L)
e Alchemist: LLM-Aided End-User Development

of Robot Applications

Ulas Berk Karli Juo-Tung Chen Victor Nikhil Antony Chien-Ming Huang
ulasberk.karli@yale.edu jchen396@jhu.edu vantonyl@jhu.edu cmhuang@cs.jhu.edu
Yale University Johns Hopkins University ~ Johns Hopkins University ~ Johns Hopkins University
New Haven, CT, USA Baltimore, MD, USA Baltimore, MD, USA Baltimore, MD, USA

gpt_code.py - Natural Robot.

di

Allowing end-user developer = | EE.R;Y
to edit the generated code B vonces Dl | & =,

it

.’d\tor Openfile Save SaveAs Print Undo Redo Cut Copy Paste Selectall

b.ur5.Functionlibrary import FunctionLib |

[from
iimport rospy

|
|
|
‘def pour_liquid cylinder name, beaker name: : gripper nanter
Initialize ruspy and function library |
rospy.init_node('gpt’ |
1ib = FunctionLib :

|

Get the object dimension and location |
cylinder dims = lib.get object dimensions cyl
cylinder loc = lib.get object location cylind

i

Move to the cylinder, grasp it and move up :

lib.go(cylinder loc(0], cylinder loc(1], cyli
cylinder_loc/3], cylinder loc/4], cylinder loc/5 w

lib.close_gripper cylinder_name

Pour the contents into the beaker

|
|
! I— ‘JrauUALEq CYUNUeT aCMATKer 3, 310 & 10U ML gIauuaLed Cyunaer at IMarker o, ana d SUmt . | | "10) [
lib.pourbeaker_name | mL at A
|
]
|

ylinder at marker 7, and a 25mL at marker 8, and a 10 Jinning GPT Code

an beaker at marker 4. Add these to the workspace \.___-*kinematics solver doesn't support #attempts anymore, but only a time
URS: spylhun(odeblozkms\adds\he 500mL,100mL, SOML ZSMLQraduated(ylmdersand the 500mL Please remove the parameter '/robot_description_kinematics/manipulator/kinematics_solver_attempts'
Move back to the starting location of the c pace at markers 5,6, 7,8 and5, calling from your configuration.a[on
add (Wr\der to_\ P Pe Aﬂeraddmg all

_lib.go cylinder loc 67, cylinder loc 1], cyldi | |oispace,the robot moves back toits home positon Loading robot model 'urs_gripper
cylinder loc(3], cylinder loc(4], cylinder 10C|5]i | Urc-Please runthe code byusing the terminal. Mo oL/ b tual Joint spesifisd in SRoF. Assuming fixed joint
-~ Ready! Ready to take comands for planning group nanipulator.

Code saved with number 1 Objects added to workspace and recurned to hone position

Release the cylinder uscr)PlaasewnteaF\m(llunluwnkupanygradua\edql\nderandpourmlolhesoomtbtaker Afterpoutins,
e

lib.open_gripper

N [6]: save()
saving code

. same height when you picked it up. 5

Return to home position by g ||

lib.move to_home position o
rospy.sieeg(8.5) = =, NBE T o e T FrE b= e T ERAST ARl Bt Tt bt e e e T a1

\
;
2"
¥
v
=
w
n=l
=
2
=
o
8
a
(=]
(=9
m
o
[=]
[al
o
=]
2
a
W
a
(=N
w
il
=
]
e
o
(=]
3
2
(=]
[=)
3
2
U'|
=]
3
2
]
v
-3
3
[f=}
o
W
=N
c
[
S
1]
(=
(]
<
=3
T O
®
w
1]
2
=%
o
o
m
v
o
o
3
3

_'\beaker to the workspace at markers 5, 6, 7, 8 and 9 respectlvely This is achieved by (alllng the
'add_cylinder_to_workspace function and specifying the respective marker. After adding all the objects to the

Conversation-based wworkspace the robot moves back to its home position. |

i |URS= Please run the code by using the terminal... |

robot program generation 'URS~ Ready! :
|

IURS5> Code saved with number 1
\User> Please write a Function to pick up any graduated cylinder and pour into the 500mL beaker. After pouring, |
'put the graduated cylinder back to its orlglnal position. Make sure when you put down the object, it should be at‘

Figure 1: Alchemist is an end-to-end end-user robot programming system that leverages large language models (LLM) to enable
natural language based robot program authoring. 1) The 3D RViz Visualization Panel visualizes the robot and its environment.
2) Users interact with a LLM to create robot programs in the chatbox either through text or voice inputs. 3) Saved programs can
be executed using the terminal panel. 4) Users can also directly edit the generated programs for finer control.

ABSTRACT We present a detailed examination of our system design and provide
an exploratory study involving true end-users to assess capabilities,
usability, and limitations of our system. Through the design, devel-
opment, and evaluation of our system, we derive a set of lessons
learned from the use of LLMs in robot programming. We discuss
how LLMs may be the next frontier for democratizing end-user
development of robot applications.

Large Language Models (LLMs) have the potential to catalyze a
paradigm shift in end-user robot programming—moving from the
conventional process of user specifying programming logic to an
iterative, collaborative process in which the user specifies desired
program outcomes while LLM produces detailed specifications. We
introduce a novel integrated development system, Alchemist, that
leverages LLMs to empower end-users in creating, testing, and
running robot programs using natural language inputs, aiming to
reduce the required knowledge for developing robot applications. CCS CONCEPTS

+ Human-centered computing; - Computer systems organiza-
tion — Robotics;

HRI 24, March 11-14, 2024, Boulder, CO, USA

© 2024 Copyright held by the owner/author(s). KEYWORDS
ACM ISBN 979-8-4007-0322-5/24/03.
https://doi.org/10.1145/3610977.3634969 robot programming, end-user development, code generation

361

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3610977.3634969
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3610977.3634969&domain=pdf&date_stamp=2024-03-11

HRI 24, March 11-14, 2024, Boulder, CO, USA

ACM Reference Format:

Ulas Berk Karli, Juo-Tung Chen, Victor Nikhil Antony, and Chien-Ming
Huang. 2024. Alchemist: LLM-Aided End-User Development of Robot Ap-
plications. In Proceedings of the 2024 ACM/IEEE International Conference on
Human-Robot Interaction (HRI °24), March 11-14, 2024, Boulder, CO, USA.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3610977.3634969

1 INTRODUCTION

Robots have the potential to significantly boost productivity across
diverse fields from factory floors to research laboratories. Yet, de-
ploying robots can be complex and costly, often requiring teams
of experts for system initialization and task-specific programming.
Consider a scenario where a team of researchers is striving to en-
hance the efficiency of photocatalysts for hydrogen production from
water, a pursuit often described as the “holy grail” of chemistry [48].
This endeavor may require extensive experimental exploration of a
diverse set of candidates and configurations; for instance, evaluat-
ing a search space with ten variables could present approximately
98 million potential candidates. Even with optimization strategies
applied to narrow down this search space, as many as 688 exper-
iments might still be required to identify superior photocatalyst
mixtures. Robotic chemist [10] performed these experiments and ex-
emplified how robots can automate the repetitive, low-level testing
procedures, liberating scientists to focus on high-level tasks.

Nevertheless, robots deployed in such specialized roles are often
laboriously developed for specific tasks and environments, pos-
ing a barrier to the widespread integration of robots in complex
and dynamic workflows such as life science laboratories. Unlike
computers, which can be readily acquired and customized with
various software applications, the accessibility and customizability
of robotic platforms and programs by end-users, such as scientists,
remain elusive. To democratize the use of robots, several end-user
programming systems and frameworks have been proposed [2].
Approaches for lowering barriers to programming robots include
utilizing behaviour trees [38], illustration-based systems [40, 41],
flow-based systems [5], programming by demonstration [3, 24],
block-based systems [43] and a mix of methods that utilize high-
level coding abstractions to program robots [23]. However, these
abstractions still require an understanding and explicit specification
of the programming logic which presents a significant barrier.

Large Language Models (LLMs), with their ability to generate
code from natural language inputs [17], could help catalyze a para-
digm shift in end-user robot programming from the conventional
process of user specifying programming logic to an iterative, col-
laborative process in which the user specifies desired program
outcomes while LLM produces detailed specifications. This para-
digm shift conceptually regards end-user programming systems as
collaborators rather than tools. By enabling a more intuitive and
collaborative robot programming experience for end-users, LLMs
may help lower barriers to the deployment and effective use of
robots in diverse settings.

To explore the potential of using LLMs for end-user robot pro-
gramming, we developed Alchemist, an end-to-end system that
aims to streamline the complex process of robot programming by
empowering users to create, debug, test, and execute robot pro-
grams using natural language dialog through a one-stop interface.
Alchemist integrates RViz for robot visualization, a chat-box for

362

Ulas Berk Karli, Juo-Tung Chen, Victor Anthony, & Chien-Ming Huang

interacting with the LLM, and a terminal to run generated code (Fig.
1). It is designed to be robot-platform and LLM agnostic to support
various settings and technical advancements. It further supports
authoring robot applications that involve automated processes (e.g.,
robotic chemist) and human-robot interaction scenarios.

This work makes three key contributions: (1) An open-source,
end-to-end system that utilizes LLMs to enable a collaborative
and intuitive robot programming experience for end-users. (2) An
exploratory study to test and understand system capabilities and
usability. (3) A set of lessons learned to inform the design and
development of future LLM-powered robot programming systems.

2 RELATED WORK

Recent strides in LLMs and their code generation capabilities pro-
vide an opportunity for developing a new end-user robot program-
ming paradigm. In this section, we summarize prior work and iden-
tify gaps in end-user robot programming systems, LLM-enabled
code generation and LLMs for robot programming.

2.1 End-User Robot Programming Systems

Robot programming traditionally demands domain-specific exper-
tise [22, 45], posing a barrier for the general population. Several
different modes of programming have been explored to enable end-
user robot programming [2], aiming to democratize the utilization
of robots. A common mode is visual programming including block
based programming [4, 15, 23, 53, 59], flow diagrams [7, 19], rule
based programming [33], and behaviour trees [8, 39]. Mixed reality-
based end-user programming systems have also been developed
and evaluated [21, 27, 35]. Apart from these, a hybrid approach
utilizing natural language chat and block based programming has
been shown to be possible [20]. These existing approaches, while
valuable, often still require end-users to possess some knowledge of
programming logic, limiting their accessibility to the broader popu-
lation. The rise of large language models (LLMs) presents an unique
opportunity to address the limitation posed by programming logic
complexity; by leveraging the capabilities of LLMs, this paper ex-
plores how natural language can serve as an intuitive means for
individuals to interact with and program robots.

2.2 LLM-enabled Code Generation

As LLMs code generation capabilities have improved significantly,
there has been a shift in utilizing them as programming assistants
such as GitHub Copilot [17]. Unlike these coding assistants which
assist in the process of writing code, our system, Alchemist, gener-
ates code autonomously as it is designed for users with minimal
coding skills. Additionally, Alchemist is tailored specifically for
robotics applications. LLMs such as GPT-3 exhibit substantial code
generation capabilities [13, 14]; however, there are notable limita-
tions [44, 46]. Usability studies reveal that while LLM-based tools
can provide helpful starting points, understanding, editing, and
debugging the generated code can be challenging for programmers
[50]. Furthermore, evaluations underscore concerns about func-
tional correctness, suggesting that not all code generated by LLMs
is error-free [30, 37]. Therefore, there is a need to identify common
mistakes made by LLMs [12] and develop a general approach to

https://doi.org/10.1145/3610977.3634969

Alchemist: LLM-Aided End-User Development of Robot Applications

rectify these errors effectively. To address errors in generated code,
Alchemist includes quality assurance methods (Section 3.3.3).

2.3 LLMs for Robot Programming

The incorporation of LLMs into robot programming has recently
gained considerable attention, opening up possibilities for enhanc-
ing human-robot interactions. Generating code from natural lan-
guage descriptions facilitates the control of robots through human-
readable instructions. These capabilities have the potential to stream-
line robot programming. For instance, ChatGPT has been used to
generate code for controlling robots using natural language instruc-
tions in a zero-shot fashion [51]; however, one limitation of this
work is the absence of an integrated code editor and visualization
panel, which makes it challenging for users to directly interact with
the system and debug errors when they occur. Other studies have
also investigated the application of pre-trained LLMs in robotic
task planning [16, 25, 49, 55] and reasoning [1, 18, 28, 56]. While
these studies demonstrate the potential of LLMs in robotics, they
do not provide a straightforward means for end-users to interact
with robots or troubleshoot issues in case of errors or unintended
actions. In our system, we address these limitations by providing an
end-to-end, one-stop system that incorporates a visualization panel
and an embedded code editor to facilitate iterative and collaborative
interaction between the user, the LLM, and the robot.

Perhaps the work by Inagaki et al. [26] is closet to ours; it ex-
plores the integration of LLMs in robot programming, particularly
focusing on its application in automating biological laboratories.
Although it showcases the potential of using LLMs to enable indi-
viduals with limited robotics experience to program robots, it does
not fully address the challenge of preventing undesired actions or
errors in the code generated by LLMs. Our system addresses this
challenge by employing grounded prompting and a code verifica-
tion process to enhance the code quality.

3 ALCHEMIST: LLM-POWERED END-USER
ROBOT PROGRAMMING SYSTEM

Alchemist is an open-source!, end-to-end system that empowers
users to create, edit, and test programs for robots through natural
language-based dialog by using large language models as its code
generation backbone. We outline our core design objectives (DO)
for Alchemist in Table 1 and present an overview of the system
followed by details on system implementation in this section.

3.1 System Overview

Using Alchemist, users initiate the robot programming process
by placing AR markers to identify objects of interest in robot’s
workspace. These markers enable the system to track, update, and
visualize the robot’s world model. Subsequently, users prompt the
LLM to generate code via the Chat Panel. They can then edit and
debug the generated programs, either by prompting the LLM further
or by utilizing the Editor. Once satisfied, users can preview, execute
and test the programs via the Terminal Panel.
Alchemist has two distinct task-level capabilities:

Uhttps://tinyurl.com/alchemist-github

363

HRI 24, March 11-14, 2024, Boulder, CO, USA

Table 1: Alchemist’s Design Objectives (DO) and Rationales

DO1: Faciliate Programming with Natural Language

We seek to use LLMs to facilitate an intuitive robot program-
ming experience through natural language communication, aim-
ing to reduce the need for programmatic thinking of end-users.

DO2: Enable End-to-end Robot Development Workflow

Robot programming is a complex multi-step process. We seek
to simplify this process by providing a one-stop shop for devel-
opment, testing, debugging, and execution of robot programs.

DO3: Support Varied Programming Proficiencies
End-users of robotic systems have varying programming pref-
erences. We aim to offer a dynamic framework that adjusts the
level of code generation abstraction, allowing users to choose
between more flexible, general-purpose code that requires in-
creased oversight and debugging, and more rigid, task-specific
code that demands minimal oversight.

DO4: Visualize Robot World and Actions

Robot programs have real-world physical outcomes which ne-
cessitates previewing of program execution for ensuring safety
and supporting debugging. We visualize the real-time robot
world model and enable preview of actions to prioritize user
understanding, control and safety over programs.

DO5: Ensure System Modularity

We seek to accommodate various LLMs and robot platforms
with ease. Our system-level design ensures adaptability to evolv-
ing needs or technological updates without altering the interac-
tion paradigm.

1) Automation: Alchemist allows users to automate entire pro-
cesses (see Fig. 2-a). This can be done by either breaking tasks into
smaller sub-tasks and then creating and integrating individual code
segments for each sub-task or by devising a single comprehensive
program for the entire task; this choice depends on user preference
and task complexity.

2) Collaboration: Alchemist allows users to program the robot
to be collaborative in a way that they can verbally instruct the
system to execute specific actions, aiding them in task completion
or they can specify how or when they would need the system
to do certain actions in response to user actions or changes in
environment (see Fig. 2-b).

3.2 Front-End Components

We designed Alchemist’s interface (Fig. 1) to be plain and functional
to simplify the programming process and lower barriers to robot
programming for end-users. It consists of three primary panels: 3D
visualization panel, Terminal panel, and Chat panel. Moreover, the
system incorporates two supplementary panels (Text Editor and
File Tree), accessible to users via toggle buttons (top menu bar).

3.2.1 3D Visualization Panel. This panel has an embedded RVIZ
interface to visualize the information from the motion planning sys-
tem regarding the robot’s physical environment (see Fig.1-1). Here,
users can identify and address discrepancies between the physical

https://tinyurl.com/alchemist-github

HRI 24, March 11-14, 2024, Boulder, CO, USA Ulas Berk Karli, Juo-Tung Chen, Victor Anthony, & Chien-Ming Huang

Example 1: Automatio

ey
= [—

§
‘@‘F—!gla)

User: excute code Robot: reach Robot: grasp

Example 2: Collaboration (user verbally requests an assistance)

g

User: “Now, pick up the 100 Robot: reach & grasp Robot: pour Robot: pour Robot: place
milliliter graduated cylinder and
pour into 500 milliliter beaker.”

Figure 2: Example development and execution flow of different system capabilities.

and the virtual worlds used in motion planning. Additionally, the but with enhanced functionalities tailored for end-user robot pro-
panel is designed to be versatile: when paired with a Gazebo ROS gramming. Fig. 3 provides a high-level overview of the back-end
node, it can act as a fully simulated environment. operations; the implementation details are provided below.

3.2.2 Chat Panel. This panel allows users to interact with the LLM 3.3.1 Function Library. The function library is a platform-specific
to generate the code required for their tasks (Fig. 1-2). It provides an code library designed to be a broad set of tools for the LLM to use. It
input box for users to communicate with the LLM and contains the is a layer of abstraction over underlying ROS functions and services
complete chat history. Once the LLM generates code and provides specific to achieve general actions (e.g., moving the robot, operating
an explanation, only the explanation is presented in the chat history. the gripper). The LLM is provided descriptions of these functions
Additionally, the chat panel allows users to communicate via voice in its initial prompt and is instructed to use only these functions.
input in addition to manual typing; this is enabled by speech-to-text We assign descriptive names to the functions in this library and
functionality implemented using OpenAI’s Whisper [42]. their input to further leverage the natural language understanding

capabilities of LLMs [51].

3.2.3 Terminal Panel. This panel is a Python terminal enriched Our system is designed to cater to a wide spectrum of users,
with built-in functions to let users inspect, run, and save code and from those proficient in coding to individuals with little to no
reset the system as needed (see Fig.1-3). The built-in functions and coding experience. We achieve this variability in LLM code output

based on the chosen abstraction level through our initial prompt,
rather than by altering the function library itself. In our current

3.2.4 Text Editor and File Tree Panels. The text editor constitutes a implementation, the function library contains functions with two
levels of abstraction: high-level and low-level. This approach makes

their usage descriptions are presented in Appendix A.

comprehensive text editing tool enriched with syntax highlighting

features tailored for Python code (Fig. 1-4). Meanwhile, the file tree our implementation of the function library simple, easy to interpret,
and interchangeable, resulting in a modular system.

High level abstraction support novice users or those with limited
coding experience. These high-level functions are closely inter-
connected, serving specific, task-oriented purposes, and possess a
limited number of input parameters. An example high-level func-
tion is pour(target_name) which takes the target container name to
pour as an input and pours the container that is gripped by the robot
into the target container given in the input, as can be seen this is a
highly engineered, abstract function. Conversely, low-level func-
tions are more versatile, encompassing a broader range of potential
uses and interactions. They boast a greater degree of generality and

panel exclusively displays files generated by LLM and subsequently
saved by the user. Its principal function is to facilitate users in
monitoring the quantity of files they have saved, enabling them
to rerun these files through the terminal when needed. By default,
these panels are hidden, and users can unveil them by selecting the
“Editor” or “File Tree” buttons located within the upper horizontal
menu bar. This design approach, wherein the panels remain hidden
by default, serves a specific purpose: to prevent users from feeling
overwhelmed by an excessive array of panels and code.

3.3 Back-End Components offer more extensive functionality, while tending to be more error-
Alchemist’s back-end has several components to achieve the desired prone. An example low-level function is move(x,y,z,roll,pitch,yaw)
functionalities: Function Library, LLM Initialization Prompting, and which takes the end-effector pose and moves the end-effector to
Code Safety Mechanisms. We built upon the design principles laid that pose, as can be observed from this example this function is a
out in Vemprala et al. [51] for the function library and LLM prompts small wrapper over the underlying robot API and not as abstract;

364

Alchemist: LLM-Aided End-User Development of Robot Applications

System Prompt

Function Library

You are an assistant helping me with the ur5 robot arm.
This is a 6 degree of freedom robot manipulator that has a gripper as its end effector.
The gripper is in the open position in the beginning.

Function Library Prompt

At any point, you have aceess 1o the following functions which are accessible afler initializing a function
library. You are not to use any hypothetical functions. All units are in the I system.

Initializes all functions, access any of the following functions by using lib,
+ Open the gripper.

* the robot will go to near the target container and rotate its wrist to pour the
contents inside the object that is grasped by the gripper into the target container.

Environment Prompt

In the environment, the following items might be present:

beaker S00mL: radius = 5.5 cm and height = 12 cm,

graduated cylinder 250mL: radius =4 cm and height =31 em and content = dH20 / distilled water
graduated cylinder 100mL: radius =3 25 cm and height = 25.5 cm and content = NaCl / Sodium Chloride

HRI 24, March 11-14, 2024, Boulder, CO, USA

User Prompt

. pick up the 250mL graduated cylinder and pour it's contents into 500mL beak@

v

By using the function library you are provided,
+

Grounding Prompt

User Prompt

+
make sure to move back to home after the task is finished.

Code Verification

Figure 3: Illustration of back-end components of Alchemist: the function library, initialization prompt and grounded prompts

notice that the move function can enable similar outcome as the
pour(target_name) function but with more granular control over the
specifics of the movement. More examples of different abstraction
level libraries can be found in supplementary materials.

3.3.2 Initial Prompting of the LLM. For our initial release and ex-
ploratory study, we employed OpenATl's GPT-4 [36]; we chose GPT-
4 due to its state-of-the-art reasoning capabilities and simple API
usage. The key to effectively leveraging an LLM for programming is
initializing the model with well-defined function library, a system
role, and an environment prompts [51].

We instruct the LLM to act as a robot programming helper. We
also specify the robot in terms of name, number of degrees of
freedom, end effector, and type of code that it needs to return
with some warnings, rules, and caveats (e.g., “always use floating
numbers” and “you are not to use any other hypothetical functions
that you think might exist”). The function library prompt contains
the names, inputs, functionalities, and outputs of each function that
is available to the LLM along with axis and unit conventions; this
prompt acts as a descriptive code documentation.

The environment prompt is used to inform the system about
the presence of physical objects within the workspace. For our
exploratory study, we utilized various-sized beakers and graduated
cylinders, all of which are listed in the environment prompt with
their respective dimensions. If a sophisticated perception system,
such as a vision language model [58], is used, the environment
prompt could be omitted.

The final component of the initial prompt is the example user
prompt, coupled with the corresponding example code output. This
element holds significant importance in enabling the LLM to gen-
erate high-quality code. In our exploratory study, the provided
example is thoughtfully crafted to incorporate a wide array of func-
tions from the function library. The example given in our system is
designed in a way that utilizes most of the functions in the library
to reinforce the correct usage of each function by the LLM.

Lastly, to overcome the token limit issue arising from a lengthy
conversation history inherent to iterative programming, we selec-
tively truncate the middle segment of the conversation history and
resend the API call to aid in error recovery.

3.3.3 Safety and Quality Assurance Methods. During the devel-
opment process, we identified several common mistakes made by

365

the LLM during code generation [12]. These errors can be roughly
categorized into two classes: errors in interpretation and errors
in execution (see Appendix B for details). Errors in interpretation,
such as import errors, are usually detected by the program inter-
preter or compiler, and are relatively straightforward to rectify. On
the other hand, errors in execution, such as adding an unnecessary
action, are less obvious because they do not necessarily lead to an
immediate code breakdown. Instead, these errors become apparent
only when undesirable task outcomes are observed. We explored
various methods, such as parsing the generated code or adding rules
to the initial prompt, to address errors during execution; grounded
prompting was the most effective approach.

Alchemist relies on grounded prompting (e.g., [54]) to reinforce
specific rules for code output towards ensuring safety, quality and
executability of the generated code. We have two general grounding
prompts that are added to all prompts issued by the users: (1)
“By using the function library you are provided, ” is added to the
beginning of each prompt to reinforce library usage and prevent
LLM from using imaginary functions; and (2) “ make sure to move
back to home after the task is finished.” is added to the end of each
prompt to ensure the robot’s proper positioning between tasks.

In addition to these two groundings, we use three conditional
groundings more specific to our exploratory study. If there is an
“add” word in the user prompt, then we append the user input with
“ Make sure to use marker location.”. If there is a “pour” word in
the user prompt, then we add “Don’t move above the beaker before
pouring; just call the pour function. Also, after pouring, make sure you
place the object back to where it was on the table and then open the
gripper to release it.”. If there are any of “function”, “generic”, “code”
words in the user prompt, we add “If you wrote a function, remember
to add an example function call at the end.”. These groundings were
all added on an as-needed basis. The first one is to make sure when
objects are being added to the virtual space, GPT uses markers as
location indicators; the second is to address several issues in its
call of pour function and assumptions it makes; and the third is to
make sure when generic functions are written by GPT there is also
an accompanying example function call.

Other than prompt grounding, we added code verification. The
primary objective of the code verification is to examine the code
produced by GPT and make necessary general corrections such
as imports (e.g., not importing rospy, etc.), ROS node and function

HRI 24, March 11-14, 2024, Boulder, CO, USA

library initialization, as well as Python version check. This verifica-
tion ensures that the code created by GPT does not include errors
resulting in failure of code interpretation.

3.4 System Modularity

3.4.1 Robotic Platform. Alchemist features modularized, inter-
changeable function library and initial prompts, allowing for the
easy configuration to different robotic platforms with support for
both physical and simulated robots and LLM used. In our initial
system release, we provide implementations for two manipulators
(Universal Robots UR5 and Franka Emika Panda) and one mobile
manipulator (PAL Robotics TIAGo).

3.4.2 Vision System. The vision system in Alchemist offers an easy,
fast and low cost way for quick testing and development. We modify
the AR Track Alvar [34] package to have object grasping orien-
tation information encoded in each marker. For this purpose, we
created markers that have a pointy end indicating how the robot’s
gripper should approach and align itself with the marker inspired by
Sefidgar et al. [47] (for details see supplementary materials). Impor-
tantly, these markers play a pivotal role in establishing a connection
between physical objects and their virtual counterparts. They are
intentionally designed to be independent of specific objects, offer-
ing users the flexibility to utilize them as reference points for object
positioning. Users can strategically position these markers any-
where within the workspace, allowing for various orientations and
placements. It is worth noting that Alchemist is engineered to sup-
port seamless integration of a full fledged perception system that
has multi-modal sensing through its modular system architecture.

4 AN EXPLORATORY STUDY

We conducted an exploratory study to gauge the usability of our
system and understand its limitations. Details of the experimental
task and settings are provided in the supplementary materials 2.

4.1 Context and Task

Integrating robotic assistants in life sciences laboratories is emerg-
ing as a promising application domain [10, 11, 29]; the nature of lab
experiments in life sciences requires precise and repetitive work
with long operation duration and involves various health hazards.
However, experts in life sciences rarely have experience program-
ming or working with robots. Changes in an experimental protocol
require robotics experts to set up or update the configuration of
the robotic system to the new experimental requirements. We pro-
pose Alchemist as an alternative since its collaborative end-user
programming paradigm is designed to help users with little to no
robotics experience to be able to program robots to perform desired
tasks. Thus, we chose a common biochemistry experiment as the
basis for the programming task in our study.

We based our task on the LB Media preparation experiment,
which is performed to create plates for growing live cultures in bio-
chemistry and related field labs. We modified LB Media preparation
task into a toy experiment by replacing reagents with beads and
glass lab equipment such as beakers and graduated cylinders with
plastic ones for safety reasons. At a high level, this task is about

Zhttp://tinyurl.com/supplementary-alchemist

366

Ulas Berk Karli, Juo-Tung Chen, Victor Anthony, & Chien-Ming Huang

picking various graduated cylinders that have different types of
reagents and pouring them into a beaker to create mixture.

In our main experimental task, we asked participants to use the
system to generate general functions for re-usability but let them
decide whether to use general functions or step by step prompting
for the task execution. Before the main task, we used a training
task to familiarize users with the system. Our training task was
designed to give participants a complete overview of the system by
requiring all system functionalities to be used.

4.2 Procedure

Participants were asked to fill out the consent form, and right after,
they were given a user manual and asked to read it entirely. After
reading the user manual, they were asked to watch a short tutorial
video that explains the training task and the system. The experi-
menter then gave the participants the sheet containing the training
task and went over it once to ensure the participants understood
everything. Then, participants started the training task and the
experimenter guided the participants along the tasks to familiarize
them with the system. Upon completing the training task, the ex-
perimenter gave the participant the main task sheet, and started
the video and screen recording. After that the experimenter went
behind a divider to let participants work independently with the
system. From this time till task end, the experimenter did not inter-
vene unless there was a significant failure with the system usage
or participants have spent more than 45 minutes on the task alone.
If the experimenter stepped in, the experimenter was instructed to
give just enough support to have participants go on with the task.
A post-interaction questionnaire that collected System Usability
Scale (SUS) [9] responses and demographic information including
self-reported expertise in programming and robot programming
was administered. After the questionnaire, participants had a semi-
structured interview to conclude the study. The user manual, study
procedure, interview questions, training task sheet, and main task
sheet can be found in the supplementary materials.

4.3 Measures

We collected a range of metrics to understand the user experience
of our system during the exploratory study (see Appendix C for
details). Measures such as total programming time, debugging time,
idle time, task completion time, number of errors, editor use, de-
bugging method, and use of general functions are extracted using
post-study labeling of the video and screen recordings of the partic-
ipants interacting with the system and the robot during the study.

4.4 Participants

In this study, we recruited 5 (1 male, 4 female) graduate students
or postdocs who work in biology, chemistry and biophysics fields
(“novice”). Their age ranged from 25 to 29 (M = 26.8,SD = 1.48).
We additionally recruited 5 (4 male, 1 female) graduate students
who work in the robotics field. Their age ranged from 25 to 28 (M =
26.4,SD = 1.34). Participants who work in the robotics field are
denoted as “experts” and provided us with additional insights about
our system. Participants self-reported expertise levels were rated on
ascale of 1 to 5 for coding and robot coding, with 1 indicating novice
and 5 indicating expert. Novice users typically rated themselves

http://tinyurl.com/supplementary-alchemist

Alchemist: LLM-Aided End-User Development of Robot Applications

HRI 24, March 11-14, 2024, Boulder, CO, USA

Table 2: Reported measures from the exploratory study with respect to user expertise level

PID Prog. Debugging Idle Task Comp. # Error Types Editor Debugging Use of Gen. SUS
Time Time Time Time Errors Use Method Func.
Novice N1 00:32:48 00:24:18 00:08:24 1:05:30 2 Name, Physical no prompt Yes 72.5
N2 00:09:01 00:00:00 00:26:11 0:35:12 0 no - No 52.5
N3 00:13:24 00:01:20 00:59:28 1:14:12 1 Syntax no prompt No 72.5
N4 00:44:35 00:32:06 00:14:30 1:31:11 5 Name,Factual Syntax,Import no prompt No 12.5
N5 00:15:57 00:10:35 00:22:33 0:49:05 1 Factual yes prompt Yes 70
Mean 00:23:09 00:13:40 00:26:13 1:03:02 1.8 56
Expert E1 00:20:09 00:13:25 00:33:12 0:54:46 2 Factual Syntax yes edit code Yes 70
E2 00:32:29 00:14:21 01:14:17 2:01:07 1 Name yes edit code No 62.5
E3 00:14:00 00:04:02 00:50:57 0:56:59 5 Name yes edit code Yes 72.5
E4 00:06:46 00:00:00 00:34:36 0:41:22 0 yes edit code Yes 80
E5 00:10:01 00:01:24 00:24:15 0:35:40 1 Name no prompt Yes 57.5
Mean 00:16:41 00:06:38 00:43:27 1:01:59 1.8 68.5

as 2 for coding (M = 2.42,SD = 1.51) and 1 for robot coding (M =
1.71, SD = 1.25), while expert users rated themselves as 4 for coding
(M =4.25,5D = 0.5) and 4 for robot coding (M = 4, SD = 0.82).

4.5 Findings

From our exploratory study we observed some interesting similari-
ties and differences in how novice and expert users interacted with
the system (Table 2). Below, we highlight these observations.

Novices and experts both had similar average task completion
times which might be due to different prior knowledge of both
groups, one group possessing prior knowledge about the task well
whereas the other group possessing prior knowledge on coding and
robots. This is supported by how the expert group on average took
less time programming and debugging but more idle time than the
novice group; idle time refers to time spent on the task other than
using the system (e.g., thinking, reading the user manual, etc.).

Novice users tended to debug their program by prompting the
LLM further rather than using the editor; this behavior can be
attributed to novice users avoiding directly dealing with code due
to their unfamiliarity as reflected by N2: “It would be difficult for me
to troubleshoot by myself, as I lack the confidence to examine the code
to determine exactly what’s going on.”. Similarly, we observed that
novice participants chose not to use general functions; N3: “Since
I’'m not comfortable with coding, I prefer providing direct step-by-
step instructions to the robot rather than using a generic function.” A
prompt example by novice N3 illustrates this observation: “pour
the water from the 250ml graduated cylinder to the 500ml beaker. Put
the 250ml graduated cylinder back to its original place gently.” On
the other hand, a prompt example by expert E1 for the same task
shows that experts tended to create generic functions and reused
them: “Can you write a generic function called "pick_and_pour",
which allows me to insert the input, and the robot will based on
the input to grab the target and pour it into the 500mL beaker?”. We
provide more examples of user prompts in supplementary materials
of this paper.

Overall, all novice participants had positive comments about the
potential of the collaborative programming paradigm in democra-
tizing robot programming especially in specialized domains such
as life sciences research laboratories. N3 commented that “Working
in a biochemistry lab, we need to prepare media almost every day,

367

often in large quantities. It’s a routine protocol that takes up a signifi-
cant amount of time. However, if a system like this could be used to
automate the process, it could save a substantial amount of time.”. N5
also commented that “I think the idea behind this project is really
novel. It can be used extensively, especially in biochemistry labs, where
tasks like these are a frequent occurrence. I think this system could
be extremely helpful”. This feedback validates our rationale behind
developing Alchemist: empowering true end-users to intuitively
create, edit, and test robot programs for custom uses.

The main limitations of the system arose due to problems with
motion planning and visual perception resulting in failures in robot
action which occurred independent of the generated code itself;
our findings highlight the value of this collaborative programming
paradigm while underscoring the need to improve reliability in
task execution. Participant N4 experienced a significant number of
vision and planning errors, which explains the outlier SUS score
of the participant; N4: “I don’t feel confident using this in a lab
because it keeps knocking over things several times.” . Yet, N4 still
acknowledged the value of a system like Alchemist: “I would love to
have a liquid handling system in our lab where I could simply press
a button and say ’go’ without worrying about it failing, but I don’t
think it’s at that stage yet.”.

We note that although the occurrence of errors described in
Appendix B has decreased due to our code verification mechanisms,
errors have not been completely eliminated.

5 LESSONS LEARNED

Our system design and development process, along with our ob-
servations in the exploratory study, elucidated a range of effective
practices for and limitations of our end-user programming approach.
We are sharing a set of lessons learned to guide future work on
LLM-powered end-user robot programming.

5.1 LLMs Can Output Unreliable Code

Robustness of LLM-generated code is critical for a successful end-
user programming experience [30, 50]. We adopted two key strate-
gies to enhance the reliability of the generated programs: (1) code
verification through simple parsing and error handling mecha-
nisms helped eliminate most interpretation errors; and (2) grounded

HRI 24, March 11-14, 2024, Boulder, CO, USA

prompting helped reduce execution errors and refine LLM re-
sponses to fit domain-specific requirements. These approaches
helped minimize errors ensuring that even novice users were able to
successfully complete our study task; yet, some errors still persisted
introducing overhead in the task completion time by necessitating
debugging (see Table 2). Noticing that novice users largely relied
on prompting the LLM for debugging further underscored the need
for reliable code generation and iterative refinement to enable end-
users to effectively author robot programs. Incorporating advanced
formal software verification methods [32, 52] into LLM-enabled
end-user programming systems can further bolster the reliabil-
ity of LLM-generated programs and enhance the efficiency of our
proposed approach.

Lesson Learned: Enhancing LLM-generated code reli-
ability through code verification and effective prompt-
ing is critical for end-user robot programming.

5.2 Effective LLM Prompting is Difficult

A significant challenge stems from users possessing a skewed or
incomplete understanding of the LLM and its capabilities [6, 31, 57].
This often leads to vague or implicit prompts, which in turn can
produce undesirable code outcomes, ranging from coding errors to
unintended robot behaviors. To address this issue, we implemented
two strategies to improve how users prompt the LLM.

Firstly, we used guided training assets (i.e., user manual, tutorial
video, a training task) in our exploratory study to better familiarize
the users with methods for LLM prompting. However, effective
prompting of large language models remains a challenge for users
and further work is needed to develop training methods that em-
power end-users to create high-quality prompts.

Secondly, we also utilized grounded prompting to dynamically
add contextual details to user prompts, e.g., when users prompted
the LLM about a pouring task we added grounding to the prompt
to state that the container once poured should be returned to its
original location. However, this mechanism is domain-dependent
and requires prompt modification in case of a vastly different appli-
cation domain reflecting a limitation of this approach. One potential
solution could be the structural integration of the LLM within the
robot programming ecosystem to ensure the LLM has necessary
contextual information. Moreover, enhancing dialogue between the
LLM and the user about the task’s overarching purpose and char-
acteristics could strengthen the collaborative bond and enrich the
LLM’s contextual comprehension. These approached could facilitate
the automatic grounding of tasks, based on current requirements
and conditions.

Lesson Learned: Effective LLM prompting requires
end-user training and dynamic context-dependent prompt
enhancement.

5.3

End-users exhibit a wide range of knowledge regarding program-
ming and specifically robot programming. To cater to this diversity,
Alchemist features a two-level abstraction in its function library
which affects how the LLM generates code. The high-level abstrac-
tion functions aimed to guide the LLM to generate less error prone

End-User Aversion to Direct Coding

368

Ulas Berk Karli, Juo-Tung Chen, Victor Anthony, & Chien-Ming Huang

and easier to debug programs while the low-level abstraction pro-
vided the end-user with more control over program specification.
This distinction was important for novice users especially as we
observed they tend to avoid directly viewing and editing code.
LLMs are capable of generating general purpose code that can
be reusable in later stages of a task. Alchemist provides users with
a terminal panel function (see Appendix A for details) that allows
them to call general functions with custom inputs without editing
any code; however, we still observed that novice users hesitated to
use general functions. Further integrating LLMs into the program-
ming ecosystem as a conversational assistant could allow novice
users to call such functions without needing to using the command
line interface, thus further enhancing a sense of collaboration. Fur-
ther work is needed to design methods to empower end-users to
effectively use more advanced programming notions (e.g., general
functions) to maximally exploit the generative capabilities of LLMs.

Lesson Learned: Introducing abstractions to minimize
code complexities while retaining programmatic expres-
siveness can enhance user confidence in programming.

6 LIMITATIONS AND FUTURE WORK

Though our exploratory study provided an insight into the effective-
ness of Alchemist as well as how expert and novice users interacted
with it, the sample size is small, limiting our ability to draw conclu-
sions regarding how people with different levels of programming
knowledge may use an LLM-based robot programming system;
moreover, the stochastic nature of LLM outputs may result in vari-
ous programming/user behavior and user experience [37]. Future
work should investigate methods to validate LLM-based robot pro-
gramming and conduct well-powered experiments. Furthermore,
while the inclusion of expert users in our exploratory study offered
valuable insights into how experts and novices differ in using the
system, it limited our ability to focus the study on true end-users.

While true end-users (i.e., participants from life sciences) evalu-
ated our system, their interactions occurred in a robotics laboratory,
rather than a real-world deployment environment which represents
another limitation. Additionally, this paper centers on a singular
use case for our system. However, its potential applications span
diverse settings, from varying experimental protocols to entirely
distinct domains like manufacturing or customer-facing services
in hospitality and food sectors. Future research should explore de-
ploying this system or analogous ones in real-world contexts across
various domains to discern both its capabilities and constraints.
Lastly, future research should systematically compare our end-user
programming system with existing state-of-the-art systems to bet-
ter evaluate and understand their differences.

In conclusion, we see a shift toward a more collaborative para-
digm for end-user robot programming as powered by large language
models and vast opportunities to use LLMs in advancing end-user
development of robot applications in diverse domains.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation award
#2143704.

Alchemist: LLM-Aided End-User Development of Robot Applications

REFERENCES

[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,

[10

[11

[12

[13

[14

[15

[16

(17

[18

[19

[20

[21

]

]

]

]

Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. 2022. Do as i can, not as i say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691 (2022).

Gopika Ajaykumar, Maureen Steele, and Chien-Ming Huang. 2021. A Survey on
End-User Robot Programming. ACM Comput. Surv. 54, 8, Article 164 (oct 2021),
36 pages. https://doi.org/10.1145/3466819

Baris Akgun, Maya Cakmak, Jae Wook Yoo, and Andrea L. Thomaz. 2012. Tra-
jectories and keyframes for kinesthetic teaching: A human-robot interaction
perspective. In 2012 7th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). 391-398. https://doi.org/10.1145/2157689.2157815

Pierre A. Akiki, Paul A. Akiki, Arosha K. Bandara, and Yijun Yu. 2020. EUD-MARS:
End-user development of model-driven adaptive robotics software systems. Sci-
ence of Computer Programming 200 (2020), 102534. https://doi.org/10.1016/j.
5€ic0.2020.102534

Sonya Alexandrova, Zachary Tatlock, and Maya Cakmak. 2015. RoboFlow: A
flow-based visual programming language for mobile manipulation tasks. In 2015
IEEE International Conference on Robotics and Automation (ICRA). 5537-5544.
https://doi.org/10.1109/ICRA.2015.7139973

Victor Nikhil Antony and Chien-Ming Huang. 2023. ID. 8: Co-Creating Visual
Stories with Generative AL arXiv preprint arXiv:2309.14228 (2023).

Emilia I Barakova, Jan CC Gillesen, Bibi EBM Huskens, and Tino Lourens. 2013.
End-user programming architecture facilitates the uptake of robots in social
therapies. Robotics and Autonomous Systems 61, 7 (2013), 704-713.

Ankica Barisi¢, Joao Cambeiro, Vasco Amaral, Miguel Goulao, and Tarquinio
Mota. 2018. Leveraging teenagers feedback in the development of a domain-
specific language: the case of programming low-cost robots. In Proceedings of the
33rd Annual ACM Symposium on Applied Computing. 1221-1229.

John Brooke. 1995. SUS: A quick and dirty usability scale. Usability Eval. Ind. 189
(11 1995).

Benjamin Burger, Phillip M. Maffettone, Vladimir V. Gusev, Catherine M. Aitchi-
son, Yang Bai, Xiaoyan Wang, Xiaobo Li, Ben M. Alston, Buyi Li, Rob Clowes,
Nicola Rankin, Brandon Harris, Reiner Sebastian Sprick, and Andrew I. Cooper.
2020. A mobile robotic chemist. Nature 583, 7815 (01 Jul 2020), 237-241.
https://doi.org/10.1038/541586-020- 2442-2

Chih-Lin Chen, Ting-Ru Chen, Shih-Hao Chiu, and Pawel L. Urban. 2017. Dual
robotic arm “production line” mass spectrometry assay guided by multiple
Arduino-type microcontrollers. Sensors and Actuators B: Chemical 239 (2017),
608-616. https://doi.org/10.1016/j.snb.2016.08.031

Juo-Tung Chen and Chien-Ming Huang. 2023. Forgetful Large Language Mod-
els: Lessons Learned from Using LLMs in Robot Programming. arXiv preprint
arXiv:2310.06646 (2023).

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

Bruno Pereira Cipriano and Pedro Alves. 2023. GPT-3 vs Object Oriented Program-
ming Assignments: An Experience Report. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1 (Turku, Finland)
(ITiCSE 2023). Association for Computing Machinery, New York, NY, USA, 61-67.
https://doi.org/10.1145/3587102.3588814

Enrique Coronado, Dominique Deuff, Pamela Carreno-Medrano, Leimin Tian,
Dana Kuli¢, Shanti Sumartojo, Fulvio Mastrogiovanni, and Gentiane Venture.
2021. Towards a Modular and Distributed End-User Development Framework
for Human-Robot Interaction. IEEE Access 9 (2021), 12675-12692. https://doi.
org/10.1109/ACCESS.2021.3051605

Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi Zhang. 2023. Task and motion
planning with large language models for object rearrangement. arXiv preprint
arXiv:2303.06247 (2023).

GitHub Documentation. 2023. GitHub copilot documentation.
github.com/en/copilot

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdh-
ery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu,
et al. 2023. Palm-e: An embodied multimodal language model. arXiv preprint
arXiv:2303.03378 (2023).

Floris Erich, Masakazu Hirokawa, and Kenji Suzuki. 2017. A visual environment
for reactive robot programming of macro-level behaviors. In Social Robotics:
9th International Conference, ICSR 2017, Tsukuba, Japan, November 22-24, 2017,
Proceedings 9. Springer, 577-586.

Daniela Fogli, Luigi Gargioni, Giovanni Guida, and Fabio Tampalini. 2022. A
hybrid approach to user-oriented programming of collaborative robots. Robotics
and Computer-Integrated Manufacturing 73 (2022), 102234. https://doi.org/10.
1016/j.rcim.2021.102234

Yuxiang Gao and Chien-Ming Huang. 2019. PATI: a projection-based augmented
table-top interface for robot programming. In Proceedings of the 24th international
conference on intelligent user interfaces. 345-355.

https://docs.

369

[22]

(23]

[24]

[25]

[26

[27

[29

[30

(31]

(32]

[39

[40

N
fury

[42

HRI 24, March 11-14, 2024, Boulder, CO, USA

Jayanto Halim, Paul Eichler, Sebastian Krusche, Mohamad Bdiwi, and Steffen
Thlenfeldt. 2022. No-Code robotic programming for agile production: A new
markerless-approach for multimodal natural interaction in a human-robot col-
laboration context. Frontiers in Robotics and AI 9 (2022), 1001955.

Justin Huang and Maya Cakmak. 2017. Code3: A System for End-to-End Program-
ming of Mobile Manipulator Robots for Novices and Experts. In Proceedings of
the 2017 ACM/IEEE International Conference on Human-Robot Interaction (Vienna,
Austria) (HRI ’17). Association for Computing Machinery, New York, NY, USA,
453-462. https://doi.org/10.1145/2909824.3020215

Justin Huang, Dieter Fox, and Maya Cakmak. 2019. Synthesizing Robot Manipu-
lation Programs from a Single Observed Human Demonstration. In 2019 IEEE/RS}
International Conference on Intelligent Robots and Systems (IROS). 4585-4592.
https://doi.org/10.1109/IROS40897.2019.8968543

Wenlong Huang, F. Xia, Ted Xiao, Harris Chan, Jacky Liang, Peter R. Florence,
Andy Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet,
Noah Brown, Tomas Jackson, Linda Luu, Sergey Levine, Karol Hausman, and
Brian Ichter. 2022. Inner Monologue: Embodied Reasoning through Planning with
Language Models. In Conference on Robot Learning. https://api.semanticscholar.
org/CorpusID:250451569

Takashi Inagaki, Akari Kato, Koichi Takahashi, Haruka Ozaki, and Genki N
Kanda. 2023. LLMs can generate robotic scripts from goal-oriented instructions
in biological laboratory automation. arXiv preprint arXiv:2304.10267 (2023).
Michal Kapinus, Vitézslav Beran, Zdenék Materna, and Daniel Bambusek. 2019.
Spatially situated end-user robot programming in augmented reality. In 2019 28th
IEEE International Conference on Robot and Human Interactive Communication
(RO-MAN). IEEE, 1-8.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter,
Pete Florence, and Andy Zeng. 2023. Code as policies: Language model programs
for embodied control. In 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 9493-9500.

Hui Liu, Norbert Stoll, Steffen Junginger, and Kerstin Thurow. 2014. A Fast
Approach to Arm Blind Grasping and Placing for Mobile Robot Transportation
in Laboratories. International Journal of Advanced Robotic Systems 11, 3 (2014),
43. https://doi.org/10.5772/58253 arXiv:https://doi.org/10.5772/58253

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. arXiv preprint arXiv:2305.01210 (2023).

Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin Zorn, Jack
Williams, Neil Toronto, and Andrew D Gordon. 2023. “What It Wants Me To
Say”: Bridging the Abstraction Gap Between End-User Programmers and Code-
Generating Large Language Models. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems. 1-31.

Matt Luckcuck, Marie Farrell, Louise A Dennis, Clare Dixon, and Michael Fisher.
2019. Formal specification and verification of autonomous robotic systems: A
survey. ACM Computing Surveys (CSUR) 52, 5 (2019), 1-41.

Marco Manca, Fabio Paterno, and Carmen Santoro. 2022. End-user development
in industrial contexts: the paper mill case study. Behaviour and Information
Technology 41, 9 (July 2022), 1848-1864. https://doi.org/10.1080/0144929X.2022.
208

Scott Niekum. 2016. AR Track Alvar. http://wiki.ros.org/ar_track_alvar
Soh-Khim Ong, AWW Yew, Naresh Kumar Thanigaivel, and Andrew YC Nee.
2020. Augmented reality-assisted robot programming system for industrial
applications. Robotics and Computer-Integrated Manufacturing 61 (2020), 101820.
OpenAl 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Shuyin Ouyang, Jie M Zhang, Mark Harman, and Meng Wang. 2023. LLM is
Like a Box of Chocolates: the Non-determinism of ChatGPT in Code Generation.
arXiv preprint arXiv:2308.02828 (2023).

Chris Paxton, Andrew Hundt, Felix Jonathan, Kelleher Guerin, and Gregory D.
Hager. 2016. CoSTAR: Instructing Collaborative Robots with Behavior Trees and
Vision. arXiv:1611.06145 [cs.RO]

Chris Paxton, Felix Jonathan, Andrew Hundt, Bilge Mutlu, and Gregory D Hager.
2018. Evaluating methods for end-user creation of robot task plans. In 2018
IEEE/RSY International Conference on Intelligent Robots and Systems (IROS). IEEE,
6086-6092.

David Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi,
and Bilge Mutlu. 2023. Sketching Robot Programs On the Fly. In Proceedings of the
2023 ACM/IEEE International Conference on Human-Robot Interaction (Stockholm,
Sweden) (HRI ’23). Association for Computing Machinery, New York, NY, USA,
584-593. https://doi.org/10.1145/3568162.3576991

David J. Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albargh-
outhi, and Bilge Mutlu. 2021. Figaro: A Tabletop Authoring Environment
for Human-Robot Interaction. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (Yokohama, Japan) (CHI °21). Associa-
tion for Computing Machinery, New York, NY, USA, Article 414, 15 pages.
https://doi.org/10.1145/3411764.3446864

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey,
and Ilya Sutskever. 2022. Robust Speech Recognition via Large-Scale Weak
Supervision. arXiv:2212.04356 [eess.AS]

https://doi.org/10.1145/3466819
https://doi.org/10.1145/2157689.2157815
https://doi.org/10.1016/j.scico.2020.102534
https://doi.org/10.1016/j.scico.2020.102534
https://doi.org/10.1109/ICRA.2015.7139973
https://doi.org/10.1038/s41586-020-2442-2
https://doi.org/10.1016/j.snb.2016.08.031
https://doi.org/10.1145/3587102.3588814
https://doi.org/10.1109/ACCESS.2021.3051605
https://doi.org/10.1109/ACCESS.2021.3051605
https://docs.github.com/en/copilot
https://docs.github.com/en/copilot
https://doi.org/10.1016/j.rcim.2021.102234
https://doi.org/10.1016/j.rcim.2021.102234
https://doi.org/10.1145/2909824.3020215
https://doi.org/10.1109/IROS40897.2019.8968543
https://api.semanticscholar.org/CorpusID:250451569
https://api.semanticscholar.org/CorpusID:250451569
https://doi.org/10.5772/58253
https://arxiv.org/abs/https://doi.org/10.5772/58253
https://doi.org/10.1080/0144929X.2022.208
https://doi.org/10.1080/0144929X.2022.208
http://wiki.ros.org/ar_track_alvar
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1611.06145
https://doi.org/10.1145/3568162.3576991
https://doi.org/10.1145/3411764.3446864
https://arxiv.org/abs/2212.04356

HRI 24, March 11-14, 2024, Boulder, CO, USA Ulas Berk Karli, Juo-Tung Chen, Victor Anthony, & Chien-Ming Huang

[43] Nico Ritschel, Felipe Fronchetti, Reid Holmes, Ronald Garcia, and David C. Shep- [51] Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. 2023. ChatGPT

herd. 2022. Can Guided Decomposition Help End-Users Write Larger Block-Based
Programs? A Mobile Robot Experiment. Proc. ACM Program. Lang. 6, OOPSLA2,
Article 133 (oct 2022), 26 pages. https://doi.org/10.1145/3563296

Steven L Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D.
Weisz. 2023. The Programmer’s Assistant: Conversational Interaction with a
Large Language Model for Software Development. In Proceedings of the 28th
International Conference on Intelligent User Interfaces (Sydney, NSW, Australia)
(IUI °23). Association for Computing Machinery, New York, NY, USA, 491-514.
https://doi.org/10.1145/3581641.3584037

Gregory F Rossano, Carlos Martinez, Mikael Hedelind, Steve Murphy, and
Thomas A Fuhlbrigge. 2013. Easy robot programming concepts: An industrial
perspective. In 2013 IEEE international conference on automation science and
engineering (CASE). IEEE, 1119-1126.

Jaromir Savelka, Arav Agarwal, Christopher Bogart, Yifan Song, and Majd Sakr.
2023. Can Generative Pre-trained Transformers (GPT) Pass Assessments in
Higher Education Programming Courses? arXiv preprint arXiv:2303.09325 (2023).
Yasaman S. Sefidgar, Prerna Agarwal, and Maya Cakmak. 2017. Situated Tangible
Robot Programming. In 2017 12th ACM/IEEE International Conference on Human-
Robot Interaction (HRI. 473-482.

Sabarathinam Shanmugam, Anjana Hari, Ashok Pandey, Thangavel Mathimani,
LewisOscar Felix, and Arivalagan Pugazhendhi. 2020. Comprehensive review on
the application of inorganic and organic nanoparticles for enhancing biohydrogen
production. Fuel 270 (2020), 117453. https://doi.org/10.1016/j.fuel.2020.117453
Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan
Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg. 2023. Progprompt:
Generating situated robot task plans using large language models. In 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 11523-11530.
Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In Extended Abstracts of the 2022 CHI Conference on
Human Factors in Computing Systems (New Orleans, LA, USA) (CHI EA °22).
Association for Computing Machinery, New York, NY, USA, Article 332, 7 pages.
https://doi.org/10.1145/3491101.3519665

for Robotics: Design Principles and Model Abilities. Technical Report MSR-TR-2023-
8. Microsoft. https://www.microsoft.com/en-us/research/publication/chatgpt-
for-robotics-design-principles-and-model-abilities/

Dennis Walter, Holger Taubig, and Christoph Liith. 2010. Experiences in applying
formal verification in robotics. In International Conference on Computer Safety,
Reliability, and Security. Springer, 347-360.

David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li, David C
Shepherd, and Diana Franklin. 2018. Evaluating CoBlox: A comparative study of
robotics programming environments for adult novices. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems. 1-12.

Orion Weller, Marc Marone, Nathaniel Weir, Dawn Lawrie, Daniel Khashabi,
and Benjamin Van Durme. 2023. “According to ..” Prompting Language Models
Improves Quoting from Pre-Training Data. arXiv:2305.13252 [cs.CL]

Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran
Song, Jeannette Bohg, Szymon Rusinkiewicz, and Thomas A. Funkhouser. 2023.
TidyBot: Personalized Robot Assistance with Large Language Models. ArXiv
abs/2305.05658 (2023). https://api.semanticscholar.org/CorpusID:258564887
Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee,
Montse Gonzalez Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasen-
clever, Jan Humplik, et al. 2023. Language to Rewards for Robotic Skill Synthesis.
arXiv preprint arXiv:2306.08647 (2023).

JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny can’t prompt: how non-Al experts try (and fail) to design
LLM prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. 1-21.

Deyao Zhu, Jun Chen, Xiaogian Shen, Xiang Li, and Mohamed Elhoseiny. 2023.
Minigpt-4: Enhancing vision-language understanding with advanced large lan-
guage models. arXiv preprint arXiv:2304.10592 (2023).

Helmut Zorrer, Georg Weichhart, Mathias Schmoigl Tonis, Till Bieg, Matthias
Propst, Dominik Schuster, Nadine Sturm, Chloé Nativel, Gabriele Salomon, Felix
Strohmeier, Andreas Sackl, Michael Eberle, and Andreas Pichler. 2023. Enabling
End-Users in Designing and Executing of Complex, Collaborative Robotic Pro-
cesses. Applied System Innovation 6, 3 (2023). https://doi.org/10.3390/asi6030056

https://doi.org/10.1145/3563296
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1016/j.fuel.2020.117453
https://doi.org/10.1145/3491101.3519665
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://arxiv.org/abs/2305.13252
https://api.semanticscholar.org/CorpusID:258564887
https://doi.org/10.3390/asi6030056

	Abstract
	1 Introduction
	2 Related Work
	2.1 End-User Robot Programming Systems
	2.2 LLM-enabled Code Generation
	2.3 LLMs for Robot Programming

	3 Alchemist: LLM-Powered End-User Robot Programming System
	3.1 System Overview
	3.2 Front-End Components
	3.3 Back-End Components
	3.4 System Modularity

	4 An Exploratory Study
	4.1 Context and Task
	4.2 Procedure
	4.3 Measures
	4.4 Participants
	4.5 Findings

	5 Lessons Learned
	5.1 LLMs Can Output Unreliable Code
	5.2 Effective LLM Prompting is Difficult
	5.3 End-User Aversion to Direct Coding

	6 Limitations and Future Work
	Acknowledgments
	References
	A Terminal Panel In-Built Functions
	B Errors of LLMs
	C Exploratory Study Measures

