COMPACT CURVE SHORTENING FLOW SOLUTIONS
OUT OF NON COMPACT CURVES

THEODORA BOURNI AND MARTIN REIRIS

ABSTRACT. We construct a slingshot, that is a compact, embed-
ded solution to curve shortening flow that comes out of a non

compact curve and exists for a finite time.

1. INTRODUCTION

A smooth one-parameter family {I';};c; of immersed planar curves
I'; C R? evolves by curve shortening flow if

(1) %(u,t) = RK(u,t), Y(u,t) e x I,
for some smooth family v : I' x I — R? of immersions y(-,¢) : ' — R?
of I'y, and where £(u, t) is the curvature vector of I'; at the point v(u, t).
When T’y is a smooth embedded compact curve, then by a famous
theorem of Grayson [6], the solution of the curve shortening flow start-
ing from I'y exists on a maximal time interval [0, 7") and as t — T the
solution converges to a round point. In the case when I’y is addition-
ally convex, this theorem was previously proved by Gage and Hamilton
[5]. Contrary to the compact case, when Ty is not compact solutions
to curve shortening flow starting from I'y are not that well understood
in general. The particular case of graphical solutions has been exten-
sively studied in the work of Ecker and Huisken [3| [4], who, among
other things, showed that the flow of entire graphs exists for all times.
Another case for which the behavior is known, is that of a curve as-
ymptotic to two distinct halflines, for which Polden [9] showed that a
solution exists for all £ > 0 and the solution asymptotically approaches
the selfsimilar solution associated with the two halflines. In [2], K-S
Chou and X-P Zhu, showed that that if the initial curve divides the
plane into two regions of infinite area, then a solution exists for all
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time. For the case that one of the regions of the plane defined by the
curve has finite area, they showed that, if additionally the curve has
finite total absolute curvature, then a solution exists for a finite time
equal to that area divided by w. Moreover, they showed uniqueness
of solutions when the initial curve has ends that are representable as
graphs over two semi-infinite lines.

In the present paper we want to construct compact solutions ema-
nating from a non compact initial curve. More precisely, given I’y a
smooth embedded curve in R?, we want to construct a smooth family
of compact embeddings

v: 8% (0,T) — R?

that satisfy the curve shortening flow equation , and such that the
curves 'y = ~(S1,t) converge to [y as ¢ — 0, in the sense that for
any € > 0, there exists t. such that I'; is in an e-neighborhood of
[y for all t € (0,t.). Note that such a solution is different from the
one constructed in [2], as in [2] the family of solutions satisfying curve
shortening flow is non-compact, that is the parameter space I" in (1)) is
homeomorphic to R.
We will consider a curve I'y that satisfies the following:

(i) [p is a smooth embedded 1-manifold diffeomorphic to (0, 1) and
it separates R? into two regions, one of which has finite area,
which we denote by Ay € (0, 00).

(ii) a4+ 1 < b and ¢ > 0 are real numbers such that I'y C (a, 00) X
(—c,c) and T'o N ([b,0) X (—¢,¢)) is the union of two smooth
graphs, u* € [b,00) — R with wu' positive and decreasing
to zero at infinity and u~ negative and increasing to zero at
infinity, and with the derivatives of u* converging to zero at
infinity, as in Figure [I]

Moreover, we will denote by B(I'y, ) the £ neighborhood of I'y, that is
B(Ty,¢) := {p € R? : dist(p,[y) < €} .
Our main theorem is the following

Theorem 1. Let I'y be a curve satisfying the above hypotheses (i)-(ii).

There exists a smooth solution v : S' x (0,42) — R? to the curve
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shortening flow such that for any € > 0 there exists t. > 0 such
that T'y € B(Dg,€) for 0 <t < t..

0<t1<t2<t3<t4<..4

FIGURE 1. Schematic figure of the evolution.

The construction of the solution described in Theorem [1|is roughly
as follows. We start with a sequence of compact curves I'j that approx-
imate ['y. Then, we define a sequence of curve shortening flows, using
the curves ') as initial conditions, which we refer to as slingshots. The
idea, then, is to show that one can extract a limit of these slingshots.
To do this, we establish uniform curvature bounds for the slingshots
away from the initial time 0. This argument, which is the most novel
part of this construction, is a direct argument, based on repeated ap-
plications of the avoidance principle, and in particular the fact that the
number of intersections between two solutions of curve shortening flow
(at least one of which is compact) cannot increase in time[l], together
with the curvature estimates of Ecker and Huisken [4]. The curvature
bounds that we obtain when restricted to compact sets of R? are in
fact uniform up to time ¢t = 0, a fact which allows us to conclude the
convergence of I'; to I'g as claimed in Theorem . We note here that
one indeed obtains higher order convergence in compact sets, as long
as the initial curve is smooth enough.

We remark that a construction of a compact solution coming out of
a non compact curve has been discussed in [7] in order to show non
uniqueness of the level set flow for non compact sets. In particular a
compact solution is constructed with “initial curve” the boundary of
a starshaped domain with tails the graph of |z|~'#3 > 0. In [7] a
sketch of the proof of this construction is given, which is different than
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ours, as it uses global barriers and a foliation argument to control the
degree to which the solutions are starshaped.

After completing this paper we were informed of a similar construc-
tion in the PhD Thesis of Peachey, (see also [8]). In this paper, a
smooth solution v : R — (0,00) — R? coming out of a cusp asymp-
totic to £(1 + cx)™2 is constructed. The solution is constructed by an
approximation method, as is done here, but the tools to extract a limit
follow the ideas in [7] and as such differ from ours.
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2. CONSTRUCTION

We first show that if a curve is locally, in some rectangle, a graph,
then under curve shortening flow and in a smaller rectangle it remains
a graph. Moreover, we obtain estimates on the gradient. We remark
that such estimates are known in more general contexts but as the
proof of the version we need here is relatively simple we do include it
for the convenience of the reader.

Proposition 2. Let vy : S — R? be a smooth embedding and suppose
that for D >0, R >0 and r < %, the following holds:

(1) for any |zi| < R and |xe] < R, the segment joining (x1,0)
to (z9, D) intersects Tg = 4o(S') transversely and at just one
point.

(2) for any |x| < R, the balls B.((x,0)) and B.((z, D)) are disjoint
from T'y.

Then, the curve shortening flow solution ~y : S* x [0,T) starting at

v(+,0) = v(+) satisfies T > %, and for all t € [0, g] the timeslices T';

satisfy the following: Ty N ([—R, R] x [0, D]) can be represented as the
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graph of a smooth function g(-,t) : [-R, R]| — R, with

sup

Vr?2 =2t < g(xz,t) < D—+r?—2t, Ve € [-R,R].

Proof. Note first that by hypothesis (2) of the proposition and the
avoidance principle we obtain that

2D
|%(x,t)| < = and

(2) (=R, R x {0,D})NT, =0, Yt € [0,%],

and note that a simple linking argument, along with Grayson’s theorem
[6], shows that the curve shortening flow solution starting at T’y does
indeed have a lifespan of time at least é Recall that the number of
intersections between two compact solutions of curve shortening flow
cannot increase, so long as the intersections do not develop at a bound-
ary point, [1]. Therefore, hypothesis (1) of the proposition applied to
segments with endpoints (z,0) and (z, D), x € [—R, R|, along with
), imply that 'y N ([—£, &] x [0, D]) can be represented as a graph

2772
of a smooth function g¢(-,t) : [-R,R] — R. To prove the gradient
bound, consider a point on the graph p = (x, g(z,t)) with = € [—%, %]

and suppose that g(x,t) > %. Consider the two line segments joining
(x + %, 0) to p and extending them pass p we note that they intersect
the segment [—R, R] x {D}. Thus, by hypothesis (1), these segments
lie below the graph of g; and we obtain that |%(m,t)| < %/’;) < 22
%, we obtain the same estimate by
considering the segments joining (z + £, D) to p and extending them

If the point p satisfies g(z,t) <

pass p. Finally, the height bounds are a cosequence of the avoidance
principle and hypothesis (2). O

Proposition [2| and the curvature estimates of Ecker-Huisken [4] yield
the following

Corollary 3. Under the hypotheses of Proposition |3, for every integer
m > 1, there is a constant ¢, = c(m, R, D,Ty) such that

(3) sup 07 k(p, t)] < e, VE €O, %] ;
peln([—4,%1x[0,D])

where k(p,t) denotes the curvature of I'y at the point p.
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Proof. The proof is evident from the estimates in [4] by removing the
time dependence from the bounds. Nonetheless, we include a sketch
here for the convenience of the reader.

We first prove the case m = 0. Consider a point py = (x,y), with
|z| < Zandy € (0,D), and let v = v(p, t) = (v, e2) "2, where v = v(p, t)
is a choice of the unit normal to I'; at p. Consider now G; to be the
connected component of I'; N Bg (po) that is the graph of g(-,t) as in
Proposition [2| Then, by Proposition [2] we have that

2

4D
v(p,t)§1+ﬁ, Vp e Gy, Vte0,2].
2

Define the function f(p,t) = r(p, t)? =% ((£)? — [p—po|*)?, where k =
T+ 2]%2. Note that f(p,0) < CR?, where C' = supg, °, a constant that
depends only on 7. If f has a maximum at a point (p,t) € G x (0, %],
then, by computing the heat operator of g (see [4, proof of Theorem
3.1]), we obtain

f(p.t) < c(n, k)R?.
We therefore conclude the estimate for m = 0. The higher derivative

bounds can be computed similarly by considering ¢» = 1 in [4, proof of
Theorem 3.4]. O

Definition 4. A basic rectangle F(R, D,r) for an embedded curve T
consists of a number r > 0 and a rectangle isometric to [—R, R] x [0, D]
by an isometry T', such that:
(1) for any |z1| < R and |z2| < R, the segment joining T'((x1,0))
to T'((z2, D)) intersects T' transversely and at just one point.
(2) for any |x| < R the balls B,.(T(x,0)) and B,(T(x, D)) are dis-
joint from T'.

T as above, will be referred to the isometry associated to F(R, D,r).
If F(R, D,r) is a basic rectangle for I' and T is its associated isome-
try, then T([—%, £]x [0, D)) together with r, form also a basic rectangle

for T', which will be denoted by F.(R, D,r).

It is clear that the estimates in the statement of Corollary [3| work
exactly the same when we replace the basic rectangle [-R, R| x [0, D]
by basic rectangles F(R, D, r) for the curve I'y. More precisely, Propo-
sition 2] and Corollary [3] yield the following:
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Proposition 5. Assume that F(R,D,r) is a basic rectangle for an
embedded smooth curve I'y. Then the curve shortening flow solution
starting from Iy exists for time at least § and the timeslices I'y satisfy
the following curvature estimate. For every integer m > 1, there is a
constant ¢, = c¢(m, R, D,Ty), such that

sup |07 K(p, )| < cm, VEE (0,5,
pelNFx(R,D,r)

where k(p,t) denotes the curvature of I'y at the point p.

Definition 6. For every integer ¢ > b+ 3, consider the connected part
of Ty between (i,u*(i)) and (i,u™(2)) and cup it off with an embedded
piece joining these two end points and lying inside the rectangle [i,i +
1] X [u™ (i), ut(4)], so that we obtain a smooth embedded and compact
curve which we denote by T%. Let v : S* — R? be a parametrization
of T%. The solutions to the curve shortening flow starting from T} are
denoted by T and are called slingshots. Moreover, for each i, we will
use (-, t) to denote any parametrization of the flow, which, as such,

satisfies (|1).

The following lemma says essentially that the slingshots enter com-
pact regions in arbitrarily small times uniformly in 7.

Lemma 7. For any decreasing sequence of times t; | 0, there exists
a sequence of numbers x;, such that the slingshots, after passing to a
subsequence T, satisfy

IF C [a,2;] x [~c,c], Vk >4, and t > t;.

Proof. Consider a sequence t; | 0. Then, by the assumptions on the
initial curve I'y and by construction of the approximating sequence T,
the slingshots, after passing to a subsequence I/, satisfy the following.
For any j, we can pick z; such that the following hold.

(i) Let F(R,2c,+/2t;) == [-R+x;, R+x;] x [—c, ], with R = 1%
Then, for all k& > j, T§ N F(R,2c,/2t;) has two connected
components, and for each of them F(R,2c, \/2_15]) is a basic
rectangle in the sense that on both components (i) and (ii) of
Definition 4] are satisfied.
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(ii) For all k¥ > j, the area of the compact region bounded by I'} in
the halfplane {z > z; — R} is at most %

To prove the lemma, we will show that for all j and ¢ > t; we have
% C [a, R+ zj] x [—c, ], for all k > j, for which it suffices to prove
that T}, C [a, R+ ;] x [~c¢,¢], for all k > j. Assume on the contrary
that for some j and k£ > j we have F,'fj N((R+ zj,00) X [—¢,c]) # 0.
First note that, by considering a small ball inside I'y and by (i), the
avoidance principle implies that

I'¥ N F(R,2¢c,+/2t;) has two connected components, Vt € [0,;] .

Let now A% (¢) be the area of the compact region bounded by I'} in
the halfplane {x > z;}. Since I'¥ N F(R,2c, /2t;) has two connected
components, for all ¢t € [0,¢;], Proposition [2| implies that

d 8¢
—aAli(t) >m——

and integration yields

t.
AE (1) < A(0) — 1, <7T - 8_0) < 5% <o

R 2 R
which contradicts the hypothesis that A’i(tj) is positive, which is im-
plied since we assumed that F,’fj N ((z; + R,00) x [—¢,c]) # 0. O

The following lemma, which is the central lemma for our construc-
tions, says that there is a decreasing sequence t; | 0 such that the
slingshots, after passing to a subsequence F{, for all j and t; <t <ty
(where t( is some fixed positive time), are covered by a fixed and fi-
nite set of basic rectangles and are therefore globally subject to the
estimates of Corollary

Lemma 8. There exists a decreasing sequence of times t; | 0, j > 0,
such that the slingshots, after passing to a subsequence I'] satisfy the
following. For every j > 0 there is a finite set of rectangles,

(4) F(Rj1,Dj1,751)s s F(Rjnys Dy Tim, )

with v, > \/2to, k = 1,...,n;, that are basic for T for any t € [0, 1),
and moreover,

k=n;
(5) I C | PRk Djsorjn) .Vt € [t ta].

k=1
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Proof. We first construct basic rectangles that will cover the slingshots
in a compact set, where all the initial curves '}y coincide.

Let 79 > 0 be such that [b,b + 2] x [0,¢c] and [b,b + 2] x [—c,0]
together with ry form basic rectangles for I'y, and we denote these by
F*, respectively. Then, let

(6) ]:1:]:(Rl,Dl,Tl),...,.Fl:]:(Rl;Dlvrl)a

be a collection of basic rectangles for I'y with associated isometries T;,
and such that:
(i) FrCc{r<b+2}, form=1,...,1,
(i) F! C Int(F) and F' C Int(F,),
(i) T ({&2} x [0, Dy]) C Int(F7Y), for m=2,..., L.
Note that the rectangles F* and F™, for m = 1,...,l, are also basic

rectangles for I'), for all 4 € N. This is because they are contained in
the half plane {z < b+ 3}, where I} and Ty coincide. Define,

(7) t:= %min{r%w%,...,r?}
and also

F(0):={Ft, F,F',...,F}.
We claim that for any 7 and 0 < t <t we have,

(8) Iin{z<b+5/4} c |J F.

FeF(0)
To see this, let F € .#(0). Then, by Proposition [2 we have that, for
any ¢ and any 0 < ¢t < ¢, I'" N F, is a connected 1-manifold with two
boundary points lying in two opposite sides of the corresponding rec-
tangle: T,,,({£%2} x [0, D,,)) if F = F™, m =1,...,1, and accordingly
if 7 = F*. By conditions (ii) and (iii) above the claim follows.

The next step is to construct basic rectangles that cover the entirety
of the slingshots for times ¢ > ¢;. An essential tool to do that is
Lemma , which allows us to deduce that after time ¢; all slingshots
have entered a compact set.

For any integer k > b+1, we let y;, := min{u™(2k), —u~(2k)} and set
qx := (b, —yx). We then define s; and s} be the two rays starting from
qx and passing through (2k, 0) and (b+1, ¢) respectively. Note that both
rays intersect I'y transversely and only once at a point with positive

y-coordinate. Define also the rectangle R} := [b+ 1, k] X [5%, c] and
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FIGURE 2. Schematic figure of the rectangles F*, the
F™ and the F . The rectangle R} is also shown.

note that it lies in the region between the two rays and has one vertex
on each of them. Hence, any infinite ray from ¢; and passing through
any point in R} intersects 'y transversely and only once. We will use
this fact to cover the slingshots by basic rectangles in R} .

Let 7 € (0,1) be such that B;((b,0)) is contained in the open region
of finite area enclosed by I'y. Since, y; | 0 as k — 0o, we can choose
k such that Y < g, for all k& > l;:, and from now on we consider such
a k > k. Consider s to be a ray starting from ¢ and passing through
a point in R} . Since every such ray has positive slope and intersects
[y transversely and only once, for each such s, we can find a rectan-
gle Ts([—Rs, Rs] x [0, Dy]), for some isometry T, with the following
properties:

(1) T5({0} x [0, D4]) C s and T,((0,0)) = gy,

(2) Ry < £ and D is large enough so that (T((0, D)), e2) > ¢+ 7,

(3) T'o NTs([—Rs, Rs] x [0, Ds]) is a graph over T'([—Rs, Rs] x {0}).
Since Ty([—Rs, Rs] x {0}) C Bg((b, 0)) and by properties (2) and (3)
above we conclude that T;([—Rs, Ry] x [0, D;]) together with r = £ is
a basic rectangle for 'y, which we denote as F*. By compactness, we

. +,s +5k,1
can find a collection of rays s 1, ..., Sk, such that F.7% 0 F. 7
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cover R;. From now on and to simplify notation we write F %7 instead
of Ftski, An identical reasoning shows that we can find a collection
of basic rectangles,

(9) FokL o Fok

for 'y, all with r = 2 and such that F_ %! ... F-k" are covering
the rectangle R, := [b+ 1, k] x [—c, 212?4_"‘1)]. We will denote by .Z (k) all
these rectangles
(10) F (k) = {Ftrt L Frh Fokl o FkY
Note that R UR, = [b+ 1,k] x [—¢, ] and therefore
(11) b+ 1Lk x[-cdc | F.

FeF (k)

Given k > k let i, > 0 be large enough so that none of the basic
rectangles F € .% (k) intersects the region [iz, 00] X [—¢, ¢]. Note that
this is possible, since all these rectangles have non zero slope and width
bounded by Z. Recalling the definition of T}y, we deduce that these basic
rectangles for I'y are also basic rectangles for I'y when ¢ > ;. Let ¢; | 0
and z; be the sequences of Lemma [7| for which, after dropping some
initial terms if necessary, we will assume that t; < to := min{¢, %}
Let ki be any integer such that k; > max{k,21}. By Lemma [7| we
have that the slingshots, after passing to a subsequence I/, satisfy, for
any j and t > tq,

I} C [a, 1) X [—¢,d C ([a,b+ 1] X [—¢, ) UR}, UR,
- U =
FEF(0)UF (k1)

with the second inclusion following by and (1)), and where .7 (k)
is as constructed in (10). Finally note that for any ¢t < tq and for
i > i, F is a basic rectangle for I for all F € .Z(0) U.% (k) and
t € [0,to]. Hence, the slingshots, after passing to a further subsequence,

(12)

still denoted by F{, satisfy, for any j,
ric | F.vtelt.t)
FeF(0)UF (k1)

where . (0) U .Z (k;) is a finite family of rectangles that are basic for
Y, for all j and ¢ < ty and moreover these rectangles are of the form
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F(R,D,r) with r > /2t;. We can now finish the proof of the propo-
sition, by constructing the rest of the sequence as follows. For each ¢;
as above (from Lemmal[7)), with j > 2, we choose k; > max{k;_1,2;} .
Then we construct the family of basic rectangles .7 (k;) as in (10). We
then note that there exists %kj large enough, so that none of the basic
rectangles F € .7 (k;) intersects the region [i4;,00] X [—c,c|, there-
fore for all i > ikj and t € [0,ty], F is a basic rectangle for T} for all
F e Z#(0) U #(k;). Hence, the slingshots, after passing to a further
subsequence, still denoted by F{, satisfy, for any j,

IV U 7. viely )
FeF(0)UF (k;)
where .7 (0) U .# (k;) is a finite family of rectangles that are basic for
IY, for j > 1 and t <ty and moreover these rectangles are of the form
F(R,D,r) with r > /2t.
U

Proof of Theorem[1 Consider ¢ty > 0 as in Lemma [§] Lemma [§] and
Proposition imply that we can apply a compactness argument (which
amounts to the Arzela—Ascoli theorem) to the sequence of embeddings
vl S' — R2 This yields that there exists a smooth embedding
Ve oS ! — R? and a sequence of diffeomorphisms of S', ¢;, such that
after passing to a subsequence, v/, o ¢; converges smoothly to 7p°. Let
t; 1 0 be as in Lemma [§ and define the diffeomorphisms

Y0 St x [ty to) = St x [t5, to]
(C(],t) = ¢j($7 t) = (ij(x)?t) :
Note that Lemma [8| and Proposition [5, along with the evolution equa-
tion of the curvature and its derivatives (which yield time derivative
bounds on the curvature and its derivatives), imply uniform bounds
on the curvature and its derivatives for the sequence 77 o ; (locally
in S' x (0,%0]). Therefore, the Arzela—Ascoli theorem and a diagonal
argument yield that there exists a smooth map v : S* x (0, tg] — R?,
with v*(-,t) : S — R? a smooth embedding for each t € (0,to] and
7>(-,to) = 75y (+), and such that, after passing to a further subsequence,
79 o 1h; converges to v> smoothly on compact sets of S* x (0,%]. The
smooth convergence does imply that 4> satisfies curve shortening flow
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(). Also, since y*(-,¢) : S' — R? a smooth embedding for each
t € (0,to], by Grayson’s theorem [6], we can extend the flow until it
disappears to a round point. We have created thus a smooth flow
v+ St x (0,T) — R? which agrees with the above defined v in
(0,%o) and such that it converges to a round point as t — 7.

Finally, to finish the proof we need to show that

(i) T = % and

(i) Ve > 0, 3t. > 0: T := (S, t) C B([g,¢e), VO <t < t..
To see (i), let A®(t) denote the (finite) area enclosed by I'; and A7(t)
that of the approximating curves I' i = ~9(S*,t). By the convergence

for t € (0,t], we have
A™(tg) = lim A7 (ty) = lim A7(0) — 27ty = Ay — 27ty .
J J

Since 0 = limy_,7 A®(t) = A®(to) — 27 (T — ty), we obtain (i).

In order to see (ii), we let ¢ > 0. It suffices to show that there exists
t. such that for all j large enough IV  B(Ty,¢), for all t € (0,t.).
Assume that this is not the case, but instead, there exists a sequence
of times t; | 0 and a sequence of points of the slingshots x;, € F{:, with
Jr — 00, such that dist(zg, ) > e. Note first, that by the assumption
on Ty and the approximating sequence ', a simple argument using
grim reapers, parallel to the x-axis, as barriers implies that eventually
the points x; must be in a compact set, that is, there exists ky and a
compact set K, such that for all k£ > kg, z;, € K.

Finally, the proof of Lemmal8] yields a uniform curvature bound for
the slingshots in compact sets, which amounts to a uniform bound in
the velocity. This implies that the distance traveled goes uniformly to
zero, that is dist(F{: NK,Ty) — 0, as k — oo, and thus we obtain a
contradiction.

O
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