sa A [’L+ |So| : end} — |So| C S

S1 = REMOVE(S(),i,j) S1 A [0 : Z] C So,
S1A[j:end] C Sy
S1 = COPY(So,i,j) S1+i1C Sy

S3, S2 = SWAP(S1,1, 4,
So, k)

S3A[0:4] C Sy,
SsA[i:j]—i+kC So
S3A[j:end] C Sy
SQ/\[OI]C]ESQ
Sz/\[k:k—Fj—ﬂ—k%—iESl
Sg/\[k—i—j—i:end]ESo
Sl/\[OIi]—f—kESo
SiAfi:j]—i+kC Sy
Sl/\[jik}ESO
SiNk:k+j—i—-k+iCSo
SiAk+j—i:end] C So

Sa £ 51, S2 € So

[%oa : %b] = Sa,

[%oa : %b] C S1, [%a : %b] C Sy

Sy = SWAP(So, i, j, k)

S» = ARG@(S1, So)
S> = RET(S1, So)

Def. 2. A range of a sequence is a contiguous subspace of its
index space [: u], where ¢ and u are expression trees.

Def. 3. A range lattice L is a lattice comprising n lattice
points {L1, ..., L, }. Each lattice point £; maps to a range
[¢; : w;]. These lattice points are partially ordered with the
subset relation C with £; C £; iff ¢; C ¢; and u; C u;.

Def. 4. The disjunctive merge operator \V unions the ranges
of two lattice points, defined as:

Ei \Y ,Cj = [El . ’U,Z] \Y [Ej . Uj] = [mm(fwfj) : max(ui,uj)]

Def. 5. The conjunctive merge operator N intersects the ranges
of two lattice points, defined as:

Ei A ,Cj = [Ez . ’U,Z] A [gj : Uj] = [mam(fi,fj) : mm(ul,u])]

Live Range Analysis computes ranges for the live elements
of sequence variables in a program. This uses a similar approach
as the range analysis described in [37], extending it to be
context-sensitive and modifying it to operate on sequence
variables. The analysis, detailed in Algorithm 1, operates on a
constraints graph derived from a constraints system, the rules
for which are defined in Table I, being a backwards propagation
of liveness information.

Def. 6. A constraints graph, G = (N, E, L,C), where: N is
a set of vertices where n, is a vertex; F is a set of edges
where ngnj, is an edge; L : E — S is a function from edges
to constraints; C' : E — c is a partial function from edges to
call site ¢, representing context-sensitive edges.

312
Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Live range analysis.

Algorithm 2: Dead element elimination.

in: S a set of constraints
in: V a set of sequence variables.
in: R(¢) = [¢: u] a mapping from index var. i to range
> R(4) result of an intraprocedural range analysis [38]
out: p(v,c) = [¢ : u] a mapping from sequence variable v
and call site ¢ to a range

let G=(N,E,L,C) > A constraints graph from Def. 6
foreach v € V' do create a vertex n, € N

foreach ¢ € I do create a vertex n; € N, let p(i) = R(i)
foreach s € S st. s = f(z) C y do

create an edge nyn, € E

Ltet L(izny) = f(@) V pl) C y

foreach s € Sst. s=[¢:u] C z do

create a Vertex np.,) € N

| let L(W) =[:u]Cx

foreach s € S s.t. s = [%a : %b] alias = do
create an edge rm ek

let ¢ be the call site let C (m) =clet
| L(Rampams) = p(l%a : %bL,¢) = p(a)

all resolve_cycle(G)

o

function resolve_cycle(G)
foreach n, € G in topological order do
if n, is a trivial SCC [39] then
| p(v) = V{L(runy)|vun, € E}.
else
let SCC be the SCC containing 7,
let H = {n,n, € SCC|C(nzny) is undef.} > H is
the context-insensitive subgraph of SCC
call resolve_cycle(nw)
foreach n, € SCC s.t. C(nany) is defined do
let p(v, C(mun)) = p(u)
foreach n, € SCC s.t. p(v) is undefined do
let p(v, undefined) = [0 : end]

Dead Element Elimination Using the live slice range analy-
sis, we describe the dead element elimination transformation in
Algorithm 2. This transforms sequence access and construction
to only operate on the live slice range, eliminating dead

in: p(v,c) = [¢,u] > Result of live range analysis (Algorithm 1)

for each (v,c) = [¢,u] € p do

if c is defined then

let f be the function containing v

create f'(c), a copy of f for ¢, if it does not already

exist

| let v = variable corresponding to v in f’

if M(¢,v) and M (u,v) are defined then

create 31 = M({,v), create su = M (u,v)

if v = WRITE (S, ...) then

create
if ((1 >= %1) and (i <

v/ = WRITE (So,

Sp = ¢ (v, So)

| replace uses of v with S.

...) then

il

su))
i, ...)

if v = INSERT (So, 1,
create
if (1 < %u)
S; = INSERT (Sq,
Sp = @ (S1, So)

| replace uses of v with Sg
k) then

i, ...

if v = swaP (s,
create
Sfrom_live =

il jl

i < %u and j <= %1

Il oe

$to_live = k < %u and k+j-i <= %1
if (%from_live and %to_live)
S1 = SWAP (So, 1, k)
else if (%from_live)
for $n = 0 to j - 1
%kv = READ (Sg, k + %n)
S, = WRITE(Sg, i + %n, %kv)
else if (%to_live)
for m = 0 to j - 1
%$iv = READ(Sg, 1 + %m)
S3 = WRITE (Sg, k + %m, %iv)

% else // Do nothing.
Sp = @(S1, S3, Ss, So)
| replace uses of v with Sg

if v = RET¢ (...) then
[Pass %1 into %a and $u into $b at the call ¢

code. The materialization function (defined below) is used to é
perform available expression analysis [40] on an expression tree, 3
constructing operations. Following dead element elimination, ‘5‘
constant propagation and folding are applied, simplifying the ¢
if-else regions along with a conventional sink pass to move 7
computation into its newly conditional execution. g
10

Def. 7. The materialization function M (e,p) — v is a partial 11
function, which analyzes an expression tree e at a given }g
program point p, constructing the necessary operations and 14
returning the resultant value v, which is either a variable or a 15
constant. M (e,p) = e iff e is a constant, a parameter of the }3
function containing p, or a variable dominating p. M(e,p) =g 13
iff 3 variable g which dominates p and has the same global 19
value number [41] as e. M (e, p) = op(M (e1,p), ..., M(en, D)) 5(1)
iff e is an expression tree such that e; Ceforalle =1,....,n, 5
op is an operation with no side effects and M (e;, p) are defined 23
for all i. Otherwise, M (e, p) is undefined. 24
313

Listing 2: Abridged mcf implementation in MEMOIR.

type 70 = { arc: rawptr, cost: i64 }
fn master ()
Sorig = { Initialize }
do
So1d = M(Sorigr Ssorted)
Shnew = new Seq<tp>(0)
do // Filter elements.
Snew0 = M (Snews Snew2)
%i = p(0, %i+1)
Qcur = So1q[%1i]
if (call check_cost (@cur))
Snewl = INSERT (Spewo, end, @cur)
Snew2 = ¢(Snewlr Snewo)
while ((%i+l1 < size(Sp1q) and (%i+l1 < B))
do // Append elements.
Shew3 = N(Snew2r Shewd)
%3 = u(0, %3j+1)
v = { Initialize }
Snews = INSERT (Spew3, end, v)

while (%7 < K)

call gsort (Spews, 0, size (Spews)) @

Ssorted = RETQb(Sinr

@max = Ssortea[0]
while (call check_opt (@max))

Sout)

Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

Listing 3: Abridged quick sort implementation in MEMOIR.

1 f£n gsort (Sin:Seqg<tp>, %lo:index, %hi:index)
2 Sin = ARG¢(SIOI Spr S1s)

3 if (%hi < %lo or (%hi-%lo) <= 1) return
4 $pv = Sinl[%lo] // pivot value

5 while true // partition

6 %1 = p(%lo, %i’)

7 %9 = p(%hi, %3")

8 S1 = p(So, S2)

9 for %i’ = %1 + 1 to %j step 1

10 if S51[%1i’] > %pv break

11 for %3’ = %j - 1 to %i’ step -1

12 if S1[%9’] < %pv break

13 if %i’ >= $3j’ break

14 Sy, = SWAP (S, %i’, %3j7)

15 Sp = SWAP(S;, %lo, %3’)

16 call gsort (Sp, %lo, %q9)

17 Si1s = RETd)(Sinr Sout)

18 call gsort (Sis, %g+l, %hi)

19 Sout = RET¢(Sinr Sout)

20 return

Listing 2 and Listing 3, a simplification of mcf’s hot
code, are used for illustration. check_cost and check_opt
are summarized computations with no side effects. For mcf,
Listing 4 shows the optimized gsort function; not shown is
the call at @) of master being transformed to pass o and B.

Listing 4: Optimized quick sort implementation in MEMOIR.

1 £n gsort (Sip:Seqg<tp>, %lo:index, %hi:index,
2 %a:index, %b:index)

3 { ... Lines 2-4 unchanged ... }

4 while { Lines 5-13 unchanged ... }
5 if %a <= %$i’ < %b and %a <= %J’ < %b
6 Sdee0 = SWAP (S1, %i’, %3')

7 else if %a <= %i’ < %b

8 %9jv = READ(S1, %3')

9 Sdeel = WRITE (S1, %i’, %3v)

10 else if %a <= %j’ < %b

11 %$iv = READ(S;, %i’)

12 Sgee2 = WRITE (S1, %3j’, %iv)

13 S2 = ¢(Sdee0, Sdeels Sdee2s S1)

14 if %a <= %lo < %b and %a <= %j’ < %b
15 Sdee3 = SWAP(Sl, %lO, %j')

16 else if %a <= %lo < %b

17 %pv = READ(S1, %3')

18 Sgeesa = WRITE (S;, %lo, %pv)

19 else if %a <= %j’ < %b

20 %$lov = READ(S1, %lo)

21 Sgees = WRITE (S;, %qg, %$lov)

22 Sp = ¢(Sdee3/ Sdee4s Sdee5, S3)

23 { ... %a, %b passed into gsort calls ... }

Field Elision is a novel optimization enabled by the element-
level analysis and decoupled field semantics of MEMOIR. Field
elision converts a field of an object into a key-value pair stored
in an associative array. This reduces the memory usage of
possibly unused fields and increases the spatial locality of
definitely used fields. Data structure splicing [42] pursues a
similar goal by migrating fields that are not accessed with their
co-located fields frequently to their own object. However, this
entails additional pointer fields to locate the migrated fields,
increasing the size of objects. Field elision avoids this by
introducing a collection instead of pointer fields.

If a field is deemed a candidate for elision via affinity analysis
[43,44], the transformation is applied. To apply this for a given
candidate T.a, with field array rr .: «T—U; construct a; .

= new Assoc<T,U> at the beginning of the program’s entry
function. For each reference to rr . replace it with Ay .. If 77 4
is used by an arRG¢, create a new parameter in the corresponding
function, passing ar . as an argument, replacing all uses of
Fr . in the function with the new parameter. Finally, remove
field a from the definition of T.

Redundant Indirection Elimination (RIE) simplifies indi-
rect accesses (e.g., alb[i]11) [45] to associative arrays when
the index is derived from constant data (e.g., elements of b
are constant). When detected, the keys of an associative array
can be replaced with the indices of a sequence or the keys of
another associative array. This transforms the collection’s type,
removing an access to the index collection (e.g., b[i]).

The analysis is as follows: for an associative array, Ap= new

Assoc<T, U>, let R be the set of variables in the def-use chain
of 2o, let R be the set of these variables. If any variable in
R may, but not must, reference », (e.g., control divergence),
RIE is not applicable. Otherwise, the transformation checks
all accesses r k1!, where r € R. If all keys k are of the form
k = READ(c, i), where c is a sequence or associative array
and all instances of ¢ must reference the same collection, then:

1) If c is a sequence, construct ¢’ = new Seq<U>(size(c)).

2) If ¢ is an assoc. array, construct c’ =

where v is the key type of c.
3) vr € R, replace accesses r[k] with ¢’ [i], where k=c[i].

new Assoc<V,U>,

Dead Field Elimination utilizes a simple data flow analysis
provided by MEMOIR’s element-level analysis to eliminate
fields of objects that are trivially dead. If a field array is never
read from, i.e., it is never redefined with a USE¢ and is never
passed into an unknown function during partial compilation,
it is deemed dead. If so, all writes to the field array and all
variables in its def-use chain are removed and the field is
eliminated from the type definition.

VI. A MEMOIR COMPILER

We will now describe our implementation of a MEMOIR
compiler, the pipeline of which is laid out in Figure 4. First, we
introduce the MUT library, a C/C++ programming interface for
developers to grant the compiler with guarantees and degrees
of freedom necessary to construct and optimize a MEMOIR
program. Second, we present the SSA construction algorithm,
converting the mutable collections in MUT into immutable
SSA collections in MEMOIR. Finally, we discuss the lowering
algorithms employed to generate LLVM IR, namely SSA
destruction and heap/stack selection.

LLVM
Optimizations

MEMOIR
Optimizations

LLVM+MUT

MEMOIR
Lowering

Library [3yi

MEMOIR-Specific

[Modifed |
Fig. 4: Prototype MEMOIR compilation pipeline.

I'The notation c[i] refers to any read, write or has operation that uses
collection c at index i.

314
Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

MuT MEMOIR
%$n = size(c) —=>%n = size(c)
$v = read(c, 1) = %v = READ (c, 1)

[c' = USEp (c) |

write(c, i, wv) —=>c’ = WRITE(c, i, V)
insert (c, 1) =>c’ = INSERT (c, 1i)
remove (c, 1) =c’ = REMOVE (c, 1)
c2 = copy(c) —>c2 = COPY (c)
[c’ = USE® (c)]
s = new Seqg<T> (n) = s = new Seqg<T>(n)
remove (s, i, j) =—s’ = REMOVE (s, i, 3j)
insert (s, 1, s2) = s’ = INSERT (s, 1, s2)
[s27 = USE® (s2)]
append (s, s2) —>s’ = INSERT (s, end, s2)
[s27 = USE¢p (s2)]
swap(s, i, 3, k) =s’ = SWAP (s, i, j, k)
swap(s, i, 3, =s’,s2’ = SWAP (s, 1, J

s2, 1i2) s2, k)

s2 = split(s, i, j)=s2 = COPY(s, i, 3j)
s’ = REMOVE (s, i, 3j)

s2 = copy (s, i, j) =>s2 = COPY (s, i, 3J)

[s’ = USE¢(s)]
= a = new Assoc<K,V>

a = new Assoc<K,V>

%b = contains(a, k) =%b = HAS(a, k)
[a" = USEg(a)]
s = keys(a) =s = keys(a)

Fig. 5: MUT operations (left) and their mapping to MEMOIR
operations (right). USE¢’s are only constructed on demand.

The MUT Library. To instantiate a MEMOIR program,
the compiler relies on guarantees for allocation, access and
typing of data collections, objects and elements. Similar to past
language extensions [46,47], we use a library-compiler codesign
to achieve this. To this end, we present the MUT library,
consisting of sequences, associative arrays and objects. The
MUT library contains explicit operators to directly mutate these
collections—outlined in Figure 5—mirroring those available
in the standard C++ library. Collections and objects in MUT
have the same type properties as those laid out for MEMOIR
in §IV, namely that they have strong, static types and mutable
value semantics [48]. By employing the MUT library in their
program, developers provide the guarantees and degrees of
freedom necessary to construct and optimize a MEMOIR
program. Additionally, by providing an extension rather than a
replacement for C/C++, existing programs can be incrementally
ported to benefit from MEMOIR.

SSA Construction. We now present the algorithm for
constructing the SSA form of MEMOIR. We will only cover
construction of SSA collections; construction of field arrays
for object accesses is performed in the same manner as prior
work [21]. For collections, a conventional ¢ insertion using
the dominance frontier is used to insert ¢-functions for MUT
operations. A depth-first traversal of the CFG dominator tree
is performed, applying the rewrite rules in Figure 5 are to
MUT operations. Reaching definitions are updated accordingly:
ReachDef (v') = ReachDef (v) and ReachDef(v) = v’ for
each v, v’ pair in the rewrite rule.

Algorithm 3: Algorithm to destruct the SSA form.

in: f a MEMOIR function

for B € preorder DFS of f’s CFG dominator tree do
foreach I = Def(v) in storage order of B do

if v = new Seq(n) then UPDATE(v, v[0:n])
else if v = keys (a) then UPDATE(v, v[0:end])

else if v = ¢ (Sp, ..., Sp) then
construct S,= ¢ (S'g, ..., S'n),
f112¢(f01 R N and
tv= ¢ (to, ., tn), wWhere s;= s";[f;, t;l

| UPDATE(v, Sy [fv:te])
else if v = USE® (co) then replace uses of v with cq
else > Handle cases where operation mutates collection.

if s; € Operands(I) is not dead after this use then
| replace use of s; with COPY(S;)

if v = WRITE (cp, i, ...) then
|_replace uses of v with cq
if v = REMOVE (¢, ...) then

construct remove (c, ...)
|_replace uses of v with c

if v = copy (s, a, b) then UPDATE(v, S[a:b])
if v = INSERT (Sg, i, S1) then

construct insert (Sg, i, S1)

| replace uses of v with sg

if v = swapr(sg, i, j, k) then

construct swap (So, i, J, k)

| replace uses of v with Sg

if v,w = SWAP (Sg, i, Jj, S1, k) then
construct swap (So, i, J, Si, k)

| replace uses of v with So and uses of w with S;

function UPDATE(S, S’ [a:b])

foreach use U of s do

if U=S[c:d] then replace s[c:d] with S’ [a+c:a+d]
else replace s with s’ [a:Db]

function CoprY(c: Collection)
if ¢ =So[i:j] then return copy (So, i, Jj)
| else return copy (c)

SSA Destruction. After SSA construction and optimizations
are applied, MEMOIR collections are lowered to LLVM IR.
SSA destruction, shown in Algorithm 3, coalesces collection
variables, replacing SSA operations with ones that operate
directly on their memory representation. Just as in scalar SSA,
great care must be taken in destructing MEMOIR, as a naive
approach could drastically increase the number of allocations
and copies in the program. Our MEMOIR compiler employs
an SSA destruction algorithm with a focus on avoiding such
spurious copies. These operations act directly on collections
and views of sequences, which represent a contiguous subset
of their index space, denoted s; [f:t]. A variable being dead
or alive refers to the program point following the instruction.

Collection Lowering. Finally, new operators are lowered
to either a heap or stack allocation using the implementation
in the standard library, e.g., std::vector Or std: :map. If an
escape analysis computed on a new operator indicates that the
collection or object is dead at all exit points of its containing
function, it will be allocated on the stack; otherwise it is
allocated on the heap.

315

Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

VII. EVALUATION

To evaluate MEMOIR’s construction, destruction and op-
timizations we have implemented a MEMOIR compiler on
the production-quality LLVM 9.0.0 compiler infrastructure,
allowing us to utilize the open-source NOELLE [16,49]
compiler framework for its loop-level analysis. The developer
effort of our compiler implementation is shown in Table II. We
have also manually converted the hot collections, which spread
throughout much of the codebase, from SPECINT 2017’s
mcf_s, deepsjeng_s and LLVM’s opt to use collections and
objects from the MUT library. We evaluate the compilation
time and effectiveness of our MEMOIR compiler (§VII-B) and
the effectiveness of MEMOIR optimizations (§ VII-C). We also
analyze LLVM passes that MEMOIR could improve (§VII-D).

A. Experimental Setup

Our evaluation was performed on a server with two Intel
Xeon Gold 6258R (Cascade) processors running at 2.70GHz.
Each processor has 28 cores with 2-way hyper-threading, 32KiB
8-way L1d$ and 1MiB 16-way L2$, backed by 38.5MiB 11-
way LL$, all having a 64B line size. They are supported by
512GiB of DDR4 main memory running at 2933MT/s. The
OS used is Red Hat Enterprise Linux 8.7.

We evaluate against four production-quality compilers: GCC
8.5.0 (GCC), ICC 18.0.1 (ICC), LLVM 9.0.0 (LLVM9), and
LLVM 14.0.6 (LLVM14). All performance results are gathered
from 10 executions per configuration, all values are the median
of those executions relative to LLVMO9.

B. Compilation

We evaluated the effectiveness of our compiler at avoiding
spurious copies and providing compilation time on par with
modern optimizations. Table III shows the breakdown of our
MEMOIR compiler’s performance on mcf and deepsjeng from
SPECINT 2017 as well as LLVM’s opt middle-end compiler.
Compilation time for solely perfoming SSA construction and
destruction (MEMOIR 00) is on par with that of clang —-00.
Compiling with all MEMOIR optimizations and opt -03
causes a reasonable increase in compilation time and could
be improved with further engineering. We also show that no
spurious copies are introduced.

TABLE II: MEMOIR REQUIRES REASONABLE DEVELOPER EFFORT.

MEMOIR |SLOC LLVM |SLOC
DEE| 1211 NewGVN| 2814
DFE| 267 Sink | 181

FE| 580 ||ConstantFold| 1788
RIE| 461

TABLE III: OUR MEMOIR COMPILER HAS REASONABLE COMPILA-
TION TIME WITH NO SPURIOUS COPIES FROM SSA CONSTRUCTION.

Compile Time (ms)
MEMOIR LLVM # Collections
Benchmark|| O0 03 | 00| O3 ||Source|SSA |Binary
mcf|| 70.6 | 776.4 {20.9|663.2 5 13 5
deepsjeng ||246.0|1867.6|34.8|852.8 2 14 2
LLVM opt||225.9| 668.4 |52.0|414.7 8 37 8

10%

0%

-10%

-20%

Execution time

-30% [[EEEEE MemoR T LvMi4 EEEicc @B GeC |

deepsjeng mcf
Fig. 6: Relative execution time of ported SPECINT 2017 benchmarks

10%

|_ MemOIR [LLVMI4 [1CC

0%

-20%

Emocc |

Maximum RSS

1 1
deepsjeng mcf

Fig. 7: Relative memory usage of ported SPECINT 2017 benchmarks.

C. Performance and Memory Usage Impact of Optimizations

We evaluated the impact of MEMOIR optimizations on
mcf_s and deepsjeng_s from SPECINT 2017. To evaluate
the impact of the optimizations described in §V we utilize a
separate compilation pipeline. The aforementioned programs
are manually transformed, following the algorithms described
in §V. These programs are then compiled using clang 9.0.0,
with optimization level 03. By transforming these optimizations
manually instead of automatically, we are able to isolate their
impact without additional noise caused by different collection
implementations from the baseline, which may stress different
regions of the program.

We evaluate multiple permutations of MEMOIR compiler
transformations: Dead Element Elimination (DEE), Dead
Field Elimination (DFE), Field Elision (FE), and Redundant
Indirection Elimination (RIE). The ALL configuration has all
of the above transformations applied. Evaluation of LLVM’s
opt is not included as the MEMOIR optimizations explored
in this paper were not applicable. Figures 6 and 7 show the
execution time and maximum resident set size (max RSS),
respectively, with the ALL configuration. We see that MEMOIR
optimizations are able to reduce the memory usage of both mcf
and deepsjeng, while only mcf sees a reduction in execution
time. For deepsjeng, only field elision and key folding were
applicable, eliding a 16-bit field from the hottest data structure.
This allowed for better packing of the struct in memory,
reducing the memory usage by 16.6% but entailing a 5.1%
increase in execution time due to cache performance.

All MEMOIR optimizations were applicable to mcf, we
will now explore their individual impact and interplay. DEE
results in a 26.6% speedup over LLVMO by reducing the
computational complexity of mcf’s quick sort on a sequence of
length n = K + B from O(nlog(n)) to O(n+ Blog(B)). FE,
in the absence of other optimizations, causes a 10.4% increase
in execution time and a 3.3% increase in max RSS, where a
single pointer field is elided. The resulting associative array is
lowered to a hashtable, whose key-value store causes increases
memory usage and expansion of the table causes the increased
execution time. When combined with RIE, the positive impact

316

Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

Execution time

om‘) ocC \cC W\\A pee oY ‘a‘e?@v v‘a*g“f P\ NG
Fig. 8: Relative execution time for breakdown of mcf optimizations.

10%

-10%

Max RSS

-20% F =
! ! ! ! ! ! ! ! ! -20,8% -208%

QW e \C&W\\A PEE et ?E‘?W?Eﬁ?é T INeE

Fig. 9: Relative memory usage for breakdown of mcf optimizations.

of FE can be seen with a 10.4% decrease in max RSS with
only a 1.3% increase in execution time, as the associative array
is converted into a single sequence. This removes the storage
of the key, only needing to store the value.

When combined with DFE the memory size of the object is
shrunk to 56 bytes, allowing fields of more than one object to be
stored on the same cache line. Because accesses to these objects
are filtered by the value of the first field, filtered iterations
(i.e., where the rest of the object is not read), can be processed
along with the previous iteration, achieving a 4.7% speedup
over the baseline. This combination also greatly reduces the
memory usage of the benchmark, reducing the max RSS by
20.8%, approximately 844MiB. When ALL optimizations are
applied an additional 2.1% speedup is seen over solely DEE
and max RSS reduction remains 20.8%.

D. Pass Analysis

We evaluated optimizations in the LLVM 16.0.3> compiler
pipeline to locate areas that traditional compiler techniques
could be improved by MEMOIR, the goal being to find an
upper-bound for such benefits. Results were gathered via
manually inserted counters, from an invocation of opt -03
on the whole-program bitcode generated by gclang.

Global Value Numbering is restricted by LLVM’s opaque
memory locations, which prevent assignment of memory and
pointer operations to existing congruence classes, introducing
a large number of memory-related value numbers, as seen
in Figure 10. With element-level information, these memory

locations can be mapped to a smaller set of congruence classes.

52.8%

49.8%

@
3
R

30%

% Value Numbers
for Memory

o cC & ° S oF qend Ao *
Qe‘\“’e“ & 0 0“\“6\\:k &\,A“o\‘)‘“ K oeeﬁ’s'\e“ e
Fig. 10: Percentage of global value numbers introduced for memory

operations in LLVM’s NewGVN pass.

2LLVM 16.0.3 was the most recent release at the time of experimentation.

Sink is constrained by memory operations, which create
barriers that instructions can not be safely moved across.
Figure 11 illustrates how common of an occurence this is, as
many attempts to sink an instruction fail because of instructions
that may write or reference the same memory location. With
unambiguous representations for what memory operations are
being performed and which elements are being operated on,
MEMOIR could enable additional, safe, code motion.

50%

N Success 41.0% 40.8% 42.4%

40% [May Write
I May Reference
30%
zs 2%
21.5% 21.8% 22.8%

20% 18 2% 15 5%
10%

%

et “\“e‘\)? A \;\0\3“\ 0o e

% of Attempts

o §\\)e“° Qﬂe‘\%

Fig. 11: Analysis of LLVM’s Sink pass.

Constant Folding is blocked by an inability to propagate
constants across memory barriers, the breakdown of which
is seen in Figure 12. The element-level analysis provided
by MEMOIR allows constants to be propagated along a
collection’s DEF-USE chain, an optimization performed in [21]
for fields. Prior work has also proposed conditional constant
propagation algorithms for Array SSA [50], which could be
repurposed by MEMOIR compilers.

100%

I Scalar Success
[E] Load Success
[1oad Fail

80%

60%

43.8%

40%

% of Attempts

20%

0%
e L

I\ A oS
Qec\"’e“c e

g ot o«\““‘vz ™09

Fig. 12: Analysis of LLVM’s ConstantFold pass.

VIII. RELATED WORK
A. Compiler Intermediate Representations

Array SSA [20] provides a first class representation for
arrays, but fails to generalize to sequential collections that
grow and shrink throughout execution. Extended Array SSA
[21] provides a representation for accessing fields of objects
with static, strong types, introducing what this paper calls field
arrays. MEMOIR generalizes both of these representations,
making it amenable to techniques that use them [27,50-53].

Memory SSA [54] and similar works [55,56] provide a sparse
representation of points-to information, enabling flow analyses
on memory blocks. However, they do not grant degrees of
freedom to the compiler as they do not provide a representation
for the structure of data in memory.

MLIR [57] provides a compiler infrastructure for progressive
lowering from higher- to lower-level representations. MLIR’s
memref dialect represents memory objects, but is purely a
wrapper for the LLVM memory representation, providing no
additional guarantees as the underlying memory is mutable.
MLIR seems a useful substrate for MEMOIR compilers, but
the concepts introduced by MEMOIR are missing, making
its introduction a matter of engineering. Additionally, there is

317
Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

currently no MLIR-based compiler capable of meaningfully
handling the complexity of SPEC benchmarks.

SDFG’s [58] represent the program as a stateless, acyclic
graph of data containers and computation, wrapped by state-
ful nodes. This representation does not provide meaningful
abstractions for their containers, suffering from the memory
ambiguities shown in §III, especially stateful data accesses
which require each access be wrapped in a stateful node.
Similarly, HPVM [59] provides a dataflow graph representation
of the program, with explicit data movement between nodes.
These nodes may have side effects, which are modeled with
the same low level memory representation as LLVM, making
HPVM subject to the same memory aliasing problems.

B. SSA Destruction and Register Allocation Techniques

SSA destruction of data collections in MEMOIR bears a
strong resemblance to the register allocation problem, known
to be NP-complete [60]. We present an algorithm with a
primary focus on avoiding spurious copies, simply preserving
the user-defined allocation. Adapting strategies from scalar
variable allocation [61-64], could enable MEMOIR compilers
to optimize the allocations. Advanced escape analyses could
be used to improve the stack allocation algorithm [65-67].

C. Precise Reasoning with Collections and Structured Heaps

There is a growing body of work related to the static analysis
of data collections. Dillig et al. [34] proposed a framework
for analyzing the contents of containers—analogous to element-
level analysis in this paper—for the purpose of verification.
Unifying their framework with MEMOIR provides an exciting
opportunity for sound collection lowering to implementations
outside of the standard library. More recently, structured heaps
[68] have been proposed as a means of enabling static analysis
for programs using dynamic memory, to which MEMOIR bears
a strong, albeit higher-level, resemblance.

D. Programming Languages Amenable to MEMOIR

At its core, MEMOIR proposes collections as value types.
In this paper, we implement a library in C/C++ to provide this
functionality, however many languages exist which provide the
guarantees needed for a MEMOIR compiler. Languages with
mutable value semantics [48], which degrades references to
second-class citizens, are amenable to SSA construction, as
they are analogous to our MUT library. Such languages include
Swift’s struct types [69] and Hylo [70].

Languages with single-ownership, i.e., “borrowing”, which
guarantee that only one mutable reference will exist at a
time can be used to construct a MEMOIR program. An
example of this is Rust [71], which is steadily entering the
programming zeitgeist. Similarly to Rust, newer languages such
as Mojo [72] and Vale [73] have similar ownership models.
Of note, use ¢’s cannot be constructed for these languages, as
multiple immutable references may exist at once. While the
aforementioned languages are promising directions of future
work, the lack of accepted benchmark suites implemented in

them, unlike C/C++, was deemed too large a barrier to adoption
in our research at present.

Collection-oriented languages [74—77] have existed for many
years now. APL [74] and SETL [77] serve as prime examples
of their philosophy, focusing on arrays and sets, respectively,
as prime concepts of the language. As such they are interesting
source languages for compilation and, furthermore, their
implementations provide a wealth of resources on optimizing
collection-oriented programs [78]. A recent example of these
concepts being exploited outside of their original languages
is parallel block-delayed sequences [79], which implements
loop-fusion techniques on sequences as a library for Parallel
ML and C++. Investigating the extent these optimizations could
be performed statically with MEMOIR provides an interesting
starting point for this line of research.

IX. CONCLUSION

This paper introduced MEMOIR, a compiler intermediate
representation in an SSA form for data collections and objects
stored in memory. The core of MEMOIR comes from a decou-
pling of the memory used to store data from the memory used to
logically organize data. Through this decoupling, the compiler
is granted a generalized representation of both sequential and
associative collections with well-defined operational semantics
that cover common operations performed on them. This paper
also introduced a prototype MEMOIR compiler, which is
capable of performing element-level analysis on collections
thanks to its SSA form and unambiguous operations. Using
this analysis, the compiler is able to perform novel memory
optimizations that must be applied manually today, including
efficient layout of fields, selection of heap or stack allocation
and copy elision. Furthermore, MEMOIR enables traditional,
scalar analyses and transformations be applied to elements
of collections. As an example, we generalized live variable
analysis to be live range analysis and used it to perform dead
element elimination, a generalization of dead variable elimina-
tion. With additional work on MEMOIR compilers, we believe
that developers can be liberated from the burden of performing
low-level, manual memory optimizations. Additionally, the
avoidance of premature lowering and optimization of data
collections can remove barriers to optimizations, improving
the applicability of traditional compiler optimizations.

ACKNOWLEDGEMENTS

We thank members of the ARCANA Lab for their support
and feedback on this work. We also thank the anonymous
reviewers for insightful comments and invaluable suggestions,
which made this work stronger. This material is based upon
work supported by the U.S. Department of Energy under the
contract number DE-SC0022268. This material is also based
upon work supported by the National Science Foundation
under Grants NSF-2119069, NSF-2107042, NSF-2028851,
NSF-1908488. All opinions, findings, conclusions, and rec-
ommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the NSF.

318
Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

ARTIFACT APPENDIX
A. Abstract

Our artifact includes source files for the prototype MEMOIR
compiler described and evaluated in the paper. In addition to
this it includes source-code patches for SPEC CPU2017 and
LLVM opt. When applied, these patches port the programs to
utilize MEMOIR collections and apply MEMOIR optimizations
at the source-code level.

B. Artifact Check-List (Meta-Information)

o Algorithm: SSA Construction, SSA Destruction, Dead
Element Elimination, Dead Field Elimination, Field Elision,
Redundant Indirection Elimination

o Program: LLVM; Optional: SPEC2017

o Compilation: LLVMY; Optional: LLVM14, GCC, ICC

o Transformations: MEMOIR optimizations and porting im-

plemented as ed scripts.

Binary: None

Data set: SPEC CPU2017 Integer (not included)

Run-time environment: Linux

Hardware: Tested on Intel and AMD x64 machines.

Metrics: Execution time, Max resident set size, Compilation

time, Number of collections, Significant lines of code

o Output: Tables 2 and 3, Figures 5, 6, 7 and 8.

o Experiments: Performance and Compiler Evaluation

o How much disk space required (approximately)?: Generated
artifact is 11GiB

o How much time is needed to prepare workflow (approxi-
mately)?: 30 minutes

o How much time is needed to complete experiments (approx-
imately)?: 45 minutes (1 run, with minimal configurations
enabled), 4 hours (1 run, with all configurations enabled)

o Publicly available?: Yes

o Code licenses (if publicly available)?: MIT License

o« Workflow framework used?: Unix Makefiles, Bash, cus-
tomization described below.

o Archived?: Yes, https://doi.org/10.5281/zenodo.10182391

C. Description

1) How Delivered: The artifact is available on Zenodo, at
https://zenodo.org/records/10201049.

2) Hardware Dependencies: An x64 processor. This artifact
has been tested on both Intel and AMD x64 machines.

3) Software Dependencies: Running the artifact requires
LLVM 9.0.0, Julia 1.9.4, scc, and gclang. It optionally depends
on LLVM 14.0.6, GCC 8.5.0, and ICC 18.0.1.

All of the above dependencies are handled when building the
docker image. This artifact has been tested with both docker
24.0.5 and Podman 4.6.1.

D. Installation

We have provided a Dockerfile to handle dependencies. If
evaluating the artifact with SPEC2017, the easiest solution is to
Copy your SPEC2017.tar.gz into the artifact directory, which
will be transfered to your docker container. If you choose to
use docker, run the following two commands from within the
installed artifact directory:

docker build -t cgo24-artifact .

docker run -it cgo24-artifact

After installation, run make config within the artifact direc-
tory to configure the artifact. Details about the configuration
are included in §G.

E. Experiment Workflow

After installation and configuration, run make all, which
will run the following pipeline:

1) make memoir-setup compiles MEMOIR.

2) make benchmark-setup sets up benchmark files.

3) make benchmark compiles benchmarks.

4) make performance executes performance tests.

5) make figures gathers statistics about the MEMOIR com-

piler and then creates figures.

F. Evaluation and Expected Results

As the output of the experiment flow, the figures/ directory
will be populated with the tables and figures from the paper.

Table 2 (figures/table_2.txt) evaluates our prototype
MEMOIR compiler. The first portion evaluates the compilation
time for the MEMOIR compiler and LLVM compiler using no
optimizations (O0) and all optimizations (O3).

Table 3 (figures/table_3.txt) evaluates the development
effort of our prototype MEMOIR compiler. The SLOC for
LLVM passes is not included.

Figure 5 (figures/figure_5.pdf) evaluates the impact of
MEMOIR optimizations on execution time.

Figure 6 (figures/figure_6.pdf) evaluates the impact of
MEMOIR optimizations on memory usage (max RSS).

Figure 7 (figures/figure_7.pdf) evaluates the impact of
each MEMOIR optimization, in isolation and concert, on
execution time.

Figure 8 (figures/figure_8.pdf) evaluates the impact of
each MEMOIR optimization, in isolation and concert, on
memory usage (max RSS).

G. Experiment Customization

The artifact can be customized by running make config.
The configuration options are as follows:

« SPEC2017 can be enabled/disabled. If disabled, figures
5, 6, 7 and 8 cannot be generated.
Sweeping Compilers can be enabled/disabled. When
enabled, figures 5, 6, 7 and 8 will include performance
evaluation for GCC and LLVM 14.
Sweeping Optimizations can be enabled/disabled. When
enabled, the figures 7 and 8 will be generated.

« Number of Runs can be set, this will run each configu-

ration of each benchmark that many times.

More detailed information about the artifact and how to
extend it to be used on new benchmarks and compiler
configurations is available in the artifact README . md.

H. Methodology

Submission, reviewing and badging methodology:

« http://cTuning.org/ae/submission-20190109.html

« http://cTuning.org/ae/reviewing-20190109.html

o https://www.acm.org/publications/policies/
artifact-review-badging

319
Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

D. E. Knuth, “Structured programming with go to statements,” ACM
Comput. Surv., vol. 6, no. 4, p. 261-301, dec 1974. [Online]. Available:
https://doi.org/10.1145/356635.356640

S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and
D. Brooks, “HELIX: Automatic parallelization of irregular programs
for chip multiprocessing,” in Proceedings of the Tenth International
Symposium on Code Generation and Optimization, ser. CGO *12, 2012,
p. 84-93. [Online]. Available: https://doi.org/10.1145/2259016.2259028
G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Automatic thread ex-
traction with decoupled software pipelining,” in 38th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’05), 2005.

S. Campanoni, T. M. Jones, G. Holloway, G. Y. Wei, and D. Brooks,
“HELIX: Making the extraction of thread-level parallelism mainstream,”
IEEE Micro, vol. 32, no. 4, pp. 8-18, July 2012.

T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and
D. I. August, “Automatic CPU-GPU communication management and
optimization,” PLDI, vol. 46, no. 6, p. 142-151, jun 2011. [Online].
Available: https://doi.org/10.1145/1993316.1993516

D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of
interleaved data for simd,” in Proceedings of the 27th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 06, 2006, p. 132-143. [Online]. Available:
https://doi.org/10.1145/1133981.1133997

Y. Chen, C. Mendis, M. Carbin, and S. Amarasinghe, “Vegen: a vectorizer
generator for simd and beyond,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2021, pp. 902-914.

M. B. S. Ahmad, A. J. Root, A. Adams, S. Kamil, and A. Cheung,
“Vector instruction selection for digital signal processors using program
synthesis,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’22, 2022, p. 1004-1016. [Online]. Available:
https://doi.org/10.1145/3503222.3507714

S. Apostolakis, Z. Xu, Z. Tan, G. Chan, S. Campanoni, and D. L
August, “SCAF: a speculation-aware collaborative dependence analysis
framework,” in Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020. ACM, 2020. [Online].
Available: https://doi.org/10.1145/3385412.3386028

S. Apostolakis, Z. Xu, G. Chan, S. Campanoni, and D. L
August, “Perspective: A sensible approach to speculative automatic
parallelization,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS 20, 2020. [Online]. Available:
https://doi.org/10.1145/3373376.3378458

E. A. Deiana, V. St-Amour, P. A. Dinda, N. Hardavellas, and
S. Campanoni, “Unconventional parallelization of nondeterministic
applications,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’18. ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3173162.3173181

S. Campanoni, G. Holloway, G.-Y. Wei, and D. Brooks, “HELIX-UP:
Relaxing program semantics to unleash parallelization,” in Proceedings
of the 13th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, ser. CGO ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 235-245. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2738600.2738630

S. Campanoni, T. Jones, G. Holloway, G. Y. Wei, and D. Brooks, “The
HELIX project: Overview and directions,” in DAC Design Automation
Conference 2012, June 2012, pp. 277-282.

W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrellas,
“Posh: a tls compiler that exploits program structure,” in Proceedings of
the eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming, 2006, pp. 158-167.

J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Trans. Program.
Lang. Syst., vol. 9, no. 3, p. 319-349, jul 1987. [Online]. Available:
https://doi.org/10.1145/24039.24041

A. Matni, E. A. Deiana, Y. Su, L. Gross, S. Ghosh, S. Apostolakis, Z. Xu,
Z. Tan, I. Chaturvedi, D. I. August, and S. Campanoni, “NOELLE Offers
Empowering LLvm Extensions,” in International Symposium on Code
Generation and Optimization, 2022. CGO 2022., 2022.

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

320
Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

B. Guo, M. J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and
D. 1. August, “Practical and accurate low-level pointer analysis,” in
Proceedings of the International Symposium on Code Generation and
Optimization, ser. CGO ’05. USA: IEEE Computer Society, 2005.
[Online]. Available: https://doi.org/10.1109/CG0.2005.27

B. Alpern, M. N. Wegman, and F. K. Zadeck, “Detecting equality of
variables in programs,” in Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL
’88, 1988. [Online]. Available: https://doi.org/10.1145/73560.73561

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM Trans. Program. Lang. Syst., vol. 13, no. 4,
oct 1991. [Online]. Available: https://doi.org/10.1145/115372.115320
K. Knobe and V. Sarkar, “Array ssa form and its use in parallelization,”
in Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL 98, 1998. [Online].
Available: https://doi.org/10.1145/268946.268956

S. J. Fink, K. Knobe, and V. Sarkar, “Unified analysis of array and
object references in strongly typed languages,” in Proceedings of the
7th International Symposium on Static Analysis. Berlin, Heidelberg:
Springer-Verlag, 2000.

S. H. Yong, S. Horwitz, and T. Reps, “Pointer analysis for programs
with structures and casting,” SIGPLAN Not., vol. 34, no. 5, may 1999.
[Online]. Available: https://doi.org/10.1145/301631.301647

A. Diwan, K. S. McKinley, and J. E. B. Moss, “Type-based alias
analysis,” SIGPLAN Not., vol. 33, no. 5, may 1998. [Online]. Available:
https://doi.org/10.1145/277652.277670

F. Rastello, SSA-Based Compiler Design, 1st ed. Springer Publishing
Company, Incorporated, 2016.

C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on Code
Generation and Optimization, 2004. CGO 2004. 1EEE, 2004.

R. Stallman, “Using the gnu compiler collection,” 01 2004.

M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. J.
Serrano, V. C. Sreedhar, H. Srinivasan, and J. Whaley, “The jalapefio
dynamic optimizing compiler for java,” in Proceedings of the ACM 1999
Conference on Java Grande, ser. JAVA *99, 1999. [Online]. Available:
https://doi.org/10.1145/304065.304113

F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The
tensor algebra compiler,” Proc. ACM Program. Lang., vol. 1, no.
OOPSLA, oct 2017. [Online]. Available: https://doi.org/10.1145/3133901
S. Chou, F. Kjolstad, and S. Amarasinghe, “Format abstraction for sparse
tensor algebra compilers,” Proceedings of the ACM on Programming
Languages, vol. 2, October 2018.

F. Kjolstad, W. Ahrens, S. Kamil, and S. Amarasinghe, “Tensor
algebra compilation with workspaces,” in 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), 2019.

N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI *07, 2007, p. 89—-100. [Online]. Available:
https://doi.org/10.1145/1250734.1250746

W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A language
for streaming applications,” in Proceedings of the 11th International
Conference on Compiler Construction, ser. CC *02. Berlin, Heidelberg:
Springer-Verlag, 2002, p. 179-196.

G. Ramalingam, “The undecidability of aliasing,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 5, sep 1994. [Online]. Available:
https://doi.org/10.1145/186025.186041

1. Dillig, T. Dillig, and A. Aiken, “Precise reasoning for programs using
containers,” in Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2011. [Online].
Available: https://doi.org/10.1145/1926385.1926407

R. Tarjan, “Testing flow graph reducibility,” in Proceedings of the Fifth
Annual ACM Symposium on Theory of Computing, ser. STOC *73, 1973,
p- 96-107. [Online]. Available: https://doi.org/10.1145/800125.804040
K. J. Ottenstein, R. A. Ballance, and A. B. MacCabe, “The program
dependence web: A representation supporting control-, data-, and demand-
driven interpretation of imperative languages,” SIGPLAN Not., vol. 25,
no. 6, jun 1990. [Online]. Available: https://doi.org/10.1145/93548.93578
D. do Couto Teixeira and F. M. Q. Pereira, “The design and implementa-
tion of a non-iterative range analysis algorithm on a production compiler,”
2011.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

V. Paisante, M. Maalej, L. Barbosa, L. Gonnord, and F. M. Quintdo
Pereira, “Symbolic range analysis of pointers,” in Proceedings of the
2016 International Symposium on Code Generation and Optimization, ser.
CGO ’16. New York, NY, USA: Association for Computing Machinery,
2016. [Online]. Available: https://doi.org/10.1145/2854038.2854050

J. Barnat, P. Bauch, L. Brim, and M. CeSka, “Computing strongly
connected components in parallel on cuda,” in 2011 IEEE International
Parallel and Distributed Processing Symposium, 2011, pp. 544-555.

J. Cocke, “Global common subexpression elimination,” SIGPLAN Not.,
vol. 5, no. 7, jul 1970. [Online]. Available: https://doi.org/10.1145/
390013.808480

G. A. Kildall, “A unified approach to global program optimization,” in
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, ser. POPL *73. New York, NY,
USA: Association for Computing Machinery, 1973. [Online]. Available:
https://doi.org/10.1145/512927.512945

L. Ye, M. Lis, and A. Fedorova, “A unifying abstraction for data
structure splicing,” in Proceedings of the International Symposium on
Memory Systems, 2019. [Online]. Available: https://doi.org/10.1145/
3357526.3357548

T. M. Chilimbi, M. D. Hill, and J. R. Larus, “Cache-conscious structure
layout,” in Proceedings of the ACM SIGPLAN 1999 Conference on
Programming Language Design and Implementation, ser. PLDI 99,
1999. [Online]. Available: https://doi.org/10.1145/301618.301633

S. Rubin, R. Bodik, and T. Chilimbi, “An efficient profile-analysis
framework for data-layout optimizations,” in Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
2002. [Online]. Available: https://doi.org/10.1145/503272.503287

G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan, “Classifying
memory access patterns for prefetching,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. Lausanne Switzerland:
ACM, Mar 2020. [Online]. Available: https://dl.acm.org/doi/10.1145/
3373376.3378498

R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald,
Parallel programming in OpenMP. Morgan kaufmann, 2001.

V. Kiriansky, Y. Zhang, and S. Amarasinghe, “Optimizing indirect
memory references with milk,” in Proceedings of the 2016
International Conference on Parallel Architectures and Compilation,
ser. PACT ’16, 2016, p. 299-312. [Online]. Available: https:
//doi.org/10.1145/2967938.2967948

D. Racordon, D. Shabalin, D. Zheng, D. Abrahams, and B. Saeta,
“Mutable value semantics,” Journal of Object Technology, vol. 21, 2022.
[Online]. Available: http://www.jot.fm/issues/issue_2022_02/article2.pdf
A. Matni, E. A. Deiana, Y. Su, L. Gross, S. Ghosh, S. Apostolakis, Z. Xu,
Z. Tan, 1. Chaturvedi, D. I. August, and S. Campanoni, “NOELLE Offers
Empowering LLvm Extensions,” 2021.

V. Sarkar and K. Knobe, “Enabling sparse constant propagation of array
elements via array ssa form,” in Static Analysis. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998.

S. Rus, G. He, C. Alias, and L. Rauchwerger, “Region array ssa,”
in Proceedings of the 15th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’06, 2006.
[Online]. Available: https://doi.org/10.1145/1152154.1152165

R. Surendran, R. Barik, J. Zhao, and V. Sarkar, “Inter-iteration scalar
replacement using array ssa form,” in Compiler Construction, ser. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2014.

R. Bodik, R. Gupta, and V. Sarkar, “Abcd: Eliminating array bounds
checks on demand,” in Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation,
2000. [Online]. Available: https://doi.org/10.1145/349299.349342

D. Novillo et al., “Memory ssa-a unified approach for sparsely repre-
senting memory operations,” 2007.

Y. Sui, H. Yan, Z. Zheng, Y. Zhang, and J. Xue, “Parallel
construction of interprocedural memory ssa form,” Journal of
Systems and Software, vol. 146, 2018. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S016412121830205X

F. Chow, S. Chan, S. M. Liu, R. Lo, and M. Streich, Effective
representation of aliases and indirect memory operations in SSA
form, ser. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1996, vol. 1060. [Online]. Available:
http://link.springer.com/10.1007/3-540-61053-7_66

C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR:

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]
[71]
[72]

(73]
[74]

[75]

[76]

(771

[78]

[79]

321
Authorized licensed use limited to: Northwestern University. Downloaded on July 22,2024 at 19:27:13 UTC from IEEE Xplore. Restrictions apply.

Scaling compiler infrastructure for domain specific computation,” in
2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2021, pp. 2-14.

T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and
T. Hoefler, “Stateful dataflow multigraphs: A data-centric model
for performance portability on heterogeneous architectures,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019. [Online]. Available:
https://doi.org/10.1145/3295500.3356173

M. Kotsifakou, P. Srivastava, M. D. Sinclair, R. Komuravelli, V. Adve,
and S. Adve, “Hpvm: Heterogeneous parallel virtual machine,”
SIGPLAN Not., vol. 53, no. 1, p. 68-80, feb 2018. [Online]. Available:
https://doi.org/10.1145/3200691.3178493

G. Chaitin, “Register allocation and spilling via graph coloring,”
SIGPLAN Not., vol. 39, no. 4, apr 2004. [Online]. Available:
https://doi.org/10.1145/989393.989403

F. C. Chow and J. L. Hennessy, “The priority-based coloring approach
to register allocation,” ACM Trans. Program. Lang. Syst., vol. 12, no. 4,
oct 1990. [Online]. Available: https://doi.org/10.1145/88616.88621

P. Briggs, K. D. Cooper, and L. Torczon, “Improvements to graph coloring
register allocation,” ACM Trans. Program. Lang. Syst., vol. 16, no. 3,
may 1994. [Online]. Available: https://doi.org/10.1145/177492.177575
P. Bergner, P. Dahl, D. Engebretsen, and M. O’Keefe, “Spill code
minimization via interference region spilling,” in Proceedings of
the ACM SIGPLAN 1997 Conference on Programming Language
Design and Implementation, ser. PLDI "97, 1997. [Online]. Available:
https://doi.org/10.1145/258915.258941

S. Hack, D. Grund, and G. Goos, Register Allocation for Programs in
SSA-Form, ser. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, vol. 3923. [Online]. Available:
http://link.springer.com/10.1007/11688839_20

Y. G. Park and B. Goldberg, “Escape analysis on lists,” in
Proceedings of the ACM SIGPLAN 1992 Conference on Programming
Language Design and Implementation, 1992. [Online]. Available:
https://doi.org/10.1145/143095.143125

B. Blanchet, “Escape analysis for object-oriented languages: Application
to java,” in Proceedings of the 14th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
1999. [Online]. Available: https://doi.org/10.1145/320384.320387

D. Gay and B. Steensgaard, “Fast escape analysis and stack allocation
for object-based programs,” in Proceedings of the 9th International
Conference on Compiler Construction, 2000.

G. M. Essertel, G. Wei, and T. Rompf, “Precise reasoning with
structured time, structured heaps, and collective operations,” Proc. ACM
Program. Lang., vol. 3, no. OOPSLA, oct 2019. [Online]. Available:
https://doi.org/10.1145/3360583

[Online]. Available: https://www.swift.org/

[Online]. Available: https://www.hylo-lang.org/

N. D. Matsakis and F. S. Klock, “The rust language,” Ada
Lett., vol. 34, no. 3, p. 103-104, oct 2014. [Online]. Available:
https://doi.org/10.1145/2692956.2663188

[Online]. Available: https://docs.modular.com/mojo/manual/values/
ownership.html

[Online]. Available: https://vale.dev/

K. E. Iverson, A Programming Language.
Inc., 1962.

M. C. Harrison, “Balm: An extendable list-processing language,” in
Proceedings of the May 5-7, 1970, Spring Joint Computer Conference,
ser. AFIPS 70 (Spring), 1970, p. 507-511. [Online]. Available:
https://doi.org/10.1145/1476936.1477015

R. E. Griswold, A History of the SNOBOL Programming Languages, 1978,
p. 601-645. [Online]. Available: https://doi.org/10.1145/800025.1198417
J. T. Schwartz, R. B. Dewar, E. Schonberg, and E. Dubinsky, Pro-
gramming with Sets; an Introduction to SETL. Berlin, Heidelberg:
Springer-Verlag, 1986.

J. T. Schwartz, “Automatic and semiautomatic optimization of
setl,” in Proceedings of the ACM SIGPLAN Symposium on
Very High Level Languages, 1974, p. 43—49. [Online]. Available:
https://doi.org/10.1145/800233.807044

S. Westrick, M. Rainey, D. Anderson, and G. E. Blelloch, “Parallel
block-delayed sequences,” in Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2022.
[Online]. Available: https://doi.org/10.1145/3503221.3508434

USA: John Wiley & Sons,

