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Discrete placental gene expression signatures
accompany diabetic disease classifications during
pregnancy
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BACKGROUND: Gestational diabetes mellitus affects up to 10% of genes (chorionic somatomammotropin hormone 1 [CSH1], period circa-
pregnancies and is classified into subtypes gestational diabetes subtype

A1 (GDMA1) (managed by lifestyle modifications) and gestational diabetes

subtype A2 (GDMA2) (requiring medication). However, whether these

subtypes are distinct clinical entities or more reflective of an extended

spectrum of normal pregnancy endocrine physiology remains unclear.

OBJECTIVE: Integrated bulk RNA-sequencing (RNA-seq), single-cell

RNA-sequencing (scRNA-seq), and spatial transcriptomics harbors the

potential to reveal disease gene signatures in subsets of cells and tissue

microenvironments. We aimed to combine these high-resolution tech-

nologies with rigorous classification of diabetes subtypes in pregnancy. We

hypothesized that differences between preexisting type 2 and gestational

diabetes subtypes would be associated with altered gene expression

profiles in specific placental cell populations.

STUDY DESIGN: In a large case-cohort design, we compared validated
cases of GDMA1, GDMA2, and type 2 diabetes mellitus (T2DM) to healthy

controls by bulk RNA-seq (n¼54). Quantitative analyses with reverse tran-

scription and quantitative PCR of presumptive genes of significant interest

were undertaken in an independent and nonoverlapping validation cohort of

similarly well-characterized cases and controls (n¼122). Additional inte-

grated analyses of term placental single-cell, single-nuclei, and spatial

transcriptomics data enabled us to determine the cellular subpopulations

and niches that aligned with the GDMA1, GDMA2, and T2DM gene

expression signatures at higher resolution and with greater confidence.

RESULTS: Dimensional reduction of the bulk RNA-seq data revealed

that the most common source of placental gene expression variation was

the diabetic disease subtype. Relative to controls, we found 2052 unique

and significantly differentially expressed genes (�2<Log2[fold-change]>
2 thresholds; q<0.05 Wald Test) among GDMA1 placental specimens,

267 among GDMA2, and 1520 among T2DM. Several candidate marker
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dian regulator 1 [PER1], phosphatidylinositol-4,5-bisphosphate 3-kinase

catalytic subunit beta [PIK3CB], forkhead box O1 [FOXO1], epidermal

growth factor receptor [EGFR], interleukin 2 receptor subunit beta [IL2RB],

superoxide dismutase 3 [SOD3], dedicator of cytokinesis 5 [DOCK5],

suppressor of glucose, and autophagy associated 1 [SOGA1]) were vali-

dated in an independent and nonoverlapping validation cohort (q<0.05

Tukey). Functional enrichment revealed the pathways and genes most

impacted for each diabetes subtype, and the degree of proximal similarity

to other subclassifications. Surprisingly, GDMA1 and T2DM placental

signatures were more alike by virtue of increased expression of chromatin

remodeling and epigenetic regulation genes, while albumin was the top

marker for GDMA2 with increased expression of placental genes in the

wound healing pathway. Assessment of these gene signatures in single-

cell, single-nuclei, and spatial transcriptomics data revealed high speci-

ficity and variability by placental cell and microarchitecture types. For

example, at the cellular and spatial (eg, microarchitectural) levels, dis-

tinguishing features were observed in extravillous trophoblasts (GDMA1)

and macrophages (GDMA2). Lastly, we utilized these data to train and

evaluate 4 machine learning models to estimate our confidence in pre-

dicting the control or diabetes status of placental transcriptome specimens

with no available clinical metadata.

CONCLUSION: Consistent with the distinct association of perinatal

outcome risk, placentae from GDMA1, GDMA2, and T2DM-affected

pregnancies harbor unique gene signatures that can be further distin-

guished by altered placental cellular subtypes and microarchitectural

niches.
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Introduction
Up to 10% of pregnant persons in the
United States are diagnosed with gesta-
tional diabetes mellitus (GDM) annu-
ally, with a global prevalence
approximating 17%.1,2 Pragmatic dis-
tinctions between GDM requiring
medications (gestational diabetes sub-
type A2 [GDMA2]), GDM managed by
lifestyle and not medication (gestational
diabetes subtype A1 [GDMA1]), and
preexisting type 2 diabetes mellitus
(T2DM) can be challenging.3e5

Regardless, duration and severity of hy-
perglycemia in pregnancy drive short-
and long-term perinatal, maternal, and
offspring outcomes.6,7

Historically, GDM was described as
any manifestation of glucose intolerance
MONTH 2024 Am
discovered during pregnancy.5 However,
this definition is imprecise because it
fails to recognize well-known differences
in underlying disease pathophysiology.
Outside of pregnancy, beyond clinical
parameters such as age of onset and
severity of hyperglycemia, development
of clinical laboratory testing reflective of
disease pathophysiology has enabled
timely and accurate differential diag-
nosis of type 1 (immune-mediated
T1DM, driven by autoimmune destruc-
tion of the pancreatic islet cells as
detected by diagnostic anti-islet autoan-
tibodies to insulin, glutamic acid
erican Journal of Obstetrics & Gynecology 1.e1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ajog.2024.05.014
http://www.AJOG.org
http://www.AJOG.org


AJOG at a Glance

Why was this study conducted?
The underlying placental gene signatures associated with preexisting type 2
diabetes mellitus (T2DM) and gestational diabetes subtype A1 and gestational
diabetes subtype A2 (GDMA1 and GDMA2) remain poorly understood.

Key findings
Discrete placental gene expression profiles distinguishing GDMA1, GDMA2,
T2DM, and healthy controls were identified and validated in complementary
cohorts. Interestingly, gene signature profiles from GDMA1 and T2DM were
more alike than GDMA1 and GDMA2, or GDMA2 and T2DM.

What does this add to what is known?
These findings suggest that placental gene expression profiles cannot be solely
attributed to diabetic medication usage, but are more related to the diabetes
subtype. While results from term placentae are inherently not diagnostic, these
findings may inspire future research to identify sensitive and specific biomarkers
that could guide earlier initiation and optimization of therapy.
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decarboxylase, tyrosine phosphatase-like
protein tyrosine phosphatase-like pro-
tein islet cell antigen 512, and zinc
transporter 8) and type 2 (T2DM, pe-
ripheral insulin resistance and relative
impairment of insulin secretion) dia-
betes.5 In contrast, while GDM is also a
disorder of insulin resistance, one key
driving force behind the development of
GDM is thought to arise from an
inability to fully adapt or accommodate
physiological insulin resistance, primar-
ily driven by human placental lactogen
(hPL).3,4,6

Distinguishing between T2DM and
GDM poses a significant challenge, as
both conditions are characterized by
peripheral insulin resistance and a rela-
tive deficiency in insulin secretion, and
the challenge can become further com-
pounded by unequal access to healthcare
and racial health disparities. Amongst
patients with access to pre- and early-
pregnancy care, diabetes established
before pregnancy or identified in the first
trimester or early midgestation by either
elevated fasting glucose or increased
hemoglobin A1C (HbA1C) is considered
preexisting diabetes.5 Conversely, GDM
is diagnosed between weeks 24 and 28 of
pregnancy by oral glucose tolerance test
(GTT) and is considered a complication
of later pregnancy.5 GDM can also be
subcategorized into either diet-
controlled (GDMA1) or medication-
1.e2 American Journal of Obstetrics & Gynecology
controlled (GDMA2). Currently, the
most accurate way to distinguish T2DM
from GDM in affected gravidae requires
postpartumGTT.While advantageous to
subsequent maternal or future preg-
nancy care, postpartum testing is of no
value to the index-affected pregnancy, is
reliant upon access to care outside of
pregnancy, and is disparate amongst
populations with the highest prevalence
of diabetic risk factors.8e10

The placenta is presumed to modulate
the physiological development of insulin
resistance during pregnancy via the
secretion of steroid hormones, and hPL
in particular.3,4,6 Thus, several studies
have examined the changes to placental
gene expression through transcriptomic
and proteomic analysis with noted het-
erogeneity of findings.11e25 We hypoth-
esized that since gestational diabetes is a
distinct clinical entity, we should be able
to detect unique molecular signature
differences in placental gene expression
between subjects with GDMA1,
GDMA2, preexisting diabetes, and
nondiabetic controls. To this end, we
applied bulk RNA-sequencing (RNA-
seq) and robust computational analysis
to a discovery case-control cohort with
subsequent validation in a separate and
nonoverlapping validation cohort using
reverse transcription and quantitative
polymerase chain reaction (RT-qPCR)
to identify differential gene expression
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specific for GDMA1, GDMA2, and
T2DM. We then integrated single-cell
RNA-sequencing (scRNA-seq) and
spatial transcriptomics to assess these
gene expression signatures in the context
of placental cell subtypes and their mi-
croenvironments, which compartmen-
talize diverse functions at the maternal-
fetal interface. We aimed to combine
these high-resolution technologies with
a rigorous classification of gene expres-
sion alterations associated with diabetes
subtypes in pregnancy, including T2DM
and nondiabetic controls.

Materials and methods
Participants and clinical disease
classifications
Protocols utilizing human tissue were
approved by the Baylor College of
Medicine Institutional Review Board
(H-28623). An extensive medical record
review screened participants for inclu-
sion and exclusion criteria, and
informed consent was obtained before
deidentification and utilization in the
current study. Inclusion and exclusion
criteria were set a priori as follows: For
participants to be eligible, they must
have been pregnant, at least 18 years of
age, and able to provide informed con-
sent to provide a placental sample at
delivery. Clinical metadata were
collected from the electronic medical
record and curated in a secured database
by trained research personnel are re-
ported in Table and Supplemental Table,
A. Selected cases were routinely audited
and adjudicated by board-certified or
board-eligible maternal-fetal medicine
specialists (K.M.A., D.R., and K.A.) to
ensure diagnostic accuracy. Diagnosis of
gestational diabetes was based on uni-
form established institutional criteria
using the Carpenter-Coustan GTT, with
a screening glucose challenge test value
of greater than or equal to 140 mg/dL
defining a positive screen. Pregestational
diabetes was classified by 1 or more of
the following: established diagnosis of
diabetes before pregnancy, positive GTT,
or elevated HbA1C early in pregnancy
(HbA1C>6.4). Hypertensive disorders
of pregnancy, including both gestational
hypertension and preeclampsia, were
defined using the American College
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TABLE
Study population characteristics (n[176 total)

Variable

Classification group Adjusted P values

Control: 11 RNA-seq
& 29 RT-qPCR,
n¼40 total

GDMA1: 5 RNA-seq
& 25 RT-qPCR,
n¼30 total

GDMA2: 9 RNA-seq
& 35 RT-qPCR,
n¼44 total

T2DM: 5 RNA-seq
& 33 RT-qPCR,
n¼38 total

Control
vs
GDMA1

Control
vs
GDMA2

Control
vs
T2DM

Maternal age, mean years
(SEM)

28.5 (1.0) 32.4 (1.0) 31.6 (0.5) 31.8 (1.0) .279 .391 .410

Gravidity, mean (SEM) 3.6 (0.3) 3.0 (0.3) 3.3 (0.2) 3.3 (0.3) >.99 >.99 >.99

Parity, mean (SEM) 2.3 (0.3) 1.8 (0.3) 2.1 (0.2) 2.1 (0.2) .267 .206 1.000

Gestational age, mean
weeks (SEM)

39.7 (0.2) 39.1 (0.2) 38.5 (0.2) 38.2 (0.2) .319 .0012 <.0001

Birthweight, mean grams
(SEM)

3504 (80.1) 3219 (84.1) 3465 (86.9) 3499 (140) >.99 >.99 .862

Hypertensive disorders of
pregnancy, n¼ positive/
total (%)

6/40 (15) 7/30 (23.3) 6/44 (13.6) 21/38 (55.2) >.99 >.99 .0002

Body mass index at
delivery, mean (SEM)

32.3 (1.6) 29.1 (1.0) 35.3 (1.7) 34.8 (1.3) .269 .126 .099

Race (%) >.99 >.99 >.99

White 37 (92.5) 26 (86.7) 42 (95.4) 37 (97.4)

Black 2 (5) 0 (0) 1 (2.3) 1 (2.6)

Asian 1 (2.5) 1 (3.3) 0 (0) 0 (0)

Other 0 (0) 3 (10) 1 (2.3) 0 (0)

Ethnicity (%) .631 >.99 >.99

Hispanic/LatinX 38 (95) 30 (100) 43 (97.7) 37 (97.4)

Non-Hispanic/LatinX 2 (5) 0 (0) 1 (3.3) 1 (2.6)

Fetal sex (%) >.99 >.99 >.99

Female 14 (35) 11 (37.7) 21 (47.7) 21 (55.2)

Male 26 (65) 19 (63.3) 20 (45.5) 17 (44.8)

Not reported 0 (0) 0 (0) 3 (6.8) 0 (0)

Diabetes medication (%) >.99 >.99 >.99

None 40 (100) 30 (100) 0 (0) 0 (0)

Glyburide 0 (0) 0 (0) 39 (88.6) 9 (22.7)

Insulin 0 (0) 0 (0) 5 (11.4) 29 (76.3)

Prenatal 3 h GTT >.99 >.99 >.99

Pass 40 (100) 0 (0) 10 (22.7) 0 (0)

Fail 0 (0) 30 (100) 34 (77.3) 0 (0)

NA 0 (0) 0 (0) 0 (0) 38 (100)

Postpartum 2 h GTT >.99 >.99 >.99

Pass 0 (0) 30 (100) 34 (77.3) 0 (0)

Fail 0 (0) 0 (0) 0 (0) 0 (0)

NA 40 (100) 0 (0) 10 (22.7) 38 (100)

Statistically significant comparisons (adjusted P value<.05) in bold as determined by Kruskal-Wallis (numerical) or Friedman (categorical) test with Dunn’s multiple comparisons. There were 24
deidentified subject’s specimens with no available clinical metadata, and thus allowed us to categorize them as unknowns in the RNA-seq analysis. In Figures 5 and 6 there were n¼2 subjects scRNA-
seq controls, n¼1 GDMA1, and n¼1 GDMA2 subjects from Yang et al (2021) analyzed independently.

GDMA1, gestational diabetes subtype A1; GDMA2, gestational diabetes subtype A2; GTT, glucose tolerance test; NA, not applicable, data not determined or reported; RNA-seq, RNA-sequencing;
RT-qPCR, reverse transcription and quantitative polymerase chain reaction; scRNA-seq, single-cell RNA-sequencing; SEM, standard error of the mean; T2DM, type 2 diabetes mellitus.
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of Obstetricians and Gynecologists’
classification.26

Sample collection and processing
All samples were collected by personnel
trained in perinatal and placental pa-
thology under strict uniform protocol.
Briefly, following standard obstetrical
practice, the placenta was delivered and
immediately passed to trained personnel
in a sterile clean container. In a separate
room, 2 samples were collected from
midway between the cord insertion and
placental margin by incision through the
fetal surface into the parenchyma but not
to the maternal surface. All samples were
collected within 1 hour of delivery under
clean and sterile conditions as detailed
above, placed on dry ice in sterile closed
vials, transported to the laboratory, and
stored at �80�C until messenger RNA
(mRNA) extraction.

Bulk RNA-seq
Ribonucleic acid (RNA) was extracted
from placental tissue as previously
described.27 The Machery Nagel Nucle-
ospin II kit was used to extract RNA
from each sample, and samples were
stored at �80�C. Each sample was
analyzed for quality control on the Agi-
lent Bioanalyzer, with a minimum RNA
Integrity Number of 4.0 accepted for
transcriptomic analysis. For each library,
mRNA was purified from 10 mg of total
RNA using the DynaBeads mRNA Puri-
fication Kit (Invitrogen) and fragmented
using the RNA Fragmentation Reagents
(Ambion). Double-stranded Comple-
mentary deoxyribonucleic acid (cDNA)
was synthesized from fragmented
mRNA using the Superscript Double-
Stranded cDNA Synthesis Kit (Invi-
trogen) and Random Hexamer primers
(50 ng/mL, Invitrogen). cDNA libraries
were prepared according to the manu-
facturer’s protocol (TruSeq RNA Library
Prep Kit v2) and sequenced on an Illu-
mina Hiseq 2000.

Bulk RNA-seq analysis
Reads were preprocessed and quality-
filtered using FastqQC (v0.11.9), and
barcodes and adapters were trimmed
using Trimmomatic (v0.33).28 Reads
were aligned to the human
1.e4 American Journal of Obstetrics & Gynecology
transcriptome (GRCh38.p13) using
STAR (v2.7.8).29 PCR duplicate reads
were removed using Picard (v2.24.0).30

Unique reads were counted using
HTseq (v0.11.1).31 Counts were used for
differential expression analysis in R
(v4.0.2) using DEseq2 (v3.12)32 relative
to the healthy control placenta samples.
Gene Ontology (GO) biological pro-
cesses functional enrichment analysis
utilized clusterProfiler (v4)33 to identify
significantly enriched terms.

Reverse transcription and
quantitative PCR
Total RNA was isolated from placental
tissue (n¼122), purified using the
Nucleospin II kit, and total RNA was
reverse transcribed in a final volume of
20 mL using the High Capacity cDNA
Archive Kit with random primers
(Applied Biosystems) as described by the
manufacturer. Commercially available
primer and probe sets (Applied Bio-
systems) were used for real-time PCR
using 2 mL of cDNA samples (50 ng),
5 mL of TaqMan PCR Universal Master
Mix (Applied Biosystems), 2 mMof each
primer and 1 mM of gene-specific Taq-
Man probe in a total volume of 5 mL. The
ABI PRISM 7900HT SequenceDetection
System (Applied Biosystems) was used
to detect the amplification level. Fold-
change for each group was calculated
using the threshold value method34 as
previously described35 utilizing glycer-
aldehyde-3-phosphate dehydrogenase
(GAPDH) as the endogenous control.
The following genes were analyzed for
RT-qPCR validation using off-the-shelf
primers: PER1, SOGA1, IL2RB, SOD3,
DOCK5, CSH1, EGFR, PIK3CB, and
FOXO1.

Single-cell and spatial
transcriptomics
Themethods of the term placenta single-
cell and spatial transcriptomics atlas
have been described previously.36 For
this study, we reexamined the GDMA1,
GDMA2, and T2DM gene signatures
identified in the bulk RNA-seq data in
the atlas regions where the placenta was
sampled (decidua, basal plate, cho-
rioamniotic membrane, chorionic villi,
or uniformly from the parenchyma), the
MONTH 2024
atlas cell type or spatial niches, and
leveraged the atlas control vs disease
classifications, which included GDM
single-cell cases from Yang et al (2021).11

Machine learning random forest
algorithms
Gene counts, and metadata were im-
ported into R (v4.3.1) and underwent
preprocessing via i) center and scaling of
the gene counts, ii) filtering genes with
zero or near zero variance, and iii)
filtering genes with >90% correlation.
After preprocessing, datasets were
copied into individual data frames for
each group (GDMA1, GDMA2, T2DM,
control, and unknown), and annotated
as a target column for a 2-component
classification model where the target
for each group was converted into logical
class form. Each data frame was then
sliced into 80% training and 20% testing
weighted by the target classification
outcome. A 5-fold 3 repeat cross-
validation random forest classification
model was then trained for each dataset.
Models for each group were evaluated
via model metrics i) accuracy, ii) kappa
scores, iii) out-of-the-box (OOB) error
rate estimation, and iv) postresample
metrics derived from prediction on the
testing dataset. Following the training of
individual random forest classification
models for each target class, Unknown
samples underwent prediction with each
model, resulting in a data frame with
predicted classification and probability
scores.

Data and code availability
The bulk RNA-seq data have been
deposited to the Gene Expression
Omnibus (GEO) (accessionGSE249311).
The custom scripts used for bulk and
single-cell transcriptomics analyses
are available at https://github.com/
Aagaardlab/GDMA-Subtype-Transcripto
mics and https://github.com/Aagaardlab/
placenta-spatial-transcriptomics, respec-
tively. Published term human placenta
scRNA-seq, snRNA-seq, and spatial
transcriptomics datasets were down-
loaded and analyzed independently
including GEO (accessionGSE222987),36

GEOaccession (GSE173193),11 European
Genome-Phenome Archive accession

https://github.com/Aagaardlab/GDMA-Subtype-Transcriptomics
https://github.com/Aagaardlab/GDMA-Subtype-Transcriptomics
https://github.com/Aagaardlab/GDMA-Subtype-Transcriptomics
https://github.com/Aagaardlab/placenta-spatial-transcriptomics
https://github.com/Aagaardlab/placenta-spatial-transcriptomics
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(EGAD00001003705),37 and database of
genotypes and phenotypes accessions
(phs001886.v1.p1, phs001886.
v2.p1, and phs001886.v3).38e40

Statistical analyses
Significance (adjusted P value<.05) of
clinical metadata was determined by
Kruskal-Wallis (numerical) or Friedman
(categorical) test with Dunn’s multiple
comparisons with Prism (v10.0.3).
In differential expression analyses, sig-
nificance was determined with Wald
tests with False Discovery Rate multiple
test correction where significance was
defined as a q<0.05 in R with DEseq2.
Differentially expressed genes (DEGs)
(significance thresholds defined as
q<0.05 and �2<Log2[fold-change]>2)
were subject to GO biological processes
functional enrichment analysis utilizing
clusterProfiler (v4) to identify signifi-
cantly enriched terms (adjusted P value
Bonferroni correction, q<0.05).

Results
Gene expression analysis of
placentae from participants with
preexisting or clinically
characterized gestational diabetes
This case-cohort study was designed to
rigorously examine placental gene
expression differences between gesta-
tional and pregestational diabetics. The
only significant differences among the
cases relative to controls included (1)
gestational age at delivery: controls,
group mean of 39.7 weeks (�0.2),
GDMA2 38.5 weeks (�0.2; adjusted P
value¼.0012; Kruskal-Wallis), and
T2DM 38.2 weeks (�0.2 adjusted P
value<.0001) and (2) hypertensive dis-
orders of pregnancy where 55% preva-
lence among gravidae with T2DM group
was significantly greater (non-T2DM
range 13%e23%, adjusted P val-
ue¼.0002) (Table). Additional clinical
metadata are available in Supplemental
Table, A. Consistent with our patient
population and those at highest risk for
GDM and T2DM, the majority of our
participants identified as Hispanic and
were multiparous. Consistent with par-
ticipants clinical documentation
demonstrating adequate glycemic con-
trol during pregnancy (eg, fasting
glucose values <95 mg/dL; 2 hours
postprandial<120 mg/dL), there was no
statistical difference in birth weight in
our participant cohort.
To determine the GDMA1, GDMA2,

and T2DM gene expression changes at
the placental maternal-fetal interface, we
used a 2-phase case-cohort study
design in which an initial discovery
cohort (phase 1) of n¼30 of 54 partici-
pants samples were comprised of
well-characterized specimens (n¼11
controls, 5 GDMA1, 9 GDMA2, 5
T2DM) which were compared to n¼24
placentae from an uncharacterized
population-based controls (“unknown”)
for analysis by bulk RNA-seq (Figure 1,
A). With dimensional reduction, we
found that our participants’ placental
gene expression signatures indepen-
dently parsed by diabetes classification
(Figure 1, A and B). Moreover, differ-
ential expression analysis comparing
each diabetes classification group to the
controls (eg, control vs GDMA1, control
vs GDMA2, control vs T2DM) allowed
for the discovery of 8749 unique signif-
icantly DEGs for each diabetes subtype
relative to the controls (significance
thresholds defined as �2<Log2[fold-
change]>2; adjusted P value (q)<.05,
Wald test; unfiltered differential expres-
sion result tables are available in
Supplemental Table, B).

qRT-PCR measures of biologically
significant genes of interest in a
validation cohort of nonoverlapping
subjects
In our a priori designed second phase, a
subset of marker genes were selected for
validation by virtue of (i) significant
differential transcript expression in the
RNA-seq analysis (eg, unbiased), or (ii)
presumptive or putative biological rele-
vance (eg, curated).29e32 We defined
‘presumptive or putative biological rele-
vance’ of curated select genes as having
had at least one other study reported in
the literature identifying the gene to be
potentially important regulators of
glucose modulation, obesity or insulin
resistance, and/or glucose metabolism.
With RT-qPCR, we validated 9 of the top
markers from the discovery phase in the
second phase validation cohort of n¼122
MONTH 2024 Am
placental specimens from nonoverlap-
ping participants which had postpartum
GTTs to reliably classify their diabetic
disease status or control. Specifically, our
phase 2 validation cohort was comprised
of n¼29 nondiabetic controls, n¼25
GDMA1, n¼35 GDMA2, and n¼33
T2DM (Figure 1C). We confirmed that
CSH1 was differentially expressed be-
tween T2DM subjects and controls
(P¼.02), GDMA2 (P¼.008), and
GDMA1 (P¼.002). Significant differ-
ences in expression of EGFR were
demonstrated between T2DM subjects
and controls (P¼.02). Expression of
PER1 differed significantly between
controls vs GDMA1 (P<.001), GDMA2
(P¼.02), and T2DM subjects (P¼.02).
Additionally, differential gene expression
was noted between GDMA1 when
compared to T2DM subjects (P<.001) as
well as GDMA2 (P<.001). SOGA1
expression differed between controls and
GDMA1 (P¼.003) andGDMA2 (P¼.01).
Expression of SOD3 differed in GDMA1
as compared to GDMA2 (P<.001) and
T2DM subjects (P¼.003). There were
also significant expression differences
noted between controls and GDMA1
(P<.001). Expression of DOCK5 also
differed significantly in controls as
compared to GDMA1 (P¼.02) and
GDMA2 (P¼.003). Expression of IL2RB
differed between controls and GDMA1
(P¼.008). Significant differences in
expression of FOXO1 were also noted
between controls and GDMA1 (P¼.002).
Expression of PIK3CB differed signifi-
cantly between GDMA2 and T2DM
subjects (P¼.04). Next, we aimed to
determine the defining features and
biological pathways most perturbed in
the placentae of the GDMA1, GDMA2,
and T2DM subjects.

GDMA1 subtype gene signature
was associated with a differential
regulation of pathways mapping to
functional pathways including
methylation and chromatin
remodeling
Compared to controls, we found 6754
significantly DEGs (Figure 2, A; q<0.05),
RMRP stood out as the most signifi-
cantly upregulated gene, and the
GDMA1 gene signature was
erican Journal of Obstetrics & Gynecology 1.e5
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FIGURE 1
Naı̈ve transcriptomic analysis of participants with clinically well-characterized preexisting or gestational diabetes and
a comparative cohort of deidentified and unclassified participant specimens

A, Clustering of the bulk RNA-seq data from the n¼30 participants in the discovery cohort, and the n¼24 placenta bulk RNA-seq participant samples
with unknown diabetic status. B, Comparison of the 8749 significantly differentially expressed genes (DEGs) for each diabetes subtype relative to controls
(adjusted P value (q)<.05, Wald test). C, In the nonoverlapping validation cohort of n¼145 subjects with clinically well-characterized diabetes (vs control)
status, 9 putative disease classifying DEGs identified in the initial bulk RNA-seq experiments were quantitated using reverse transcription and qPCR.
Significance (*q<0.05, **q<0.01, ***q<0.001) determined by ordinary 2-way analysis of variance, with Tukey’s multiple corrections test and error bars
represent the standard error of the mean.
GDMA1, gestational diabetes subtype A1; GDMA2, gestational diabetes subtype A2; RNA-seq, ribonucleic acid-sequencing; RT-qPCR, reverse transcription and quantitative polymerase chain reaction;
T2DM, type 2 diabetes mellitus.
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reproducible across multiple subjects
(Figure 2, B). We then performed func-
tional enrichment on these significantly
differently expressed genes (Figure 2,
CeF) utilizing the GO Biological Path-
ways database, which identified 263
significantly enriched terms (adjusted P
value Bonferroni correction, q<0.05; full
1.e6 American Journal of Obstetrics & Gynecology
GO Biological Pathway results available
in Supplemental Table, C). To determine
if there was overlap in the genes
comprising these significantly enriched
terms, we selected 2 closely related cat-
egories of chromatin remodeling and
methylation (Figure 2, D) and found
overlap in 9 genes, including DNA
MONTH 2024
methyltransferase 1 (DNMT1), enhancer
of zeste homolog 1 (EZH1), and ATRX
chromatin remodeler (ATRX) which are
key epigenetic regulators. Next, we
assessed the directionality of the gene
expression changes in these pathways.
Out of the 4287 significantly upregulated
genes, the top 3000 were reanalyzed by
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FIGURE 2
GDMA1 diabetes subtype gene signature is associated with a differential
regulation of transcription pathways mapping to methylation and chromatin
remodeling

A, Volcano plot of significant differentially expressed genes (DEGs) in GDMA1 placentae relative to
controls. B, Heatmap with hierarchical clustering of samples by GDMA1 gene signature (6754
DEGs). CeF, GO biological processes functional enrichment analysis utilizing clusterProfiler (v4)
identified 263 significantly enriched terms (adjusted P value Bonferroni correction, q<0.05). C,
Treeplot with hierarchical clustering of biological pathways significantly perturbed. D, Selection of
categories from (C) and visualization of the significant genes and their overlap in these pathways as a
cnetplot. E and F, Visualization of the top 3000 significantly upregulated (E—out of 4287 signifi-
cantly upregulated genes) and downregulated (F—out of 2467) pathways and genes visualized as a
cnetplot revealing the directionality of gene expression in each pathway and the specific genes
perturbed (as determined by �2<Log2[fold-change]>2; q<0.05).
GDMA1, gestational diabetes subtype A1.
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pathway analysis and the top 5 nodes
were visualized, revealing topmodules in
the same pathways of chromatin
remodeling, epigenetic regulation of
gene expression, coagulation, and
homotypic cell-cell adhesion (Figure 2,
E). Conversely, the 2467 significantly
downregulated genes revealed modules
centering around mitochondrial func-
tions including transmembrane trans-
port, respiratory chain complex
assembly, translation, and ribonucleo-
protein complex biogenesis (Figure 2, F).

GDMA2 subtype gene signature
was associated with differential
regulation of pathways related to
cellular metabolism, cell-substrate
adhesion, and wound healing
Compared to controls, we found 3315
significantly DEGs (Figure 3, A; q<0.05),
with ALB as the most upregulated and
significantly DEG amongst 139 signifi-
cantly enriched terms (q<0.05) from
placentae of GDMA2 affected partici-
pants (Figure 3, B). We found that heat
shock protein family A member 8
(HSPA8) was a part of 3 pathways and
identified 11 other significant DEGs
represented in multiple pathways of
biological significance. Next, we assessed
the directionality of the gene expression
changes in these pathways and sorted the
1678 upregulated and 1637 down-
regulated genes into distinct GDMA2
gene signature modules based on mo-
lecular functions (Figure 3, E and F).
Cell-substrate adhesion, cytoplasmic
translation, and wound healing were
upregulated while mitochondrial gene
expression, mitochondrial translation,
respiratory chain complex assembly, and
transfer ribonucleic acid metabolic pro-
cessing were downregulated.
T2DM diabetes subtype gene
signature associated with
upregulation in chromatin
remodeling
We found 5989 significantly DEGs
(Figure 4, A; q<0.05). Functional
enrichment identified 256 significantly
enriched terms (q<0.05), including
chromatin remodeling, methylation,
erican Journal of Obstetrics & Gynecology 1.e7
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FIGURE 3
A GDMA2 diabetes subtype gene signature is associated with upregulation
of pathways involved in wound healing

A, Volcano plot showing significant differentially expressed genes (DEGs) in GDMA2 placentae
relative to controls. B, Heatmap with hierarchical clustering of samples by the 3315 DEGs unique to
the GDMA2 gene signature. CeF, GO biological processes functional enrichment analysis utilizing
clusterProfiler (v4) identified 139 significantly enriched terms (adjusted P value Bonferroni correc-
tion, q<0.05). C, Treeplot with hierarchical clustering of biological pathways significantly perturbed.
D, Selection of 4 categories from (C) and the associated genes significantly perturbed visualized as a
cnetplot. E and F, Visualization of the top 3000 significantly upregulated (E—out of 1678 upre-
gulated genes) and downregulated (F—out of 1637) pathways.
GDMA2, gestational diabetes subtype A2.
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nuclear transport, and RNA splicing
pathways, which were analyzed for pu-
tative gene networks. We found SET
1.e8 American Journal of Obstetrics & Gynecology
domain containing 2 (SETD2), tripartite
motif containing 28 (TRIM28), SPT6
homolog, histone chaperone (SUPT6H)
MONTH 2024
were involved in 3 of those 4 pathways
and identified over 50 additional signif-
icant DEGs that are involved in multiple
pathways. The 1678 upregulated and
1637 downregulated genes revealed
distinct T2DM gene signature modules
(Figure 3, E and F). Surprisingly and
similar to GDMA1 participants placental
transcription profiling, that of T2DM
participants also showed upregulation of
chromatin remodeling, histone modifi-
cation, histone lysine methylation, and
small guanosine triphosphatase medi-
ated signaling were upregulated, while
mitochondrial gene expression, trans-
lation, respiratory chain complex as-
sembly, translation, ribonucleoprotein
complex assembly, and ribosome
biogenesis were downregulated.

Spatial and single-cell resolution of
placental DEGs parsed by diabetes
disease classification in pregnancy
From each of our diabetic and control
participants, we found 28 of the marker
genes in the GDMA1 bulk RNA-seq
analysis aligned with genes that were
significantly associated with cell types or
spatial niches (�2<log2[fold-change]>
2 thresholds; q<0.05) from the term
placenta transcriptomics atlas.36 The
same analysis identified 24 genes from
the GDMA2 signature and 33 from the
T2DM signature. Therefore, we inte-
grated these analyses to ask (1) within the
microarchitecture of the placenta, what
part and (2) which cell types harbored
themost DEGswhen comparing diabetic
disease classifications to controls. We
performed dimensional reduction of the
term placenta atlas on all 291,871 tran-
scriptomes and included an independent
analysis of a subset of 19,324 tran-
scriptomes from Yang et al (2021)
derived from controls (n¼2), GDMA1
(n¼1), or GDMA2 (n¼1) placental
specimens (Figure 5, A). We then per-
formed differential expression analysis
on the unique diabetes gene signatures
from the bulk RNA-seq analysis
(Figures 1e4) projected onto placental
regions sampled in the term placental
atlas (Figure 5, B; differential expression
results available in Supplemental Table,
D). The average expression of each
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FIGURE 4
A T2DM diabetes subtype gene signature is associated with upregulation of
pathways involved in chromatin remodeling

A, Volcano plot showing significant differentially expressed genes (DEGs) in T2DM placentae relative
to controls. B, Heatmap with hierarchical clustering of samples by the 5989 DEGs in the T2DM gene
signature. CeF, GO biological processes functional enrichment analysis utilizing clusterProfiler (v4)
identified 256 significantly enriched terms (adjusted P value Bonferroni correction, q<0.05). C,
Treeplot with hierarchical clustering of biological pathways significantly perturbed. D, Selection of 4
categories from (C) and the associated genes significantly perturbed visualized as a cnetplot. E and
F, Visualization of the top 3000 significantly upregulated (E—out of 1678 upregulated genes) and
downregulated (F—out of 1637).
T2DM, type 2 diabetes mellitus.
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markerwas highly variable in each region
of the placenta, warranting higher reso-
lution via subset analyses of the GDMA1
and GDMA2 scRNA-seq placental spec-
imen data from Yang et al (2021) pro-
jected as classification group or single-
MONTH 2024 Am
cell profile (Figure 5, C; full differential
expression results available in
Supplemental Table, E). Consistent with
our bulk RNA-seq analysis, we observed
unique distinctions of diabetic disease
classifications were faithfully recapitu-
lated in the placental transcriptomics
analysis at a single-cell level. Specifically,
we found that GDMA1 single-cell gene
signature aligned with extravillous tro-
phoblasts, while the GDMA2 signature
aligned with macrophages. To visualize
the spatial gene expression and identify
the transcriptional microarchitecture of
top mapping gene markers in the
placenta (Figure 5, D), we collected
placentae from n¼4 well-characterized
healthy and nondiabetic controls for
spatial transcriptomic analyses and
visualized key genes of interest in the
chorionic villi, decidua, chorioamniotic
membranes, and parenchyma (Figure 5,
D). Based on our independent analysis of
the dataset of Yang et al (2021), we
visualized 2 genes known to be inde-
pendent of diabetic status (Hes family
BHLH transcription factor 1 [HES1],
protease serine 22 [PRSS22]) as positive
controls for spatial discrimination in the
placenta. Faithfully recapitulating our
bulk RNA-seq data, we found that the
spatial expression of GDMA1 and
GDMA2 top mapping genes (RNA
component of mitochondrial RNA pro-
cessing endoribonuclease [RMRP], al-
bumin [ALB] CD28 molecule [CD28],
cathepsin L [CTSL]) were highly depen-
dent on the microenvironment niches,
suggesting that placental cell type and
microarchitectural transcript profiles
varied by diabetes subtype. With this
additional layer of cellular and spatial
complexity, we hypothesized that estab-
lished computational methodologies for
artificial intelligence (eg, machine
learning predictionmodels)may provide
naïve and unbiased aid in identifying
predictive features of GDMA1 and
GDMA2 placental gene expression.

Machine learning prediction
models from placental
transcriptional data yield accurate
diabetes disease classification
The ground truths and workflow for our
machine learning approach are outlined
erican Journal of Obstetrics & Gynecology 1.e9
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FIGURE 5
Spatial and single-cell resolution of placental differentially expressed genes parsed by diabetes disease classification
in pregnancy

A, Dimensional reduction of the term placenta atlas (291,871 transcriptomes) or independent analysis of a subset of 19,324 transcriptomes from Yang
et al (2021) derived from controls (n¼2), GDMA1 (n¼1), or GDMA2 (n¼1) specimens. B, Differential expression of the unique diabetes gene signatures
from the bulk RNA-seq analysis arising from the term placental atlas. C, Subset analysis of data from Yang et al (2021) projected as classification group
(left) or single-cell profile (right). D, Spatial gene expression of the top DEGs from the bulk and scRNA-seq analysis in the villi, decidua, or membranes of 1
placenta, or the parenchyma from 3 separate placentae.
DEGs, differentially expressed genes; GDMA1, gestational diabetes subtype A1; GDMA2, gestational diabetes subtype A2; RNA-seq, ribonucleic acid-sequencing; scRNA-seq, single-cell RNA-sequencing.

Original Research OBSTETRICS ajog.org
in Figure 6, A, and benefited from our
incorporation of not only placentae
from known control cases and diabetic
participants, but also bulk RNA-seq
placenta data with unknown clinical
metadata or GDM classification (ie,
termed “unknowns”). We generated 4
random forest models and evaluated
their performance (Figure 6, C).
Amongst the 80% of data in the training
models, the OOB error rate for each
model was 29.63% for control, 18.52%
1.e10 American Journal of Obstetrics & Gynecolo
for GDMA1, 37.04% for GDMA2, and
18.52% for T2DM. We then tested the
accuracy of each model with the
remaining 20% of data, which were un-
touched but had known and well-
characterized diabetes classifications
and all 4 models demonstrated 100%
sensitivity and specificity (kappa¼1).
Given the high kappa of our 20% vali-
dation dataset relative to the modest
performance of our training models, we
inputted our “unknowns” into each of
gy MONTH 2024
the models and reported the probabili-
ties in Figure 6, D. The models could
predict the phenotypes of 7 specimens
with confidence and aligned with the
dimensional reduction (Figure 1, A), as
the “unknowns” called controls were
most proximal in their distance metric
from known control participants
placental gene expression profiles.

In addition, we examined the com-
ponents of each machine learning model
to determine the DEGs that contributed
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FIGURE 6
Machine learning prediction models from placental transcriptional data
yielding diabetes classification

A, Ground truths and workflow of the machine learning process. B, Principal component analysis
dimension reduction of bulk RNA-seq and single-cell RNA-sequencing samples with unknowns
labeled by sample identification. C, Each model was trained and evaluated with a randomized 80/20
scheme. D, Following evaluations with each model, we predicted 4 of the unknowns were controls,
0 were GDMA1, 2 were GDMA2, and 0 were T2DM based on their placental gene signatures. E,
Counts for the transcript that accounted for the highest degree of variation in each model (see
Supplemental Table, F for all genes).
GDMA1, gestational diabetes subtype A1; GDMA2, gestational diabetes subtype A2; RNA-seq, ribonucleic acid-sequencing; T2DM, type
2 diabetes mellitus.
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the most variation. The contribution
values of each transcript to themodel are
available in Supplemental Table, F and
the top transcript for each model is
plotted with the counts for each sample
in Figure 6, E. Interestingly, the top fea-
tures identified by our 4 machine
learning models were not significantly
differentially expressed in our bulk
RNA-seq analysis; however, there were
significantly DEGs found within the top
8 in the control model (CHA2), 7 for
GDMA1 (CTS4), 6 for GDMA2
(HIST1D), and the 3 with T2DM
(thymocyte selection associated [THE-
MIS]). Lastly, several long noncoding
MONTH 2024 Ame
RNAs (lncRNAs) with no known rele-
vance to GDM or pregnancy were found
to have high-ranking contributions to
these models. Notably, lncRNA
AC110597-1 ranked second in the con-
trol model with a contribution score of
64.1. AC005034-6 was the fourth highest
contributor to the GDMA1model with a
score of 91.5. In the GDMA2 model,
UBE2Q1-AS1 had the second highest
contribution at 80.9, and in the T2DM
model, AL645465-1 ranked second
with a high contribution score of 98.1.
These findings suggest a promising po-
tential of artificial intelligence and ma-
chine learning as tools for unbiased
hypothesis generation, serving as valu-
able complements to the rigorous
orthogonal methods essential for hy-
pothesis testing.

Comment
Principal findings
From GDM and T2DM cases and
nondiabetic controls comprising our
discovery cohort, rigorously defined by
postpartum GTT, we demonstrate
unique molecular signatures in placental
gene expression by virtue of diabetes
subtype. In a nonoverlapping validation
cohort, we validate placental expression
of several key genes (CSH1, PER1,
PIK3CB, EGFR, SOD3, DOCK5). We
then utilize a term placenta tran-
scriptomics atlas to assess the GDMA1,
GDMA2, and T2DM gene signatures by
placenta region, cell type, and niche
microenvironment. Lastly, we integrate
these bulk and high-resolution datasets
to create machine learning models to
predict the diabetes subtype based on
placenta gene expression profiles.
Collectively, these data demonstrate that
molecular profiles significantly differ
among diabetic classifications in preg-
nancy and those with pregestational
diabetes, relative to nondiabetic
controls.

This study provides molecular evi-
dence demonstrating that the placental
transcriptome is distinctly different by
diabetic disease classification. Since the
placenta is established within days of
implantation, these findings raise the
possibility that earlier diagnostic mea-
sures may be developed, and could
rican Journal of Obstetrics & Gynecology 1.e11

http://www.AJOG.org


Original Research OBSTETRICS ajog.org
potentially lead to improved maternal
and fetal outcomes. It stands to reason
that variation in clinical diabetic disease
states (and their associated manifesta-
tions) should have distinct molecular
signatures.27,41e44 The placenta is an
active metabolic organ crucial to glucose
transport and homeostasis,45 and we
have shown here that the placenta
maintains a footprint of the DEGs which
are associated with diabetic disease
classifications. These unique tran-
scriptomic signatures of each of the
distinctive diabetic disease states beg the
question: are the changes in gene
expression pathways in the placenta a
cause or consequence of maternal dia-
betes? The current study is cross-
sectional and observational, and thus
cannot provide causal links. However, by
utilizing prenatal and postpartum veri-
fied GDM subtype classifications, we
were able to demonstrate significant
differences in placental transcriptomes
and functional profiles detected by un-
biased methods and validated with RT-
qPCR. Further, we extend these
GDMA1, GDMA2, and T2DM placental
gene signatures to specific placental re-
gions, cell types, and spatial niches.
Lastly, we integrate bulk and high-
resolution data to generate 4 machine
learning models which utilized the
placental gene expression profiles to
make predictions of participants dia-
betes classification.

Although the OOB error performance
of our machine learning models were
relatively modest, with increasing sam-
ple sizes and additional improvements in
resolution, machine learningmodels will
likely improve, and our data reported
herein provides a rationale for longitu-
dinal studies that will track the correla-
tions of top biomarkers with noninvasive
maternal diagnostics. Compared to
other models,46 this study demonstrated
significant results utilizing placental
transcriptomic variation across different
diabetic disease states to predict diabetes
classification even with limited sample
sizes, suggesting that even small, well-
curated ‘omics datasets can be informa-
tive with the appropriate AI modeling
and applications. An additional strength
of the machine learning approach
1.e12 American Journal of Obstetrics & Gynecolo
included focusing on specific sets of
molecular markers and less reliance on
extensive clinical metadata, mitigating
privacy concerns associated with alter-
native machine learning models that rely
on substantial amounts of protected data
to be trained. Moreover, compared with
other models that can be difficult to
interpret, this study’s clinical applica-
bility and interpretability offer tangible,
understandable insights for clinicians
and provide clinically relevant findings.
Lastly, in contrast to other models, these
analyses harness AI as a complement to
rigorous transcriptomics analyses and
existing diabetes diagnosis ground truths
(Figure 6, A), avoiding the potential
pitfall of rewriting diagnosis rules in a
black box, and maintaining alignment
with the ethical use of AI as a support
tool in clinical research.

Results in the context of what is
known
We based our selection of genes for
further validation with RT-qPCR on
their capacity to drive principal com-
ponents clustering along both PC1 and
PC2 axes (Figure 1). Notably, not only
did these candidates drive significant
differential expression per our RNA-seq
analysis, but they are summarily
described in the scientific literature as
important modulators in metabolism,
glucose utilization, and obesity. PER1,
like other circadian clock proteins, is
instrumental in encoding the circadian
rhythms of metabolism and has been
implicated in gestational diabetes.47

IL2RB, plays a key role in T cell medi-
ated immune response and has been
associated with the development of type
I diabetes.48 Others have shown a rela-
tionship between SOD3 levels, fasting
plasma glucose, body mass index, and
insulin resistance.49 El-Sayed Moustafa
et al,50 describe DOCK5 as a suscepti-
bility gene for severe obesity. The cluster
of CSH genes, also known as placental
lactogen, is thought to play a role in
maternal adaptation to pregnancy, pre-
eclampsia, intrauterine growth, and
gestational diabetes.51 Specifically,
placental expression of CSH1 was shown
to be significantly higher in large for
gestational age offspring compared to
gy MONTH 2024
average and small for gestational age
counterparts.51 Here, we found CSH1
was significantly higher between con-
trols and GDMA1 (2.91-fold, P¼0.002)
and GDMA2 (1.67-fold, P¼0.008) sub-
jects, but found no significant differ-
ences in birthweight between groups
(Table). EGFR signaling has been
described as a link to the growth of
macrosomic fetuses in mothers with
gestational diabetes.52 PIK3CB in-
fluences glucose metabolism,53 and
others have associated overexpression of
PIK3CB with development of gestational
diabetes.54 FOXO1 is an important factor
in the regulation of insulin and glucose
metabolism.55

Research implications
Albumin was the most commonly
upregulated gene for both GDMA2 and
T2DM relative to controls (Figures 3, A
and 4, A), and the diagnostic value of
glycated albumin as a biomarker for
diabetes has been previously studied in-
side and outside the context of
pregnancy.56e59 RMRP, the most upre-
gulated gene in GDMA1 placentae, is a
lncRNA that was found to act as an
antagomir for endogenous miR-1a-3p,
leading to JunD expression and diabetic
nephropathy in a mouse model.60 CD28
gene expression was a consistent marker
for GDMA2 in the bulk and scRNA-seq
datasets (Figure 5, C and D). In a case-
control flow cytometry study of
maternal peripheral blood, GDM sub-
jects had prolonged CD28 expression
with high frequencies of T-cell activa-
tion.61 In a recent study, placental gene
expression changes in GDM subjects
relative to controls also observed alter-
ations in epigenetic regulation and pro-
filed differential methylation profiles by
bisulfite sequencing in paired neonatal
umbilical cord blood samples.62 They
found several genes that had altered
methylation and gene expression pat-
terns associated with GDM including
suppressor of cytokine signaling 3
(SOCS3), which, according to the term
placenta transcriptomics atlasmap to the
chorioamniotic membranes, endome-
trial and dendritic cells, low-density li-
poprotein receptor (LDLR), which map
to the basal plate and endothelial cells,
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and growth arrest and DNA damage
inducible alpha (GADD45A), which
map to syncytiotrophoblasts and mega-
karyocytes. In an effort to correlate
adverse pregnancy outcomes with indi-
cator biomarkers, first- and second-
trimester cell-free DNA methylation
and cell-free transcriptomes were
analyzed,63 2 of their top markers
S100A8 and MS4A3 aligned with mac-
rophages and natural killer cells accord-
ing to the placenta transcriptomics atlas.

Clinical implications
Comparison of genes differentially
expressed between diabetic subjects and
controls revealed that a subset of the
genes is shared between diabetic sub-
types, while retaining genes unique to
gestational diabetes and preexisting type
2 DM (Figure 1, B). Each cohort’s unique
gene expression pattern, alongside
cellular and spatial specificity, are highly
consistent at a molecular level, and sug-
gest that individualized placental signa-
tures faithfully recapitulate the clinical
distinct entities of GDMA1, GDMA2,
and T2DM, and cannot be attributed
to medication alone. Transcriptomic
pathway analysis revealed significant
enrichment in metabolic pathways in all
classes of diabetics as compared to con-
trols, highlighting the clinical relevance
of the DEGs. These findings are further
corroborated by the recent examination
of genome-wide association studies
which found several loci uniquely asso-
ciated with GDM, expanding upon
earlier findings of shared genes that
predisposed individuals toward GDM
and T2DM.64,65 While diabetes subtypes
may have some phenotypic similarities,
clinically relevant genotypic and tran-
scriptional differences setting each sub-
type apart will become paramount to
correlative longitudinal noninvasive
biomarker discovery studies.

Strengths and limitations
There are both strengths and limitations
to our study. First, in translational and
reference resource studies such as ours,
efforts aimed at rigorous clinical classi-
fication are important. Other in-
vestigators have previously argued that
there is potentially significant overlap
and risk of misclassification between
T2DM and GDMA2, especially in pop-
ulations who have limited access to
care.66 Despite the challenges for post-
partum assessment described in the
literature,67 our population demon-
strated strong adherence to care with a
71.3% clinical testing follow-up rate.
Second, we set out to enroll a largely
Hispanic population. Compared to non-
Hispanic whites, Hispanic patients suffer
significantly higher rates of diabetes,
with 50% of those with gestational dia-
betes developing T2DMwithin 5 years.68

Despite this high rate of disease pro-
gression, Hispanics have the lowest rates
of postpartum diabetes follow-up, with
as few as 1 in 5 getting screened for
T2DM at their postpartum visit, poten-
tially increasing the number who enter a
subsequent pregnancy with undiagnosed
T2DM.67 Additional strengths of our
study include our computational meth-
odology with extensive quality control,
with purposeful utilization of an unsu-
pervised learning approach to minimize
bias in our results. The choice of genes
for RT-qPCR validation was supported
not only by our RNA-seq data but also by
biological plausibility and corroboration
in the literature. We compared the
overlap of the differential expression
results from the bulk RNA-seq datasets,
validated 9 genes in an independent
nonoverlapping RT-qPCR cohort, and
assessed the gene signatures in a term
transcriptomics atlas. We found the cell-
type niches for these genes of interest to
align with the heterogeneous cell types
and complex microarchitecture of the
placenta. Together, these results suggest
the cell types within the placenta
responsible for GDM subtypes are
potentially rare subpopulations, which
gene expression changes may become
masked with bulk analysis.
We acknowledge that there are weak-

nesses of this study, which limit the
applicability of these findings to its
generalizability. The cohorts analyzed
were not powered to stratify nor parse
comparisons by fetal sex, ethnicity, or
race. Additional studies assessing po-
tential differences associated with pre-
term birth, infection status, mode of
delivery, placental pathology, sexual
MONTH 2024 Ame
dimorphisms, and racial/ethnic health
disparities are warranted. Since our
high-risk cohort reflects a predomi-
nantly Hispanic/Latino population with
a well-described risk for both pregesta-
tional and gestational diabetes, the al-
terations in placental gene signature may
be specific to the particular molecular
mechanisms driving disease in this
population. However, this may arguably
be a strength of this study given the
attributable population risk as previ-
ously detailed. Additionally, there are
certainly other factors involved in
placental response to altered glucose
homeostasis not tested in the current
study, including additional maternal in-
fluences such as hormonal signaling or
maternal-fetal genetic interactions.
However, our unbiased approach in
large discovery and nonoverlapping
validation cohorts (n¼176 subjects in
total, inclusive of both our discovery and
validation cohorts) should minimize
such misclassification errors. Moreover,
employing targeted confirmation of
findings in our expanded and nonover-
lapping validation cohort (n¼122 sub-
jects) enabled a broad examination of
the placental reaction to disruptions in
maternal metabolism by examining the
downstream integration of these signals
on the critical mediator of fetal nutrient
supply.

Conclusions
In summary, this work moves us closer
to appreciating, and eventually under-
standing, the difference between the
spectrum of normal placental physiology
and the effects of diabetes in pregnancy
at a mechanistic level. Our robust
placental gene expression analysis, both
with bulk RNA-seq and RT-qPCR vali-
dation, demonstrates that despite ex-
pected phenotypic overlap, placental
gene expression differs among gesta-
tional diabetics, those with pregesta-
tional diabetes, and nondiabetic
controls. Our use of a naïve analytical
pipeline, blind to disease classification,
was able to group specimens by similar
gene expression profiles, and function-
ally and faithfully recapitulate clinically
meaningful distinctions. Furthermore,
functional pathway analyses confirmed
rican Journal of Obstetrics & Gynecology 1.e13
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the clinical relevance of the DEGs. This
lends credence to the current classifica-
tion of pregestational and gestational
diabetes and potentially lays the
groundwork for the future development
of distinct clinical algorithms aimed at
earlier and more accurate screening for
and treatment of underlying diabetic
pathology. Further studies are needed to
achieve the long-term goal of identifying
novel biomarkers to improve the diag-
nosis and management of diabetes in
pregnancy. n
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