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Abstract. We construct a slingshot, that is a compact, embed-

ded solution to curve shortening flow that comes out of a non

compact curve and exists for a finite time.

1. Introduction

A smooth one-parameter family {�t}t2I of immersed planar curves

�t ⇢ R2 evolves by curve shortening flow if

(1)
@�

@t
(u, t) = ~(u, t) , 8(u, t) 2 �⇥ I ,

for some smooth family � : �⇥ I ! R2 of immersions �(·, t) : � ! R2

of �t, and where ~(u, t) is the curvature vector of �t at the point �(u, t).

When �0 is a smooth embedded compact curve, then by a famous

theorem of Grayson [6], the solution of the curve shortening flow start-

ing from �0 exists on a maximal time interval [0, T ) and as t ! T the

solution converges to a round point. In the case when �0 is addition-

ally convex, this theorem was previously proved by Gage and Hamilton

[5]. Contrary to the compact case, when �0 is not compact solutions

to curve shortening flow starting from �0 are not that well understood

in general. The particular case of graphical solutions has been exten-

sively studied in the work of Ecker and Huisken [3, 4], who, among

other things, showed that the flow of entire graphs exists for all times.

Another case for which the behavior is known, is that of a curve as-

ymptotic to two distinct halflines, for which Polden [9] showed that a

solution exists for all t > 0 and the solution asymptotically approaches

the selfsimilar solution associated with the two halflines. In [2], K-S

Chou and X-P Zhu, showed that that if the initial curve divides the

plane into two regions of infinite area, then a solution exists for all
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time. For the case that one of the regions of the plane defined by the

curve has finite area, they showed that, if additionally the curve has

finite total absolute curvature, then a solution exists for a finite time

equal to that area divided by ⇡. Moreover, they showed uniqueness

of solutions when the initial curve has ends that are representable as

graphs over two semi-infinite lines.

In the present paper we want to construct compact solutions ema-

nating from a non compact initial curve. More precisely, given �0 a

smooth embedded curve in R2, we want to construct a smooth family

of compact embeddings

� : S1 ⇥ (0, T ) ! R2

that satisfy the curve shortening flow equation (1), and such that the

curves �t = �(S1, t) converge to �0 as t ! 0, in the sense that for

any " > 0, there exists t" such that �t is in an "-neighborhood of

�0 for all t 2 (0, t"). Note that such a solution is di↵erent from the

one constructed in [2], as in [2] the family of solutions satisfying curve

shortening flow is non-compact, that is the parameter space � in (1) is

homeomorphic to R.
We will consider a curve �0 that satisfies the following:

(i) �0 is a smooth embedded 1-manifold di↵eomorphic to (0, 1) and

it separates R2 into two regions, one of which has finite area,

which we denote by A0 2 (0,1).

(ii) a + 1 < b and c > 0 are real numbers such that �0 ⇢ (a,1)⇥
(�c, c) and �0 \ ([b,1) ⇥ (�c, c)) is the union of two smooth

graphs, u± 2 [b,1) ! R with u+ positive and decreasing

to zero at infinity and u� negative and increasing to zero at

infinity, and with the derivatives of u± converging to zero at

infinity, as in Figure 1.

Moreover, we will denote by B(�0, ") the " neighborhood of �0, that is

B(�0, ") := {p 2 R2 : dist(p,�0) < "} .

Our main theorem is the following

Theorem 1. Let �0 be a curve satisfying the above hypotheses (i)-(ii).

There exists a smooth solution � : S1 ⇥ (0, A0
2⇡ ) ! R2 to the curve
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shortening flow (1) such that for any " > 0 there exists t" > 0 such

that �t ⇢ B(�0, ") for 0 < t < t".

Figure 1. Schematic figure of the evolution.

The construction of the solution described in Theorem 1 is roughly

as follows. We start with a sequence of compact curves �i
0 that approx-

imate �0. Then, we define a sequence of curve shortening flows, using

the curves �i
0 as initial conditions, which we refer to as slingshots. The

idea, then, is to show that one can extract a limit of these slingshots.

To do this, we establish uniform curvature bounds for the slingshots

away from the initial time 0. This argument, which is the most novel

part of this construction, is a direct argument, based on repeated ap-

plications of the avoidance principle, and in particular the fact that the

number of intersections between two solutions of curve shortening flow

(at least one of which is compact) cannot increase in time[1], together

with the curvature estimates of Ecker and Huisken [4]. The curvature

bounds that we obtain when restricted to compact sets of R2 are in

fact uniform up to time t = 0, a fact which allows us to conclude the

convergence of �t to �0 as claimed in Theorem 1. We note here that

one indeed obtains higher order convergence in compact sets, as long

as the initial curve is smooth enough.

We remark that a construction of a compact solution coming out of

a non compact curve has been discussed in [7] in order to show non

uniqueness of the level set flow for non compact sets. In particular a

compact solution is constructed with “initial curve” the boundary of

a starshaped domain with tails the graph of ±|x|�1�� � > 0. In [7] a

sketch of the proof of this construction is given, which is di↵erent than
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ours, as it uses global barriers and a foliation argument to control the

degree to which the solutions are starshaped.

After completing this paper we were informed of a similar construc-

tion in the PhD Thesis of Peachey, (see also [8]). In this paper, a

smooth solution � : R ! (0,1) ! R2 coming out of a cusp asymp-

totic to ±(1 + cx)�2 is constructed. The solution is constructed by an

approximation method, as is done here, but the tools to extract a limit

follow the ideas in [7] and as such di↵er from ours.
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2. Construction

We first show that if a curve is locally, in some rectangle, a graph,

then under curve shortening flow and in a smaller rectangle it remains

a graph. Moreover, we obtain estimates on the gradient. We remark

that such estimates are known in more general contexts but as the

proof of the version we need here is relatively simple we do include it

for the convenience of the reader.

Proposition 2. Let �0 : S1 ! R2 be a smooth embedding and suppose

that for D > 0, R > 0 and r < D
2 , the following holds:

(1) for any |x1|  R and |x2|  R, the segment joining (x1, 0)

to (x2, D) intersects �0 = �0(S1) transversely and at just one

point.

(2) for any |x|  R, the balls Br((x, 0)) and Br((x,D)) are disjoint

from �0.

Then, the curve shortening flow solution � : S1 ⇥ [0, T ) starting at

�(·, 0) = �0(·) satisfies T � r2

2 , and for all t 2 [0, r
2

2 ] the timeslices �t

satisfy the following: �t \ ([�R,R] ⇥ [0, D]) can be represented as the
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graph of a smooth function g(·, t) : [�R,R] ! R, with

sup
x2[�R

2 ,R2 ]

|@g
@x

(x, t)|  2D

R
, and

p
r2 � 2t < g(x, t) < D �

p
r2 � 2t , 8x 2 [�R,R] .

Proof. Note first that by hypothesis (2) of the proposition and the

avoidance principle we obtain that

(2) ([�R,R]⇥ {0, D}) \ �t = ; , 8t 2 [0, r
2

2 ] ,

and note that a simple linking argument, along with Grayson’s theorem

[6], shows that the curve shortening flow solution starting at �0 does

indeed have a lifespan of time at least r2

2 . Recall that the number of

intersections between two compact solutions of curve shortening flow

cannot increase, so long as the intersections do not develop at a bound-

ary point, [1]. Therefore, hypothesis (1) of the proposition applied to

segments with endpoints (x, 0) and (x,D), x 2 [�R,R], along with

(2), imply that �t \ ([�R
2 ,

R
2 ] ⇥ [0, D]) can be represented as a graph

of a smooth function g(·, t) : [�R,R] ! R. To prove the gradient

bound, consider a point on the graph p = (x, g(x, t)) with x 2 [�R
2 ,

R
2 ]

and suppose that g(x, t) � D
2 . Consider the two line segments joining

(x± R
2 , 0) to p and extending them pass p we note that they intersect

the segment [�R,R] ⇥ {D}. Thus, by hypothesis (1), these segments

lie below the graph of gt and we obtain that | @g@x(x, t)| 
g(x,t)
R/2  2D

R .

If the point p satisfies g(x, t)  D
2 , we obtain the same estimate by

considering the segments joining (x ± R
2 , D) to p and extending them

pass p. Finally, the height bounds are a cosequence of the avoidance

principle and hypothesis (2). ⇤

Proposition 2 and the curvature estimates of Ecker-Huisken [4] yield

the following

Corollary 3. Under the hypotheses of Proposition 2, for every integer

m � 1, there is a constant cm = c(m,R,D,�0) such that

(3) sup
p2�t\([�R

4 ,R4 ]⇥[0,D])

|@ms (p, t)|  cm , 8t 2 [0, r
2

2 ] ,

where (p, t) denotes the curvature of �t at the point p.
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Proof. The proof is evident from the estimates in [4] by removing the

time dependence from the bounds. Nonetheless, we include a sketch

here for the convenience of the reader.

We first prove the case m = 0. Consider a point p0 = (x, y), with

|x| < R
4 and y 2 (0, D), and let v = v(p, t) = h⌫, e2i�2, where ⌫ = ⌫(p, t)

is a choice of the unit normal to �t at p. Consider now Gt to be the

connected component of �t \ BR
4
(p0) that is the graph of g(·, t) as in

Proposition 2. Then, by Proposition 2, we have that

v(p, t)  1 +
4D2

R2
, 8p 2 Gt , 8t 2 [0, r

2

2 ] .

Define the function f(p, t) = (p, t)2 v2

1�k2v2 ((
R
4 )

2�|p�p0|2)2, where k =
1
2+

2D2

R2 . Note that f(p, 0)  CR2, where C = supG0
2, a constant that

depends only on �0. If f has a maximum at a point (p, t) 2 Gt⇥ (0, r
2

2 ],

then, by computing the heat operator of g (see [4, proof of Theorem

3.1]), we obtain

f(p, t)  c(n, k)R2 .

We therefore conclude the estimate for m = 0. The higher derivative

bounds can be computed similarly by considering  = 1 in [4, proof of

Theorem 3.4]. ⇤

Definition 4. A basic rectangle F(R,D, r) for an embedded curve �

consists of a number r > 0 and a rectangle isometric to [�R,R]⇥ [0, D]

by an isometry T , such that:

(1) for any |x1|  R and |x2|  R, the segment joining T ((x1, 0))

to T ((x2, D)) intersects � transversely and at just one point.

(2) for any |x|  R the balls Br(T (x, 0)) and Br(T (x,D)) are dis-

joint from �.

T as above, will be referred to the isometry associated to F(R,D, r).

If F(R,D, r) is a basic rectangle for � and T is its associated isome-

try, then T ([�R
4 ,

R
4 ]⇥[0, D]) together with r, form also a basic rectangle

for �, which will be denoted by F⇤(R,D, r).

It is clear that the estimates in the statement of Corollary 3 work

exactly the same when we replace the basic rectangle [�R,R]⇥ [0, D]

by basic rectangles F(R,D, r) for the curve �0. More precisely, Propo-

sition 2 and Corollary 3 yield the following:
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Proposition 5. Assume that F(R,D, r) is a basic rectangle for an

embedded smooth curve �0. Then the curve shortening flow solution

starting from �0 exists for time at least r2

2 and the timeslices �t satisfy

the following curvature estimate. For every integer m � 1, there is a

constant cm = c(m,R,D,�0), such that

sup
p2�t\F⇤(R,D,r)

|@ms (p, t)|  cm , 8t 2 [0, r
2

2 ] ,

where (p, t) denotes the curvature of �t at the point p.

Definition 6. For every integer i � b+3, consider the connected part

of �0 between (i, u+(i)) and (i, u�(i)) and cup it o↵ with an embedded

piece joining these two end points and lying inside the rectangle [i, i+

1] ⇥ [u�(i), u+(i)], so that we obtain a smooth embedded and compact

curve which we denote by �i
0. Let �i0 : S1 ! R2 be a parametrization

of �i
0. The solutions to the curve shortening flow starting from �i

0 are

denoted by �i
t and are called slingshots. Moreover, for each i, we will

use �i(·, t) to denote any parametrization of the flow, which, as such,

satisfies (1).

The following lemma says essentially that the slingshots enter com-

pact regions in arbitrarily small times uniformly in i.

Lemma 7. For any decreasing sequence of times tj # 0, there exists

a sequence of numbers xj, such that the slingshots, after passing to a

subsequence �j
t , satisfy

�k
t ⇢ [a, xj]⇥ [�c, c] , 8k � j, and t � tj .

Proof. Consider a sequence tj # 0. Then, by the assumptions on the

initial curve �0 and by construction of the approximating sequence �i
0,

the slingshots, after passing to a subsequence �j
t , satisfy the following.

For any j, we can pick xj such that the following hold.

(i) Let F(R, 2c,
p

2tj) := [�R+xj, R+xj]⇥ [�c, c], with R = 16c
⇡ .

Then, for all k � j, �k
0 \ F(R, 2c,

p
2tj) has two connected

components, and for each of them F(R, 2c,
p
2tj) is a basic

rectangle in the sense that on both components (i) and (ii) of

Definition 4 are satisfied.
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(ii) For all k � j, the area of the compact region bounded by �k
0 in

the halfplane {x � xj �R} is at most ⇡tj
2 .

To prove the lemma, we will show that for all j and t � tj we have

�k
t ⇢ [a,R + xj] ⇥ [�c, c], for all k � j, for which it su�ces to prove

that �k
tj ⇢ [a,R + xj] ⇥ [�c, c], for all k � j. Assume on the contrary

that for some j and k � j we have �k
tj \ ((R + xj,1) ⇥ [�c, c]) 6= ;.

First note that, by considering a small ball inside �0 and by (i), the

avoidance principle implies that

�k
t \ F(R, 2c,

p
2tj) has two connected components, 8t 2 [0, tj] .

Let now Ak
+(t) be the area of the compact region bounded by �k

t in

the halfplane {x � xj}. Since �k
t \ F(R, 2c,

p
2tj) has two connected

components, for all t 2 [0, tj], Proposition 2 implies that

� d

dt
Ak

+(t) � ⇡ � 8c

R
and integration yields

Ak
+(tj)  Ak

+(0)� tj

✓
⇡ � 8c

R

◆
 �⇡tj

2
+

8c

R
tj < 0

which contradicts the hypothesis that Ak
+(tj) is positive, which is im-

plied since we assumed that �k
tj \ ((xj +R,1)⇥ [�c, c]) 6= ;. ⇤

The following lemma, which is the central lemma for our construc-

tions, says that there is a decreasing sequence tj # 0 such that the

slingshots, after passing to a subsequence �j
t , for all j and tj  t  t0

(where t0 is some fixed positive time), are covered by a fixed and fi-

nite set of basic rectangles and are therefore globally subject to the

estimates of Corollary 3.

Lemma 8. There exists a decreasing sequence of times tj # 0, j � 0,

such that the slingshots, after passing to a subsequence �j
t satisfy the

following. For every j � 0 there is a finite set of rectangles,

(4) F(Rj,1, Dj,1, rj,1), . . . ,F(Rj,nj , Dj,nj , rj,nj),

with rj,k �
p
2t0, k = 1, . . . , nj, that are basic for �j

t for any t 2 [0, t0],

and moreover,

(5) �j
t ⇢

k=nj[

k=1

F⇤(Rj,k, Dj,k, rj,k) , 8t 2 [tj, t0].
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Proof. We first construct basic rectangles that will cover the slingshots

in a compact set, where all the initial curves �i
0 coincide.

Let r0 > 0 be such that [b, b + 2] ⇥ [0, c] and [b, b + 2] ⇥ [�c, 0]

together with r0 form basic rectangles for �0, and we denote these by

F±, respectively. Then, let

(6) F1 = F(R1, D1, r1), . . . ,F l = F(Rl, Dl, rl),

be a collection of basic rectangles for �0 with associated isometries Tm

and such that:

(i) Fm ⇢ {x < b+ 2}, for m = 1, . . . , l,

(ii) F1 ⇢ Int(F+
⇤ ) and F l ⇢ Int(F�

⇤ ),

(iii) Tm({Rm
4 }⇥ [0, Dm]) ⇢ Int(Fm�1

⇤ ), for m = 2, . . . , l.

Note that the rectangles F± and Fm, for m = 1, . . . , l, are also basic

rectangles for �i
0, for all i 2 N. This is because they are contained in

the half plane {x  b+ 3}, where �i
0 and �0 coincide. Define,

(7) t̄ := 1
2min{r20, r21, . . . , r2l }

and also

F (0) := {F+,F�,F1, . . . ,F l} .
We claim that for any i and 0  t  t̄ we have,

(8) �i
t \ {x  b+ 5/4} ⇢

[

F2F (0)

F⇤ .

To see this, let F 2 F (0). Then, by Proposition 2, we have that, for

any i and any 0  t  t̄, �i
t \ F⇤ is a connected 1-manifold with two

boundary points lying in two opposite sides of the corresponding rec-

tangle: Tm({±Rm
4 }⇥ [0, Dm]) if F = Fm, m = 1, . . . , l, and accordingly

if F = F±. By conditions (ii) and (iii) above the claim follows.

The next step is to construct basic rectangles that cover the entirety

of the slingshots for times t > tj. An essential tool to do that is

Lemma 7, which allows us to deduce that after time tj all slingshots

have entered a compact set.

For any integer k > b+1, we let yk := min{u+(2k),�u�(2k)} and set

qk := (b,�yk). We then define s1k and s2k be the two rays starting from

qk and passing through (2k, 0) and (b+1, c) respectively. Note that both

rays intersect �0 transversely and only once at a point with positive

y-coordinate. Define also the rectangle R+
k := [b+ 1, k]⇥ [�kyk

2k�b , c] and
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Figure 2. Schematic figure of the rectangles F±, the

Fm and the F+,s. The rectangle R+
k is also shown.

note that it lies in the region between the two rays and has one vertex

on each of them. Hence, any infinite ray from qk and passing through

any point in R+
k intersects �0 transversely and only once. We will use

this fact to cover the slingshots by basic rectangles in R+
k .

Let r̂ 2 (0, 1) be such that B r̂((b, 0)) is contained in the open region

of finite area enclosed by �0. Since, yk # 0 as k ! 1, we can choose

k̂ such that yk  r̂
4 , for all k � k̂, and from now on we consider such

a k � k̂. Consider s to be a ray starting from qk and passing through

a point in R+
k . Since every such ray has positive slope and intersects

�0 transversely and only once, for each such s, we can find a rectan-

gle Ts([�Rs, Rs] ⇥ [0, Ds]), for some isometry Ts, with the following

properties:

(1) Ts({0}⇥ [0, Ds]) ⇢ s and Ts((0, 0)) = qk,

(2) Rs  r̂
4 and Ds is large enough so that hT ((0, Ds)), e2i � c+ r̂,

(3) �0 \ Ts([�Rs, Rs]⇥ [0, Ds]) is a graph over T ([�Rs, Rs]⇥ {0}).

Since Ts([�Rs, Rs] ⇥ {0}) ⇢ B r̂
2
((b, 0)) and by properties (2) and (3)

above we conclude that Ts([�Rs, Rs] ⇥ [0, Ds]) together with r = r̂
4 is

a basic rectangle for �0, which we denote as F+,s. By compactness, we

can find a collection of rays sk,1, . . . , sk,lk such that F+,sk,1
⇤ , . . . ,F+,sk,lk

⇤
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coverR+
k . From now on and to simplify notation we write F+,k,j instead

of F+,sk,j . An identical reasoning shows that we can find a collection

of basic rectangles,

(9) F�,k,1, . . . ,F�,k,hk ,

for �0, all with r = r̂
4 and such that F�,k,1

⇤ , . . . ,F�,k,hk
⇤ are covering

the rectangle R�
k := [b+ 1, k]⇥ [�c, kyk

2k�b ]. We will denote by F (k) all

these rectangles

(10) F (k) = {F+,k,1, . . . ,F+,k,lk ,F�,k,1, . . . ,F�,k,hk} .

Note that R+
k [R�

k = [b+ 1, k]⇥ [�c, c] and therefore

(11) [b+ 1, k]⇥ [�c, c] ⇢
[

F2F (k)

F⇤ .

Given k � k̂ let îk > 0 be large enough so that none of the basic

rectangles F 2 F (k) intersects the region [̂ik,1] ⇥ [�c, c]. Note that

this is possible, since all these rectangles have non zero slope and width

bounded by r̂
4 . Recalling the definition of �i

0, we deduce that these basic

rectangles for �0 are also basic rectangles for �i
0 when i � îk. Let tj # 0

and xj be the sequences of Lemma 7, for which, after dropping some

initial terms if necessary, we will assume that t1 < t0 := min{t̄, r̂2

32}.
Let k1 be any integer such that k1 � max{k̂, x1}. By Lemma 7, we

have that the slingshots, after passing to a subsequence �j
t , satisfy, for

any j and t � t1,

�j
t ⇢ [a, x1]⇥ [�c, c] ⇢ ([a, b+ 1]⇥ [�c, c]) [R+

k1
[R�

k1

⇢
[

F2F (0)[F (k1)

F⇤ ,
(12)

with the second inclusion following by (8) and (11), and where F (k)

is as constructed in (10). Finally note that for any t  t0 and for

i � îk, F is a basic rectangle for �i
t for all F 2 F (0) [ F (k1) and

t 2 [0, t0]. Hence, the slingshots, after passing to a further subsequence,

still denoted by �j
t , satisfy, for any j,

�j
t ⇢

[

F2F (0)[F (k1)

F⇤ , 8t 2 [t1, t0],

where F (0) [ F (k1) is a finite family of rectangles that are basic for

�j
t , for all j and t  t0 and moreover these rectangles are of the form
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F(R,D, r) with r �
p
2t0. We can now finish the proof of the propo-

sition, by constructing the rest of the sequence as follows. For each tj
as above (from Lemma 7), with j � 2, we choose kj � max{kj�1, xj} .

Then we construct the family of basic rectangles F (kj) as in (10). We

then note that there exists îkj large enough, so that none of the basic

rectangles F 2 F (kj) intersects the region [̂ikj ,1] ⇥ [�c, c], there-

fore for all i � îkj and t 2 [0, t0], F is a basic rectangle for �i
t for all

F 2 F (0) [ F (kj). Hence, the slingshots, after passing to a further

subsequence, still denoted by �j
t , satisfy, for any j,

�j
t ⇢

[

F2F (0)[F (kj)

F⇤ , 8t 2 [tj, t0],

where F (0) [ F (kj) is a finite family of rectangles that are basic for

�j
t , for j � 1 and t  t0 and moreover these rectangles are of the form

F(R,D, r) with r �
p
2t0.

⇤

Proof of Theorem 1. Consider t0 > 0 as in Lemma 8. Lemma 8 and

Proposition 5 imply that we can apply a compactness argument (which

amounts to the Arzela–Ascoli theorem) to the sequence of embeddings

�jt0 : S1 ! R2. This yields that there exists a smooth embedding

�1t0 : S1 ! R2 and a sequence of di↵eomorphisms of S1, �j, such that

after passing to a subsequence, �jt0 � �j converges smoothly to �1t0 . Let

tj # 0 be as in Lemma 8 and define the di↵eomorphisms

 j : S
1 ⇥ [tj, t0] ! S1 ⇥ [tj, t0]

(x, t) 7!  j(x, t) = (�j(x), t) .

Note that Lemma 8 and Proposition 5, along with the evolution equa-

tion of the curvature and its derivatives (which yield time derivative

bounds on the curvature and its derivatives), imply uniform bounds

on the curvature and its derivatives for the sequence �j �  j (locally

in S1 ⇥ (0, t0]). Therefore, the Arzela–Ascoli theorem and a diagonal

argument yield that there exists a smooth map �1 : S1 ⇥ (0, t0] ! R2,

with �1(·, t) : S1 ! R2 a smooth embedding for each t 2 (0, t0] and

�1(·, t0) = �1t0 (·), and such that, after passing to a further subsequence,

�j �  j converges to �1 smoothly on compact sets of S1 ⇥ (0, t0]. The

smooth convergence does imply that �1 satisfies curve shortening flow
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(1). Also, since �1(·, t) : S1 ! R2 a smooth embedding for each

t 2 (0, t0], by Grayson’s theorem [6], we can extend the flow until it

disappears to a round point. We have created thus a smooth flow

�1 : S1 ⇥ (0, T ) ! R2, which agrees with the above defined �1 in

(0, t0) and such that it converges to a round point as t ! T .

Finally, to finish the proof we need to show that

(i) T = A0
2⇡ and

(ii) 8" > 0, 9 t" > 0: �t := �1(S1, t) ⇢ B(�0, "), 8 0 < t < t".

To see (i), let A1(t) denote the (finite) area enclosed by �t and Aj(t)

that of the approximating curves �j
t = �j(S1, t). By the convergence

for t 2 (0, t0], we have

A1(t0) = lim
j

Aj(t0) = lim
j

Aj(0)� 2⇡t0 = A0 � 2⇡t0 .

Since 0 = limt!T A1(t) = A1(t0)� 2⇡(T � t0), we obtain (i).

In order to see (ii), we let " > 0. It su�ces to show that there exists

t" such that for all j large enough �j
t ⇢ B(�0, "), for all t 2 (0, t").

Assume that this is not the case, but instead, there exists a sequence

of times tk # 0 and a sequence of points of the slingshots xk 2 �jk
tk , with

jk ! 1, such that dist(xk,�0) > ". Note first, that by the assumption

on �0 and the approximating sequence �i
0, a simple argument using

grim reapers, parallel to the x-axis, as barriers implies that eventually

the points xk must be in a compact set, that is, there exists k0 and a

compact set K, such that for all k � k0, xk 2 K.

Finally, the proof of Lemma 8, yields a uniform curvature bound for

the slingshots in compact sets, which amounts to a uniform bound in

the velocity. This implies that the distance traveled goes uniformly to

zero, that is dist(�jk
tk \ K,�0) ! 0, as k ! 1, and thus we obtain a

contradiction.

⇤
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