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revealed by spatial transcriptomics
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SUMMARY

Background: Functional placental niches are presumed to spatially
separate maternal-fetal antigens and restrict the vertical transmission
of pathogens. We hypothesized a high-resolution map of placental
transcription could provide direct evidence for niche microenviron-
ments with unique functions and transcription profiles.

Methods: We utilized Visium Spatial Transcriptomics paired with H&E
staining to generate 17,927 spatial transcriptomes. By integrating these
spatial transcriptomes with 273,944 placental single-cell and single-
nuclei transcriptomes, we generated an atlas composed of at least 22
subpopulations in the maternal decidua, fetal chorionic villi, and
chorioamniotic membranes.

Findings: Comparisons of placentae from uninfected healthy controls
(n = 4) with COVID-19 asymptomatic (n = 4) and symptomatic (n = 5)
infected participants demonstrated that severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) detection in syncytiotrophoblasts
occurred in both the presence and the absence of maternal clinical
disease. With spatial transcriptomics, we found that the limit of
detection for SARS-CoV-2 was 1/7,000 cells, and placental niches
without detectable viral transcripts were unperturbed. In contrast,
niches with high SARS-CoV-2 transcript levels were associated with
significant upregulation in pro-inflammatory cytokines and interferon-
stimulated genes, altered metallopeptidase signaling (TIMPT), with
coordinated shifts in macrophage polarization, histiocytic intervillositis,
and perivillous fibrin deposition. Fetal sex differences in gene expres-
sion responses to SARS-CoV-2 were limited, with confirmed mapping
limited to the maternal decidua in males.

Conclusions: High-resolution placental transcriptomics with spatial
resolution revealed dynamic responses to SARS-CoV-2 in coordinate
microenvironments in the absence and presence of clinically evident
disease.

Funding: This work was supported by the NIH (ROTHD091731 and T32-
HD098069), NSF (2208903), the Burroughs Welcome Fund and the
March of Dimes Preterm Birth Research Initiatives, and a Career Devel-
opment Award from the American Society of Gene and Cell Therapy.

INTRODUCTION

Not all gravidae (pregnant persons) infected with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) will experience symptoms or suffer COVID-19."~¢ How-
ever, we and others have provided key data demonstrating a disproportionate risk of
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CONTEXT AND SIGNIFICANCE
With placentae collected during
the SARS-CoV-2 Delta variant
surge, when the burden of
COVID-19 on maternal-fetal
health was at its peak, researchers
at Baylor College of Medicine
utilized state-of-the-art
approaches to characterize
distinct functional roles in the
maternal and fetal spaces of the
placenta and showed differences
ranging from healthy uninfected
to highly SARS-CoV-2-infected
areas with clinically evident
disease. These data suggest that
multiple mechanisms lead to the
clearance of sparse SARS-CoV-2
placental infections and identify
potential SARS-CoV-2-
susceptible areas or “niches” that
persist up to 10 days after the
onset and resolution of
symptoms.
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COVID-19 mortality and morbidity during pregnancy with a greater burden among
vulnerable populations.””'® In seeking to understand this disproportionate risk
burden during pregnancy, several studies have sought to examine associations be-
tween maternal COVID-19, placental immunity, SARS-CoV-2 intraamniotic infection,
and fetal disease.'’'*"*? Using mid- to low-resolution approaches, the available
literature suggests that although SARS-CoV-2 can enter and replicate in placental
trophoblast cells, maternal-fetal vertical transmission in utero rarely occurs (<1%),
and there is no clear association between SARS-CoV-2 replication in the placenta
and gross histopathology.'?""1717:20:23-26 Gingle-cell RNA sequencing (RNA-seq;
scRNA-seq) atlases offer a higher-resolution approach aimed at providing molecular
insight into the pathogenesis of COVID-19, with the identification of cells expressing
viral receptors and entry co-factors, descriptions of rare subtypes of cells associated
with increased disease severity, and the identification of distinct cytokine storm tran-
scription programs.?’~*? Of interest to our work herein, initial placental bulk RNA-
seq and scRNA-seq analyses of SARS-CoV-2 entry receptor ACE2 and co-factor
TMPRSS2 yielded conflicting results on whether SARS-CoV-2 could enter or repli-

cate in placental cells,®’

the degree of inflammatory signaling, macrophage
and T cell recruitment, and susceptibility varying by sex.'”?'*% Prior studies did
not detect SARS-CoV-2 transcripts within the placenta single-cell transcriptomes,

limiting insight into the host responses to SARS-CoV-2 within the placenta.

In the current study, we sought to overcome prior limitations by pairing bulk assays,
microscopy, and 10X Genomics Visium Spatial Transcriptomics (v2) to create a high-
resolution map of normal placental spatial niches and to compare uninfected con-
trols with placentae from both symptomatic and asymptomatic maternal SARS-
CoV-2-positive (MSARS-CoV-2") cases (as defined by positive nasopharyngeal
swabs within 72 h of delivery). We hypothesized that a high-resolution single-cell
and spatial placental transcriptomics atlas would reveal molecular mechanisms of
normal placental immune tolerance and detect immune activation in microenviron-
ments permissive to efficient SARS-CoV-2 replication. We generated placental
spatial transcriptomes in placentae from healthy SARS-CoV-2~ participants (n = 4)
and compared them with placentae from SARS-CoV-2" gravidae (n = 9). Maternal
subjects positive for SARS-CoV-2 were either asymptomatic (no COVID-19-related
symptoms, n = 4) or symptomatic (cough, fever, pneumonia, and/or respiratory fail-
ure, n = 5). We employed rigorous orthogonal methods, including immunohisto-
chemistry (IHC), RNA in situ hybridization (RNAscope), bulk RT-gPCR, and spatial
transcriptomics, to assess the limits of detection for SARS-CoV-2 in placentae. We
found that SARS-CoV-2 detection in the placenta by RT-gPCR or spatial transcrip-
tomics was just as likely in asymptomatic participants (three of four cases) as those
with symptomatic maternal COVID-19 (four of five cases). Specifically, we found
no SARS-CoV-2 in three placentae from known infected gravidae, five cases of
sparse SARS-CoV-2 placental transcripts, and two placentae from term and preterm
intrauterine fetal demise (IUFD) cases highly positive for SARS-CoV-2 transcripts.
With these placentae, we profiled the distinct host and SARS-CoV-2 changes in
transcript levels with a high degree of spatial resolution, and we used these data
to propose a comprehensive model representative of distinct phases of probable
SARS-CoV-2 infection at the maternal-fetal interface.

RESULTS

Participant cohorts and their clinical characteristics

We and other have previously used high-resolution molecular approaches to visu-
alize bacteria and viruses in placental tissue in the absence of overt histopathology
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Figure 1. Detection of SARS-CoV-2 in placentae by histology and bulk RT-qPCR

(A-C) Fresh-frozen in optimal cutting temperature serum (FF-OCT) tissue blocks from spatial transcriptomics samples were cryosectioned and subject
to (A) RNA in situ probing for SARS-CoV-2 Spike (S), (B) immunohistochemistry (IHC) for S, and (C) IHC staining for SARS-CoV-2 Nucleocapsid (N).
Images were taken at 20 X magnification, and each row represents images obtained from an individual participant.

(D) FF-OCT and formalin-fixed and paraffin-embedded (FFPE) blocks were subject to RT-gqPCR probing for S, N, or ORFlab SARS-CoV-2 transcripts.
Based on these results, placentae were grouped for analysis into negative controls (NCs), maternal positive but SARS-CoV-2 was not detected in the
placenta (ND), sparse positive (SP) if SARS-CoV-2 was detected by RT-qPCR where ct values <27 were observed (limit of detection = 1/7,000 cells) or >1
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SARS-CoV-2 transcripts per spot were observed spatial transcriptomics (limit of detection = 1/661 cells), and high positive (HP) where RT-qPCR ct

values < 15 and >2-1,554 SARS-CoV-2 transcripts per spot were observed. Error bars represent the standard error of the mean.

CV, chorionic villi; IVS, intervillous space; SYT, syncytiotrophoblast.

and inflammation.?®**=? Therefore, we used these and other recently developed
high-resolution technologies (including the Visium 10x platform) in a set of orthog-
onal methods to profile placental immune microenvironments with or without
mMSARS-CoV-2 infection. The 14 placentae were given unique identifiers (1-14)
and grouped by maternal infection and disease status for comparative analysis.
Analysis cohorts included negative controls (NCs; n = 4) and mSARS-CoV-2" partic-
ipants (n = 10). In the latter category, although all mSARS-CoV-2" participants
had tested positive by clinical nasopharyngeal swab within 72 h of delivery (see
Table ST, ST1.1, and Table S2), not all participants had detectable viral transcripts
in the placenta. We therefore designated the mSARS-CoV-2" participants as not
detected in the placenta (ND), sparse positive (SP) if SARS-CoV-2 was detected by
RT-gPCR ctvalues < 27 for SARS-CoV-2 transcripts (limit of detection = 1/7,000 cells)
or >1 SARS-CoV-2 transcripts/spot by spatial transcriptomics (limit of detection =
1/661 cells), or high-positive (HP) placentae where RT-qPCR ct values < 15 were
observed for SARS-CoV-2 transcripts or >2-1,554 SARS-CoV-2 transcripts/spot
by spatial transcriptomics. We did not detect a false-positive alignment to a SARS-
CoV-2 transcript with our >5.8 billion spatial transcriptomics data and independent
alignment of published'”*%¢%=%? scRNA-seq reads.

The clinical characteristics of this study’s cohorts are summarized in Table S2, and
subject metadata are available in Table ST, ST1.1. mSARS-CoV-2 placentae and
uninfected controls were collected between August and October 2021 during the
Delta (B.1.617.2) variant surge.®®>“* None of the subjects had received SARS-CoV-
2 vaccine doses before or during pregnancy, and none of the offspring tested pos-
itive for SARS-CoV-2 after delivery. Placentae from uninfected NCs (n = 4 subjects)
included one female placenta with a female fetus sampled from the chorionic
villi, decidua, and chorioamniotic membranes (NC1a, NC1b, and NC1c), and
three placentae from male fetuses were each sampled once from the parenchyma
(NC2, NC3, and NC4). Sampling pre-defined regions allowed us to compare uniform
parenchymal sections in an unbiased manner. We collected placentae from mSARS-
CoV-2" participants who were asymptomatic (n = 4 subjects: two male and two
female fetuses), and we also collected placentae from mSARS-CoV-2" subjects ex-
hibiting COVID-19 symptoms, including pneumonia and maternal respiratory failure
(n = 6 subjects: two male, three female, and one not disclosed fetus). Among
symptomatic gravidae, the most common diagnosis was SARS-CoV-2 pneumonia
(*p < 0.05), and the onset of symptoms averaged 7 days before delivery
(*p < 0.05). Of note, placenta sample HP13 was a preterm (22.3 weeks’ gestation)
IUFD case highly positive for SARS-CoV-2 and was sampled twice for spatial
transcriptomics, whereas HP14 was a case of IUFD (35 weeks’ gestation) where fresh
tissue was not available for the Visium Spatial Transcriptomics platform.

Detection of placental SARS-CoV-2 employing orthogonal methods

First, we performed microscopy including RNA in situ hybridization (RNAscope) to
localize SARS-CoV-2 spike transcripts and stained for viral proteins spike and nucle-
oprotein with IHC (Figure 1; see summary of all microscopy results for each sample in
Table S1, ST1.1). We did not observe spike RNA, spike protein, or nucleoprotein
microscopically in any mSARS-CoV-2 NC, nor in all samples with a positive maternal
RT-gPCR nasal swab (mSARS-CoV-2", ND). Using our NCs and serial dilutions of a
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SARS-CoV-2 cDNA template, we determined the limit of detection for SARS-CoV-2
spike, nucleoprotein, and ORF1ab by one-step RT-gPCR to be one copy of viral RNA
per 3,000 cells. The ct values and absolute quantities of SARS-CoV-2 transcripts are
available in Table S1, ST1.1. We performed RT-gPCR from fresh-frozen samples pre-
served in optimal cutting temperature solution (FF-OCT) and formalin-fixed paraffin-
embedded (FFPE) samples from the same placentae. We found high SARS-CoV-2
spike, nucleoprotein, and ORF1ab in HP13 (ct 11-34) and HP14 (ct 18-22). In
addition, we observed sparse levels (ct 26-39) of SARS-CoV-2 transcripts in three
additional samples (SP8, SP9, and SP11). Based on the consensus standardized
NIH-NICHD (Eunice Kennedy Shriver National Institute of Child Health and Human
Development) definition of placental SARS-CoV-2,%° cases HP13 and HP14 meet
the criteria for probable replication based on the detection of both viral protein
and VRNA. Therefore, we infer SARS-CoV-2 replication in these cases but cannot
confirm or deny replication in the sparsely positive cases.

Generation of a term placenta transcriptomics atlas with spatial and single-cell
resolution

We utilized the 10X Genomics Visium spatial transcriptomics platform for fresh
tissue, which captures polyadenylated RNAs, including SARS-CoV-2, but currently
does not yield single-cell resolution (55-um spots that capture RNA from one to
five cells). Therefore, we also analyzed published placental scRNA-seq or single-
nuclei RNA-seq (snRNA-seq) datasets' 7**¢%"42 to generate an inclusive placenta
cell-type transcriptome reference. We independently analyzed 273,944 placenta
single-cell and single-nuclei transcriptomes, annotated each cluster with a cell
type based on canonical marker gene expression (Log,(fold-change) > 2, Wilcoxon
rank-sum test adjusted p < 0.05), and integrated these data with our newly gener-
ated placenta spatial transcriptomics data using anchoring features shared among
platforms (Figure 2; atlas differential expression results available in Table S1,
ST1.2). We found overlap between the spatial and snRNA-seq datasets but relatively
poor overlap with the scRNA-seq data, potentially because of known technical
biases between Visium (v2), snRNA-seq, and scRNA-seq approaches, which may
or may not exclude large multi-nucleated syncytiotrophoblasts (SYTs) that comprise
the maternal-fetal barrier.°® Anchor-based integration and probabilistic transfer of
single-cell annotations have been utilized to determine near-single-cell niches
from spatial transcriptomics data.®’ Therefore, we used the annotations of the
term single-cell atlas to assess the predictiveness of each spatial transcriptome clus-
ter aligning with single-cell niches. We found high conservation between spatial and
single-cell profiles of placental cell types, including SYT and extravillous tropho-
blasts (EVTs), and we also identified spatial transcriptome spots aligning with the
single-cell transcriptomic profiles of macrophages (Figure 2B).

After stringent quality-control filtering (Figure S1A), 17,927 spatial transcriptomes
from 16 samples were visualized in two-dimensional Unique Manifold Approxima-
tion and Projection (UMAP) space (Figure 2C). Clustering resulted in 22 subpopula-
tions, which were annotated based on the prediction values from the reference
single-cell term placenta atlas and significant upregulation (Log,(fold-change) > 2,
g < 0.05) of marker transcripts. For example, transcription niches predicted as stro-
mal cells were marked by significant upregulation of IGFBP1 and PRL expression.
Notably, there were no significant differences in the proportions of spatial transcrip-
tomes among samples (Table S1, ST1.3). None of the clusters were defined by batch
effects or quality-control metrics, including cell-cycle gene expression, the number
of unique genes per spot, the number of unique molecule identifiers (UMIs) per
spot, mitochondrial gene expression, or ribosomal genes (Figure S1). The spatial
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Figure 2. A term single-cell and spatial transcriptomics atlas predicts cell-type niches with or without SARS-CoV-2

(A and B) (A) With 273,944 placenta single-cell and single-nuclei transcriptomes, a term placenta single-cell transcriptomics atlas was generated and

used to (B) predict the cell-type profiles of the spatial transcriptomics niches.

(C) Dimension reduction Unique Manifold Approximation and Projection (UMAP) of the 17,927 spatial transcriptomics labeled by analysis cohort or

niche annotation.
(D) Spatial locations of each transcriptomics niche for each sample.

DC, dendritic cell; EVT, extravillous trophoblast; NK, natural killer cell; PVC, perivillous cell; RBC, red blood cell; VCT, villous cytotrophoblast; VEC,

vascular endothelial cell.

transcriptome niche annotations were overlayed on top of the H&E images for each
sample (Figure 2D), aligning with pathologist-annotated structural and histopathol-
ogy features and permitting the discovery of distinct microenvironments. The expert
placenta pathologist annotations and high-resolution H&E images are available for
interactive analysis with the Loupe Cell Browser software (available for download at
https://osf.io/mbfuv/?view_only=892cd90b5eb04e42bdbc18e04a102336).

Transcriptomic niches of sparse or high SARS-CoV-2 levels in placentae

Next, we aimed to determine which placental spatial transcriptomics niches allowed
for the detection of SARS-CoV-2, and we assessed the limits of detection for SARS-
CoV-2 using Visium. The false-positive rate aligning SARS-CoV-2" transcriptomes to
the human and SARS-CoV-2 reference was low (0 out of >300 million spatial tran-
scriptomics reads and O out of 5 billion scRNA-seq and snRNA-seq reads). No
SARS-CoV-2 transcripts were detected in the placentae of four healthy NCs, one
placenta from asymptomatic mSARS-CoV-2" cases, and two placentae from symp-
tomatic mSARS-CoV-2" cases. In spatial transcriptomes, we observed SARS-CoV-2
transcripts ranging from as sparse as 1 SARS-CoV-2 transcript detected in a sample
to levels as high as 1,554 viral transcripts (Figure 3; spatial expression of all SARS-
CoV-2 genes is visualized in Figure S2). From symptomatic mSARS-CoV-2" subjects,
three of the five placentae were positive for SARS-CoV-2 in the spatial datasets.
There were 752 spatial transcriptomes with viral transcripts (raw counts in
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Figure 3. Transcriptomic niches of sparse or high SARS-CoV-2 levels in placentae

(A) H&E stain of sparsely positive SARS-CoV-2 placentae with the H&E, spatial transcriptome overlay, and zooming in on areas of SARS-CoV-2 transcript
detection. The pie charts reveal how many spatial transcriptome spots were positive for SARS-CoV-2 and the annotation of those spots. The IVS and CV
are labeled. Each row represents images from a separate participant. The niches in the pie charts refer to the spatial transcriptome annotation.

(B) H&E stain of highly positive SARS-CoV-2 placenta samples annotating areas with perivillous fibrinoid (PVF) deposition or SARS-CoV-2 transcripts.
Each row represents images in separate sections from participant HP13.

Table S1, ST1.1 and ST1.5). We found our limit of detection for SARS-CoV-2 in
placental spatial transcriptomics data was 1 in approximately 700 cells, resembling
that of RT-qPCR. There was one N transcript in an SYT niche for SP11 and one ORF10
transcript in an SYT niche for SP12 (Figure 3A). Although HP13 and HP13b were
sampled from the same placenta, HP13b had 735 spots with 14,213 SARS-CoV-2
transcripts, including all SARS-CoV-2 RNAs. In comparison, HP13a had 15 spots
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Figure 4. Unique spatial transcription markers in placentae depending on SARS-CoV-2 detection levels

(A) Differential expression between spatial transcriptomes in each analysis cohort relative to the NCs identified 54 significantly differentially expressed
transcripts (g < 0.05, Logs(fold-change) > 2) unique or shared between analysis cohorts.

(B) The 37 transcripts unique to highly positive SARS-CoV-2 placentae were subject to EnrichR pathway analysis with the Reactome 2022 database,
revealing the top 90" quartile of significant (g < 0.05) pathways.

(C and D) Violin plots with the expression levels of KISS1 and TIMP1, which were markers for placentae where SARS-CoV-2 was not detected or highly
positive, respectively.

(E and F) Spatial gene expression of KISST and TIMP1 representative of each analysis cohort.

with SARS-CoV-2 transcripts, including 3 ORFlab, 1 N, and 17 ORF10 counts
ranging from 1 to 4 viral transcripts per spot in SYT, fibroblast, villous cytotropho-
blast (VCT), macrophage, and pericyte niches. The pie charts niches reflect 55-um
microenvironments composed of one to five cells captured by spatial transcriptom-
ics that were annotated utilizing the single-cell and single-nuclei references and do
not imply viral replication within these cell types. The SARS-CoV-2 ORF10 transcript
was the most abundant, making up approximately 86% of viral transcripts. However,
this could be because of technical bias because reverse transcription was initiated by
a poly(dT) primer. SARS-CoV-2 transcripts were detected in all spatial transcriptom-
ics niches except for stromal. There were 14 spots with viral transcripts predicted to
be erythrocytes based on hemoglobin expression, potentially representing maternal
blood. Interestingly, most (42%) of the SARS-CoV-2 transcripts in HP13b were
observed in macrophage niches. Because perivillous fibrin deposition was observed
in the HP13a section, but not in HP13b, HP13a could be at the end stages of
inflammation exhibiting necrosis, whereas HP13b could be in the earlier stages of
inflammation with high amounts of SARS-CoV-2 RNA.

Unique spatial transcription markers in placentae associated with a range of
SARS-CoV-2 detection levels

We compared the spatial transcriptomes in each analysis cohort with the NCs and
identified 41 unique or shared spatially differentially expressed transcripts associ-
ated with ND of SARS-CoV-2, SP, and HP detection of SARS-CoV-2 in the placenta
(Figure 4A; Table S1, ST1.4). In mSARS-CoV-2" ND placentae, we did not observe
inflammatory signaling cascades. Instead, we observed significant upregulation of
CSH2, an isoform of placental lactogen, GDF15, a ligand of the transforming growth
factor B (TGF-B) pathway, and KiSS-1 Metastasis Suppressor (KISS1). In both mSARS-
CoV-2" ND and SP placentae, there was upregulation of pregnancy-specific B-1
glycoprotein 7 (PSG7). The 37 genes associated with HP SARS-CoV-2 in the placenta
were analyzed by EnrichR°®“? pathway analysis utilizing the Reactome 2022 data-
base’%’" (Figure 4B), revealing significant upregulation in interferon-stimulated
genes (ISG15, IFIT3, and IFITM3), cytokines (CXCL8, CXCL10, and CCL20), and
interleukin signaling (ILRTL1, ILRTN, IL24, and IL32). In addition, TIMP Metallopep-
tidase Inhibitor 1 (TIMP1) was a marker of highly positive SARS-CoV-2 placentae.
Violin plots and spatial gene expression of KISST and TIMPT (Figures 4C-4F)
visualize the clear and significant upregulation of these markers in select mSARS-
CoV-2" groups. Utilizing the term placenta atlas (Table S1, ST1.2), markers of ND
mSARS-CoV-2" placentae CSH2, KISS1, and GDF15 mapped to SYT cells, whereas
cytokine markers of HP placentae mapped to immune cells and TIMPT mapped to
fibroblasts and smooth muscle cells. Overall, the clusters from the sparsely positive
or not detected groups were defined by canonical placental cell-type gene expres-
sion. In contrast, the clusters of spatial transcriptomes in the highly positive samples
were characterized by different levels of antiviral responses and metallopeptidase
signaling. The range in inflammation among HP niches, as well as the lack of inflam-
matory signaling in the ND and SP mSARS-CoV-2" cases, lends to an undefined dy-
namic separating inefficient and efficient SARS-CoV-2 replication in the placenta.
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Patterns of inefficient and coordinated SARS-CoV-2 transcription gene
expression in placental cells

Because SARS-CoV-2 viral replication in placental cells is relatively inefficient'”-"?
and the Visium platform does not distinguish genomic SARS-CoV-2 from expressed
transcripts, we examined patterns associated with the different levels of SARS-CoV-2
reads. The 752 spatial transcriptomes with detectable SARS-CoV-2 transcripts were
subset, clustered, and further analyzed to assess differences in SARS-CoV-2 levels
and potential viral gene expression (Figure 5). Viral transcripts per spot ranged
from 1 to 1,554, with a mean of 18.9 and a median of 5.348 (raw counts in
Table S1, ST1.5). Of the 752 spots with viral transcripts, 46.3% had >5, 219 spots
had >10 (29%), 48 had >50 (6.4%), and 24 had >100 viral transcripts (3.2%). We

performed pseudotime trajectory analysis’®™’°

to identify relationships between
these clusters (Figure 5A). To determine where the pseudotime trajectories should
start, we examined the expression of viral RNAs in these clusters. Visualization of
viral gene expression (Figure 5B) revealed ORF10 was expressed throughout all
clusters, whereas ORF1ab was in clusters 2, 3, and 4, but not clusters 0 and 1. The
mean counts of viral RNAs per cluster (Figure 5C) showed viral RNA levels ranked
highest in cluster 1, followed by clusters 4, 2, and 0, and cluster 3 had the fewest.
Utilizing this information, we started the pseudotime trajectories at cluster 3 because
it had the lowest levels of viral transcripts (Figure 5D). We found two initial branch-
points, which either went up and ended at cluster 2 with low levels of viral transcripts,
or another branchpoint that continued through clusters 0 and 4. This longer trajec-
tory reached another branchpoint separating two distinct endpoints at cluster O or 1.

Next, we aimed to understand the differences between these distinct endpoints.
Pearson'’s correlation analysis of all 752 viral transcriptomes, or analyzing subsets
of cells within clusters, revealed significant positive correlation coefficients for
ORF10 with N and ORF3A with ORF8 were observed only in the cluster with the
highest amounts of viral RNA, cluster 1 (Figure 5E; Table S1, ST1.6), potentially
representing a cascade of viral gene expression within these microenvironments.
This was in contrast with the other clusters, which had no significant correlations in
the co-expression of viral transcripts. These results demonstrated a range in SARS-
CoV-2 gene expression efficiency within placental microenvironments and identified
potential branchpoints where host-pathogen interactions may determine the
trajectory of viral gene expression. To identify potential host-restriction factors, dif-
ferential expression between clusters revealed upregulation of CSH1 as a definitive
marker for cluster 0, and a lack of CSH1 was observed in clusters 2 and 3 (Table S1,
ST1.6). Cluster 1 was marked by significant upregulation of SARS-CoV-2 N and the
upregulation of 18 host transcripts, including CXCL10, RACK1, and IFITM3. Because
cluster 1 had the highest viral RNA and was the cluster separating endpoints for clus-
ters with low (cluster 0) and high viral RNA (cluster 4) with several branchpoints, these
patterns of host and SARS-CoV-2 gene expression in cluster 1 are likely critical com-
ponents of efficient SARS-CoV-2 gene expression in the placenta.

Tracing placental macrophage polarization trajectories reveals depletion of
anti-inflammatory M2 macrophages and histiocytic intervillositis in highly
positive SARS-CoV-2 placenta samples

To profile immune microenvironments, we turned to macrophage polarization
marker transcripts (Figure é; Figure S3). With a reductionist approach,”’ naive MO
macrophages exposed to polarization factors lead to pro-inflammatory M1 or anti-
inflammatory M2 immunophenotypes (Figure 6A). We assessed the expression of
known marker transcripts’®®” for each of these subpopulations. The 3,180 placental
macrophage niches were subset, and each macrophage cluster was annotated
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Figure 5. Analysis of infected spatial transcriptomes identifies distinct phases of inefficient and coordinated SARS-CoV-2 gene expression

(A) The 752 spatial transcriptomes with detectable SARS-CoV-2 transcripts were subset, clustered, and further analyzed. For continuity, the trajectories
are plotted on (A) and (D), where the white circle represents the starting point, black circles represent branchpoints, and gray represents endpoints.
(B) Expression of viral transcripts revealed patterns in distinct clusters.

(C) The mean counts of viral RNAs per cluster revealed viral RNA levels were highest in clusters 1 >4 >2>0 > 3.

(D) Pseudotime trajectory analysis starting at cluster 3, which had the fewest viral transcripts, identified distinct endpoints at clusters 2, 0, and 1.

(E) Pearson’s correlation analysis of each cluster revealed significant correlations in viral RNAs only in cluster 1.
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Figure 6. Tracing placental macrophage polarization trajectories identifies depletion of anti-inflammatory M2 macrophages and histiocytic
intervillositis in highly positive SARS-CoV-2 placentae

(A) Schematic of macrophage polarization from naive monocytes (M0) to pro-inflammatory M1 and anti-inflammatory M2.

(B) Canonical markers for each subpopulation. *Caveats exist including potential differences by gestational age and between single-cell RNA and
protein levels.

(C) The 3,180 placental macrophages were analyzed by Monocle3, revealing pseudotime trajectories starting at MO monocytes and trajectories going to
M1 or M2 polarized subpopulations.

(D) Using the pseudotime trajectory results, subpopulations were annotated based on predicted polarization states including intermediates (e.g., MO to
M1 is MO.M1).

(E) Proportions of macrophages according to predicted polarization states. Error bars represent the standard error of the mean.

(F and G) IHC staining for CD163, a classical macrophage marker. Images were taken at 40x original magnification. (G) Proportions of all spatial
transcriptomes (see Figures 2 and S2C) were separated based on virus detection grouping from Figure 2 and the cluster analysis of SARS-CoV-2"
transcriptomes in Figure 5. Significance of p < 0.05 (**p < 0.001, ***p < 0.0001, "*p > 0.05) was determined by two-way ANOVA with Tukey’s multiple
comparisons test. Error bars represent the standard error of the mean.

based on the expression of polarization markers as either MO, M1, or M2. In addition,
we aimed to distinguish fetal Hofbauer macrophage niches from placenta-associ-
ated maternal macrophage (PAMMs) niches based on specific expression of
FOLR2 present in the former and HLA in the latter,”” although HLA expression in-
creases in Hofbauer cells throughout gestation.®®> PAMMs, including PAMM2
subtypes, were in cluster 5, while the PAMM1 subtype was in macrophage cluster
6 (Figure S3), and Hofbauer cells were in clusters 0, 3, 4, 11, and 9. We did not
observe significant differences between the proportion of PAMMs or Hofbauer mi-
croenvironments between samples at the spatial transcriptomics level. In turn, we
focused on macrophage polarization utilizing pseudotime trajectory analysis’*’47¢
of the spatial transcriptomes. We identified subpopulations representative of
branchpoint transitions between MO and the M1 or M2 polarization states, which
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we denoted as M0.M1 or MO.M2. Differential expression between polarization states
identified unique transcription programs associated with the branch and endpoints
for each polarization state (Table S1, ST1.7). In the highly positive SARS-CoV-2
placenta samples, we found a significant decrease in the proportion of M2 polarized
macrophages and a significant increase in M0.M1 transition macrophages
(*p < 0.05; two-way ANOVA with Tukey’s multiple comparisons test). The transitory
MO0.M1 macrophages did not exhibit PAMM or Hofbauer cell markers, but most M2
macrophages exhibited Hofbauer cell marker expression, consistent with their
normal anti-inflammatory functions. These differences in macrophage polarization
were not significant based on fetal sex or in comparisons between sparsely SARS-
CoV-2* placentae.

To determine whether increased macrophage infiltration was associated with
SARS-CoV-2 placental replication and histopathology, we stained for the canonical
macrophage marker CD163 by IHC (Figure 6F). In HP13 and HP14, we found evi-
dence of histiocytic intervillositis, detailed by high levels of macrophages localizing
in the intervillous space, adjacent to the SYT layers comprising the maternal-fetal
interface. To contextualize the results of histiocytic intervillositis in the highly posi-
tive SARS-CoV-2 placentae with the spatial transcriptomics analysis, we compared
relative macrophage proportions in the spatial transcriptomics groups (Figure 6G).
We found macrophage proportions of the highly positive samples (HP13 and
HP14) were significantly higher than the other analysis cohorts. Also, we found
macrophage proportions were significantly elevated in all the clusters with various
levels of SARS-CoV-2 RNA analyzed in Figure 5. Because all the virus clusters had
increased macrophage proportions, this increase was independent of the low or
high levels of SARS-CoV-2. Together, these data suggest a potential threshold of
SARS-CoV-2 positivity within the placenta before histiocytic intervillositis.

Fetal sex differences in gene expression responses associated with SARS-CoV-
2 mapped to the fetal space in females and maternal decidua in males

Because the placenta is composed of both maternal (minority in bulk) and fetal
(majority) cells, caution was needed in parsing by fetal sex. Spatial resolution al-
lowed for key biologic distinctions, because mapping potential changes in gene
expression back to the anatomical regions would reveal confounders of maternal
cells in the decidual region. We performed differential expression between
placentae from male and female fetuses in the SARS-CoV-2 scRNA-seq data
(147,906 transcriptomesw), revealing the most significant genes were in VCT, stro-
mal, and smooth muscle cells (Figure S4A). Analysis of the 9,446 mSARS-CoV-2
placenta spatial transcriptomes revealed fetal sex differences in gene expression
in VCTs, macrophages, and EVT niches (Figure S4C). EVT spatial transcriptomes
were mapped to regions of maternal decidua (Figure 2D). This highlights the impor-
tance of spatial resolution, which permits the assignment of fetal sex differences in
gene expression to distinct fetal (chorionic villi) or maternal (decidua) regions.

To enhance rigor and reproducibility, we subjected the 208 significantly (g < 0.05)
differentially expressed genes in the SARS-CoV-2 scRNA-seq (147,906 transcrip-
tomes'”) and spatial transcriptomics (9,446 transcriptomes) data based on fetal
sex to EnrichR®® pathway analysis using the BioPlanet®” database. The top 90" quar-
tile of significant (g < 0.05) pathways included T cell receptor regulation of
apoptosis, interferon signaling, prolactin, and cytokine regulation (Figure 7A).
Although T cell receptor regulation of apoptosis was the most significant pathway
of these genes with fetal sex differences in expression, we did not find placental

spatial transcriptomes resembling T cell expression profiles. However, the genes
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Figure 7. Caution in assigning fetal sex differences in gene expression associated with placental SARS-CoV-2 without spatial resolution

(A) The 208 significantly (g < 0.05) differentially expressed genes in the SARS-CoV-2 scRNA-seq (147,906 transcriptomes; n = 15 female and 30 male)'”
and spatial transcriptomics (9,446 transcriptomes; n = 4 male and 5 female) data based on fetal sex were uploaded to EnrichR for BioPlanet pathway
analysis. The top 90* quartiles of most significant (g < 0.05) pathways were plotted.

(B) The 208 genes with sex differences in expression from the SARS-CoV-2 scRNA-seq and spatial transcriptomics datasets were compared and plotted
as a Venn diagram, revealing four male and one female cross-validated gene.

(C and D) Spatial gene expressions of cross-validated genes (C) TIMP1 and (D) PRG2 were upregulated in the villous space in females and maternal
decidua regions of male SARS-CoV-2 placentae, respectively.

highlighted in this pathway included RPS4Y1 (Y chromosome linked), in addition to
GBP1 and HSPA1A (expressed in macrophages), and HLA-G (highly expressed in
trophoblasts subtypes). These 208 genes with fetal sex differences in expression
from the SARS-CoV-2 scRNA-seq and spatial transcriptomics datasets were
compared and plotted as a Venn diagram, revealing four high-confidence genes
with fetal sex differences in expression with male fetuses and one cross-validated
gene with female fetuses. Spatial gene expression of cross-validated TIMP1 and
PRG2 transcripts projected these putative genes with fetal sex differences in
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expression onto male and female placentae (Figures 7C and 7D). Based on the
term placenta transcriptomic atlas (Figure 2), TIMPT expression was upregulated
in fibroblasts and smooth muscle cells and mapped to chorionic villi. In contrast,
PRG2 was upregulated in EVTs, cells known to invade the maternal decidua.
Together, these data suggest genes with fetal sex differences in expression mapped
specifically to the maternal decidua in males and fetal spaces in females may
contribute to differences in T cell function and recruitment in response to
SARS-CoV-2 in the placenta.

DISCUSSION

Principal findings

This study advances placental biology by generating a high-resolution term
placental atlas using single-cell, single-nuclei, and spatial transcriptomics in coordi-
nated analyses. With these rigorous and highly sensitive orthogonal approaches,
SARS-CoV-2 was detected in 7 of 10 mSARS-CoV-2" placentae, ranging from high
levels of SARS-CoV-2 found in two IUFD samples (HP13 and HP14) to the detection
of sparse SARS-CoV-2 RNA in five samples (SP8-SP12) and no detection in three. We
found immune microenvironments largely sequestered SARS-CoV-2 in placental tis-
sue localized to SYT cells and associated with increased macrophage infiltration.
With spatial transcriptomics, this was associated with a depletion of anti-inflamma-
tory M2 macrophages, paired with increases in pro-inflammatory MO.M1 transitory
macrophages. The maternal COVID-19 symptoms in both IUFD cases HP13 and
HP14 started and ended 5-10 days before the IUFD was detected, indicating pro-
longed SARS-CoV-2 infection of the placenta may have been a contributing factor
to fetal pathogenesis. Together, this high-molecular- resolution study from a small
but clinically diverse cohort of participants suggests that simultaneous host-path-
ogen battlegrounds lead to the clearance of sparse SARS-CoV-2 placental infections
and identifies potential SARS-CoV-2 niches that persist up to 10 days after the onset
and resolution of symptoms.

Detection of sparse SARS-CoV-2 transcripts in placentae using high-resolution
spatial transcriptomics

Tracking SARS-CoV-2 prevalence in placental tissues has been technically chal-
lenging and limited by the sensitivity of detection.'”®> The early detection of
SARS-CoV-2 infection of placental tissue and maternal-fetal vertical transmission
was put in doubt, partly because of the low prevalence initially'® and the presumed
absence of SARS-CoV-2 entry receptor ACE2 and co-factor TMPRSS2 co-expression
in single-cell placenta data.?*%%%? Of the 752 spatial transcriptomes with SARS-CoV-
2 viral transcripts, none of these spots had ACE2 or TMPRSS2 expression, potentially
highlighting known’® discordance between RNA expression and protein levels.
Recently, SARS-CoV-2 was shown to spread by cell-to-cell fusion in the absence of
ACE2 receptors,”’ which could explain the viral spread observed in placental tissue
and the broad tropism of SARS-CoV-2.727? Notably, in the cohort of placentae
analyzed here, there was no evidence of vertical transmission of SARS-CoV-2 to
the offspring. Yet, even in the absence of transplacental vertical transmission, the
presence of particular microbes at the maternal-fetal interface may have detrimental
impacts on the fetal immune responses, including increased inflammatory signaling
and developmental disorders.”®?*?> The rates of SARS-CoV-2 in the placentae

included in this cohort were high (7 of 10) relative to prior studies®>7¢

that analyzed
more cases, and reported rates ranging from 7% to 15%. This could potentially be
caused by the inclusion of both symptomatic and asymptomatic mSARS-CoV-2"
cases, the complementary orthogonal bulk and high-resolution assays included

here, or the collection of these specimens during the Delta variant surge.
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A model of dynamic SARS-CoV-2 placental infection

The data in this study support a model of SARS-CoV-2 placental infection with three
likely endpoints. First, SARS-CoV-2 frequently does not reach or enter placental cells
and is cleared prior to infiltrating beyond the maternal-fetal interface (no virus de-
tected in 3 of 10 mSARS-CoV-2* samples). Second, with high-resolution orthogonal
approaches, sparse levels of SARS-CoV-2 may be commonly detected in placental
cells in association with inefficient viral replication, and an appropriate immune
response limits inflammatory signaling. Third, in rare cases, efficient SARS-CoV-2
replication in the placenta may break a threshold of host-pathogen equilibrium asso-
ciated with hallmark histopathologies such as inflammation, histiocytic intervillositis,
and perivillous fibrinoid deposition. Notably, the proposed phases of SARS-CoV-2
placental infection account for the dynamics of asymptomatic mSARS-CoV-2 positiv-
ity and maternal COVID-19.

Dynamic range of SARS-CoV-2 responses in placental microenvironments

We found placental markers associated with inefficient SARS-CoV-2 in the placenta
(ND and SP) and highly efficient SARS-CoV-2 replication (HP) in the placenta
(Figure 3A). Inefficient SARS-CoV-2 in the placenta was associated with KISST,
GDF15, and CSH2 markers in SYT niches. KISS1 is associated with decidualization,””
GDF15is an effector in the TGF-B pathway and associated with reducing tissue dam-
age,”® and CSH2is an isoform of placental lactogen with multiple roles in fetal meta-
bolism.”” In both ND and SP mSARS-CoV-2* placentae, PSG7 was upregulated. In
trophoblast cultures, exposures to hypoxic and pro-inflammatory conditions were
inversely correlated with PSG7 mRNA and protein levels.'% Together, we speculate
these ND and SP signatures represented the sequestration of antiviral responses to
confined microenvironments.

In contrast, the signatures of high SARS-CoV-2 levels in the placenta were associated
with a dynamic range of hyper-inflammation and tissue damage. Comparisons of
two sections from the same highly positive placenta (Figure 3B) revealed 5% of
spatial transcriptomes in HP13a had SARS-CoV-2,whereas over 86% of spots in
HP13b had SARS-CoV-2. This range was associated with histopathology because
HP13a had perivillous fibrinoids, whereas HP13b did not. We posit these microenvi-
ronments were associated with a critical threshold separating inefficient and efficient
SARS-CoV-2 replication in the placenta, and we aimed to identify genes critical to
maintaining or surpassing these thresholds. A cluster with coordinated viral
transcription (Figure 5, cluster 1) was marked by significant upregulation of 18
host transcripts, including CXCL10, RACK1, and IFITM3. These host genes are
now known to be critical factors for SARS-CoV-2 cytokine storm,’'®'~'% enhancing
viral replication,’”” and restricting SARS-CoV-2 spread through cell-to-cell
fusion.'®198-119 | addition, the progression of placental SARS-CoV-2 infection
potentially co-opted components of extracellular matrix restructuring. TIMP1 was
a spatial marker of SARS-CoV-2 (Figure 4) and gene upregulated in the fetal villi
space in female placentae (Figure 7). Recently, increased serum levels of TIMP1
significantly correlated with COVID-19 severity.' " In addition, a recent in vitro study
found that Delta variant SARS-CoV-2 spike protein utilizes matrix metalloproteinases
(MMPs) as an alternative to co-factor TMPRSS2 for viral entry, and in turn, metallo-
proteinase inhibitors limited cell-cell fusion and viral replication."'” This is perhaps
not surprising, because viral adaptation to a novel host is likely to occur concomi-
tantly with extracellular matrix restructuring and macrophage migration. In the
placental tissue, the presence of histopathologic findings consistent with these
processes (perivillous fibrin deposition and histiocytic intervillous changes)
suggests a balance between MMPs and TIMP1 may be critical to modulating
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placental SARS-CoV-2 entry and replication with viral-mediated catastrophic
placental destruction. TIMP1 is encoded on the X chromosome and has previously
been linked to a sex disparity in liver and pancreatic cancers,'"* but the potential
sex differences in gene expression for TIMP1T in the recruitment of T and macro-
phage cells to the maternal decidua warrant further investigation.

Term placenta transcriptomic atlas with single-cell and spatial resolution

In addition to providing a benchmark for comparison between placenta single-cell,
single-nuclei, and spatial transcriptomics analyses, the term placenta transcriptomic
atlas aids the field by allowing any gene of interest to be mapped to specific regions
of the placenta (maternal decidua, chorionic villi, basal plate, or chorioamniotic
membranes) and 22 distinct cell populations. For example, the term placenta atlas
allows comparisons of subjects with gestational diabetes mellitus (GDM), pre-
eclampsia, SARS-CoV-2 asymptomatic, SARS-CoV-2 symptomatic, and SARS-CoV-
2 (symptoms unknown). Relative to the pooled healthy controls, we identified
gene signatures associated with each condition (Table S1, ST1.2). There were 72
significantly differentially expressed genes among these conditions, including
heat shock proteins as top markers of GDM, consistent with previous findings,'"*
and these changes associated with GDM mapped specifically to macrophage and
endothelial niches (Table S1, ST1.2).

Conclusions

Spatial transcriptomics of placentae collected during the Delta variant surge, when
the burden on the maternal-fetal health was at its peak, characterized distinct niches
in the maternal and fetal spaces of the placenta and captured differences ranging
from healthy uninfected placentae to highly SARS-CoV-2 placentae from an IUFD
case. In the worst-case scenario, we observed massive inflammation, which led to
perivillous fibrin deposition. However, in the mSARS-CoV-2" placentae, where
SARS-CoV-2 was not detected or sparse, we did not observe coordinated pro-in-
flammatory signaling. Therefore, in most cases, the placenta likely responds to
SARS-CoV-2 and other intrauterine microbes with immune microenvironments in or-
der to sequester inflammatory signaling and limit tissue damage. Recent autopsies
of non-pregnant persons found SARS-CoV-2 may persist for up to 7 months in a wide
range of tissues.”""> A robust high-resolution prospective study of asymptomatic
and symptomatic SARS-CoV-2 detection during pregnancy compared with longitu-
dinal viral persistence in placental tissues is warranted.

Limitations of the study

HP13 was a preterm (22.3 weeks' gestation) case where the mother was COVID-19
symptomatic and recovered over 10 days, after which IUFD was observed. We
were not powered to assess the influence of gestational age."'"'?* To enhance rigor
and reproducibility, we histopathologically examined HP14, an additional IUFD
placenta (35.0 weeks' gestation). HP14 exhibited SARS-CoV-2 histological results
aligning with HP13, including perivillous fibrinoid deposition, high amounts of spike
RNA by RNAscope, spike and nucleocapsid protein in the SYT layer, and increased
macrophage histiocytic intervillositis. The observations of sparse viral microenviron-
ments of one viral transcript in SP11 and one in SP12 (Figure 3) suggest the limit of
detection for SARS-CoV-2 in placentae by spatial transcriptomics is 1 in 700 cells,
which was a higher resolution than bulk RT-gqPCR (1 in 7,000 cells). Both techniques
have limitations considering the low biomass of SARS-CoV-2 genomic and tran-
scribed RNA (2.9 kb/copy) compared with an estimated average of 10,000,000

host RNA molecules per mammalian cell.’
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Monoclonal mouse-anti-SARS-CoV-2 spike GeneTex GTX632604, RRID:AB_2864418
diluted 1:500

Polyclonal rabbit-anti-SARS-CoV-2 GeneTex GTX135357, RRID:AB_2868464

nucleocapsid diluted 1:200

Polyclonal goat-anti-human-CD163 diluted
1 ng/mL

R&D Systems

AF1607, RRID:AB_354889

Biological samples

Placenta tissue Texas Children’s Hospital N/A
Chemicals, peptides, and recombinant proteins

Protease IV ACD 322336
TRIzol ThermoFisher 15596018
TURBO DNase (2 units/ul) Qiagen AM1907
Critical commercial assays

Visium Spatial Gene Expression (version 2, 10x Genomics 1000184
for fresh-frozen tissue)

ImMmPRESS Polymer detection kit Vector Labs MP-7451
ImmPRESS Polymer detection kit goat-anti- Vector Labs MP-7452
mouse

ImmPRESS Polymer detection kit horse-anti- Vector Labs MP-7405
goat

Direct-zol miniprep Plus RNA extraction kit ZymoResearch R2072
TagMan Fast Virus 1-Stem Master Mix ThermoFisher 4444432
RecoverAll Total Nucleic Acid kit ThermoFisher AM1975

Deposited data

Placenta spatial transcriptomics data
Single-cell RNA-sequencing data

Single-nuclei RNA-sequencing data
Single-cell RNA-sequencing data

This study

Ref. Bolte et al.¢®

Ref. Lum et al.®?

Ref. Garcia-Flores et al.;
Zielgler et al.; Bolte

Gene Expression Omnibus (GEO) GEO:
GSE222987

European Genome-Phenome Archive
accession EGAD0O0001003705

GEO accession GEO: GSE173193

dbGaP accessions phs001886.v1.p1,
phs001886.v2.p1, and phs001886.v3

et a|-19,34,61
Oligonucleotides
RNAscope probe for bacterial gene ACD 310043
dapB as a negative control
RNAscope probe for housekeeping ACD 313901
gene PPIB as a positive control
RNAscope probe for SARS-CoV-2 spike ACD 848561
SARS-CoV-2 spike TagMan Primer/Probe set ThermoFisher/Invitrogen Vi07918636
SARS-CoV-2 nucleoprotein TagMan Primer/ ThermoFisher/Invitrogen Vi07918637
Probe set
SARS-CoV-2 ORF1ab TagMan ThermoFisher/Invitrogen Vi07921935
Primer/Probe set
AcroMetrix COVID-19 RNA Control ThermoFisher 954519

Software and algorithms

rStudio (v4.1.1)
SpaceRanger (v1.3.0)
Seurat (v4.0.3)
Monocle3 (v1.0.0)

Prism (v9.2.0)

R Foundation
10x Genomics

Ref. Christensen et al.®’
Ref. Fabregat et al ;

Gillespie et al./s74

GraphPad

https://www.r-project.org/

https://support.10xgenomics.com/spatial-
gene-expression/software/pipelines/latest/
installation
https://cran.r-project.org/web/packages/
Seurat/index.html

http://cole-trapnell-lab.github.io/monocle3/

https://www.graphpad.com/scientific-
software/prism/

Med 4, 612-634.e1-e4, September 8, 2023 el


http://www.r-project.org/
http://www.graphpad.com/scientific-software/prism/
http://www.graphpad.com/scientific-software/prism/

¢? CellP’ress Med

OPEN ACCESS

RESOURCE AVAILABILITY

Lead contact
Requests for further information, resources, and reagents are directed to, and will be
fulfilled by, the lead contact, Kjersti Aagaard (aagardt@bcm.edu).

Materials availability
No new reagents were generated in this study.

Data and code availability

® Spatial transcriptomics data were deposited to Gene Expression Omnibus (GEO:
GSE222987) and scripts used for bioinformatics analysis are available at https://
github.com/Aagaardlab/placenta-spatial-transcriptomics. Published term human
placenta scRNA-seq datasets were downloaded and analyzed independently
(European Genome-Phenome Archive accession EGADO00001003705, GEO
accession GEO: GSE173193, and dbGaP accessions phs001886.v1.p1,
phs001886.v2.p1, and phs001886.v3).

® The Loupe Browser annotations for spatial transcriptomics objects are available
for download at Open Science Framework (https://osf.io/mbfuv/?view_only=
892cd90b5eb04e42bdbc18e04a102336).

® Any additional information required to reanalyze the data reported in this paper is
available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study approval

Acquisition, processing, and storage of human placenta samples were approved by
the Baylor College of Medicine Internal Review Board (Peribank: Protocol H-26364
and SARS-CoV-2: Protocol H-47345). All samples were de-identified and analyzed
in a blinded fashion. Clinical characteristics are listed in Table S2 and case-matched
in Table S1.1. At time of enrollment, subject metadata including age, gestational
age at delivery, fetal weight, mode of delivery, parity, race, ethnicity, fetal sex,
COVID-19 severity, pneumonia, preeclampsia, preterm birth, days of onset between
symptoms and delivery, and offspring SARS-CoV-2 RT-gPCR results were collected.
Participants information on sex, age, and race were self-reported. Information on
gender and socioeconomic status were not collected.

METHOD DETAILS

Spatial transcriptomics

Human placentae from distinct regions including the chorionic villi, decidua, and
chorioamniotic membranes, or cross-sections from the parenchyma, were fresh-
frozen in optimal cutting temperature solution (FF-OCT). Blocks were cryosectioned
and H&E stained directly on Visium Gene Expression slides (version 2, 10X Geno-
mics, Cat. 1000184) and imaged using a Nikon Eclipse SE Ni microscope using a
Nikon DS-Ri1 camera, Nikon Plan Apo objective at 10x magnification (0.45 aper-
ture, 0.91 pm/pixel resolution). Tissues were permeabilized and RNA was subject
to spatial transcriptomics library preparation including poly(dT) reverse transcrip-
tion. Libraries were sequenced on the Illumina NovaSeq S4 platform with 2% PhiX
at approximately 50 million reads per sample.

Single-cell and spatial transcriptomics analyses

Reads were demultiplexed and aligned to a custom human (GRCh38) and SARS-
CoV-2 reference genome (NC_045512.2) using SpaceRanger (v1.3.0) and custom
bash scripts. Downstream analyses were done using the package Seurat (v4.0.3) in

e2 Med 4, 612-634.e1-e4, September 8, 2023


mailto:aagardt@bcm.edu
https://github.com/Aagaardlab/placenta-spatial-transcriptomics
https://github.com/Aagaardlab/placenta-spatial-transcriptomics
https://osf.io/mbfuv/?view_only=892cd90b5eb04e42bdbc18e04a102336
https://osf.io/mbfuv/?view_only=892cd90b5eb04e42bdbc18e04a102336

Med

rStudio (v4.1.1). Counts matrices were filtered iteratively to exclude low-quality
transcriptomes and clusters defined by quality control metrics (e.g. mitochondrial
or hemoglobin gene expression). Spatial transcriptomes were normalized and
scaled using a negative binomial model (SCTransform) and the top 3,000 most var-
iable transcripts were used for principal component analysis dimension reduction.
Spatial and scRNA-seq datasets were integrated using reciprocal PCA of 3,000 refer-
ence transcripts before clustering. The first 30 PCA dimensions were used for
K-nearest neighbors’ analysis, clustered using a Louvain algorithm with the default
resolution parameter (0.6), and visualized by unique manifold approximation and
projection (UMAP) in two dimensions. Significantly upregulated transcripts were
manually examined with EnrichR,%® PlacentaCellEnrich,'?” and the Human Protein
Atlas,'?®
transfers, for cell and niche cluster annotations. Pseudotime trajectory analysis was

and compare to the prediction scores from the term placenta atlas label

done using Monocle3’*”* (v1.0.0) with starting points denoted in the text.

RT-qPCR

Placental tissue (50-100mg) from FF-OCT blocks were mechanically disrupted, lysed
in TRIzol (ThermoFisher, Cat. 15596018), and RNA was extracted using the Direct-zol
miniprep Plus RNA extraction kit (ZymoResearch, Cat. R2072) following the manu-
facturer’s protocol. Formalin-fixed paraffin-embedded (FFPE) placental tissue was
cut into 10 um scrolls and RNA was extracted using the RecoverAll Total Nucleic
Acid kit (ThermoFisher, Cat. AM1975) following the manufacturer’s protocol. RNA
was then DNase treated with TURBO DNase (2 units/ul, Qiagen, Cat. AM1907)
and normalized to 700 ng per reaction for the FF-OCT tissue and 100 ng per reaction
for the FFPE tissue. The TagMan Fast Virus 1-Stem Master Mix (ThermoFisher, Cat.
4444432) was used for 1-step RT-gPCR with TagMan Primer/Probe sets for SARS-
CoV-2 spike (AssaylD: Vi07918636), nucleoprotein (Vi07918637), or ORF1ab
(Vi07921935) transcripts. Serial dilutions of the AcroMetrix COVID-19 RNA Control
(ThermoFisher, Cat. 954519) starting with 250 copies were used to generate stan-
dard curves to calculate the absolute quantities of each transcript. Data were plotted
with GraphPad Prism (v9.2.0).

RNAscope

Fresh-frozen cryosections were fixed in cold 10% formalin and permeabilized with
Protease IV (ACD, Cat. 322336) for 20 min before hybridization. We probed for bac-
terial gene dapB as a negative control (ACD, Cat. 310043), housekeeping gene PPIB
as a positive control (ACD, Cat. 313901), and SARS-CoV-2 spike (ACD, Cat. 848561).

Immunohistochemistry

FF-OCT cryosections and FFPE sections were fixed in pre-chilled 10% formalin for
an hour at 4°C and blocked with appropriate blocking serum before staining for
30 min with monoclonal mouse-anti-SARS-CoV-2 spike antibody (GeneTex, Cat.
GTX632604) diluted 1:500, polyclonal rabbit-anti-SARS-CoV-2 nucleocapsid
antibody (GeneTex, Cat. GTX135357) diluted 1:200, and polyclonal goat-anti-hu-
man-CD163 antibody (R&D Systems, Cat. AF1607) diluted to 1 ng/mL. The antigen
was then visualized with ImmPRESS Polymer detection kit (Vector Labs, Cat. MP-
7451) for goat-anti-mouse (Vector Labs, Cat. MP-7452) and horse-anti-goat (Vector
Labs, Cat. MP-7405) following the manufacturer's instructions. Images were
captured under bright-field illumination with a Nikon Eclipse 90i microscope, and
the objective magnifications are denoted within the figure legends.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics

Subject clinical characteristics were analyzed by unpaired two-way t-tests assuming
equal variance (significance p < 0.05). Wilcoxon rank-sum test was used to identify
significantly differentially expressed transcripts (g < 0.05; Logs(fold-change)>2).
The statistics tests were denoted in figure legends, the results section, and the
STAR Methods section.
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