CLASSIFICATION OF CONVEX ANCIENT FREE
BOUNDARY MEAN CURVATURE FLOWS IN THE
BALL.

THEODORA BOURNI AND MAT LANGFORD

ABSTRACT. We prove that there exists, in every dimension, a
unique (modulo rotations about the origin and time translations)
convex ancient mean curvature flow in the ball with free bound-
ary on the sphere. This extends the main result of [4] to general
dimensions.
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1. INTRODUCTION

Mean curvature flow is the gradient flow of area for regular subman-
ifolds. It models evolutionary processes governed by surface tension,
such as grain boundaries in annealing metals [17, 20].

The systematic study of mean curvature flow was initiated by Brakke
[6] (from the point of view of geometric measure theory) and later
taken up by Huisken [15], who proved that closed convex hypersurfaces
remain convex and shrink to “round” points in finite time. Different
proofs of Huisken'’s theorem were discovered later by others |1, 2] [12].

Ancient solutions (that is, solutions defined on backwards-infinite
time-intervals) are important from an analytical standpoint as they
model singularity formation [13]. They also arise in quantum field the-
ory, where they model the ultraviolet regime in certain Dirichlet sigma
models [3]. They have generated a great deal of interest from a purely
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geometric standpoint due to their symmetry and rigidity properties
(see, for example, [5] and the references therein).

The natural Neumann boundary value problem for mean curvature
flow, called the free boundary problem, asks for a family of hypersur-
faces whose boundary lies on (but is free to move on) a fixed barrier
hypersurface which is met by the solution hypersurface orthogonally.
Study of the free boundary problem was initiated by Huisken [16] and
further developed by Stahl [I8] 19] and others [8, 10, 21, 22]. In par-
ticular, Stahl proved that convex hypersurfaces with free boundary on
a totally umbilic barrier remain convex and shrink to a “round” point
on the barrier hypersurface. Hirsch and Li [14] proved that the same
conclusion holds for “sufficiently convex” surfaces with free boundary
on convex barriers in R3.

The analysis of ancient solutions to free boundary mean curvature
flow remains in its infancy. We recently classified the convex ancient
solutions to curve shortening flow in the disc [4] but, to our knowledge,
the only other examples previously known seem to be those inher-
ited from closed or complete examples (one may restrict the shrinking
sphere, for example, to a halfspace).

We provide here a classification of convexE ancient free boundary
mean curvature flows in the ball in all dimensions.

Theorem 1.1. Modulo rotation about the origin and translation in
time, there exists, for each n > 1, exactly one convez, locally uniformly
convex ancient solution to free boundary mean curvature flow in the
(n+1)-ball B, It converges to the point e, 1 ast — 0 and smoothly
to the horizontal bisector B™ x {0} ast — —oo. It is invariant under
rotations about the e, 1-axis. As a graph over B™, it satisfies

eltu(z, t) — Ago(z) uniformly in x as t — —oo

for some A > 0, where py < 0 is the lowest eigenvalue and ¢ the
corresponding ground state of the “critical-Robin” Laplacian on B™.

Theorem [1.1]is a consequence of Propositions and [4.5| proved
below. Note that it is actually a classification of all convex ancient

solutions, since the strong maximum principle and the Hopf boundary
point lemma imply that any convex solution to the flow is either a
stationary hyperball (and hence a bisector of the (n+1)-ball by the free
boundary condition) or is locally uniformly convex at interior times.

LA free boundary hypersurface of the open ball B"! is convez if it bounds a
convex region in B2 and locally uniformly convez if it is of class C? and its second
fundamental form is positive definite.
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Our proof is strongly motivated by the one-dimensional case [4]. The
main differences involve the use of the critical-Robin ground state in
the construction of the solution and of a Liouville theorem for the
critical-Robin heat equation (see in proving its uniqueness.
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2. THE CRITICAL-ROBIN HEAT EQUATION

We will need? a Liouville theorem for ancient solutions to the “critical-
Robin heat equation” on the unit n-ball B™; that is, solutions u to the
problem

(1)

Separation of variables leads us to consider eigenfunctions of the “critical-
Robin Laplacian” on B"; that is, solutions u to the problem

) —A¢ =pu¢ in B"
2) {V(;ﬁ-x:gzﬁ on 0B".
Observe that the lowest eigenvalue pi is variationally characterized by

B
po— it S
ueH(B") |U‘L2(B”)

(O —A)u=0 in B" x (—00,00)
{ Vu-x=u on 0B".

Y

wherd®
B(u,v) = VU-VU—/ uv .
Br aBn

We note that standard methods (cf. [9], §6.5.1]) ensure that g is finite
and simple, the spectrum forms a sequence —oo < pg < p; < -+ <
pr < ... (with each eigenvalue appearing according to its multiplicity

2Most (if not all) of the results of this section appear to be well-known (they
are simple consequences of, for example, the results of |11 §5]) but they are easy
enough to obtain directly, so we include the details here.

3The second integral is interpreted according to the trace theorem.
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and pp — o0), and L?(B") admits an orthonormal basis consisting of
corresponding eigenfunctions (which are necessarily smooth).

Separation of variables leads us to consider solutions of the form
u(r, z) = ¢(r)®(z), where ¢ satisfies

r2
and ® satisfies

for some non-negative integer ¢.
Lemma 2.1. The negative eigenspace of 18 one-dimensional.

Proof. Assuming p < 0, consider the radial problem . We make the
change of variable r — p = Ar, where A = \/—pu, which results in the
problem

¢,,+n—1¢,_€(€+n—2)
(4) p P

6=0 in (0,
AP (A) = o(N).

Consider a formal Taylor series solution
p) = Z a;p’
=0
to . Observe that
DRI SR
j=1
and hence ¢ satisfies () if and only if

14
0_¢'/_|_ ¢_w¢ )

(n — 1)a1 —l(l+n—2)a;  L({+n—2)ag
p p?

+Z (n+j—2)a; —ln+{—2)a; —aj_s)p 2.

Since ¢ € LZ(O, 1), the first two terms must vanish. Lest ¢ = 0, we
conclude that either 1. ap = 0 and £ =1 (and hence ® is linear), or 2.
a; = 0 and ¢ = 0 (and hence ® is constant).

In the first case,

(j—1)(j+n—1)a; =a; 5 for j>2,
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so that
o0
_ 2j+1 N
P(p) = E bjp@™, by = agjya,

j=0
where the coefficients are given by

J
1
bi=b [[ ———.
7 0}126(7@—1—26)

We may assume that by = 1. Since
#(p) =14 (25 + 1)bp™
j=1
the boundary condition yields the equation
i 270\ =0
j=1

for the frequency A, which is impossible since A > 0.
In the second case,

jn+j—2)a; =a;_ for j>2,
so that
d(p) =Y bipY, by =ay,
=0

where the coefficients are given by

. 1
h=wll 2(n+2(0—1))

=1
We may assume that by = 1.
Since

¢'(p) = 2jbip” ",
j=1

the boundary condition then yields the equation

o0

> 2 1hiaY =1

j=1
for the frequency A. Since the coefficients are all positive, the expression
on the left is monotone in . Since it goes to zero when A — 0 and to
infinity when A — oo, there must be exactly one solution, and hence
exactly one negative eigenvalue. Since ¢ was determined by A up to
choosing by, the claim follows. 0
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Denote by ¢ the unique solution to with p = pg and ¢g(0) =1
and set \g = \/—p. Note that
¢'(Ao)
¢(No)

and, since )¢ is increasing in the dimension n, Ag > Ag|,=1 > 1.

(5) o —1

Lemma 2.2. The null eigenspace of consists of the linear func-
tions.

Proof. When p = 0, the equation can be solved directly. Its admis-
sible (i.e. square integrable) solutions are multiples of

go(r) = 1",
but the boundary condition rules out all but the linear ones, ¢ = 1.

The only admissible spherical harmonics ® are then those of degree
(=1. O

Corollary 2.3. Let u be a non-negative ancient solution to the critical-
Robin heat equation on the unit ball. If u(-,t) = e* = ast — —oo,
then

u(z,t) = Ae’\gtqﬁo()\0|x|) for some A €R.

Proof. We may represent u as
u(z,t) = Z Aje g, (x),
=0

where {¢;}52, is an orthonormal basis for L*(B") consisting of eigen-
functions ¢; of the critical-Robin Laplacian (with eigenvalue p;). Since
the null modes are linear and p; > 0 for each j > n+ 1, the coefficients
of these states must be zero. U

2.1. Further properties of the ground state. Recall that the radial
ground state ¢q is given by

0o J
. 1
—1 bip® , where b; = :
¢0<p) + jzl ]p 9 whnere J H 2[(” + 2(6 _ 1))

In particular, ¢y well-defined and analytic on the whole real line, and

satisfies
n —_—

1
P ¢6 = ¢o
everywhereE We shall need the following basic properties of ¢.

/!
o T

4In the following, it is instructive to keep in mind that, when n = 1, ¢o(p) =
cosh p.
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Lemma 2.4. The (odd) function ¢,/po is monotone increasing and
converges to one as p — 0.

Proof. Setting ® = ¢{ /¢y, we find that

>0 20) + Dby p? ™!
Z;io P

O(p) = ~ = for p~0.
n

Observe also that
p®' = p(1 = ) — (n— 1)@
and
p®" =1— &% — nd —2pdd’ .

The first observation implies that ®(p) > 0 = ®(0) for p close to (but
above) zero. The second implies that ® can never reach one, and the
third then implies that ®" remains positive for all p > 0. The second
observation then implies that ®(p) — 1 as p — 0. O

Lemma 2.5. The (even) function ¢,/ppy is monotone decreasing for
p > 0 and bounded from above by 1/n.

Proof. 1f we set ® = ¢ /ppo, then

Z;io 2( + Dbjy1p”

P(p) = S 3

j=0Y5P

and
p®" = — (n+1)®' —2pd* — 2°PP’ .
The first observation implies that ®(0) = 2b; = + and hence

Do 207 + Dbjap® — 261 3577 bp¥

23020 (G 4+ Dbja — bidy) p¥
B Z;io bjp*
<0.

The second observation then implies that ® remains decreasing for all
p > 0. 0
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3. EXISTENCE

We are now ready to construct a non-trivial ancient free boundary
mean curvature flow in the (n + 1)-ball. It will be clear from the con-
struction that the solution is rotationally symmetric about the vertical
axis, emerges at time negative infinity from the horizontal n-ball, and
converges at time zero to the point e,,,1.

We shall also prove an estimate for the height of the constructed
solution (which will be needed to prove its uniqueness).

3.1. Barriers. Given # € (0, 7), denote by Sy the n-sphere centred on
the e, 1-axis which meets dB""! orthogonally at {cosfe + sinfe,, :

e € 8"t x {0}}. That is,
(6) So = {(z,y) eR" xR |x|2+(cs<39—y)2:cot29} :
If we set
0~ (t) = arcsine™ and 6" (t) = arcsin e®™
then we find that the inward normal speed of Sg-(4) is no greater than
its mean curvature H~ and the inward normal speed of Sy+ ) is no less

than its mean curvature H*. The maximum principle and the Hopf
boundary point lemma then imply that

Proposition 3.1. A solution to free boundary mean curvature flow
in B"1 which lies below (resp. above) the sphere Sy, at time to lies
below Sys (1+y 4y (Tesp. above Sy =, _)) for allt > to, where 2ntd =

logsin 6y (resp. nt; = logsinb).

Next, given A > 0, consider the family {3} };c(—c0,0) of hypersurfaces
Y3} defined by

2 = {(@.y) € R x (0, 5) : sin(y) = o (Nal) } .

where ¢ = ¢ is the unique solution to (4)) with g = po and ¢(0) =

Differentiating the defining equation with respect to an arclength
parameter s along the profile curve A} = X} Ney A epyr N {2y > 0}
yields (with the abuse of notation x = x;)

(7) cos(Ay)ys = eNld! (A, .

From this we find that the downwards pointing normal to the profile
curve is given by

= (Lo e/ f(60)" (ol
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Differentiating yields
cos(AY)Yss — €N (AT)Tgs = A <sin()\y)y§ - e’\thb"()\x)xg)
=\ (sin()\y)yg + M |:¢()\£L‘) — n}\_xlqb’()\x)} x?) :

From this we find that the curvature of the profile curve is given by

R= —"%ssV

= Atan(\y)z, (1 —

n—1¢'(\x) 2) |

Az p(Ax)
On the other hand, the rotational curvature & is given by
. v-e zs @' (Ax)
= = tan(\y) ———=.
" x an(Ay) z ¢(Ar)

If we choose the arclength parameter so that s = 0 corresponds to
x = 0, then we may write 7 = v, = (cos#,sinf) with § € [0,%)
increasing in s. The mean curvature of ¥} is then given, along the
profile curve A}, by

H = Mtan(A\y) cos (1 + (n — 1) sin? 0%) :

On the other hand,
cos(A\y)y; = e’\ztgb’()\x)xt + )\e’\thb()\x)
so that
—y v = )\tan()\y) cos < H.

That is, {E?}te(foo,o) is a subsolution to mean curvature flow.

Proposition 3.2. Given 0 € (0,7), there exists a unique solution \(0)

to
@' (A cosb) _ cos(Asinf) |

= 0.
(A cos ) o8 sin(Asin 6) S

Let {M;}icjaw) be a rotationally symmetric solution to free boundary
mean curvature flow in B"*'. Define 0, € (0,%) by

sinf, ={X -e,,1: X € OM,}.

If X < X\(0,) and M, lies above 2, then My lies above X3, for all
t € (a,w)N(—o0,a — ).

Proof. Due to Lemma , we may proceed as in [4] Lemma 2.2 and
Proposition 2.3]. O
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Note also that, by the defining property of g, we have the in-
equality \(0) < Ap.
We will also require the following technical properties of ¥

Lemma 3.3. The mean curvature H of the hypersurface ¥ satisfies
VH-X >0 and limsupmax|Vleg H| < 1.

PRES VD 32
Proof. 1f we set ®(p) = ¢'(p)/pd(p), then
) cos 6 R
fis = — (k — k)
cos 0

- — ()\ tan(A\y) cos 0 [1 —n®(Ax) + (n — 1) sin? ‘9(1)()‘35)])

and
ks = (A*sec*(\y) cosOsinf — Atan(\y) sin k) (1 — (n — 1) cos® 0@ (Ax))
+ (n — 1)Atan(Ay) cos (2 cos 0 sin 0 (Az)k — Acos® 69 (Az))
= (M cosfsin6 + (n — 1)A* tan®(\y) sin 0 cos® §@(Az))
(1= (n —1)cos? 0P (A\x))
+ (n — 1)Atan(\y) cos 6(2 cos 0 sin 0 (Az)k — A cos® 60 (Az)) .
These are both positive for § > 0 by Lemma [2.5, which implies the

first claim.
Next, estimating (in the second term below)

k < H = Atan(\y) cos0(1 + (n — 1) sin? P (A\x))
and ®'(p) < 0 for p > 0, we observe that
(log H), = log (Atan(Ay) cos ) +log (1 + (n — 1)sin® 0@ (Ax)) |
~ A*(1+ tan?*(\y)) cosOsin @ — A tan(\y) sin Ok
Atan(Ay) cos 6
25in 0 cos Ok®(A\z) + Asin’ § cos 0P’ (Ax)
1+ (n—1)sin®0®(\x)

+(n—-1)

Asin 6
< 227
~ tan(Ay)
+2(n — 1)A tan(\y) sin 6 cos® 0P (\x) .
The second and third terms approach zero uniformly as A — A since
f does. The first may be rewritten as
Asinf  ¢'(A\x)
= Acosf.
tan(Ay)  ¢(Ax) o8
The second claim now follows from Lemma and the identity . 0

+ (n — 1) A tan(Ay) cos® O sin 0P (\x)
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3.2. Old-but-not-ancient solutions. Given p > 0, choose a hyper-
surface M* in B™"! which satisfies the following properties:

e M’ is rotationally symmetric about the e, -axis,

e M* meets OB orthogonally at {cos pe+sin pe, 1 : e € S*1x
{03},

e M? N B" is the relative boundary of a convex region ¥ C
B! and

e VH? .- X >0, where X denotes the position vector.

For example, we could take M? = E?p”, where A\, = A(p) and

g ).

—t, =\;"1
P p 08 (sin()\psinp)

Recall ing the notation from @, observe that the sphere Sy, defined
by

is tangent to the plane {X € R"™ : X - ¢,,; = sinp}, and hence lies
above M?.

Work of Stahl [18, [19] now yields the following old-but-not-ancient
solutions.

Lemma 3.4. For each p € (0,%), there ewists a smooth solutz’mﬁ
{M{}iela,0) to free boundary mean curvature flow in B which sat-
isfies the following properties:

o My =M?",

o M/ is convex and locally uniformly convex for each t € (a,,0),

o M/ is rotationally symmetric about the e, i-axis for each t €

(a,,0),

o M} — e, 1 uniformly ast — 0,

e VH? - X >0, and

o, < %log@ﬁiiﬁipp) — —o0 as p — 0.
Proof. Existence of a maximal solution to mean curvature flow out of
MP which meets 9B orthogonally was proved by Stahl [I9] Theorem
2.1]. Stahl also proved that this solution remains convex and locally
uniformly convex and shrinks to a point on the boundary of B"*! at the
final time (which is finite) [18, Proposition 1.4]. We obtain {M{ };¢(a,.0)
by time-translating Stahl’s solution.

5Given by a one parameter family of immersions X : M x [a,,0) — Bt
satisfying X € C°(M x (a,,0)) N C¥+B1+5 (M x [, 0)) for some 3 € (0,1).
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By uniqueness of solutions (or the Alexandrov reflection principle)
M/ remains rotationally symmetric about the e, i-axis for ¢ € (a,,0),
so the final point is e,,,1.

The rotational symmetry also implies that VH = 0 at the point
pe = M NRe, 4 for all t € [a,,0). By [18 Proposition 2.1], VH - X =
H > 0 at the boundary for all £ € (c,,0). The maximum principle now
implies that VH - X > 0. To see this, recall that

(9 — A)[VH| < | AP|VH]

where c is a constant that depends only on n, and, given any o € (o, 0)
and any € > 0, consider the function

. {(VH, 7 4 gelCoctDli=ar) on B\ Re, 4

Vo,e = Coctl)(t—ayp)

cel on Repiq,

where Cy = maxieq, o) MaXyzp |A]? and 7= X "/|X"|. Note that v,.
is continuous. Observe that v, is no less than € on 9M/ for all t,
on the axis off rotation for all ¢, and everywhere at the initial time.
Thus, if v, is not positive everywhere in M’ x [a,, 0], then there must
be a first time ¢y € (0,0] and an off-axis interior point xy such that
Upe(To,t0) = 0 and v,. > 0 in a small parabolic neighbourhood of
(w0, to). Since (VH,T) |(go4) < 0, we find that (VH,7) = —|VH| in a
small spacetime neighborhood of (xg, ). But then, at (xg, 1),
0> (0 — A)v,,

> — Cyc|VH| 4+ e(Cyre+ 1)e(CUC+1)(t—ap)
— ge(cac+1)(t7ap)

>0,

which is absurd. So v., is indeed positive in MY for all t € [a,,d].
Taking ¢ — 0 and ¢ — 0 then implies that VH - X > 0.
Since Sy, C 7, the final property follows from Proposition O

We now fix p > 0 and drop the super/subscript p. Denote by I'; =
M;Ney A ey N{xy > 0} the profile curve of M; and set

pe=MiNRepyy, ¢ =B NTy,
H(t) = Hj‘l/}HH = H(p,) and H(t) = Hl]\/?XH = H(q),
and define y(t), 7(t) and 6(t) by

pe=y)ent1, q =cosB(t)e; +sinb(t)e,i1, and Y(t) =sinb(t).
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Lemma 3.5. Fach old-but-not-ancient solution satisfies

(8) H<ntanf < H,

(9) sinf < e™ |

and

(10) sin § <y <sinf
e sinf .
1+ cosé =4=

Proof. To prove the lower bound for H, it suffices to show that the
sphere Sg(t) (see @) lies locally below M; near ¢;. If this is not the case,

then, locally around g;, M, lies below S5,y and hence H(g;) < ntan o(t).
But then we can translate Sg(t) downwards until it touches M; from
below in an interior point at which the curvature must satisfy H >
ntan@(t). This contradicts the maximization of the mean curvature at
q; (unless M, coincides with Sg(t) in a neighbourhood of ¢;, which by
itself implies the claim).

The estimate @ now follows by integrating the inequality

i sinf = cos@ H > nsinf

dt
between any initial time ¢ and the final time 0 (at which 0 = 5 since
the solution contracts to the point e, 1).

The upper bound for y follows from convexity and the boundary
condition ¥ = sinf. To prove the lower bound, we will show that
the sphere Sg(t) lies nowhere above M;. Suppose that this is not the
case. Then, since Sg, lies locally below M; near ¢, we can move S,
downwards until it is tangent from below to a point p; on M;, at which
we must have H > ntan §(t). But then, since VH - X > 0, we find that
H > ntan@(t) for all points on the radial curve between p, and the
nearest boundary point. But this implies that this whole arc (including
p;) lies above S, a contradiction.

To prove the upper bound for H, fix ¢ and consider the sphere S
centred on the e, 1-axis through the points p; and ¢;. Its radius is 7(t),
where _ _

cos® 0 + (sinf — y)?
2(sin — y)
We claim that M, lies locally below S near p;. Suppose that this is
not the case. Then, by the rotational symmetry of M; and S about
the e, -axis, M, lies locally above S near p;. This implies two things:
first, that

H(pt) > TLT_17
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and second, that, by moving S vertically upwards, we can find a point
p, (the final point of contact) which satisfies

H(p,) <nr ',

These two inequalities contradict the (unique) minimization of H at
p:. We conclude that

2n(sinf — y)

< — — < ntan 6
cos? 0 + (sin 6 — y)?

due to the lower bound for Y- O
3.3. Taking the limit.

Proposition 3.6. There exists a convex, locally uniformly conver an-
cient mean curvature flow in B™ with free boundary on OB,

Proof. For each p > 0, consider the old-but-not-ancient solution {M{'}i¢ja, 0),
M{ = 097, constructed in Lemma By (9)), €2/ contains S,;NB"*,
where w(t) € (0,%) is uniquely defined by

-
1 — cosw(t)

nt

sinw(t)
If we represent M/ as a graph z — y”(z,t) over the horizontal n-ball,
then convexity and the boundary condition imply that |Dy?| < tanw.
Since w(t) is independent of p, Stahl’s (global in space, interior in time)
Ecker—Huisken type estimates [19] imply uniform-in-p bounds for the
curvature and its derivatives. So the limit

{MfYela,0 = {Mi}e(—o000)

exists in C'° (globally in space on compact subsets of time) and the
limit {M;}ie(—o00,0) satisfies mean curvature flow with free boundary
in B"*!'. On the other hand, since {M/}ic(a,0) contracts to e, 1 as
t — 0, (the contrapositive of) Proposition implies that M/ must
intersect the closed region enclosed by Sg+(y for all ¢ < 0. It follows
that M, converges to e,,1 as t — 0. By [I8, Proposition 4.5], M, is
locally uniformly convex for each t. Since each M; is the limit of convex
hypersurfaces, each is convex. O

3.4. Asymptotics for the height. For the purposes of this section,
we fix an ancient solution {M;}(_o ) obtained as in Proposition by
taking a sublimit as A \, A\g of the specific old-but-not ancient solutions
{ M} el 0) corresponding to M) = X} N B™!, ¢ being the time at
which {3} }e(—o0,0) meets B! orthogonally. The asymptotics we
obtain for this solution will be used to prove its uniqueness.
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We will need to prove that the limit lim;_,_. e_’\gtg(t) exists in
(0,00). The following speed bound will imply that it exists in [0, co).

Lemma 3.7. The ancient solution {M;}(_o ) satisfies

(11) H>N\y.
Proof. Tt suffices to prove that

H H
(12) min — > min —

Mpoy T tman y

on each of the old-but-not-ancient solutions {M;}seja, o) since

. H . H
min — = min —
t=ay y Ei\)\ y
_ e tan(Ay) o, ¢/(A1)
=\ rgin—ycosﬁ 1+ (n—1)sin QW
> A2 cos )y,
(13) — A2 as A= Ao,

where 0 is the angle that A meets the boundary. But this is an easy
consequence of the maximum principle, since

H H H
@, — 02— japl 4o <v—, @>
Y Y Yy

Yy
H
> 9 <v_, @>
y oy
in the interior and "
V—=0

Yy

at the boundary. O

It follows that
(14) (ey), > 0.
In particular, the limit

A= 1 f)\gt
= e )
exists in [0, 00) as claimed.
We want next to prove that the above limit is positive. We will
achieve this through a suitable upper bound for the speed.
Recall that

(15) (0,—A)|VH| < c|A]*|VH| and (9,—A){(X,v) = |AIXX,v)—2H,
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where ¢ depends only on n and X denotes the position. The good —2H
term in the second equation may be exploited to obtain the following
crude speed bound.

Lemma 3.8. There exist T > —oo and C' < oo such that
(16) H<Ce™ foral t<T.

Proof. We will prove the estimate on the (sufficiently) old-but-not-
ancient solutions {M;*}ie(ay,0)- We first prove a crude gradient estimate
of the form

(17) \VH| < 4H

for t sufficiently negative. It will suffice to prove that

(18) \VH|—-2H +2(X,v) <0,

where X denotes the position. Indeed, since
(VX,v), X)=AX",X") >0,

we may estimate, by and ,
(19) ‘<X>V>|S’<Xay>‘x=0:y‘x:0SH’xZOZI]I\l;PHSH

for X\ sufficiently close to .

For A sufficiently close to Ao, we have H|,—,, < 1/4/c, where c is the
constant in (15). Denote by 7> the first time at which H reaches 1/4/c.
Since H is continuous up to the initial time o, we have T > a,,. We
claim that holds for t < T? so long as A is sufficiently large. It
is satisfied on the initial timeslice M = ¥ by Lemma [3.3, We will
show that the function

f-=|VH|—2H +2(X,v) —ee"™™

remains negative up to time 7?. Suppose, to the contrary, that f.
reaches zero at some time ¢ < 7™ at some point p € M}. Since |VH| —
2H +2 (X, v) is negative at the boundary, p must be an interior point.
At such a point, using the evolution equations , we have

0< (0 —A)f. <|AP(c|VH| —2H +2(X,v)) — 4H — ge'~*
=[AP(2(c — 1)[H — (X, V)] + cee’™™) —4H — ee'"™™.
Recalling and estimating |A| < H and H < \/ig yields
0<4(c—1)H? —4H + (cH? — 1)ee"™™ <0,

which is absurd. So f. does indeed remain negative, and taking ¢ — 0
yields for t < T
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Since the length of the profile curve I'} is bounded by 1, integrating
from the axis to the boundary yields
H<e'H for t <T.
Recalling and @D, this implies that

ent

VI = o

Taking t = T we find that 7% > T, where T is independent of A, so
we conclude that

ﬁ§e4

H<Ce"™ for t < T,
where C' and T' do not depend on . 0

We now exploit to obtain the desired speed bound.

Lemma 3.9. There exist C < oo and T > —oo such that

H
—g)\g—i-CeQ”t for t <T.
Yy

Proof. Consider the old-but-not-ancient solution {Mt)\}te(,oo’g). By
(16]), we can find C' < oo and T' > —oo such that

H H H
(0 — M) = |APZE 42 <V—, @>
Yy Yy y vy

H H V

< Ce*™— 12 <V—, _y> for t <T.
Y y oy

Since, at a boundary point,

the Hopf boundary point lemma and the ODE comparison principle
yield
H H
max — < Cmax — for t € (o), T).
MY MY
But now
H H H V
(0 — A)— < Ce®™ max — + 2 <V—, _y> for t < T,
Y My Y y vy
and hence, by ODE comparison,
H

H
max — < max — (1+ Ce®™) for t € (ay,T).
My o MY
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Since, on the initial timeslice M} = X}

ty\?
H  Atan(\y) ( o gb’()\x))
—=—"2cosf |14+ (n—1)sin“d ,
y y (n=1) Ap(Ar)
the claim follows upon taking A — Aq. O

It follows that
(logy(t) — /\(Q)t)t < Ce®™ for t < T
and hence, integrating from time ¢ up to time 7T,
log y(t) — \gt > logy(T) — NjT — C for t <T.
So we indeed find that

Lemma 3.10. the limit
(20) A= lim e Nty (1)

exists in (0,00) on the particular ancient solution { My} (s 0)-

4. UNIQUENESS

Now let {M;}ie(—o0,0), My = O, be any convex, locally uniformly
convex ancient free boundary mean curvature flow in the ball. By
Stahl’s theorem [I8], we may assume that M, contracts to a point on
the boundary as ¢t — 0.

4.1. Backwards convergence. We first show that M, converges to
a bisector as t — —o0.

Lemma 4.1. Up to an ambient rotation,

Mtggnx{(]} as t — —oo.

Proof. Define €0 = Uy (—o0,0)§2, Where €, C B"*! is the convex region
relatively bounded by M;. Given s € R, define the free boundary mean
curvature flow {M;}ie(—oo,—s) by M7 = My s = 097, where Qf = Q.
Since the flow is monotone, the flows {Mts}te(_oq_s) converge to the
stationary limit {00} +c(—oo,00) a8 § = —00 uniformly in the Hausdorff
topology on compact subsets of time. In fact, the convergence is smooth
due to the Ecker-Huisken type estimates of Stahl [1§]. Now, since
is convex and its boundary intersects 0B™ orthogonally, it lies in some
half-ball. But it cannot lie strictly in this half-ball due to Proposition
[3.1] The strong maximum principle and Hopf boundary point lemma
then imply that €2 is a half-ball. U

We henceforth assume, without loss of generality, that the backwards
limit is the horizontal n-ball.
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4.2. Reflection symmetry. We can now prove that the solution is ro-
tationally symmetric using Alexandrov reflection across planes through
the origin (see Chow and Gulliver [7]).

Lemma 4.2. M, is rotationally symmetric about the e, 1-axis for all t.

Proof. Given any z € S7 in the upper half sphere ST = {z € S" :
z - enp1 > 0}, we define the open halfspace

H,={X ecR":X.2>0}

and denote by R, the reflection about 0H,. We first claim that, for
every z € S, there exists ¢t = ¢, such that

(21) (R.- M) N (M, N H.)=0

for all t < t,. Assume, to the contrary, that there exists z € S%, a
sequence of times t; — —oo, and a sequence of pairs of points p;, q; €
M, such that R,(p;) = ¢;. This implies that the line passing through
p; and ¢; is parallel to the vector z, so the mean value theorem yields
for each 7 a point r; on M,, where the normal is orthogonal to z. But
this contradicts Lemma [4.1]

The Alexandrov reflection principle [7] now implies that holds
for all t < 0 (note that R, - M; also intersects dB™"! orthogonally). In
fact, it is clear that (R, - M;) N H, lies above M, N H, for all t < 0 and
all z € S7. The claim follows. U

4.3. Asymptotics for the height. We begin with a lemma.

Lemma 4.3. For everyt < 0,

and hence
in 6
(22) LSS
14cos =
Proof. ChooseT' > —oo so that H < Til fort <T, wherec=c(n) > 2

is the constant in the evolution inequality for |V H]|, and, given € > 0,
define

Ve = <VH>F> +€(1 - <X7 V>)
on M; \ Re, 1, where 7= X" /| X "|. Note that v. — (1 — (X, v)) as
X — R€n+1.

We claim that v, > 0 for ¢t € (—oo,T). Suppose that this is not the
case. Since v.(-,t) > ¢ at My, v-(z,t) > € as v — M; N Re,qq, and
ve — € as t — —o0, there must exist a first time ¢ € (—o0,T) and an
interior point x € M, \ Re, 1 at which v. = 0. But at such a point
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(VH,7) = —¢(1 — (X,v)) < 0, which means that (VH,7) = —|VH|
in a small spacetime neighbourhood of (p,t), and hence, at (p, ),

0> (0, —A) v,

> [AP((VH,7) —e(X,v)) + (c — 1)|A|*(VH,7) +2cH

= —¢c|A]? — (c— De|A*(1 — (X, v)) + 2eH
>e(2—(2c+1)H)H
>0

which is absurd. Now take ¢ — 0 to obtain (VH,X) > 0 in M,
for t € (—o0,T]. Applying the maximum principle as in the proof of
Lemma implies that (VH, X) remains non-negative up to time 0.
Having established the first claim, the second follows as in Lemma|3.5|

O

Proposition 4.4. If we define A € (0,00) as in (20), then
e Nty (x,t) = Ado(No|z|) uniformly as t — —oc.
Proof. Given 7 < 0, consider the rescaled height function
Y (z,t) = e’)‘gTy(:c,t +7),

which is defined on the time-translated flow {M] }ic(—co,—r), Where
M = M;,. Note that

{(at — ATy =0 in {M; he(-o0,—n)
(VTy™,N) =y on {OM] }ie(—o00—r)
where V™ and AT are the gradient and Laplacian on {M] }e(—oo,—r),
respectively, and NNV is the outward unit normal to 9B"*.
Since {Mt}te(_oqo) reaches the origin at time zero, it must intersect

the constructed solution for all ¢ < 0. In particular, the value of y on
the former can at no time exceed the value of § on the latter. But then

and yield

(24) lim sup e 87 < o0 .
t——00

(23)

This implies a uniform bound for y™ on {M] }ie(—oo,r) for any T' € R.
So Alaoglu’s theorem yields a sequence of times 7; — —oo such that
y™ converges in the weak* topology as j — oo to some y> € L2 (B" x
(—00,00)). Since convexity and the boundary condition imply a uni-
form bound for V7y" on any time interval of the form (—oo, T, we may
also arrange that the convergence is uniform in space at time zero, say.

We conclude from Corollary [2.3] that
Y (1) = Ae ™'y (Ao2])
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for some A > 0. In particular,
e_’\gij(a:, 7;) =y (x,0) = Apo(Ao|z|) uniformly as j — oo.

Now, if A is not equal to the corresponding value on the constructed
solution (note that the full limit exists for the latter), then one of the
two solutions must lie above the other at time 7; for j sufficiently large.
But this violates the avoidance principle. 0

4.4. Uniqueness. Uniqueness of the constructed ancient solution now
follows directly from the avoidance principle (cf. [4]).

Proposition 4.5. Modulo time translation and rotation about the ori-
gin, there is only one convex, locally uniformly convex ancient solution
to free boundary mean curvature flow in the ball.

Proof. Denote by {Mt}te(—oo,O) the constructed ancient solution and
let {M{}ic(—o0,0) be a second ancient solution which, without loss of
generality, contracts to the point e, at time 0. Given any 7 > 0,
consider the time-translated solution {M] }ic(—oo,—r) defined by M] =

M; .. By Proposition ,
e Mty (2, 1) = AT do(No|z|) as t — —oo

uniformly in x. So M lies above M, for —t sufficiently large. The
avoidance principle then ensures that M] lies above M, for all ¢ €
(—00,0). Taking 7 — 0, we find that M/ lies above M, for all ¢ < 0.
Since the two solutions both reach the point e, ; at time zero, they
intersect for all ¢ < 0 by the avoidance principle. The strong maximum
principle then implies that the two solutions coincide for all ¢. O
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