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Abstract. We prove that there exists, in every dimension, a
unique (modulo rotations about the origin and time translations)
convex ancient mean curvature flow in the ball with free bound-
ary on the sphere. This extends the main result of [4] to general
dimensions.
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1. Introduction

Mean curvature flow is the gradient flow of area for regular subman-
ifolds. It models evolutionary processes governed by surface tension,
such as grain boundaries in annealing metals [17, 20].

The systematic study of mean curvature flow was initiated by Brakke
[6] (from the point of view of geometric measure theory) and later
taken up by Huisken [15], who proved that closed convex hypersurfaces
remain convex and shrink to “round” points in finite time. Di↵erent
proofs of Huisken’s theorem were discovered later by others [1, 2, 12].

Ancient solutions (that is, solutions defined on backwards-infinite
time-intervals) are important from an analytical standpoint as they
model singularity formation [13]. They also arise in quantum field the-
ory, where they model the ultraviolet regime in certain Dirichlet sigma
models [3]. They have generated a great deal of interest from a purely
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geometric standpoint due to their symmetry and rigidity properties
(see, for example, [5] and the references therein).

The natural Neumann boundary value problem for mean curvature
flow, called the free boundary problem, asks for a family of hypersur-
faces whose boundary lies on (but is free to move on) a fixed barrier
hypersurface which is met by the solution hypersurface orthogonally.
Study of the free boundary problem was initiated by Huisken [16] and
further developed by Stahl [18, 19] and others [8, 10, 21, 22]. In par-
ticular, Stahl proved that convex hypersurfaces with free boundary on
a totally umbilic barrier remain convex and shrink to a “round” point
on the barrier hypersurface. Hirsch and Li [14] proved that the same
conclusion holds for “su�ciently convex” surfaces with free boundary
on convex barriers in R3.

The analysis of ancient solutions to free boundary mean curvature
flow remains in its infancy. We recently classified the convex ancient
solutions to curve shortening flow in the disc [4] but, to our knowledge,
the only other examples previously known seem to be those inher-
ited from closed or complete examples (one may restrict the shrinking
sphere, for example, to a halfspace).

We provide here a classification of convex1 ancient free boundary
mean curvature flows in the ball in all dimensions.

Theorem 1.1. Modulo rotation about the origin and translation in
time, there exists, for each n � 1, exactly one convex, locally uniformly
convex ancient solution to free boundary mean curvature flow in the
(n+1)-ball Bn+1. It converges to the point en+1 as t ! 0 and smoothly
to the horizontal bisector B

n ⇥ {0} as t ! �1. It is invariant under
rotations about the en+1-axis. As a graph over B

n, it satisfies

eµ0tu(x, t) ! A�0(x) uniformly in x as t ! �1

for some A > 0, where µ0 < 0 is the lowest eigenvalue and �0 the
corresponding ground state of the “critical-Robin” Laplacian on B

n.

Theorem 1.1 is a consequence of Propositions 3.6, 4.4, and 4.5 proved
below. Note that it is actually a classification of all convex ancient
solutions, since the strong maximum principle and the Hopf boundary
point lemma imply that any convex solution to the flow is either a
stationary hyperball (and hence a bisector of the (n+1)-ball by the free
boundary condition) or is locally uniformly convex at interior times.

1A free boundary hypersurface of the open ball Bn+1 is convex if it bounds a
convex region in B2 and locally uniformly convex if it is of class C2 and its second
fundamental form is positive definite.
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Our proof is strongly motivated by the one-dimensional case [4]. The
main di↵erences involve the use of the critical-Robin ground state in
the construction of the solution and of a Liouville theorem for the
critical-Robin heat equation (see §2) in proving its uniqueness.
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2. The critical-Robin heat equation

We will need2 a Liouville theorem for ancient solutions to the “critical-
Robin heat equation” on the unit n-ball Bn; that is, solutions u to the
problem

(1)

⇢
(@t ��)u = 0 in B

n ⇥ (�1,1)

ru · x = u on @B
n
.

Separation of variables leads us to consider eigenfunctions of the “critical-
Robin Laplacian” on B

n; that is, solutions u to the problem

(2)

⇢ ��� = µ� in B
n

r� · x = � on @B
n
.

Observe that the lowest eigenvalue µ0 is variationally characterized by

µ0 = inf
u2H1(Bn)

B(u, u)

|u|2
L2(Bn)

,

where3

B(u, v) +
Z

Bn

ru ·rv �
Z

@Bn

uv .

We note that standard methods (cf. [9, §6.5.1]) ensure that µ0 is finite
and simple, the spectrum forms a sequence �1 < µ0 < µ1  · · · 
µk  . . . (with each eigenvalue appearing according to its multiplicity

2Most (if not all) of the results of this section appear to be well-known (they
are simple consequences of, for example, the results of [11, §5]) but they are easy
enough to obtain directly, so we include the details here.

3The second integral is interpreted according to the trace theorem.
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and µk ! 1), and L
2(Bn) admits an orthonormal basis consisting of

corresponding eigenfunctions (which are necessarily smooth).
Separation of variables leads us to consider solutions of the form

u(r, z) = �(r)�(z), where � satisfies

(3) �
✓
�rr +

n� 1

r
�r �

`(`+ n� 2)

r2
�

◆
= µ� in (0, 1)

and � satisfies
��Sn�1� = `(`+ n� 2)�

for some non-negative integer `.

Lemma 2.1. The negative eigenspace of (2) is one-dimensional.

Proof. Assuming µ < 0, consider the radial problem (3). We make the
change of variable r 7! ⇢ + �r, where � + p

�µ, which results in the
problem

(4)

8
<

:
�
00 +

n� 1

⇢
�
0 � `(`+ n� 2)

⇢2
� = � in (0,�)

��
0(�) = �(�) .

Consider a formal Taylor series solution

�(⇢) =
1X

j=0

aj⇢
j

to (4). Observe that

�
0(⇢) =

1X

j=1

jaj⇢
j�1 and �

00(⇢) =
1X

j=2

j(j � 1)aj⇢
j�2

and hence � satisfies (4) if and only if

0 = �
00 +

n� 1

⇢
�
0 � `(`+ n� 2)

⇢2
�� �

=
(n� 1)a1 � `(`+ n� 2)a1

⇢
� `(`+ n� 2)a0

⇢2

+
1X

j=2

�
j(n+ j � 2)aj � `(n+ `� 2)aj � aj�2

�
⇢
j�2

.

Since � 2 L
2(0, 1), the first two terms must vanish. Lest � ⌘ 0, we

conclude that either 1. a0 = 0 and ` = 1 (and hence � is linear), or 2.
a1 = 0 and ` = 0 (and hence � is constant).

In the first case,

(j � 1)(j + n� 1)aj = aj�2 for j � 2 ,
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so that

�(⇢) =
1X

j=0

bj⇢
2j+1

, bj + a2j+1 ,

where the coe�cients are given by

bj = b0

jY

`=1

1

2`(n+ 2`)
.

We may assume that b0 = 1. Since

�
0(⇢) = 1 +

1X

j=1

(2j + 1)bj⇢
2j
,

the boundary condition yields the equation
1X

j=1

2jbj�
2j = 0

for the frequency �, which is impossible since � > 0.
In the second case,

j(n+ j � 2)aj = aj�2 for j � 2 ,

so that

�(⇢) =
1X

j=0

bj⇢
2j
, bj + a2j ,

where the coe�cients are given by

bj = b0

jY

`=1

1

2`(n+ 2(`� 1))
.

We may assume that b0 = 1.
Since

�
0(⇢) =

1X

j=1

2jbj⇢
2j�1

,

the boundary condition then yields the equation
1X

j=1

(2j � 1)bj�
2j = 1

for the frequency �. Since the coe�cients are all positive, the expression
on the left is monotone in �. Since it goes to zero when � ! 0 and to
infinity when � ! 1, there must be exactly one solution, and hence
exactly one negative eigenvalue. Since � was determined by � up to
choosing b0, the claim follows. ⇤
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Denote by �0 the unique solution to (3) with µ = µ0 and �0(0) = 1
and set �0 +

p
�µ0. Note that

(5) �0
�
0(�0)

�(�0)
= 1

and, since �0 is increasing in the dimension n, �0 � �0|n=1 > 1.

Lemma 2.2. The null eigenspace of (2) consists of the linear func-
tions.

Proof. When µ = 0, the equation (3) can be solved directly. Its admis-
sible (i.e. square integrable) solutions are multiples of

�`(r) + r
`
,

but the boundary condition rules out all but the linear ones, ` = 1.
The only admissible spherical harmonics � are then those of degree
` = 1. ⇤
Corollary 2.3. Let u be a non-negative ancient solution to the critical-
Robin heat equation on the unit ball. If u(·, t) = eo(�t) as t ! �1,
then

u(x, t) = Ae�
2
0t�0(�0|x|) for some A 2 R .

Proof. We may represent u as

u(x, t) =
1X

j=0

Aje
�µjt�j(x) ,

where {�j}1j=0 is an orthonormal basis for L2(Bn) consisting of eigen-
functions �j of the critical-Robin Laplacian (with eigenvalue µj). Since
the null modes are linear and µj > 0 for each j � n+1, the coe�cients
of these states must be zero. ⇤
2.1. Further properties of the ground state. Recall that the radial
ground state �0 is given by

�0(⇢) = 1 +
1X

j=1

bj⇢
2j
, where bj =

jY

`=1

1

2`(n+ 2(`� 1))
.

In particular, �0 well-defined and analytic on the whole real line, and
satisfies

�
00
0 +

n� 1

⇢
�
0
0 = �0

everywhere.4 We shall need the following basic properties of �0.

4In the following, it is instructive to keep in mind that, when n = 1, �0(⇢) =
cosh ⇢.
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Lemma 2.4. The (odd) function �
0
0/�0 is monotone increasing and

converges to one as ⇢ ! 1.

Proof. Setting � + �
0
0/�0, we find that

�(⇢) =

P1
j=0 2(j + 1)bj+1⇢

2j+1

P1
j=0 bj⇢

2j
⇠ ⇢

n
for ⇢ ⇠ 0 .

Observe also that

⇢�0 = ⇢(1� �2)� (n� 1)�

and

⇢�00 = 1� �2 � n�0 � 2⇢��0
.

The first observation implies that �(⇢) > 0 = �(0) for ⇢ close to (but
above) zero. The second implies that � can never reach one, and the
third then implies that �0 remains positive for all ⇢ > 0. The second
observation then implies that �(⇢) ! 1 as ⇢ ! 1. ⇤

Lemma 2.5. The (even) function �
0
0/⇢�0 is monotone decreasing for

⇢ > 0 and bounded from above by 1/n.

Proof. If we set � + �
0
0/⇢�0, then

�(⇢) =

P1
j=0 2(j + 1)bj+1⇢

2j

P1
j=0 bj⇢

2j

and

⇢�00 = � (n+ 1)�0 � 2⇢�2 � 2⇢2��0
.

The first observation implies that �(0) = 2b1 =
1
n
and hence

�(⇢)� �(0) =

P1
j=0 2(j + 1)bj+1⇢

2j � 2b1
P1

j=0 bj⇢
2j

P1
j=0 bj⇢

2j

=
2
P1

j=0

�
(j + 1)bj+1 � b1bj

�
⇢
2j

P1
j=0 bj⇢

2j

< 0 .

The second observation then implies that � remains decreasing for all
⇢ > 0. ⇤
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3. Existence

We are now ready to construct a non-trivial ancient free boundary
mean curvature flow in the (n+ 1)-ball. It will be clear from the con-
struction that the solution is rotationally symmetric about the vertical
axis, emerges at time negative infinity from the horizontal n-ball, and
converges at time zero to the point en+1.

We shall also prove an estimate for the height of the constructed
solution (which will be needed to prove its uniqueness).

3.1. Barriers. Given ✓ 2 (0, ⇡2 ), denote by S✓ the n-sphere centred on
the en+1-axis which meets @Bn+1 orthogonally at {cos ✓e + sin ✓en+1 :
e 2 S

n�1 ⇥ {0}}. That is,

(6) S✓ +
�
(x, y) 2 Rn ⇥ R : |x|2 + (csc ✓ � y)2 = cot2 ✓

 
.

If we set

✓
�(t) + arcsin ent and ✓

+(t) + arcsin e2nt ,

then we find that the inward normal speed of S✓�(t) is no greater than
its mean curvature H� and the inward normal speed of S✓+(t) is no less
than its mean curvature H

+. The maximum principle and the Hopf
boundary point lemma then imply that

Proposition 3.1. A solution to free boundary mean curvature flow
in B

n+1 which lies below (resp. above) the sphere S✓0 at time t0 lies
below S

✓+(t+0 +t�t0)
(resp. above S

✓�(t�0 +t�t0)
) for all t > t0, where 2nt

+
0 =

log sin ✓0 (resp. nt
�
0 = log sin ✓0).

Next, given � > 0, consider the family {⌃�

t
}t2(�1,0) of hypersurfaces

⌃�

t
defined by

⌃�

t
+
n
(x, y) 2 Rn ⇥ (0, ⇡

2�) : sin(�y) = e�
2
t
�
�
�|x|

�o
,

where � = �0 is the unique solution to (4) with µ = µ0 and �(0) = 1.
Di↵erentiating the defining equation with respect to an arclength

parameter s along the profile curve ⇤�

t
+ ⌃�

t
\ e1 ^ en+1 \ {x1 > 0}

yields (with the abuse of notation x = x1)

(7) cos(�y)ys = e�
2
t
�
0(�x)xs .

From this we find that the downwards pointing normal to the profile
curve is given by

⌫ =

✓
�
0(�x)

�(�x)
,�cos(�y)

sin(�y)

◆�s✓
�0(�x)

�(�x)

◆2

+

✓
cos(�y)

sin(�y)

◆2

.



CONVEX ANCIENT FREE BOUNDARY MCF IN THE BALL. 9

Di↵erentiating (7) yields

cos(�y)yss � e�
2
t
�
0(�x)xss = �

⇣
sin(�y)y2

s
+ e�

2
t
�
00(�x)x2

s

⌘

= �

✓
sin(�y)y2

s
+ e�

2
t


�(�x)� n� 1

�x
�
0(�x)

�
x
2
s

◆
.

From this we find that the curvature of the profile curve is given by

 = � �ss · ⌫

= � tan(�y)xs

✓
1� n� 1

�x

�
0(�x)

�(�x)
x
2
s

◆
.

On the other hand, the rotational curvature ̂ is given by

̂ =
⌫ · e1
x

= tan(�y)
xs

x

�
0(�x)

�(�x)
.

If we choose the arclength parameter so that s = 0 corresponds to
x = 0, then we may write ⌧ + �s = (cos ✓, sin ✓) with ✓ 2 [0, ⇡2 )
increasing in s. The mean curvature of ⌃�

t
is then given, along the

profile curve ⇤�

t
, by

H = � tan(�y) cos ✓

✓
1 + (n� 1) sin2

✓
�
0(�x)

�x�(�x)

◆
.

On the other hand,

cos(�y)yt = e�
2
t
�
0(�x)xt + �e�

2
t
�(�x)

so that
��t · ⌫ = � tan(�y) cos ✓  H .

That is, {⌃�

t
}t2(�1,0) is a subsolution to mean curvature flow.

Proposition 3.2. Given ✓ 2 (0, ⇡2 ), there exists a unique solution �(✓)
to

�
0(� cos ✓)

�(� cos ✓)
cos ✓ =

cos(� sin ✓)

sin(� sin ✓)
sin ✓ .

Let {Mt}t2[↵,!) be a rotationally symmetric solution to free boundary
mean curvature flow in B

n+1. Define ✓↵ 2 (0, ⇡2 ) by

sin ✓↵ = {X · en+1 : X 2 @M↵} .

If �  �(✓↵) and M↵ lies above ⌃�

s
, then Mt lies above ⌃�

s+t�↵
for all

t 2 (↵,!) \ (�1,↵� s).

Proof. Due to Lemma 2.4, we may proceed as in [4, Lemma 2.2 and
Proposition 2.3]. ⇤
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Note also that, by the defining property (5) of �0, we have the in-
equality �(✓) < �0.

We will also require the following technical properties of ⌃�.

Lemma 3.3. The mean curvature H of the hypersurface ⌃� satisfies

rH ·X � 0 and lim sup
�!�0

max
⌃�

|r logH|  1 .

Proof. If we set �(⇢) + �
0(⇢)/⇢�(⇢), then

̂s =
cos ✓

x
(� ̂)

=
cos ✓

x

�
� tan(�y) cos ✓

⇥
1� n�(�x) + (n� 1) sin2

✓�(�x)
⇤�

and

s =
�
�
2 sec2(�y) cos ✓ sin ✓ � � tan(�y) sin ✓

�
(1� (n� 1) cos2 ✓�(�x))

+ (n� 1)� tan(�y) cos ✓
�
2 cos ✓ sin ✓�(�x)� � cos3 ✓�0(�x)

�

=
�
�
2 cos ✓ sin ✓ + (n� 1)�2 tan2(�y) sin ✓ cos3 ✓�(�x)

�

· (1� (n� 1) cos2 ✓�(�x))

+ (n� 1)� tan(�y) cos ✓
�
2 cos ✓ sin ✓�(�x)� � cos3 ✓�0(�x)

�
.

These are both positive for ✓ > 0 by Lemma 2.5, which implies the
first claim.

Next, estimating (in the second term below)

  H = � tan(�y) cos ✓(1 + (n� 1) sin2
✓�(�x))

and �0(⇢)  0 for ⇢ � 0, we observe that

(logH)s = log
�
� tan(�y) cos ✓

�
s
+ log

�
1 + (n� 1) sin2

✓�(�x)
�
s

=
�
2(1 + tan2(�y)) cos ✓ sin ✓ � � tan(�y) sin ✓

� tan(�y) cos ✓

+ (n� 1)
2 sin ✓ cos ✓�(�x) + � sin2

✓ cos ✓�0(�x)

1 + (n� 1) sin2
✓�(�x)

 � sin ✓

tan(�y)
+ (n� 1)� tan(�y) cos2 ✓ sin ✓�(�x)

+ 2(n� 1)� tan(�y) sin ✓ cos2 ✓�(�x) .

The second and third terms approach zero uniformly as � ! �0 since
✓ does. The first may be rewritten as

� sin ✓

tan(�y)
=

�
0(�x)

�(�x)
� cos ✓ .

The second claim now follows from Lemma 2.4 and the identity (5). ⇤
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3.2. Old-but-not-ancient solutions. Given ⇢ > 0, choose a hyper-
surface M

⇢ in B
n+1 which satisfies the following properties:

• M
⇢ is rotationally symmetric about the en+1-axis,

• M
⇢ meets @Bn+1 orthogonally at {cos ⇢e+sin ⇢en+1 : e 2 S

n�1⇥
{0}},

• M
⇢ \ B

n+1 is the relative boundary of a convex region ⌦⇢ ⇢
B

n+1, and
• rH

⇢ ·X � 0, where X denotes the position vector.

For example, we could take M
⇢ + ⌃�⇢

t⇢
, where �⇢ + �(⇢) and

�t⇢ = �
�2
⇢

log

✓
�(�⇢ cos ⇢)

sin(�⇢ sin ⇢)

◆
.

Recall ing the notation from (6), observe that the sphere S✓⇢ defined
by

sin ✓⇢ =
2 sin ⇢

1 + sin2
⇢

is tangent to the plane {X 2 Rn+1 : X · en+1 = sin ⇢}, and hence lies
above M

⇢.
Work of Stahl [18, 19] now yields the following old-but-not-ancient

solutions.

Lemma 3.4. For each ⇢ 2 (0, ⇡2 ), there exists a smooth solution5

{M⇢

t }t2[↵⇢,0) to free boundary mean curvature flow in B
n+1 which sat-

isfies the following properties:

• M
⇢

↵⇢
= M

⇢,
• M

⇢

t is convex and locally uniformly convex for each t 2 (↵⇢, 0),
• M

⇢

t is rotationally symmetric about the en+1-axis for each t 2
(↵⇢, 0),

• M
⇢

t ! en+1 uniformly as t ! 0,
• rH

⇢ ·X � 0, and

• ↵⇢ <
1
2n log

⇣
2 sin ⇢

1+sin2 ⇢

⌘
! �1 as ⇢ ! 0.

Proof. Existence of a maximal solution to mean curvature flow out of
M

⇢ which meets @Bn+1 orthogonally was proved by Stahl [19, Theorem
2.1]. Stahl also proved that this solution remains convex and locally
uniformly convex and shrinks to a point on the boundary of Bn+1 at the
final time (which is finite) [18, Proposition 1.4]. We obtain {M⇢

t }t2[↵⇢,0)

by time-translating Stahl’s solution.

5Given by a one parameter family of immersions X : M ⇥ [↵⇢, 0) ! Bn+1

satisfying X 2 C1(M ⇥ (↵⇢, 0)) \ C2+�,1+ �
2 (M ⇥ [↵⇢, 0)) for some � 2 (0, 1).
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By uniqueness of solutions (or the Alexandrov reflection principle)
M

⇢

t remains rotationally symmetric about the en+1-axis for t 2 (↵⇢, 0),
so the final point is en+1.

The rotational symmetry also implies that rH = 0 at the point
pt + M

⇢

t \Ren+1 for all t 2 [↵⇢, 0). By [18, Proposition 2.1], rH ·X =
H > 0 at the boundary for all t 2 (↵⇢, 0). The maximum principle now
implies that rH ·X � 0. To see this, recall that

(@t ��)|rH|  c|A|2|rH|

where c is a constant that depends only on n, and, given any � 2 (↵⇢, 0)
and any " > 0, consider the function

v�," +
(
hrH,~ri+ "e(C�c+1)(t�↵⇢) on B

n+1 \ Ren+1

"e(C�c+1)(t�↵⇢) on Ren+1 ,

where C� + maxt2[↵⇢,�] max
M

⇢
t
|A|2 and ~r + X

>
/|X>|. Note that v�,"

is continuous. Observe that v�," is no less than " on @M
⇢

t for all t,
on the axis o↵ rotation for all t, and everywhere at the initial time.
Thus, if v�," is not positive everywhere in M

⇢⇥ [↵⇢, �], then there must
be a first time t0 2 (0, �] and an o↵-axis interior point x0 such that
v�,"(x0, t0) = 0 and v�," � 0 in a small parabolic neighbourhood of
(x0, t0). Since hrH,~ri |(x0,t0) < 0, we find that hrH,~ri = �|rH| in a
small spacetime neighborhood of (x0, t0). But then, at (x0, t0),

0 � (@t ��)v�,"

� � C�c|rH|+ "(C�c+ 1)e(C�c+1)(t�↵⇢)

= "e(C�c+1)(t�↵⇢)

> 0 ,

which is absurd. So v",� is indeed positive in M
⇢

t for all t 2 [↵⇢, �].
Taking " ! 0 and � ! 0 then implies that rH ·X � 0.

Since S✓⇢ ⇢ ⌦⇢, the final property follows from Proposition 3.1. ⇤

We now fix ⇢ > 0 and drop the super/subscript ⇢. Denote by �t =
Mt \ e1 ^ en+1 \ {x1 > 0} the profile curve of Mt and set

pt + Mt \ Ren+1 , qt + @B
n+1 \ �t ,

H(t) + min
Mt

H = H(pt) and H(t) + max
Mt

H = H(qt) ,

and define y(t), y(t) and ✓(t) by

pt = y(t)en+1 , qt = cos ✓(t)e1 + sin ✓(t)en+1 , and y(t) = sin ✓(t) .



CONVEX ANCIENT FREE BOUNDARY MCF IN THE BALL. 13

Lemma 3.5. Each old-but-not-ancient solution satisfies

(8) H  n tan ✓  H ,

(9) sin ✓  e
nt
,

and

(10)
sin ✓

1 + cos ✓
 y  sin ✓ .

Proof. To prove the lower bound for H, it su�ces to show that the
sphere S

✓(t) (see (6)) lies locally below Mt near qt. If this is not the case,

then, locally around qt, Mt lies below S
✓(t) and henceH(qt)  n tan ✓(t).

But then we can translate S
✓(t) downwards until it touches Mt from

below in an interior point at which the curvature must satisfy H �
n tan ✓(t). This contradicts the maximization of the mean curvature at
qt (unless Mt coincides with S

✓(t) in a neighbourhood of qt, which by
itself implies the claim).

The estimate (9) now follows by integrating the inequality

d

dt
sin ✓ = cos ✓H � n sin ✓

between any initial time t and the final time 0 (at which ✓ = ⇡

2 since
the solution contracts to the point en+1).

The upper bound for y follows from convexity and the boundary

condition y = sin ✓. To prove the lower bound, we will show that
the sphere S

✓(t) lies nowhere above Mt. Suppose that this is not the
case. Then, since S

✓(t) lies locally below Mt near qt, we can move S
✓(t)

downwards until it is tangent from below to a point p0
t
on Mt, at which

we must have H � n tan ✓(t). But then, since rH ·X � 0, we find that
H � n tan ✓(t) for all points on the radial curve between p

0
t
and the

nearest boundary point. But this implies that this whole arc (including
p
0
t
) lies above S

✓(t), a contradiction.
To prove the upper bound for H, fix t and consider the sphere S

centred on the en+1-axis through the points pt and qt. Its radius is r(t),
where

r +
cos2 ✓ + (sin ✓ � y)2

2(sin ✓ � y)
.

We claim that Mt lies locally below S near pt. Suppose that this is
not the case. Then, by the rotational symmetry of Mt and S about
the en+1-axis, Mt lies locally above S near pt. This implies two things:
first, that

H(pt) � nr
�1
,
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and second, that, by moving S vertically upwards, we can find a point
p
0
t
(the final point of contact) which satisfies

H(p0
t
)  nr

�1
.

These two inequalities contradict the (unique) minimization of H at
pt. We conclude that

H 
2n(sin ✓ � y)

cos2 ✓ + (sin ✓ � y)2
 n tan ✓

due to the lower bound for y. ⇤
3.3. Taking the limit.

Proposition 3.6. There exists a convex, locally uniformly convex an-
cient mean curvature flow in B

n+1 with free boundary on @B
n+1.

Proof. For each ⇢ > 0, consider the old-but-not-ancient solution {M⇢

t }t2[↵⇢,0),
M

⇢

t = @⌦⇢

t , constructed in Lemma 3.4. By (9), ⌦⇢

t contains S!(t)\Bn+1,
where !(t) 2 (0, ⇡2 ) is uniquely defined by

1� cos!(t)

sin!(t)
= ent .

If we represent M⇢

t as a graph x 7! y
⇢(x, t) over the horizontal n-ball,

then convexity and the boundary condition imply that |Dy
⇢|  tan!.

Since !(t) is independent of ⇢, Stahl’s (global in space, interior in time)
Ecker–Huisken type estimates [19] imply uniform-in-⇢ bounds for the
curvature and its derivatives. So the limit

{M⇢

t }t2[↵⇢,0) ! {Mt}t2(�1,0)

exists in C
1 (globally in space on compact subsets of time) and the

limit {Mt}t2(�1,0) satisfies mean curvature flow with free boundary
in B

n+1. On the other hand, since {M⇢

t }t2(↵⇢,0) contracts to en+1 as
t ! 0, (the contrapositive of) Proposition 3.1 implies that M

⇢

t must
intersect the closed region enclosed by S✓+(t) for all t < 0. It follows
that Mt converges to en+1 as t ! 0. By [18, Proposition 4.5], Mt is
locally uniformly convex for each t. Since each Mt is the limit of convex
hypersurfaces, each is convex. ⇤
3.4. Asymptotics for the height. For the purposes of this section,
we fix an ancient solution {Mt}(�1,0) obtained as in Proposition 3.6 by
taking a sublimit as � & �0 of the specific old-but-not ancient solutions
{M�

t
}t2[↵�,0) corresponding to M

�

↵�
= ⌃�

t�
\B

n+1, t� being the time at
which {⌃�

t
}t2(�1,0) meets @B

n+1 orthogonally. The asymptotics we
obtain for this solution will be used to prove its uniqueness.
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We will need to prove that the limit limt!�1 e��
2
0ty(t) exists in

(0,1). The following speed bound will imply that it exists in [0,1).

Lemma 3.7. The ancient solution {Mt}(�1,0) satisfies

(11) H � �
2
0y .

Proof. It su�ces to prove that

(12) min
M

�
t

H

y
� min

t=↵�

H

y

on each of the old-but-not-ancient solutions {M�

t
}t2[↵�,0) since

min
t=↵�

H

y
= min

⌃�
t�

H

y

= �
2 min

⌃�
t�

tan(�y)

�y
cos ✓

✓
1 + (n� 1) sin2

✓
�
0(�x)

�x�(�x)

◆

� �
2 cos ✓�

! �
2
0 as � ! �0 ,(13)

where ✓� is the angle that ⇤�

t
meets the boundary. But this is an easy

consequence of the maximum principle, since

(@t ��)
H

y
= |A|2H

y
+ 2

⌧
rH

y
,
ry

y

�

� 2

⌧
rH

y
,
ry

y

�

in the interior and

rH

y
= 0

at the boundary. ⇤
It follows that

(14)
�
e��

2
0ty
�
t
� 0 .

In particular, the limit

A + lim
t!�1

e��
2
0ty(t)

exists in [0,1) as claimed.
We want next to prove that the above limit is positive. We will

achieve this through a suitable upper bound for the speed.
Recall that

(15) (@t��)|rH|  c|A|2|rH| and (@t��)hX, ⌫i = |A|2hX, ⌫i�2H,
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where c depends only on n and X denotes the position. The good �2H
term in the second equation may be exploited to obtain the following
crude speed bound.

Lemma 3.8. There exist T > �1 and C < 1 such that

(16) H  Ce
nt for all t < T .

Proof. We will prove the estimate on the (su�ciently) old-but-not-
ancient solutions {M�

t
}t2(↵�,0). We first prove a crude gradient estimate

of the form

(17) |rH|  4H

for t su�ciently negative. It will su�ce to prove that

(18) |rH|� 2H + 2 hX, ⌫i  0 ,

where X denotes the position. Indeed, since

hr hX, ⌫i , Xi = A(X>
, X

>) > 0 ,

we may estimate, by (12) and (13),

(19) |hX, ⌫i|  |hX, ⌫i|x=0 = y|x=0  H|x=0 = min
M

�
t

H  H

for � su�ciently close to �0.
For � su�ciently close to �0, we have H|t=↵�

< 1/
p
c, where c is the

constant in (15). Denote by T
� the first time at which H reaches 1/

p
c.

Since H is continuous up to the initial time ↵�, we have T
�
> ↵�. We

claim that (18) holds for t < T
� so long as � is su�ciently large. It

is satisfied on the initial timeslice M
�

↵�
= ⌃�

t�
by Lemma 3.3. We will

show that the function

f" + |rH|� 2H + 2 hX, ⌫i � "et�↵�

remains negative up to time T
�. Suppose, to the contrary, that f"

reaches zero at some time t < T
� at some point p 2 M

�

t
. Since |rH|�

2H +2 hX, ⌫i is negative at the boundary, p must be an interior point.
At such a point, using the evolution equations (15), we have

0  (@t ��)f"  |A|2(c|rH|� 2H + 2 hX, ⌫i)� 4H � "et�↵�

= |A|2
�
2(c� 1)[H � hX, ⌫i] + c"et�↵�

�
� 4H � "et�↵� .

Recalling (19) and estimating |A|  H and H  1p
c
yields

0  4(c� 1)H3 � 4H + (cH2 � 1)"et�↵� < 0 ,

which is absurd. So f" does indeed remain negative, and taking " ! 0
yields (17) for t < T

�.
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Since the length of the profile curve ��

t
is bounded by 1, integrating

(17) from the axis to the boundary yields

H  e4H for t < T
�
.

Recalling (8) and (9), this implies that

H  e4
entp

1� e2nt
for t < T

�
.

Taking t = T
� we find that T � � T , where T is independent of �, so

we conclude that
H  Cent for t < T ,

where C and T do not depend on �. ⇤
We now exploit (16) to obtain the desired speed bound.

Lemma 3.9. There exist C < 1 and T > �1 such that

H

y
 �

2
0 + Ce2nt for t < T .

Proof. Consider the old-but-not-ancient solution {M�

t
}t2(�1,0). By

(16), we can find C < 1 and T > �1 such that

(@t ��)
H

y
= |A|2H

y
+ 2

⌧
rH

y
,
ry

y

�

 Ce2nt
H

y
+ 2

⌧
rH

y
,
ry

y

�
for t < T .

Since, at a boundary point,

rH

y
=

rH

y
� H

y

ry

y
= 0 ,

the Hopf boundary point lemma and the ode comparison principle
yield

max
M

�
t

H

y
 Cmax

M�
↵�

H

y
for t 2 (↵�, T ) .

But now

(@t ��)
H

y
 Ce2nt max

M�
↵�

H

y
+ 2

⌧
rH

y
,
ry

y

�
for t < T ,

and hence, by ode comparison,

max
M

�
t

H

y
 max

M�
↵�

H

y

�
1 + Ce2nt

�
for t 2 (↵�, T ) .
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Since, on the initial timeslice M
�

↵�
= ⌃�

t�
,

H

y
=

� tan(�y)

y
cos ✓

✓
1 + (n� 1) sin2

✓
�
0(�x)

��(�x)

◆
,

the claim follows upon taking � ! �0. ⇤
It follows that

�
log y(t)� �

2
0t
�
t
 Ce2nt for t < T

and hence, integrating from time t up to time T ,

log y(t)� �
2
0t � log y(T )� �

2
0T � C for t < T .

So we indeed find that

Lemma 3.10. the limit

(20) A + lim
t!�1

e��
2
0ty(t)

exists in (0,1) on the particular ancient solution {Mt}(�1,0).

4. Uniqueness

Now let {Mt}t2(�1,0), Mt = @rel⌦t, be any convex, locally uniformly
convex ancient free boundary mean curvature flow in the ball. By
Stahl’s theorem [18], we may assume that Mt contracts to a point on
the boundary as t ! 0.

4.1. Backwards convergence. We first show that M t converges to
a bisector as t ! �1.

Lemma 4.1. Up to an ambient rotation,

M t �!
C1

B
n ⇥ {0} as t ! �1 .

Proof. Define ⌦ + [t2(�1,0)⌦t, where ⌦t ⇢ B
n+1 is the convex region

relatively bounded by Mt. Given s 2 R, define the free boundary mean
curvature flow {M s

t
}t2(�1,�s) by M

s

t
+ Mt+s = @⌦s

t
, where ⌦s

t
+ ⌦t+s.

Since the flow is monotone, the flows {M s

t
}t2(�1,�s) converge to the

stationary limit {@⌦}t2(�1,1) as s ! �1 uniformly in the Hausdor↵
topology on compact subsets of time. In fact, the convergence is smooth
due to the Ecker–Huisken type estimates of Stahl [18]. Now, since ⌦
is convex and its boundary intersects @Bn orthogonally, it lies in some
half-ball. But it cannot lie strictly in this half-ball due to Proposition
3.1. The strong maximum principle and Hopf boundary point lemma
then imply that ⌦ is a half-ball. ⇤

We henceforth assume, without loss of generality, that the backwards
limit is the horizontal n-ball.
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4.2. Reflection symmetry. We can now prove that the solution is ro-
tationally symmetric using Alexandrov reflection across planes through
the origin (see Chow and Gulliver [7]).

Lemma 4.2. Mt is rotationally symmetric about the en+1-axis for all t.

Proof. Given any z 2 S
n

+ in the upper half sphere S
n

+ + {z 2 S
n :

z · en+1 > 0}, we define the open halfspace

Hz + {X 2 Rn+1 : X · z > 0}
and denote by Rz the reflection about @Hz. We first claim that, for
every z 2 S

n

+, there exists t = tz such that

(21) (Rz ·Mt) \ (Mt \Hz) = ;
for all t < tz. Assume, to the contrary, that there exists z 2 S

n

+, a
sequence of times ti ! �1, and a sequence of pairs of points pi, qi 2
Mti such that Rz(pi) = qi. This implies that the line passing through
pi and qi is parallel to the vector z, so the mean value theorem yields
for each i a point ri on Mti where the normal is orthogonal to z. But
this contradicts Lemma 4.1.

The Alexandrov reflection principle [7] now implies that (21) holds
for all t < 0 (note that Rz ·Mt also intersects @Bn+1 orthogonally). In
fact, it is clear that (Rz ·Mt)\Hz lies above Mt \Hz for all t < 0 and
all z 2 S

n

+. The claim follows. ⇤
4.3. Asymptotics for the height. We begin with a lemma.

Lemma 4.3. For every t < 0,

rH ·X � 0 in Mt

and hence

(22)
sin ✓

1 + cos ✓
 y .

Proof. Choose T > �1 so thatH <
2

2c+1 for t < T , where c = c(n) � 2
is the constant in the evolution inequality for |rH|, and, given " > 0,
define

v" + hrH,~r i+ "(1� hX, ⌫i)
on Mt \ Ren+1, where ~r + X

>
/|X>|. Note that v" ! "(1 � hX, ⌫i) as

X ! Ren+1.
We claim that v" � 0 for t 2 (�1, T ). Suppose that this is not the

case. Since v"(·, t) > " at @Mt, v"(x, t) > " as x ! Mt \ Ren+1, and
v" ! " as t ! �1, there must exist a first time t 2 (�1, T ) and an
interior point x 2 Mt \ Ren+1 at which v" = 0. But at such a point
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hrH,~r i = �"(1 � hX, ⌫i) < 0, which means that hrH,~r i = �|rH|
in a small spacetime neighbourhood of (p, t), and hence, at (p, t),

0 � (@t ��) v"

� |A|2
�
hrH,~r i � "hX, ⌫i

�
+ (c� 1)|A|2 hrH,~r i+ 2"H

= � "|A|2 � (c� 1)"|A|2(1� hX, ⌫i) + 2"H

� "(2� (2c+ 1)H)H

> 0

which is absurd. Now take " ! 0 to obtain hrH,Xi � 0 in Mt

for t 2 (�1, T ]. Applying the maximum principle as in the proof of
Lemma 3.4, implies that hrH,Xi remains non-negative up to time 0.

Having established the first claim, the second follows as in Lemma 3.5.
⇤

Proposition 4.4. If we define A 2 (0,1) as in (20), then

e��
2
0ty(x, t) ! A�0(�0|x|) uniformly as t ! �1 .

Proof. Given ⌧ < 0, consider the rescaled height function

y
⌧ (x, t) + e��

2
0⌧y(x, t+ ⌧) ,

which is defined on the time-translated flow {M ⌧

t
}t2(�1,�⌧), where

M
⌧

t
+ Mt+⌧ . Note that

(23)

⇢
(@t ��⌧ )y⌧ = 0 in {M ⌧

t
}t2(�1,�⌧)

hr⌧
y
⌧
, Ni = y on {@M ⌧

t
}t2(�1,�⌧) ,

where r⌧ and �⌧ are the gradient and Laplacian on {M ⌧

t
}t2(�1,�⌧),

respectively, and N is the outward unit normal to @B
n+1.

Since {Mt}t2(�1,0) reaches the origin at time zero, it must intersect
the constructed solution for all t < 0. In particular, the value of y on
the former can at no time exceed the value of y on the latter. But then
(20) and (22) yield

(24) lim sup
t!�1

e��
2
0ty < 1 .

This implies a uniform bound for y⌧ on {M ⌧

t
}t2(�1,T ] for any T 2 R.

So Alaoglu’s theorem yields a sequence of times ⌧j ! �1 such that
y
⌧j converges in the weak⇤ topology as j ! 1 to some y1 2 L

2
loc(B

n⇥
(�1,1)). Since convexity and the boundary condition imply a uni-
form bound for r⌧

y
⌧ on any time interval of the form (�1, T ], we may

also arrange that the convergence is uniform in space at time zero, say.
We conclude from Corollary 2.3 that

y
1(x, t) = Ae��

2
0t�0(�0|x|)
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for some A � 0. In particular,

e��
2
0⌧jy(x, ⌧j) = y

⌧j(x, 0) ! A�0(�0|x|) uniformly as j ! 1 .

Now, if A is not equal to the corresponding value on the constructed
solution (note that the full limit exists for the latter), then one of the
two solutions must lie above the other at time ⌧j for j su�ciently large.
But this violates the avoidance principle. ⇤
4.4. Uniqueness. Uniqueness of the constructed ancient solution now
follows directly from the avoidance principle (cf. [4]).

Proposition 4.5. Modulo time translation and rotation about the ori-
gin, there is only one convex, locally uniformly convex ancient solution
to free boundary mean curvature flow in the ball.

Proof. Denote by {Mt}t2(�1,0) the constructed ancient solution and
let {M 0

t
}t2(�1,0) be a second ancient solution which, without loss of

generality, contracts to the point en+1 at time 0. Given any ⌧ > 0,
consider the time-translated solution {M ⌧

t
}t2(�1,�⌧) defined by M

⌧

t
=

M
0
t+⌧

. By Proposition 4.4,

e��
2
0ty

⌧ (x, t) ! Ae�
2
0⌧�0(�0|x|) as t ! �1

uniformly in x. So M
⌧

t
lies above Mt for �t su�ciently large. The

avoidance principle then ensures that M
⌧

t
lies above Mt for all t 2

(�1, 0). Taking ⌧ ! 0, we find that M
0
t
lies above Mt for all t < 0.

Since the two solutions both reach the point en+1 at time zero, they
intersect for all t < 0 by the avoidance principle. The strong maximum
principle then implies that the two solutions coincide for all t. ⇤
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