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1  Introduction

The impacts of global climate change on the Earth’s envi-
ronment have been among the most researched areas in the 
last few decades, owing to its threats to sustainable devel-
opment. The attribution of several recent environmental 
disasters and extreme hydroclimatic occurrences to climate 
change (Smiley et al., 2022; Vargo et al., 2020) has drawn 
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Abstract
The selection of Global Climate Models (GCMs) based on their ability to represent precipitation patterns of a region is 
required for hydrological climate change impact studies to address time and computational constraints. Generally, the 
selection of GCMs is determined based on their ability to reproduce observed climate statistics in historical simulations, 
assuming they will continue to perform well in the future. However, the performance of GCMs varies over time in ways 
that are not sensitive to their historical performance, indicating that GCMs’ selection needs to consider historical simula-
tion and future projection information. We propose a framework to account for future GCM projection convergence to 
and divergence from the ensemble mean, along with historical performance, to select the GCMs that are applicable to a 
particular regional climate impact study. The framework uses Reliability Ensemble Averaging (REA) with 30 Coupled 
Model Intercomparison Project-6 (CMIP6) GCMs to select GCMs based on the ensemble mean and variability of projec-
tions. We demonstrate the framework using three climate indices (annual maximum precipitation, annual total precipita-
tion, and wet day precipitation intensity) in the Chesapeake Bay watershed of the United States. Our analysis shows that 
using only the GCM performance during the historical period could result in the selection of GCMs that are extreme 
outliers due to an inherent underprediction of precipitation extremes by all GCMs and requires an efficient bias correction 
before selection. There was also no significant correlation between the historical period performance of GCMs and future 
GCM convergence for more than 95% of the cases in the study region. This highlights the need to consider convergence 
and divergence information from climate projections when selecting GCMs for practical and computationally intensive 
applications. The proposed framework can be adapted to any study region and can help identify GCMs for computation-
ally intensive climate change impact studies.

Highlights
	● Both historical performance and future projections need accounting in selecting GCMs.
	● The future convergence of GCMs is not sensitive to their historical performance.
	● Efficient bias correction can benefit the identification of GCMs.
	● A subset of GCMs were identified for impact studies in the Chesapeake Bay watershed.
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the attention of policymakers to investigate the impact of 
climate change on natural resources and human populations. 
It is estimated that 80% of the land and 85% of the total 
population may have been affected by climate change (Cal-
laghan et al. 2021). Consequently, it is essential to scientifi-
cally project and study the future consequences of climate 
change for better preparedness.

The Intergovernmental Panel on Climate Change (IPCC) 
has been working on understanding the global-to-regional 
consequences of climate change since its establishment in 
the late 1980s. The latest reports (IPCC, 2022a, b, 2021) 
released by the IPCC as part of the sixth Assessment Report 
(AR6) are the most comprehensive and up-to-date knowl-
edge of the Earth’s climate change and serve as a basis for 
deriving adaptation strategies. Numerical climate simula-
tions from global climate models (GCMs), released under 
the Coupled Model Intercomparison Projects (CMIP), are 
the primary data source for climate impact studies. The per-
formance of these simulations varies with GCM and region 
(Baghel et al. 2022; Chhin and Yoden, 2018) due to various 
uncertainties, such as uncertainty of the model structure, 
uncertainty of unknown future scenarios, and random inter-
nal climate variability (Hawkins and Sutton, 2011; Rupp et 
al., 2013). Impact studies must be aware of the uncertain-
ties or variability present in climate model simulations, and 
performance evaluation is required to gain confidence in cli-
mate-related decision-making (Rupp et al., 2013). Crucially, 
the high computational demands of hydrological/hydraulic 
models used in impact studies make it challenging to use 
all the available GCMs in decision-making and require the 
identification of a subset of GCMs. Performance evalua-
tions of GCMs to simulate historically observed climate are 
generally used to rank the GCMs and find the most suitable 
ones for impact studies (Raju et al. 2017; Raju and Kumar 
2020).

Recent studies have simplified the GCM identifica-
tion and ranking problem by selecting models based on a 
single criterion: the models’ ability to reproduce histori-
cally observed statistics. For example, Baghel et al. (2022) 
derived sector-specific ranks of 16 GCMs from CMIP6 
using several climate indices, Perkins et al. (2007) evalu-
ated the performance of 14 GCMs from CMIP3 using prob-
ability density functions, Khadka et al. (2022) considered 28 
GCMs from CMIP5 and 32 from CMIP6 along with 25 met-
rics, and Anil et al. (2021) ranked 24 GCMs of CMIP6 using 
multicriteria decision making. A fundamental assumption in 
these studies is that GCMs that perform well in the histori-
cal simulations will perform similarly in future projections.

There have been ongoing debates on whether projections 
from every model are an equally valid and likely depic-
tion of the future (Knutti 2010). Giorgi and Mearns (2002) 
argued that model performance could vary over time, and 

an outlier GCM in the future projections may not be the one 
with higher bias in reproducing current-day climate. They 
also propose a Reliability Ensemble Averaging (REA) tech-
nique with two criteria to estimate the average, uncertainty, 
and range of GCM simulations: model performance (histor-
ical) and model convergence (future). Their method assigns 
reliability weights to each GCM based on the GCMs’ bias 
in historical simulations and the distance to the ensemble 
average in future projections. The weighting technique 
used in these uncertainty assessment studies (Giorgi and 
Mearns 2002; Xu et al. 2010) shows that the GCMs that 
perform well in historical periods may not converge well 
with ensemble projections in the future. Yet, the selection 
and ranking of GCMs in the literature are often based only 
on the historical performance of GCMs, ignoring informa-
tion available in future projections.

Further, it has also been highlighted in several studies 
that the subselection of GCMs should consider model inde-
pendence and climate change signal diversity to account for 
uncertainty in the projections (Di Virgilio et al. 2022; Merri-
field et al. 2023; Vautard et al. 2021). However, the selection 
of all the GCMs that project diverse climate change signals 
or do not resemble each other may not solve the challenges 
of computational demand if most GCMs are distinct. One 
approach in such cases could be to select one GCM to rep-
resent the ensemble mean and two to represent the upper 
and lower bounds of uncertainty from an ensemble of pro-
jections. This could provide a way for selecting the subset 
of GCMs that represent the mean and variability of the 
ensemble that is useful for practical applications. Accord-
ingly, the overall objectives of this study are (1) to evalu-
ate possibilities of changes in GCMs reliability to replicate 
historically observed climate and their ability to converge 
towards ensembles mean in the future projections and (2) to 
develop a framework to identify suitable GCMs for hydro-
logical impact studies considering GCM performance in the 
historical period and their convergence and divergence in 
future periods.

2  Materials and Methods

2.1  Study Area: Chesapeake Bay Watershed

The Chesapeake Bay, located in the Mid-Atlantic region of 
the eastern United States, is the largest and the first estu-
ary in the nation targeted for restoration and protection. The 
Chesapeake Bay watershed (Fig. 1) covers a 166,000 km2 
drainage area within six states and the District of Colom-
bia. The watershed is under significant pressure to meet the 
Total Daily Maximum Load mandates from the US Environ-
mental Protection Agency (US EPA 2009). Climate change 
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could greatly affect the Bay’s recovery and economy. Heavy 
storms and higher temperatures could increase soil erosion, 
nutrient loss, flooding, and increased water temperature, 
stressing fish in the Bay watersheds. There are many efforts 
to evaluate potential climate change impacts and explore 
adaptation strategies in the Bay watershed (Hanson et al. 
2022; Ansari et al. 2024; Maloney et al. 2020; Najjar et al. 
2010; Saha et al. 2023).

2.2  Climate Data

National Aeronautics Space Administration (NASA) 
has recently downscalled and bias-corrected GCM data 
(Thrasher et al. 2022) from CMIP6 experiments through 
the project NASA Earth Exchange Global Daily Down-
scaled Projections (NEX-GDDP-CMIP6). Its predecessor, 
NEX-GDDP-CMIP5 (https://www.nccs.nasa.gov/services/
data-collections/land-based-products/nex-gddp), has been 

widely used throughout the world in climate impact stud-
ies (Jain et al. 2019; Li et al. 2020; Liao et al. 2019; Singh 
et al. 2019; Vigliano et al. 2018; Wang et al. 2020; Wu et 
al. 2020; Zhao et al. 2021). In this study, downscaled pre-
cipitation from 30 CMIP6 GCMs for the historical and 
future scenario SSP245 (Supplementary Table 1) (https://
www.nccs.nasa.gov/services/data-collections/land-based-
products/nex-gddp-cmip6, accessed in October 2022) was 
used. The NEX-GDDP-CMIP6 provides the dataset for 
only one variant in each GCM, which had r1i1p1f1 for 23 
GCMs, r1i1p1f2 for 5 GCMs, and r3i1p1f1and r1i1p1f3 
for one GCM each. More details about the GCMs used and 
their variants are provided in the Supplementary File). The 
Global Meteorological Forcing Datasets (GMFD; https://
rda.ucar.edu/datasets/ds314.0/, accessed in October 2022) 
served as the reference observed data for the bias correc-
tion and evaluations. Both datasets are available at 0.25° 
resolution.

Fig. 1  Study area (Chesapeake 
Bay watershed, USA) along 
with all the GCM grids at which 
downscaled data is available and 
used to demonstrate selection of 
GCMs for climate impact studies
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This method allows a better representation of extremes 
in the bias-corrected data and a more logical selection of 
GCMs for impact studies, as demonstrated in the Results 
and Discussion section. Further, the bias correction meth-
odology employed assumes stationarity in the bias in both 
historical and future periods.

2.4  Reliability Ensemble Averaging

The framework developed in this study to identify suit-
able GCMs for impact study is based on the REA method 
extensively used to calculate the uncertainty, range, and 
ensemble mean of GCM projections (Giorgi and Mearns 
2002, 2003). In the context of REA, ensemble refers to 
simulations/projections from different GCMs, not different 
realizations of the same GCM. REA facilitates comprehen-
sive and quantitative assessment of the impact of climate 
change based on collective information from an ensemble 
of future projections. One of the primary goals of REA is to 
derive an ensemble average for future projections to act as 
a plausible representation of the ensemble in the absence of 
observations in the future period. The framework, as pro-
posed by Giorgi and Mearns (2002), involves the evalua-
tion of two criteria: (i) model performance criteria and (ii) 
model convergence criteria. The model performance criteria 
evaluate the ability of each GCM to replicate the historically 
observed climate patterns and assign reliability scores to 
them. For example, assuming P represents the total annual 
precipitation, a reliability score for P simulated by GCMs 
for the historical period is estimated as,

RB,i =
1

RMSE (CDF (Ph,m) , CDF (Po))
� (2)

where Ph, m is the precipitation simulations by the GCM for 
the historical period, Po is the observed precipitation, CDF 
is the cumulative distribution function, RMSE is the root 
mean square error, and RB, i is the reliability score. The RB, i 
is a function of the bias between the GCM simulated pre-
cipitation CDF and actual observed CDF in the historical 
period. The lower the bias, the higher the performance and 
reliability of the GCM to represent the current-day climate. 
A weight wh, i can be assigned to each GCM based on the 
reliability score to facilitate the calculation of the ensemble 
weighted average by giving a higher weight to GCMs witih 
higher reliability score than those with higher bias relative 
to the observations. The weights for N GCMs can be esti-
mated as,

wh,i =
RB,i∑N
i=1RB,i

� (3)

2.3  Bias Correction of Climate Projections

The climate projections from NEX-GDDP-CMIP6 are 
already downscaled and bias corrected to 0.25° resolution 
to match GMFD. However, we noticed that the extreme 
precipitation was still substantially underestimated by the 
downscaled GCMs, and the magnitude of the bias varied 
substantially (Fig. 2). Hence, an Extremes Weighted Empir-
ical Quantile Mapping (EW-EQM; Rohith and Cibin 2024) 
bias correction was applied to overcome this underesti-
mation. The EW-EQM is similar to the widely used con-
ventional EQM (Boé et al. 2007) as given in Eq. (1), with 
the difference that separate bias correction was applied to 
extremes and non-extremes.

Pbc = F−1
obs (FGCM (PGCM))� (1)

where PGCM  and FGCM  are probabilities and the empiri-
cal distribution of GCM simulated precipitation, respec-
tively, and F−1

obs  is the inverse of the empirical distribution 
of observed precipitation. In this study, a high precipitation 
threshold was set to differentiate extremes such that the 
number of extremes is equal to the number of years of data 
used in each analysis period (30 years). The extreme precip-
itation days were removed (or converted to zero) before bias 
correction was applied to non-extreme precipitation occur-
rences. The extracted extremes were bias-corrected sepa-
rately and inserted back into the non-extremes time series. 

Fig. 2  Density plot of GMFD and NEX-GDDP-CMIP6 simulated 
extreme precipitation (50 extremes) at a location in the Mid-Atlantic 
region of the United States (US)
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performance and convergence weights of the GCMs were 
compared across the watershed to evaluate if a GCM con-
vergence in projections implies a better performance in the 
historical period (Giorgi and Mearns 2002).

3  Results and Discussions

Three climate change indices were evaluated: annual maxi-
mum 1-day precipitation, average annual precipitation, and 
average annual wet-day precipitation intensity. RA1max 
(annual maximum 1-day precipitation) is critical for flood 
risk assessments and stormwater management designs. 
RAsum (average annual precipitation) and SDDI (Simple 
Precipitation Intensity Index) are critical for water resources 
management, agricultural water management, and drought 
risk assessments. An empirical CDF of all three climate 
indices from observed data, all the 30 downscaled simula-
tions and projections, along with the selected GCM from 
both historical performance criteria and future convergence 
criteria, are plotted in Fig. 3 for a randomly selected location 
(longitude = -75.375 W and latitude = 41.375 N). The GCM 
simulations in the historical period were underestimated 
entirely (more than 50%) for RA1max and SDII (Fig. 3a and 
c). They had 0% overlap with the observed CDFs, while the 
agreement is better for RAsum because the GCM simula-
tions were bias-corrected to match only the RAsum. Since 
there is a consistent underestimation of RA1max and SDII 
by GCMs, the selected GCM for the region from the con-
ventional performance criteria is simply the one with higher 
magnitudes (red lines in Fig. 3) for these indices. Figure 3 
(red lines) shows that the GCM, which had the highest mag-
nitude in the historical period, may continue to simulate 
higher magnitudes for SDII in the future (Fig. 3f). Hence, 
the higher magnitude GCM may not be the most probable 
case but the most extreme GCM.

Further, it should also be noted that RA1max and SDII 
of the historical downscaled GCM data did not preserve the 
observed interannual variability (Fig. 3a and c) and could 
have also led to lower interannual variability in the future 
(Fig. 3d and f). Here, the interannual variability was inferred 
based on the spread of CDF plots, as the variables plotted are 
at an annual scale. In contrast, the interannual variability of 
RAsum, which influences water availability-based impact 
decisions, was well reproduced by the downscaled historical 
GCM simulations, and the GCM selection worked reason-
ably well as the selected GCMs were close to the observed 
values in the historical period and ensemble averages in the 
future period. The underestimation of both mean and inter-
annual variability of RA1max and SDII could substantially 
influence decisions related to extreme events, such as floods 
and droughts. This highlights the need for advanced bias 

The weights wh, i estimated for each GCM in the historical 
period are termed model performance weights, represent-
ing historical model performance. These weights can be 
used to estimate the ensemble average for the future period, 
assuming that the GCMs with higher reliability scores in the 
historical period are the ones with future projections that 
agree closely with the ensemble projections. However, the 
historical performance of GCM does not necessarily mean a 
higher degree of convergence in the projections (Giorgi and 
Mearns 2002).

The model convergence criterion evaluates how well 
projections from different GCMs converge. Similar to bias 
in the historical performance criteria, a distance was calcu-
lated between ensemble weighted average CDF and CDF 
from individual model projections to evaluate the model 
convergence criteria. The lower the distance of individual 
GCMs CDF to the weighted ensemble mean, the higher the 
GCM convergence. An initial ensemble weighted average 
was calculated as,

CDF (Pf,m,avg,j) =

N∑

i=1

wh,i × CDF (Pf,m,i,j) , j = 1, . . . .k � (4)

where Pf, m,i, j is the projected precipitation for ith GCM at jth 
quantile and Pf, m,avg is the initial ensemble weighted aver-
age for the future. A set of new GCM reliability scores and 
weights were estimated based on distances between ensem-
ble weighted CDF and individual GCM CDF as follows:

RD,i =
1

RMSE (CDF (Pf,m) , CDF (Pf,m,avg))
� (5)

wf,i =
RD,i∑N
i=1RD,i

� (6)

The procedure to estimate the ensemble weighted average 
and the weights was repeated until the weights converged. 
The final converged weights are termed convergence 
weights. If most of the GCMs were assigned similar 
weights, it indicates that the climate change projections 
are slightly sensitive to model differences. The GCMs with 
lower convergence weights are the outliers or the ones that 
do not agree with projections from most GCMs.

Further, we extend the methodology to select GCMs that 
represent the variability of projections, which is termed 
model divergence criteria. Similar to the identification 
of GCMs that are close to the ensemble mean, the GCMs 
closer to the 5 and 95 percentiles of the ensemble GCMs 
were identified to represent the variability or uncertainty in 
projections. This leads to the selection of at least 4 GCMs, 
one accounting for historical performance, one for future 
ensemble mean, and two for projected variability. The 
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projection (Fig. 4d and e, & 4f), and future convergence-
based selected GCMs were not the closest to the observed 
in the historical period (Fig. 4a and b, & 4c). This indicates 
that a GCM that performed well in the historical period may 
not be the one that converges well in the future period.

To better understand whether there is a relationship 
between the historical performance of GCMs and their 
future convergence, a correlation coefficient was calculated 
between REA performance and convergence weights of all 
the GCMs for each grid in the watershed and all three vari-
ables. A scatter plot of REA performance and convergence 
weights is presented in Fig. 5, along with a histogram of the 
correlation coefficient across all the grids for each index. The 
correlation coefficient is mostly less than 0.5 for all the indi-
ces and was statistically significant at only less than 3.8%, 
5.2%, and 4.1% of grids at 95% confidence for RA1max, 
RAsum, and SDII, respectively. This clearly indicates that 
the GCMs that performed well in the historical period may 
not always converge well with ensembles in the future. This 
warrants consideration of historical performance and future 

correction methods that can account for multiple indices in 
bias correction.

The GCM selected based on future convergence crite-
ria (green lines in Fig. 3) falls very close to the ensemble 
mean and is 100% within the 90% band of all GCM in both 
the historical and the future periods. However, the initial 
weights that were used in the future convergence criteria 
to obtain the ensemble mean were based on historical per-
formance weights. Performance weights were higher for 
the GCMs with higher magnitudes for RA1max and SDII, 
which may not be the most reliable GCMs. Hence, EW-
EQM was applied to NEX-GDDP data to correct the bias in 
RA1max and SDDI. From Fig. 4, all three climate indices 
are well represented by GCMs after EW-EQM bias correc-
tion, and the observed CDF is more than 96% within the 
90% band of all GCMs. The selected GCM based on the 
performance criteria was close to the observed and within 
the 90% band of GCMs in both historical and future peri-
ods. However, historical performance-based selected GCMs 
were not the closest to the ensemble average of the future 

Fig. 3  Cumulative distribution function (CDF) plot of the daily annual 
maximum (RA1max), total annual precipitation (RAsum), and aver-
age wet-day intensity (SDII) climate indices at a location (longitude = 
-75.375 W and latitude = 41.375 N) in the Chesapeake Bay watershed 
in the historical (1976–2005) and future (2021–2050) periods. The cli-
mate simulations and projections are the NEX-GDDP data for CMIP6. 
The black line indicates the observed precipitation in the historical 

period and the reliability ensemble average in the future period; the 
grey band indicates the 90% band of simulated data from 30 GCMs; 
the red line indicates the CDF of the selected GCM based on historical 
performance criteria for each climate index; and the green line indi-
cates the CDF of the selected GCM based on the future convergence 
criteria for each climate index
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Fig. 5  Scatter plot between REA weights of historical performance 
and future convergence for each of 30 GCMs and 372 grids and three 
indices (a) RA1max, (b) RAsum, and (c) SDII in the Chesapeake Bay 

watershed. The annotated histogram inside each scatter plot repre-
sents the correlation coefficient of REA performance and convergence 
weights across GCMs at each point of the watershed grid

 

Fig. 4  Cumulative distribution function (CDF) plot of the daily annual 
maximum (RA1max), total annual precipitation (RAsum), and aver-
age wet-day intensity (SDII) climate indices at a location (longitude = 
-75.375 W and latitude = 41.375 N) in the Chesapeake Bay watershed 
in the historical (1976–2005) and future (2021–2050) periods. The cli-
mate simulations and projections are the Extremes-Weighted Empiri-
cal Quantile Mapping bias-corrected NEX-GDDP data for CMIP6. The 

black line indicates the observed precipitation in the historical period 
and the reliability ensemble average in the future period; the grey band 
indicates the 90% coverage of simulated data from 30 GCMs; the red 
line indicates the CDF of the selected GCM based on the historical 
performance criteria for each climate index; and the green line indicate 
the CDF of the selected GCM based on the future convergence criteria 
for each climate index
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future convergence criteria. For RA1max, INM-CM5-0 and 
IPSL-CM6A-LR were more suitable than others for the 
performance criteria, and CMCC-ESM2 and MPI-ESM1-
2-HR were suitable in the convergence criteria. Similarly, 
for SDII, CanESM5 and TaiESM1 were more suitable in 
the performance criteria and EC-Earth3-Veg-LR, GFDL-
ESM4, and HadGEM3-GC31-LL in the convergence cri-
teria. A violin plot of REA weights of downscaled GCM 
divergence (closest to 5 and 95 percentiles) is presented in 
Figure S1 (Supplementary).

The final GCMs identified (in the order of performance, 
convergence, 5 percentile, and 95 percentile) were INM-
CM5-0, CMCC-ESM2, CanESM5, and GFDL-CM4 for 
RA1max, TaiESM1, EC-Earth3-Veg-LR, NorESM2-LM, 
and TaiESM1 for RAsum, and CanESM5, EC-Earth3-Veg-
LR, MIROC-ES2L and EC-Earth3 for SDII. It can be noted 

convergence in identifying suitable GCMs for computation-
ally intensive hydrological impact studies.

The selection of GCMs demonstrated in Figs.  3 and 4 
was for a single location (grid point) in the watershed. How-
ever, actual hydrological applications require the identifica-
tion of GCMs for larger regions, such as watersheds. One 
way to identify that could be by taking the median of REA 
weights for each GCM across the watershed, and the GCM 
with a higher median would be a more suitable GCM across 
the watershed. In the violin plot (Fig. 6), it was observed 
that there are a few GCMs that have REA weights consis-
tently higher than others across the watershed. For example, 
from the performance criteria, TaiESM1, BCC-CSM2-MR, 
and CanESM5 had their REA performance weight consis-
tently higher than others for RAsum. Similar observations 
can be found with EC-Earth3-Veg-LR and EC-Earth3 for 

Fig. 6  Violin plot representing the density of REA weight for each 
GCM and in each criterion (performance and convergence) across 372 
grids of the Chesapeake Bay watershed. The yellow horizontal line 
indicates a value of REA weight equal to 0.0333, which is 1/number 

of GCMs (30 in this study), indicating a value of GCM weight if all 
the GCMs are equally reliable. The number of data points used in the 
violin plot for each index, GCM, and time period was 372 (one for 
each grid in the watershed)
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can greatly benefit the historical performance-based ranking 
and selection of GCMs. The proposed model convergence 
and divergence criteria overcome the assumption that a 
more reliable GCM in the historical period will continue to 
converge well with the ensemble in the future. Many GCMs 
that performed better in the historical period did not con-
verge well on the future projections. Finally, the selection 
of at least four GCMs was recommended: one for histori-
cal performance, one for future convergence, and two for 
future variability. This generic approach can be extended to 
any region and sector and help identify suitable GCMs for 
computationally intensive climate change-related decision-
making applications.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s41748-
024-00410-3.
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