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ABSTRACT

This paper studies exponential stability of linear systems
with slow and fast time variation and switching. We use
averaging to eliminate the fast dynamics and only retain
the slow dynamics. We then use a recent stability criterion
for slowly time-varying and switched systems, combined
with perturbation analysis, to prove stability of the original
system. The analysis involves working with an impulsive
system in new coordinates, which enables us to treat a more
general class of systems compared to previous work.
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1 INTRODUCTION

In this paper, we study stability of a class of linear time-
varying systems of the form

x =F(t,t/e)x (1)
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where x € R" is the state, and F : [0, 00) X [0, c0) — R™*" is
periodic in its second argument, i.e., F(t, -) is periodic with a
period T, for each t > 0. We allow F to be discontinuous, and
will soon impose some further assumptions on the structure
of the function F. Here, ¢ is a small positive number, which
is introduced in order to represent fast variation of F in its
second argument. Periodicity of F allows us to define an
averaged version of (1): an average system given by

x=A(t)x (2

where
T
A(t) :% /0 F(t,5)ds. 3)

Regarding stability of the time-varying linear system (2), it
is well-known (see, e.g., [8, Example 4.22]) that the following
assumption is not a sufficient condition.

Assumption 1. The matrices A(t) are uniformly Hurwitz,
i.e., 3k > 0 such that the real parts of their eigenvalues satisfy

Redi(A(t)) < -k Vt>0,i=12,...,n.

As a matter of fact, it is also well-known that Assumption 1
can be made sufficient by imposing additional assumptions
on the system (2). One of them is slow variation of A(t)
with respect to time, as appearing in the classical textbooks
such as [7, Section 3.4] and [8, Section 9.6]. In these classical
results, the way to quantify slowness is to place some type
of upper bound on the time derivative of A(-), and hence,
A(+) should be continuously differentiable. This restriction
is relaxed in the recent work [5], in which total variation is
introduced as a new quantification of slow variation of A(+).
The total variation is the quantity obtained, loosely speaking,
by integrating the norm of the derivative of A(-) and adding,
at each discontinuous instant, the norm of the jump. It is
then shown in [5] that exponential stability of (2) is ensured
if the total variation is suitably small. The contribution of [5]
can also be regarded as an extension of well-known stability
criteria of switched systems, which are formulated in terms
of stability of (2) for individual modes and a slow-switching
condition, typically in terms of sufficiently large (average)
dwell time; see, e.g., [9] for an introduction to this class of
systems, while the result of [5] goes beyond the basic ones
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appearing in [9, Section 3.2]. An extension of the approach
of [5] to nonlinear systems was presented in [4].

Regarding stability of (1), there are several results assert-
ing that it is inherited from the stability of its average system
(2) if the variation is sufficiently fast, i.e., if ¢ is sufficiently
small. In particular, the classical formulation (e.g., [8, Sec-
tion 10.4],[12]) assumes that the average system is time-
invariant, which is still the case (when the external input is
zero) in the more recent work [15] that considers switched
systems. This restriction is relaxed in the works [1, 11]. In
[11], a time-varying average system is considered under the
assumption that the equilibrium of interest is not affected
by the time-varying parameter, which is then relaxed in [1].

In contrast with these existing results, we want to explic-
itly handle a time-varying average system (2) with discontin-
uous A(-). This topic was pursued in our recent paper [10]
where, through a novel combination of the total variation
and averaging techniques reviewed above, exponential sta-
bility of (1) was established for small total variation of A(-)
and small . However, in [10] there is a restriction that

B(t,s) = F(t,5) — A(t) )

is a function of s only; in other words, the system considered
in [10] takes the form

= (A(t) + B(t/o))x. )

This restriction potentially limits applicability of the ap-
proach, as seen in a practical example that appears shortly.
The goal of this paper is to extend the method of [10] in or-
der to assert the same conclusion for the more general class of
systems in (1). The key to the result in [10] is to apply to the
system (1) a change of coordinates which brings it to the form
of (2) with a perturbation of size O(¢). For the case of (5),

this coordinate transformation was x =y + ¢ fot/e B(s)ds -y
and had the feature that y is continuous in spite of the dis-
continuities of A(+) and B(-). For the more general case of (1)
treated in this paper, we will consider a similar coordinate
transformation, but the new state variable y will experience
jumps at the discontinuities of B with respect to t. Conse-
quently, in the y-coordinates the system will be an impulsive
one. We overcome this challenge by conducting a Lyapunov
analysis of this impulsive system. This generalization is the
main new contribution compared to [10].

Among other works that address slow and fast—and pos-
sibly discontinuous—time variation, it is relevant to men-
tion [13], [14], and [6, Section 7.4]. The tools employed in
these references and the spirit of the results are quite differ-
ent from ours. In particular, [13] proves robustness results,
proceeding from the assumption that the slow and the fast
dynamics are separately stable (before they are coupled),
while we develop explicit stability conditions by starting
with appropriate restrictions on the system data and the
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slow variation. The paper [14] considered averaging for hy-
brid systems, but the averaging was of restricted kind in that
it was only applied to continuous dynamics. Corollary 7.28
in [6] addresses hybrid systems with slow average dwell time,
which are also covered as a special case by the approach
based on the total variation, as discussed in [5]. On the other
hand, the classes of systems considered in [6, 13] are much
larger, which suggests some potential generalizations of our
results.

1.1 Motivating example

Let us consider an inverted pendulum on a cart depicted in
Fig. 1. The system has a rigid tube on top of the cart (instead
of a rigid rod that is typically used), and the tube holds a
moving ball of mass m as seen in Fig. 1. The location of the
ball inside the tube is controlled by air (green arrow in the
figure) blown from the bottom of the tube, and we suppose
that the air lifts the ball linearly from the height 0.1 to 0.6 (as
seen in the first plot of Fig. 2), and when the ball reaches the
height 0.6, the air blowing stops so that the ball falls down
to the ground quickly. The falling down is so quick that we
model it as a discrete jump as in the first plot of Fig. 2. By
assuming that the weight of the tube is negligible, the system
can be modeled as a time-varying linear system:

1 [0 1 0 0] Iy
. _ (I(0)+mL(¢))b m2gL%(t) .
; _|° 10) 10) 0 ;
0 0 0 1
s —-mL(t)b mg(M+m)L(t) i
91 o 10) 10) of 19
0
U(B)+mL* (1))
+ g u=:Ap(t)X(t) + By (t)u(t)
mL(t)
)

where x is the horizontal position of the cart, ¢ is the angle
of the pendulum as seen in Fig. 1, u is the force exerted on the
cart, p(t) := (M+m)I(t) + MmL?(t), and the parameters are
mass of the cart M = 0.5, mass of the ball m = 0.2, friction
coeflicient of the cart b = 0.1, and acceleration of gravity
g = 9.8. The inertia is given by I(t) = mL?(t) where the
time-varying distance of the ball from the pivot is L(t) =
0.1 + mod(t,0.5).! The system (which is slightly modified
from [2]) is clearly a time-varying one, and the first plot of
Fig. 2 depicts I(¢), which is not only time-varying but also
exhibits periodic jumps.

To stabilize the system, we design a feedback control
u(t) = K(t)X(t), where X € R* denotes the state vector,

Imod(¢, @) denotes the remainder in the division of by a.
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Figure 1: An inverted pendulum on a cart that has a
tube instead of a rigid rod.

such that, for every ¢,

spectrum of A, (t) + B, (¢)K(t)

= {-8.5+7.9i,-4.8 + 0.8i}, ©)
in which the eigenvalues are taken from [2]. The strategy (6)
is to enforce the matrix A, (t) + By (t)K(t) to remain Hurwitz
for every t, and this is possible because the pair (A, (t), B, (t))
is controllable for all . While this is not enough for stability,
the closed-loop system becomes exponentially stable as long
as the total variation of A, (t) + B, (t)K(t), determined by
the distance L(t) of the ball from the pivot, is small [5]. This
is indeed the case for L(t) given above, as can be seen from
the second plot of Fig. 2.

We now consider an unhappy situation where the power
amplifier is interfered by a power line disturbance which is
sinusoidal at 20Hz frequency, so that the actual gains applied
are not K;(t) but K;(t) + 20 sin(2r - 20t),i = 1,2,3,4. (As an
example, Ki(t) is plotted in the third plot of Fig. 2.) Then the
closed-loop system is written as

X = (Ap(t) + By (1)K (1) + By(£)[1111]20 sin (27 - 20t))X.
™)
While simulations show the closed-loop system is still
stable (see the fourth plot of Fig. 2), we are not aware of
an off-the-shelf theorem that ensures the stability for the
above system. The work of [10] does not apply because (4)
becomes B(t,s) = B,(t)20sin(s) for the case of (7), and B
depends on t. We also note that B has discontinuity in its first
argument as By, does. On the other hand, the tools developed
in this paper will assert that, if 20Hz is fast enough compared
to the system dynamics, then the closed-loop system (7) is
exponentially stable.
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Figure 2: Simulation results: the second plot is for the
system X = (Ap(t) + Bp(t)K(t))X without the distur-
bance, and the fourth plot is for the actual system (7)
with the disturbance.

2 SET-UP AND STATEMENT OF THE MAIN
RESULT

For convenience, we rewrite the system (1) as
x = (A(t) + B(t, t/e))x ®)

where A and B are defined in (3) and (4), respectively, and it
follows that B(t, -) is periodic with period T and

1 rT
—/ B(t,s)ds =0, Vt>0.
T Jo

We impose the following assumptions.

Assumption 2. The function B takes the separable form
B(t,s) = Bs()Bg(s) ©)

with matrix-valued functions Bs and By of compatible dimen-
sions.

The above properties of B(t,-) imply that By is periodic
with period T and has zero average, i.e.,

1

T
?/0 Bg(s)ds = 0. (10)

Here the subscripts ‘s’ and ‘f” stand for “slow" and “fast",
respectively. Assumption 2 is satisfied by the system (7) in
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the above example, where we have
B(t,s) = Bp(t)[1111]20sin(s).

Assumption 2 is made for convenience and to make the devel-
opments more accessible. It can be lifted without too much
difficulty; the more general case will be reported elsewhere.

Assumption 3. A(-), Bs(+), and B¢(-) are piecewise continu-
ous, cadlag®, and uniformly bounded.

For 0 < t; < t,, define the set of jump times of A(-) as®

Ja(t, i) = {r € (11, 1] - A(z¥) # A(r7)}.

Similarly, define the set of jump times of B as

Js(ti, 1) = {7 € (t1. 2] : Bs(z¥) # Bs(r7)}.

Piecewise continuity of A and B; means, by definition, that
for each finite pair of times t; < t;, both Ja(t1, ;) and
Jg(t1, t2) are finite.

Assumption 4. Between two consecutive jump times in the
set Ja(0,00), A(+) is C', and A() and ||A(-)|| are Riemann
integrable. Similarly, between two consecutive jump times
of J(0,0), Bs(+) is C', and Bs(-) is uniformly bounded on
[0,00) \ Jp(0, ).

Regularity assumptions imposed on A(-) are the same as
in [5, Assumption 2], which is for ensuring that the results
from [5] can be applied. In particular, Assumptions 1 and 3
together imply that for each A € (0, x) there exists ¢ > 0
such that

eA 5| < ce™™ V=050 (11)

(see [8, Section 9.6, proof of Lemma 9.9]).
Next, we consider the total variation of A(-) as defined
in [5]. For an arbitrary time interval [#;, ], this is given by

t mn Tivl m
[ taan= [ iawide Y iaeh - ac)l
t i=0 Y Ti i=1

(12)
where 7;,i = 1,- - -, m are the jump times in J4 (t1, t;), with
=17 <17 < < Ty < Ty = Iz, and m being the
cardinality of J4(#, t2). We refer the reader to [5] for a more
intrinsic but equivalent definition of the total variation and
for further discussion. The next assumption places an upper
bound on the total variation.

Assumption 5. The total variation of A(+) satisfies the bound

ty
/ ||dA|| < ﬂA(tZ - tl) + aa Vtz >t > 0 (13)

51

2Continuous from the right, has limits from the left; this assumption is
made for notational convenience.

3A(z7) denotes the left limit of A(-) at 7, and the right limit A(z*) equals
A(1). We often use 7+ instead of 7 for convenience.
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with some ay > 0 and

B
0<pp <—, (14)
2p,
where )
1 c
B = oL B2 = EYE (15)
¢ and A come from (11), and L is such that
A <L Vt=0 (16)

which exists by Assumption 3.

Our last assumption asks a linear growth in the accumu-
lation of jumps in B(-, s).

Assumption 6. There are ug > 0 and ag > 0 such that

D B = Bo(r )| < st — 1) +

re]p(t1tz)

forallt, > t; > 0.

Our main result states that, under the above assumptions,
the system (1) is globally exponentially stable (in the classi-
cal sense, with respect to the equilibrium at the origin) for
sufficiently small ¢.

THEOREM 1. Let Assumptions 1-6 hold. Then there exists
an € > 0 such that the system (1) is globally exponentially
stable for all ¢ € (0, £*).

As will be clear from the proof given next, the exponential
stability is uniform over ¢ in the indicated range, in the sense
that there exist constants y and 6 (independent of ¢) such
that the solutions satisfy |x(¢)| < ye~%|x(0)].

3 PROOF OF THEOREM 1

The proof proceeds by, first, deriving an impulsive system
that equivalently describes the behavior of (1) in new coordi-
nates. Then, by observing that this system is a perturbation
of the average system (2), and after showing that the aver-
age system is exponentially stable, a perturbation analysis
verifies exponential stability of the original system.

3.1 Derivation of an impulsive system in
new coordinates

To approximate the original system (1) by the average sys-
tem (2), we consider the change of variables

Y= (I - sBs(t)‘/Ot/ng(s)ds)x. (17)

The matrix in the parenthesis is invertible for all ¢+ > 0 as
long as ¢ € (0, ;] where ¢ is chosen such that

-1
& < (Tsup 1Bl sup 11Be(s)]) (18)
t>0 0<s<T
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which is well-defined by Assumption 3. Invertibility of the
matrix in (17) then follows by virtue of T-periodicity of Bg(-)
and (10). This change of variables is a variation on the one
considered for the more general nonlinear case in [1] and,
modulo time rescaling, in [8, Section 10.4], when specialized
to the linear system (1). A similar coordinate transformation
was also considered in [15]. The paper [3] considers a dif-
ferent coordinate change which transforms the system to a
time-delay one.

Differentiating the right-hand side of (17) with respect to
time around ¢ ¢ Jp(0, o), we easily obtain

t/e tle
A(t)x — eBS(t)/ Bs(s)ds - x — EBS(t)/ Bs(s)ds -x.

Replacing x and x using (17), the system (1) in the y-coordinates

has the form
j=A(t)y+eC(t,e)y, t¢ Jp(0,00) (19)

where
t/e

Clt,¢) = (A(t)BS(t) /0 Bi(s)ds

/e /e
—Bs(t)/t Bf(S)dS'A(t)—BS(t)/t Be(s)ds
0 0
t/e

— Ds ds- s

B0 [ Bi(s)ds - B(0)Bi(e/o)

t/e .
x([—ng(t) /0 Bf(s)ds) .

It is seen that C(t, ¢) is uniformly bounded for all ¢ € (0, £]]
and for all t ¢ Jg(0,c0) because of Assumptions 3 and 4,
periodicity of Bg(+), (10), and (18).

On the other hand, at the times t € J5(0, o), the variable y
has discontinuity* because of (17), in which x is continuous
for all ¢ by (1). The size of the jump in y can be computed
again by (17). That is, with x(¢*) = x(¢7) at t € Jg(0, o),
equation (17) implies that

y(t*) = (1 _ eBy(t) /0 t/ng(s)ds)

o[ - (20)
I — ¢Bq Bs(s)d
x( eB,(t )/0 £(s) 3) y(t7)
= D(t,e)y(t™).
LEMMA 2. There are B, > 0 and f, > 0 such that
ID(t, o)l < p. 21
ID(t, &) —IIl < foAB(1) (22)

forallt > 0 and all ¢ € (0, €], where

Ag(t) = ||Bs(t7) = Bs(t7)|| - sup
0<7<T

/OT Be(s)ds

4This is where the analysis of this paper differs from that of [10].

HSCC ’24, May 14-16, 2024, Hong Kong SAR, China

Proof: Let
t/e -1
poi=supl| (=28 [ Bicoyas) |
20 0
t/e
B :=Po - sup [|I - SBS(t+)/ Be(s)ds||,
t20 0

both of which are well-defined by (18) and periodicity of
Bg(+) with (10) under Assumption 3. Then, the claim follows
by noting that

ID(t,6) =11 = [eBu(e7) = Bt [ " Bisyis
X(I—ng(t_) /0 t/ng(s)ds)_IH. -

In summary, we have an impulsive system that is an equiv-
alent representation of (1) in the coordinates (17), given by

y=A(t)y +eC(t, &)y
y" =D(t,e)y

t ¢ Jp(0,0) (23)
t € Jg(0,00).  (24)

3.2 Stability of the average system

The system (23) can be regarded as a perturbation of the
average system (2). And, Theorem 3 from [5] establishes
that, under Assumptions 1, 3, 4, and 5, the system (2) is ex-
ponentially stable. Here, instead of reproducing the analysis
in [5], we borrow the main ingredients as follows. For each
t > 0 we let P() be the unique symmetric positive definite
solution to the Lyapunov equation

P(H)A(t) + AT(t)P(t) = -1 (25)
Then, with f; and S, from (15), it can be shown that

B < IPON<fo  VE20, (26)
IP()I < 2BIIA)Nl, Yt & Ja(0, 00), (27)
IP(t) = P(t7)]| < 2B5 A7) = A(tD) I,
Vt € Ja(0, 00). (28)
Indeed, (26) follows from [8, Lemma 9.9], (27) from [8, proof

of Lemma 9.9] or [7, Theorem 3.4.11], and (28) from [5, Propo-
sition 1 and Lemma 3].

3.3 Stability of original system by
perturbation analysis

Consider the candidate Lyapunov function

V(ty) =y P(t)y (29)
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whose time derivative along (23) around t ¢ J := J4(0,00) U
Jg(0, 00) is given by
V =yl (PA+ ATP)y + 2ey" PC(t, &)y + y' Py

< —|y|* + 2e¢||P|lly|* + 1P| ly|*
< = (B! = 2By ec — 2837 IAN) V
where
c= sup ||C(¢9),
t¢], e€(0,67]

in which (26) and (27) are used. Let 7; and 7, be any consec-
utive elements in J such that 7, > 7; and (71, 72) N J = 0. By
the comparison lemma (e.g., [8, Lemma 3.4]) we obtain, with
V(t,y(t)) = V(t),

V(r) < exp (- (6" - 2B "e¢) (r2 = 70)
ropt [ IAG VD, 6o

Now, at a jump time 7 € J, P(t) jumps if A(t) jumps and
y(t) jumps if Bs(t) jumps at ¢ = 7. To inspect the variation
of V(¢) passing through the jumps, let us denote y, = y(z%),
y- =y(r7), P* = P(r*),and P~ = P(z7). Then,

V(r") = V(") = (y{ P*ys -y PTy-)

+(ylPry- —yTP7y ). (31)
With D := D(z, ¢), the first parenthesis can be spelled out,
using (20), Lemma 2 and (26), as

yi Pty —yIP'y-

= (Y Pys —yePry-) + (v Pry- —ylP'y)

<P yullye =y + 1Py llys — y-|

< IP*NIDINY-1ly+ = y-1 + IP*ly-ly+ — y-|

< IP*IIDINID = Illly-|* + [IP*IHID — Illly-|?

< Po(Be + DefoAp(2) V(7).
The second parenthesis in (31) becomes, using (26) and (28),

yL(P* = POy < |IP* = P lly-I?
< 2B ||A(Y) = A()IIBT V(2.

Hence, we have

V() = V() < (2387 IAG) - A
+e(Bo+ Do Ap(0) |V ()
and, using 1 + z < €%,
V() < exp (26267 1A - A

+e(B.+ DBPoT Mu(D))V (27 (32)

at the jump time 7 € J.
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Combining (30) and (32), it can be shown that, for any
ty > 1y,

V(1) < exp (= (B - 2857 0) (12 — 1)+
ty
2836 [ 1Al + (8. + Do Y An(0)V (1)
h rejp(tit2)
From this, Assumptions 5 and 6 along with the definition of
Ap in Lemma 2 bring us to
V(ty) < ye "BV (1)

where

y = 2B B aate(But1) Pofo i an v

0= p7' —2epfi'e
~ 2837 ia — (B + Dfoobi unv

with v := sup; .7 || fOT By(s)ds|. Since ;! — Zﬂgﬁl_l,uA >0
by (14), take

Byt = 2B pa }
2B+ (Bu+ D fafofi i)

Then the system (23)—(24) is exponentially stable. In the x-
coordinates, the same conclusion then holds for the original
system (1) by (17) because the norm of the transformation
x < y is uniformly bounded.

* . %
€ :=min{e¢;,

4 CONCLUSIONS

We studied stability of a class of linear systems with slow and
fast time variation and switching. This was accomplished
by combining the averaging method as used in [1] with
the result from [5] on stability of linear systems with slow
time variation and switching. Compared with the recent
paper [10], we were able to handle a more general class of
linear systems, at the expense of more involved analysis of
an impulsive system arising from a coordinate transforma-
tion. Ongoing work is focused on extending this approach
to nonlinear systems. We also envision applications in do-
mains such as PWM (pulse-width-modulation) as well as
dose control in medical drug delivery (see [1]).
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