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Abstract

There is a growing consensus that global patterns of modern human cranial and dental variation are shaped largely by neutral
evolutionary processes, suggesting that craniodental features can be used as reliable proxies for inferring population structure and
history in bioarchaeological, forensic, and paleoanthropological contexts. However, there is disagreement on whether certain types of
data preserve a neutral signature to a greater degree than others. Here, we address this unresolved question and systematically test
the relative neutrality of four standard metric and nonmetric craniodental data types employing an extensive computational
genotype—phenotype comparison across modern populations from around the world. Our computation draws on the largest existing
data sets currently available, while accounting for geographically structured environmental variation, population sampling
uncertainty, disparate numbers of phenotypic variables, and stochastic variation inherent to a neutral model of evolution. Our results
reveal that the four data types differentially capture neutral genomic variation, with highest signals preserved in dental nonmetric
and cranial metric data, followed by cranial nonmetric and dental metric data. Importantly, we demonstrate that combining all four
data types together maximizes the neutral genetic signal compared with using them separately, even with a limited number of
phenotypic variables. We hypothesize that this reflects a lower level of genetic integration through pleiotropy between, compared to
within, the four data types, effectively forming four different modules associated with relatively independent sets of loci. Therefore,
we recommend that future craniodental investigations adopt holistic combined data approaches, allowing for more robust inferences
about underlying neutral genetic variation.
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Significance Statement

Craniodental features are routinely used in bioarchaeology, forensics, and paleoanthropology to infer genetic relatedness across hu-
man remains. However, itis unclear whether certain data types preserve neutral evolutionary signals to a greater degree than others.
Here, we test the relative utility of four standard metric and nonmetric data types, employing an extensive computational genotype—
phenotype comparison across worldwide modern populations. Our results reveal that the four data types capture different amounts
of neutral genomic variation, with dental nonmetrics and cranial metrics showing the highest signals and dental metrics displaying
the lowest. Importantly, combining different data types maximizes genotypic coverage over different loci compared with using them
separately. Therefore, we recommend prioritizing combined data sets for more accurate craniodental inferences in future research.

Introduction shaped by the complex interplay of neutral evolutionary proc-
Human skeletal morphology is highly diverse and varies among esses (i.e. selectively neutral mutations, random genetic drift,
individuals and populations across the globe. This pattern was and gene flow) and nonneutral forces related to local adaptation
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and developmental plasticity in response to environmental and
cultural stimuli (1-3). Different parts of the skeleton (such as the
cranium, mandible, teeth, pelvis, long bones, hands, and feet)
have been shown to preserve neutral and nonneutral signatures
to different degrees (4-13). Overall, however, there is wide consen-
sus that cranial and dental morphology as a whole evolved for a
large part under neutrality and, thus, can be used as a proxy for
reconstructing population structure and history (14-20). This is
relevant for the study of human skeletal remains from archaeo-
logical and forensic contexts, where DNA analyses are often con-
strained due to poor molecular preservation, particularly in the
deep fossil record and in warmer climates, or when destructive
DNA sampling of fragile and rare specimens is not possible.

Morphological investigations based on craniodental features
typically focus on either quantitative (hereafter, metric) or quali-
tative (hereafter, nonmetric) data to characterize the overall
geometry of study specimens. Cranial metric data collection is
performed by defining a set of homologous anatomical landmarks
located on the skull and by measuring either linear dimensions
between them (21, 22) or the relative position of landmark and
semilandmark coordinates in two or three dimensions (23-26).
Dental metric data collection is performed in a similar fashion,
usually by measuring linear lengths, widths, or diagonal dimen-
sions at the tooth crown or at the cement-enamel junction (27,
28) or semilandmark-based crown outlines (29, 30). Cranial non-
metric trait data collection is performed by visually scoring minor
discontinuous variants, such as extra-sutural ossicles, prolifera-
tive ossifications including bridges or spurs, or variation in foram-
ina number and location, for example (31-33). Similarly, dental
nonmetric trait data collection is performed by observing the
number of cusps and roots, or the pattern of fissures, ridges, and
grooves on tooth crowns (34-37).

Despite the popularity of all four craniodental data types in
population structure and history studies, it remains poorly under-
stood whether some preserve neutral genomic signatures to a
greater degree than others. This is problematic because investiga-
tions based on different craniodental data types may arrive at
markedly disparate conclusions. For example, some researchers
have suggested that teeth are a “safe box” of the genetic code,
much more than any other skeletal element, because they form
relatively early during ontogeny and their morphology remains
unchanged after full formation, making teeth less affected by ex-
ternal stimuli (38). Some have also hypothesized that metric data
are more useful than nonmetric traits, because measurements
can be collected in a more objective and consistent manner,
whereas visual scoring of nonmetric traits can be subjective and
prone to observer error (39, 40). A vast body of literature also sug-
gest varying levels of heritability among the different craniodental
data types, with disparate amounts of genetic integration through
pleiotropy, indicating that some types of data contain more inde-
pendent genomic information than others (41-48). Several studies
also point out that more holistic approaches combining different
craniodental data types in a single analysis capture more pheno-
typic and thus genomic variation, compared with using them sep-
arately (49-51). Lastly, ithas been proposed that there are not only
differences in neutrality between the craniodental data types, but
also differences within a given data type. That is, some bones, sin-
gle trait expressions, or functional and developmental modules
conserve a stronger evolutionary neutral signal than other,
more labile, regions (10, 14, 17, 20).

A standard approach for quantifying the utility of a given cra-
niodental data type in capturing a neutral genomic signature is
to estimate phenotypic distances among worldwide modern

human populations, on the one hand, and to compare them to
neutral genomic distances estimated among the same or closely
matched set of populations on the other (1, 2, 52). These analyses,
hereafter termed Dp-Dg comparisons, have been extensively per-
formed for cranial metric data (14, 16, 17, 19, 20, 51, 53, 54), dental
metric data (18, 55), cranial nonmetric trait data (51, 56, 57), and
dental nonmetric trait data (10, 15, 18, 58). However, the esti-
mated levels of neutrality of the different craniodental data types
reported in previous Dp-Dg studies are not directly comparable,
since different populations have been sampled and diverse meth-
odological approaches for calculating between-population distan-
ces have been employed at different geospatial scales (54).

To date, only few Dp-Dg studies have attempted to systematic-
ally co-analyze the relative neutrality of different craniodental
data types in a single analytical framework, thus, allowing for
comparability (18, 51, 56). Those investigations found contradict-
ingresults, reporting either similar degrees of neutrality for differ-
ent data types (18) or that they were differentially associated with
genomic markers (51, 56). However, those previous studies were
constrained by several factors. First, they were limited to either
cranial (51, 56) or dental (18) data and none compared all four cra-
niodental data types together. Second, none of the previous stud-
ies assessed the utility of a mixed-type data set combining metric
and nonmetric traits in a single analysis. Third, none of these
studies accounted for geographically structured environmental
variation that can affect phenotypic and genomic variation (12).
Fourth, all used rather limited sets of matched populations with
varying and sometimes small sample sizes without accounting
for variation introduced by sampling uncertainty. Fifth, all studies
compared craniodental data types with unequal numbers of var-
iables, which leads to biased results since phenotypic distances
based on many variables are more robust than those based on
only a few (10, 59). Sixth and finally, all previous studies compared
phenotypic distances to a single point estimate of genetic dis-
tance, which takes all sampled genomic loci into consideration;
instead, phenotypic distances should be compared with multiple
equally plausible neutral genetic distances by randomly sampling
genomic loci in order to account for stochastic variation inherent
to a neutral model of evolution (10, 52, 60).

In this study, we address these research gaps by using a global
Dp-D¢ framework in which we jointly investigate the relative
neutrality of the four different craniodental data types, plus a
mixed-type data set combining all four types of data together.
Our extensive computations draw on the largest existing genomic
and phenotypic databases currently available, while accounting
for geographically structured environmental variation, popula-
tion sampling uncertainty, disparate numbers of phenotypic var-
iables, and stochastic variation inherent to a neutral model of
evolution.

Results

Mining large existing databases, we matched five different gen-
omic and phenotypic data types for 26 modern human population
samples from around the world, namely: (i) 8,821 single nucleo-
tide polymorphisms (SNPs), (ii) 37 cranial metrics (in the form of
linear dimensions, arcs, chords, and subtenses), (iii) 28 dental
metrics (in the form of mesiodistal and buccolingual crown diam-
eters), (iv) 24 cranial nonmetric traits, and (v) 25 dental nonmetric
traits (Fig. 1A and SI Appendix, Table S1). We then estimated pair-
wise between-population genetic distances using Weir—
Cockerham’s Fsr derived from the SNP data, which served as a
benchmark to evaluate neutral expectations (Data Set S1). Next,
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Fig. 1. Geographic location and genomic and phenotypic relationships of worldwide modern human populations. (A) World map showing the locations of

s, /

0.10

26 populations sampled for matched genomic data (SNPs) and phenotypic data (cranial and dental metrics and nonmetric traits). Points are approximate

geographic coordinates of the genomic samples. 3D NMDS plots of between-population distances, calculated separately from six different data types: (B)
SNPs; (C) cranial metrics; (D) dental metrics; (E) cranial nonmetric traits; (F) dental nonmetric traits; and (G) combined craniodental data.

we estimated pairwise between-population phenotypic distances

using Mahalanobis’ D? generated separately from the cranial
metrics, dental metrics, cranial nonmetric traits, dental nonmet-
ric traits, and the combined craniodental data (Data Sets S2-S6).
We then subjected the Fsrand D? distances to Kruskal’s nonmetric

multidimensional scaling (NMDS) to visualize the matrices in a
decomposed three-dimensional (3D) coordinate space, where a

spatial grouping of populations indicates close affinity, and vice
versa (Fig. 1B-G). The MDS stress level for the Fsr matrix was
0.0407, and the stress levels for the cranial metric, dental metric,
cranial nonmetric traits, dental nonmetric traits, and combined
craniodental data D? matrices were 0.0539, 0.1185, 0.1392,
0.0683, and 0.0615, respectively. All stress levels are below the ac-

ceptable threshold of 0.15, indicating that 3D captures the overall
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among-population variation well. To spatially orient the D? dis-
tance configurations similar to the Fsr distance configuration,
we subjected the decomposed D? coordinates to Procrustes super-
imposition to scale and rotate them to maximum similarity with
the decomposed Fsr coordinates by minimizing the overall sum
of squared differences among populations. All 3D NMDS plots
show major continental clusters of populations. The clusters ap-
pear most markedly geographically structured in the SNP data
(Fig. 1B) and to a similar degree in the combined craniodental
data (Fig. 1G), whereas clusters in the dental metric data appear
least structured geographically (Fig. 1D).

To formally quantify the neutral signals preserved in a given
phenotypic data type, we conducted partial correlation tests to
measure the degree of congruence between D? and Fsr, while con-
trolling for the effects of geographically structured environmental
variation on phenotypic and genomic variation (12).
Computationally, the partial correlation test design calculates
the correlation of the residuals from the independent regressions
D?~C and Fsy~C, whereby C describes climatic differences
among sampled population environments (Data Set S7). The re-
sulting partial correlation value r was treated as a neutrality esti-
mate, with an r value close to 1 indicating a higher degree of
neutrality, whereas an r value near to 0 indicates a lower degree.
We obtained the highest r value for the combined craniodental
data (r=0.684), followed by cranial metrics (r = 0.618), dental non-
metric traits (r=0.592), cranial nonmetric traits (r=0.390), and
dental metrics (r=0.223). Similar patterns were observed when
comparing D? to Fsr, while controlling for geographic distances
(G) (Data set S8), albeit with slightly lower overall r values (SI
Appendix, Table S2). However, due to variations in sample sizes
between the matched phenotypic and genomic data sets (SI
Appendix, Table S1), the D? and Fsr distances are statistically
biased, and in consequence, the neutrality estimate r. Therefore,
to explore the effect of population sampling uncertainty, we em-
ployed a resampling procedure whereby we calculated the neu-
trality estimator 1,000 times, each time leaving out a randomly
selected population in the phenotypic and genomic data sets
and a randomly selected individual in each remaining population.
We then reported the median of the resulting distribution of r val-
ues and constructed an interpercentile range accounting for 95%
of the spread. The results are summarized in Table 1 and visual-
ized in Fig. 2A using violin plots. Overall, the highest distribution
of r values was again attained for the combined craniodental
data, followed by cranial metrics, dental nonmetric traits, cranial
nonmetric traits, and dental metrics. To statistically corroborate
this finding, we conducted repeated-measures t-tests among pairs
of distributions (SI Appendix, Table S3) and found significant dif-
ferences in the levels of neutral signals preserved in each cranio-
dental data type (P <0.001).

The five phenotypic data sets in our analysis comprise unequal
numbers of variables (SI Appendix, Table S1), namely: 37 cranial
metric variables; 24 cranial nonmetric trait variables; 28 dental
metric variables; 25 dental nonmetric trait variables; and the com-
bined craniodental data set comprises a summed up total of 114
variables. This imbalance hampers a direct comparison across
data types, given that phenotypic analyses based on many varia-
bles are more robust than those based on only a few (10, 59).
Therefore, to create equally sized numbers of variables across
all five phenotypic data sets, we calculated the neutrality estima-
tor r for a given phenotypic data type 1,000 times, each time ran-
domly undersampling the number of variables down to 24. This
corresponds to the number of variables in the cranial nonmetric
trait data set, comprising the fewest variables among all data

sets compared. Phenotypic variable sampling bias correction
was performed together with population sampling bias correc-
tion, to explore the combined effect of these two analytical refine-
ments. On average, the resulting distributions of r values for the
five phenotypic data types exhibit a similar relative ordering to
the population sampling bias corrected r values alone, with the
only difference that dental nonmetric traits show a higher preser-
vation of neutral genomic signatures compared with cranial met-
rics (Table 1, Fig. 2B). Pairwise repeated-measures t-tests (SI
Appendix, Table S4) confirmed that the neutral signals preserved
in each craniodental data type significantly differ from one an-
other (P <0.001).

Under a neutral model of evolution, the Fsr distance matrix,
used as a benchmark for our comparisons, is just one of multiple
equally plausible neutral genetic outcomes produced by stochas-
tic variation (10, 52, 60). To account for this stochasticity, we cal-
culated Fsr and thus the neutrality estimator r for a given
phenotypic data type 1,000 times, each time randomly undersam-
pling the number of SNP loci down to the same number of pheno-
typic variables, namely 24. This sampling strategy is consistent
with population and quantitative genetics theory, where a herit-
able, additive, and selectively neutral phenotype is approximately
as informative about population differentiation as a single neutral
genomic locus, regardless of how many loci influence the pheno-
type (61, 62). Loci undersampling was performed in conjunction
with population sampling bias correction and phenotypic variable
sampling bias correction, to investigate the combined effect of
these three analytical refinements. On average, the resulting dis-
tributions of r values exhibit a similar relative ordering to those
correcting for population and phenotypic variable sampling bias
combined (Table 1, Fig. 2C). Pairwise repeated-measures t-tests
(SI Appendix, Table S5) showed that all neutral signals differ sig-
nificantly (P <0.001).

We note that overall our phenotypic data sets exhibit imbal-
anced distributions of sexes, with more males represented than
females. This bias can be problematic as sexual dimorphism in
shape, size, and trait expression may introduce variation unre-
lated to neutral genomic variation. Although we implemented
data preprocessing steps to correct for sexual dimorphism (see
Materials and Methods), we conducted two additional analyses fo-
cusing on males only. One analysis utilized size-corrected metric
data (SI Appendix, Table S6), while the other did not apply size cor-
rection to the metric data (SI Appendix, Table S7). The results
from the male subsets generally follow the same pattern as those
of the complete data set, albeit with slightly wider r value intervals
when controlling for population sampling uncertainty, which is
expected given the overall smaller sample size.

Lastly, we acknowledge that our results may be affected by
small sample sizes for certain data types, particularly dental met-
rics and SNPs, which were represented by only a few individuals in
some populations (SI Appendix, Table S1). Although our analysis
accounts for sampling bias (as described above), we conducted a
more cautious analysis focusing on a subset of 16 out of the 26
populations with phenotypic and genomic sample sizes of n> 10
(SI Appendix, Table S8). The obtained results show patterns that
generally align with those observed in the full data set, although
with slightly higher overall r values. The only distinction lies in
higher r values observed for cranial metrics compared with dental
nonmetric traits. Therefore, in order to reconcile the findings of
the full 26-population data set and the 16-population subset, we
consider dental nonmetric traits and cranial metrics equally suit-
able for tracking neutral signatures until further samples become
available for study.
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Table 1. Neutrality estimates for five craniodental data types, calculated as partial Pearson correlation (r) between phenotypic (D% and
neutral genetic (Fsy) distances across 26 modern human population samples, controlling for climate distances.

Craniodental data type Population sampling

bias correction?®

Population and phenotype
sampling bias correction

Population, phenotype, and loci

b sampling bias correction®

Cranial metrics 0.610 (0.553-0.682)
Cranial nonmetric traits 0.380 (0.346-0.430)
Dental metrics 0.194 (0.118-0.281)
Dental nonmetric traits 0.591 (0.534-0.633)
Craniodental combined 0.672 (0.627-0.743)

0.573 (0.498-0.640) 0.455 (0.276-0.610)
0.380 (0.346-0.430) 0.309 (0.138-0.464)
0.190 (0.085-0.301) 0.150 (~0.043-0.338)
0.586 (0.528-0.642) 0.476 (0.261-0.652)
0.644 (0.568-0.716) 0.522 (0.349-0.668)

“Median (and 95% range) of 1,000 iteratively generated r values, each iteration leaving out a randomly selected population in the phenotypic and genomic data sets

and a randomly selected individual in each remaining population.

"Median (and 95% range) of 1,000 iteratively generated r values, each iteration randomly undersampling the number of phenotypic variables, combined with

population sampling bias correction.

“Median (and 95% range) of 1,000 iteratively generated r values, each iteration randomly undersampling the number of loci, combined with population and

phenotype sampling bias correction.

Discussion

To our knowledge, this study is the first to systematically
co-analyze the relative utility of four widely used standard cranio-
dental phenotypic data types in capturing neutral genomic vari-
ation, namely (i) cranial metrics, (ii) dental metrics, (iii) cranial
nonmetric traits, and (iv) dental nonmetric traits, plus (v) a mixed-
type data set combining all four data types together. We per-
formed a comprehensive Dp—Dg comparison across 26 worldwide
populations, drawing on the largest existing phenotypic and gen-
omic data sets currently available, and incorporating a range of
analytical refinements commonly neglected in previous Dp-Dg
studies. In doing so, we demonstrated the importance of account-
ing for sampling uncertainty and showed that r neutrality esti-
mates can vary substantially based on the composition of
population samples and numbers of specimens included, even
with large data sets as employed here. This is, for example, mark-
edly expressed by the dental metric data in the full 26-population
data set, with a point estimate of r=0.223, which widens to a 95%
range of r=0.118-0.281 when accounting for sampling bias. We
further demonstrated the importance of accounting for unevenly
sized numbers of phenotypic variables when comparing relative
levels of neutrality across phenotypic data sets. Specifically, in
the full 26-population data set, cranial metrics exhibited higher
levels of neutrality compared with dental nonmetric traits when
no correction was applied, but this pattern reversed when the
number of phenotypic variables was equalized across data sets
through random undersampling. This result is in agreement
with previous research finding that the validity of cranial metric
and dental nonmetric trait distances in reflecting neutral expect-
ations is contingent upon the number of variables employed (10,
59). On a related note, our undersampling procedure also takes
into account the practical limitations of working with skeletal re-
mains, particularly in bioarchaeological or fossil contexts, where
craniodental data are often highly fragmented, and where re-
searchers must work with random subsets of variables. Lastly,
we demonstrated the importance of accounting for stochastic
variation inherent to a neutral model of evolution by randomly
undersampling the SNP loci to match the number of phenotypic
variables. This resulted in r neutrality estimate distributions
with much wider ranges, and for the dental metric data, the 95%
range was found to be r=-0.043-0.338 (in the full 26-population
data set) and r=0.067-0.612 (in the 16-population subset), with
the lower bounds near zero implying nonneutral evolutionary
forces. This finding therefore calls into question the validity of
dental metrics as a proxy for neutral genomic markers.
Inspecting the four craniodental data types separately, our re-
sults clearly show that they are differentially associated with

neutral genomic variation after accounting for population sam-
pling uncertainty, disparate numbers of phenotypic variables,
and stochastic variation inherent to a neutral model of evolution.
In testing for neutrality, our estimates reveal that, overall, dental
nonmetric traits and cranial metrics performed best, followed at
some distance by cranial nonmetric traits, whereas dental metrics
performed relatively poorly. Interestingly, these estimates do not
relate to the suggested general divide in utility between cranial
versus dental features, with the latter proposed to be less affected
by external environmental stimuli (38), and nonmetric versus
metric data, with the latter suggested to be less prone to observer
error (39). Instead, our estimates are in agreement with previous
quantitative genetic studies of pleiotropy in humans (or in non-
human primates when studies on humans are not yet available),
finding that the amount of independent genetic information in
dental metrics (41) and cranial nonmetric traits (45) is low, com-
pared with the amount of independent genetic information in cra-
nial metrics (44) and dental nonmetric traits (42, 43). The
relatively poor performance of dental metrics contrasts with
what was proposed in a previous study using a methodological
Dp-Dg framework similar to ours (18), which found that dental
metrics and nonmetric traits are both comparably well-suited in
tracking neutral genomic variation. The present study expands
and improves upon the Dp-Dg investigation by Rathmann et al.
(18) in several respects. Among the most important are a more
comprehensive dental nonmetric trait data set for comparison
(25 versus 15 traits) and a larger set of globally distributed
matched population samples (26 versus 19 populations).

Perhaps one of the most interesting findings of our study is that
phenotypic inferences of neutral genomic variation are most ac-
curate when based on a combined mixed-type data set, compared
with using the four different data types separately. This resultisin
agreement with previous studies reporting that phenotypic infer-
ences about genomic affinities are best served when multiple lines
of evidence are jointly investigated (49-51). This is also expected,
given that the number of variables in the mixed-type data set is
many times higher than in the four different data sets separately,
leading to a richer knowledge of phenotypic and thus genomic
variation (10, 59). Interestingly though, when equalizing the num-
bers of phenotypic variables across all data sets via undersam-
pling, the mixed-type data still performed best. One possible
explanation for this result could be that genetic integration
through pleiotropy between the four data types is lower than gen-
etic integration within the four data types, effectively forming
four different modules regulated by different sets of loci that are
relatively independent from each other (63-65). In this situation,
even when just a few phenotypic variables per data type would
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Fig. 2. Violin plots showing neutrality estimates for five craniodental data types, calculated as partial Pearson correlation (r) between phenotypic (D?) and
neutral genetic (Fsr) distances across 26 modern human population samples, controlling for climate distances. Box plots are superimposed to show
median values (black solid line) and interquartile ranges (boxes). (A) Distribution of 1,000 iteratively generated r values, each iteration leaving out a
randomly selected population in the phenotypic and genomic data sets and a randomly selected individual in each remaining population. (B) Distribution
of 1,000 iteratively generated r values, each iteration randomly undersampling the number of phenotypic variables, combined with population sampling
bias correction. (C) Distribution of 1,000 iteratively generated r values, each iteration randomly undersampling the number of loci, combined with

population and phenotype sampling bias correction.

contribute to the mixed-type data, more underlying genomic vari-
ation from different loci would still be captured than using the full
phenotypic variable battery of one of the four data types individu-
ally. This hypothesis could be tested with a quantitative genetic
analysis of pleiotropy in a modern human population with known
pedigree structure sampled for all four cranial and dental metric
and nonmetric trait data types, which to our knowledge has not
been performed so far and could thus lead to exciting new re-
search directions.

Wenote that the reported rneutrality estimates for the different
craniodental data types must be considered minimum values as
they arebiased toward zero. Thisis because we compared matched
but unpaired population samples, with phenotypic and genomic
data coming from different individuals; however, phenotypic and
genomic distances among unpaired samples have a reduced
degree of congruence, given that within-population variation
is high compared with between-population variation (66).
Nevertheless, comparing unpaired samples is a standard proced-
ure in global scale Dp-Dg analyses (7, 10, 14-20, 51, 55), and our ap-
plied analytical correction for sampling bias (i.e. both population
and specimen resampling of the phenotypic and genomic data)
may account for at least some of this uncertainty. Moreover, al-
though our large craniodental data sets comprise the most widely
used metric and nonmetric trait variables in bioanthropological
research, they could be complemented with additional standard
and nonstandard variables proposed to be informative (67-70).
Similarly, the metric portion of our data sets, consisting of linear
dimensions, arcs, cords, and subtenses, could be replaced with
3D coordinate data that better retain the geometry of the studied
specimens than caliper-based measurements. Interestingly,

though not fully comparable, previous Dp-Dg analyses based on
craniodental 3D data reported neutrality levels similar to those re-
ported here (14, 17, 19, 20, 55), suggesting that caliper-based meas-
urements and 3D coordinates are equally well-suited for
reconstructing genetic relationships, though our caliper-based
data sets have the advantage to be many times larger.

Previous studies proposed that there are not only differences in
neutrality between the four craniodental data types, but also dif-
ferences among the variables within a given data type (10, 14, 17,
20). Our phenotypic variable undersampling procedure takes at
least some of these considerations into account and we show
that neutrality estimates for a given data type differ substantially
when different subsets of variables are employed, further reinfor-
cing previous claims. Future investigations should therefore ex-
plore additional arrangements of variables beyond the five
tested here. For instance, considering only cranial data, combin-
ing all nonmetric variables, utilizing variables with the highest
discriminatory power, or focusing on variables associated with
previously identified functional and developmental modules (9,
17, 48). We propose that testing for neutrality in all possible com-
binations of cranial and dental metric and nonmetric variables, as
recently employed for dental nonmetric trait data (10), is the most
promising approach, rather than restricting analysis to predefined
or hypothesized arrangements only.

In conclusion, our results serve as a reference for future cranio-
dental research, confirming that most of the traditionally used
data types can be used as proxies for neutral genomic data, al-
though some are more useful than others. We do advise, however,
to carefully review the use of dental metrics in the form of stand-
ard mesiodistal and buccolingual crown dimensions only, as they
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may not cover sufficient independent genomic variation, at least
in comparison with other craniodental data types. Importantly,
instead of using the different data types separately, we advise
relying on a more holistic approach by combining them together,
as this maximizes genotypic coverage over different loci resulting
from primarily neutral evolution. Future work in combinatorics
should focus on identifying specific subsets of mixed cranial and
dental metric and nonmetric traits that are the most useful for
tracking human neutral genetic variation.

Materials and methods

Matching population samples

Materials for this study comprise five different types of data: (i)
SNPs, (ii) cranial metrics, (iii) dental metrics, (iv) cranial nonmetric
traits, and (v) dental nonmetric traits. All data were taken from ex-
isting databases. We matched the different data types for 26 glo-
bally distributed modern human populations for which all five
types of data were available (Fig. 1 and SI Appendix, Table S1).
Populations were chosen for inclusion in this study based on three
criteria: (i) availability of n> 3 unrelated individuals per genetic
sample; (i) availability of n > 4 individuals per phenotypic sample;
and (iif) sample antiquity <2,000 years, to control for temporal
bias. In instances where exact population matches between geno-
typic and phenotypic populations could not be achieved, a geo-
graphically proximate population with ethno-linguistic affinities
was selected. In a few cases, closely related populations were
pooled to maximize sample size. We note that the matched popu-
lation samples in this study are unpaired; that is, all five types of
data derive from different individuals. When possible, approxi-
mately equal numbers of adult males and females (determined
osteologically) were sampled for the phenotypic data sets, to con-
trol for sexual dimorphism; however, we note that overall the
phenotypic data sets are biased toward representing more males.

SNP data

SNP data were obtained from published databases, genotyped
with the Affymetrix Human Origins Array (71-80). To correctly
merge genotypes coming from different data sets, we ensured
they were all related to the same Reference Sequence, the
Genome Reference Consortium Human Build 37 (81) using,
when needed, the LiftOver tool (82). To merge data from selected
data sets, we used the plink-1.90 software (83). We filtered the
data removing all transversions to avoid ambiguity in strand
alignment (C/G or A/T), principal component analysis outliers,
and first- and second-degree relative pairs. We selected only those
SNPs that map to nonfunctional genomic regions and are there-
fore unlikely to be affected by natural selection. We applied two
different filter levels for the amount of allowed missing data: first,
to populations collected by Lazaridis et al. (74), Mallick et al. (76),
Pickrell and Pritchard (78), and Skoglund et al. (80), we retained
only individuals with 0% missing data; second, from the other pub-
lished resources, we removed individuals with >10% of missing
data. All filtering was performed using the plink-1.90 software
(83). Finally, we converted the data set from PLINK file format into
a genepop file using PGDSpider (84). The final preprocessed SNP
data set comprised 857 individuals sharing 8,821 markers, with
population sample representation varying from 3 to 176 individuals.

Cranial metric data

The cranial metric data were selected from a larger database
collected by one of us (T.H.) (85). The data set consists of 37

measurements of the cranium recorded for each individual, in
the form of linear dimensions, arcs, cords, and subtenses. All
measurements were recorded following the procedures in
Brauer (70) using sliding and spreading calipers. Raw measure-
ments were converted into scale-free shape variables by dividing
each measurement by the geometric mean for all the measure-
ments in each individual (86). This procedure removes gross size
from the data in order to assess differences in the proportionate
contribution of single variables to overall cranial size and adjusts
for size differences between individuals that may result from sex-
ual dimorphism. Because size-correction requires complete cases,
missing values were imputed with the k-nearest neighbor (kNN)
method (87). kNN searches the entire data set for k =5 individuals
most similar to the one with missing data and generates a mean to
replace the missing value(s). Prior to imputation, individuals with
more than half of the measurements missing were removed from
the analysis. In this way, we ensured that <2.5% of the final data
set requires imputation (down from 3.1%). Summary statistics of
the kNN-imputed and size-corrected cranial metric data set are
provided in Data Set S9. The final preprocessed cranial metric
data set comprised 2,994 individuals, with population sample re-
presentation varying from 24 to 366 individuals.

Dental metric data

The dental metric data were selected from a larger database col-
lected by one of us (T.H.) (88). The data set consists of mesiodistal
and buccolingual crown diameters of all teeth recorded for each
individual (up to a total of 28 metric variables, excluding third mo-
lars). Only right teeth were measured, but when a right tooth was
missing, damaged, or affected by wear or pathology, the corre-
spondingleft antimere was measured. All measurements were re-
corded according to the procedures in Moorrees (89) and Hillson
(90) using a digital sliding caliper accurate to 0.01 mm. We applied
the same data preprocessing steps as for the cranial metric data.
First, individuals missing more than half of the measurements
were removed to ensure that <24.3% of the data set requires im-
putation (down from 57.7%). Second, missing values were im-
puted using the kNN algorithm (87). Third, raw measurements
were converted into scale-free shape variables (86) to assess dif-
ferences in the proportionate contribution of individual variables
to overall tooth size and to adjust for size differences that may re-
sult from sexual dimorphism (40). Summary statistics of the
kNN-imputed and size-corrected dental metric data set are re-
ported in Data Set S10. The final preprocessed dental metric
data set comprised 909 individuals, with population sample re-
presentation varying from 4 to 185 individuals.

Cranial nonmetric trait data

The cranial nonmetric trait data were selected from a larger data-
base collected for the most part by one of us (T.H.) (91). The data
set consists of 24 discrete observations of the cranium recorded
for each individual and comprises data on sutural variation,
supernumerary ossicles, hypostotic and hyperostotic traits, and
vessel/nerve-related traits. The scoring procedures for each trait
are described elsewhere [Hanihara et al. (91) and references there-
in]. Scoring followed the individual count method (92), where bi-
lateral traits were counted only once per cranium, regardless of
whether or not the trait appeared bilaterally. In cases where a trait
was expressed asymmetrically, the side with the highest expres-
sion level was scored. Graded trait expression scores were col-
lapsed into simplified binary dichotomies of absence or presence
based on established breakpoints [Hanihara et al. (91) and
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references therein]. Sex differences were found in a few traits but
none of the traits differed consistently between males and fe-
malesin all sampled populations and we thus analyzed both sexes
together, asithas been donein previous analyses of the same data
set (91). Summary statistics of the cranial nonmetric trait data set
are provided in Data Set S11. The final preprocessed cranial non-
metric trait data set comprised 4,623 individuals, with population
sample representation varying from 26 to 533 individuals.

Dental nonmetric trait data

The dental nonmetric trait data were obtained from published re-
sources (15, 68), whereby the majority of the samples were col-
lected by C. G. Turner II, later augmented with samples
collected by two of us (GR.S. and J.D.I; SI Appendix,
supplementary text 1). The data set consists of 25 discrete obser-
vations of the dentition, including data on the number of cusps
and roots, and the pattern of fissures, ridges, and grooves on tooth
crowns. All data collectors used the Arizona State University
Dental Anthropology System (ASUDAS) to record trait observa-
tions (68, 93). The ASUDAS comprises a reference set of dental
castsillustrating expression levels for various traits alongside spe-
cific instructions that ensure a standardized scoring procedure,
which minimizes observer error. ASUDAS traits are routinely col-
lected on key teeth (usually the most mesial member of a tooth
district) because these are considered the most stable members
in terms of development and evolution (94). As in the cranial non-
metric trait data set, scoring followed the individual count meth-
od (92). Dental trait expression scores were collapsed into
simplified binary dichotomies of absence or presence based on es-
tablished breakpoints (15, 68). Dental traits of the ASUDAS have
little or no sexual dimorphism, thus, it is a standard procedure
to pool sexes (42, 46, 68, 94). Summary statistics of the dental non-
metric trait data set are provided in Data Set S12. The dental non-
metric trait data set comprised 2,986 individuals, with population
sample representation varying from 28 to 450 individuals.

Estimating distances among populations

Pairwise neutral genetic distances among populations were com-
puted from the SNP data using Fsr, defined as the fixation (F) index
comparing the subset (s) genetic diversity within populations to
the total (1) genetic diversity of all sampled populations. We fol-
lowed Weir and Cockerham’s method of moments for diploid
loci and calculated Fsr for each SNP individually, averaging Fsr
over all loci (95). Under this model, populations of the same size
are considered to have descended from a common ancestral
population, which is assumed to be in Hardy-Weinberg equilib-
rium (Data Set S1).

Pairwise phenotypic distances were calculated from the cranio-
dental data using Mahalanobis’ D? distance, a model-free meas-
ure accounting for correlation among variables to avoid
over-representing variation from variables that co-occur. The D?
distance between two populations i and j is estimated as the dif-
ference between two vectors of variable averages (X; and X;), ad-
justed by a pooled within-population variance-covariance
matrix (S) estimated over all populations in the analysis. For the
cranial and dental metrics, we estimated D? following
Mahalanobis (96), where X; and X; are calculated as geometric
means, and S is calculated as a pooled Pearson variance-covari-
ance matrix weighted by population sample sizes (Data Sets S2
and S3). For the cranial and dental nonmetric traits, we estimated
D? following Nikita (97), where X; and X; are calculated as probit
threshold values of trait frequencies, and S is calculated as a

pooled Pearson correlation matrix weighted by the sample sizes
for each pair of traits (Data Sets S4 and S5). When estimating D?
for the combined craniodental data, we first computed D? inde-
pendently for each of the four data types, and then combined
the four D? matrices as a weighted average based on the numbers
of variables (Data Set S6). Although this approach is valuable for
handling unpaired samples and accounts for correlations within
the four data sets, it does not account for correlations between
them. However, in our case, it may still be appropriate since pre-
vious research demonstrated that the different data types are
largely independent from each other, at least when comparing
cranial metrics, dental metrics, and dental nonmetric traits (27),
or cranial nonmetric and dental nonmetric traits (98). In addition
to model-free D? distances, we also calculated model-bound Psr
distances, which incorporate relative estimates of effective popu-
lation size (Ng; SI Appendix, Table S9) and average estimates of
heritability (h? SI Appendix, supplementary text 2). Results ob-
tained with Psy show similarities to those using D? (SI Appendix,
Table S10). However, due to the challenge of validating the param-
eter estimates N, and h?, we opted to rely on D? in order to limit
potential model bias.

Pairwise climatic distances among sampled population envi-
ronments (C) were calculated as Euclidean distances based on
five temperature-related variables obtained from a global climate
database published in Hubbe et al. (9), using latitudes and longi-
tudes approximated for each population sample (Data Set S7).
As climate indicators for each population region, we used esti-
mates of annual minimum temperature, annual maximum tem-
perature, annual average temperature, maximum temperature
of the warmest month, and minimum temperature of the coldest
month, all measured in °C. These indicators are listed for each
population sample in Data Set S13.

Pairwise geographic distances (G) were calculated as geodes-
ic distances between population latitudes and longitudes (Data
Set S8).

Correlation tests

We conducted Pearson correlation tests between the off-diagonal
values in any two distance matrices to measure the linear associ-
ation between phenotypic (D?), genetic (Fsy), climate (C), and geo-
graphic (G) distances. We used partial Pearson correlation tests
based on the residuals of a previous correlation and the off-
diagonal values in a third matrix to evaluate the linear association
between D? and Fsr, while controlling for either C or G. The result-
ingr coefficients are reported in SI Appendix, Table S2. To account
for population sampling uncertainty in our partial correlation
tests of D?, Fsr, and C, we calculated the r coefficients 1,000 times,
each time leaving out a randomly selected population in the
phenotypic and genomic data sets and a randomly selected indi-
vidual in each remaining population. Additionally, to create
equally sized numbers of variables across all phenotypic data
sets, in each of the 1,000 iterations we randomly undersampled
the number of variables down to 24, which corresponds to the
number of variables in the cranial nonmetric trait data set, com-
prising the fewest variables among all phenotypic data sets being
compared. Further, to account for stochastic variation inherent to
a neutral model of evolution, in each of the 1,000 iterations we
randomly undersampled the number of SNP loci down to the
same number as there are phenotypic variables, namely, 24. To
gauge the relative neutrality of the different phenotypic data
typesin a visual manner, we plotted the distributions of estimated
r coefficients using violin plots. Statistical significance between
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pairs of distributions was evaluated with repeated-measures
t-tests with the application of a Bonferroni correction for multiple
testing (SI Appendix, Tables $3-S5).

Unless otherwise noted, all analyses were performed in R, ver-
sion 4.2.2 (99). The data and R code are publicly accessible from
the Zenodo repository at https://doi.org/10.5281/zenodo.8067443
. World map in Fig. 1 modified from https://commons.wikimedia.
org/wiki/File:BlankMap-Worldé.svg (Public Domain).

Supplementary Material

Supplementary material is available at PNAS Nexus online.
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