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Abstract

The selection of Global Climate Models (GCMs) based on their ability to represent precipitation patterns of a region is
required for hydrological climate change impact studies to address time and computational constraints. Generally, the
selection of GCMs is determined based on their ability to reproduce observed climate statistics in historical simulations,
assuming they will continue to perform well in the future. However, the performance of GCMs varies over time in ways
that are not sensitive to their historical performance, indicating that GCMs’ selection needs to consider historical simula-
tion and future projection information. We propose a framework to account for future GCM projection convergence to
and divergence from the ensemble mean, along with historical performance, to select the GCMs that are applicable to a
particular regional climate impact study. The framework uses Reliability Ensemble Averaging (REA) with 30 Coupled
Model Intercomparison Project-6 (CMIP6) GCMs to select GCMs based on the ensemble mean and variability of projec-
tions. We demonstrate the framework using three climate indices (annual maximum precipitation, annual total precipita-
tion, and wet day precipitation intensity) in the Chesapeake Bay watershed of the United States. Our analysis shows that
using only the GCM performance during the historical period could result in the selection of GCMs that are extreme
outliers due to an inherent underprediction of precipitation extremes by all GCMs and requires an efficient bias correction
before selection. There was also no significant correlation between the historical period performance of GCMs and future
GCM convergence for more than 95% of the cases in the study region. This highlights the need to consider convergence
and divergence information from climate projections when selecting GCMs for practical and computationally intensive
applications. The proposed framework can be adapted to any study region and can help identify GCMs for computation-
ally intensive climate change impact studies.

Highlights

e Both historical performance and future projections need accounting in selecting GCMs.
The future convergence of GCMs is not sensitive to their historical performance.
Efficient bias correction can benefit the identification of GCMs.

A subset of GCMs were identified for impact studies in the Chesapeake Bay watershed.
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the attention of policymakers to investigate the impact of
climate change on natural resources and human populations.
It is estimated that 80% of the land and 85% of the total
population may have been affected by climate change (Cal-
laghan et al. 2021). Consequently, it is essential to scientifi-
cally project and study the future consequences of climate
change for better preparedness.

The Intergovernmental Panel on Climate Change (IPCC)
has been working on understanding the global-to-regional
consequences of climate change since its establishment in
the late 1980s. The latest reports (IPCC, 2022a, b, 2021)
released by the IPCC as part of the sixth Assessment Report
(AR6) are the most comprehensive and up-to-date knowl-
edge of the Earth’s climate change and serve as a basis for
deriving adaptation strategies. Numerical climate simula-
tions from global climate models (GCMs), released under
the Coupled Model Intercomparison Projects (CMIP), are
the primary data source for climate impact studies. The per-
formance of these simulations varies with GCM and region
(Baghel et al. 2022; Chhin and Yoden, 2018) due to various
uncertainties, such as uncertainty of the model structure,
uncertainty of unknown future scenarios, and random inter-
nal climate variability (Hawkins and Sutton, 2011; Rupp et
al., 2013). Impact studies must be aware of the uncertain-
ties or variability present in climate model simulations, and
performance evaluation is required to gain confidence in cli-
mate-related decision-making (Rupp et al., 2013). Crucially,
the high computational demands of hydrological/hydraulic
models used in impact studies make it challenging to use
all the available GCMs in decision-making and require the
identification of a subset of GCMs. Performance evalua-
tions of GCMs to simulate historically observed climate are
generally used to rank the GCMs and find the most suitable
ones for impact studies (Raju et al. 2017; Raju and Kumar
2020).

Recent studies have simplified the GCM identifica-
tion and ranking problem by selecting models based on a
single criterion: the models’ ability to reproduce histori-
cally observed statistics. For example, Baghel et al. (2022)
derived sector-specific ranks of 16 GCMs from CMIP6
using several climate indices, Perkins et al. (2007) evalu-
ated the performance of 14 GCMs from CMIP3 using prob-
ability density functions, Khadka et al. (2022) considered 28
GCMs from CMIP5 and 32 from CMIP6 along with 25 met-
rics, and Anil et al. (2021) ranked 24 GCMs of CMIP6 using
multicriteria decision making. A fundamental assumption in
these studies is that GCMs that perform well in the histori-
cal simulations will perform similarly in future projections.

There have been ongoing debates on whether projections
from every model are an equally valid and likely depic-
tion of the future (Knutti 2010). Giorgi and Mearns (2002)
argued that model performance could vary over time, and
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an outlier GCM in the future projections may not be the one
with higher bias in reproducing current-day climate. They
also propose a Reliability Ensemble Averaging (REA) tech-
nique with two criteria to estimate the average, uncertainty,
and range of GCM simulations: model performance (histor-
ical) and model convergence (future). Their method assigns
reliability weights to each GCM based on the GCMs’ bias
in historical simulations and the distance to the ensemble
average in future projections. The weighting technique
used in these uncertainty assessment studies (Giorgi and
Mearns 2002; Xu et al. 2010) shows that the GCMs that
perform well in historical periods may not converge well
with ensemble projections in the future. Yet, the selection
and ranking of GCMs in the literature are often based only
on the historical performance of GCMs, ignoring informa-
tion available in future projections.

Further, it has also been highlighted in several studies
that the subselection of GCMs should consider model inde-
pendence and climate change signal diversity to account for
uncertainty in the projections (Di Virgilio et al. 2022; Merri-
field et al. 2023; Vautard et al. 2021). However, the selection
of all the GCMs that project diverse climate change signals
or do not resemble each other may not solve the challenges
of computational demand if most GCMs are distinct. One
approach in such cases could be to select one GCM to rep-
resent the ensemble mean and two to represent the upper
and lower bounds of uncertainty from an ensemble of pro-
jections. This could provide a way for selecting the subset
of GCMs that represent the mean and variability of the
ensemble that is useful for practical applications. Accord-
ingly, the overall objectives of this study are (1) to evalu-
ate possibilities of changes in GCMs reliability to replicate
historically observed climate and their ability to converge
towards ensembles mean in the future projections and (2) to
develop a framework to identify suitable GCMs for hydro-
logical impact studies considering GCM performance in the
historical period and their convergence and divergence in
future periods.

2 Materials and Methods
2.1 Study Area: Chesapeake Bay Watershed

The Chesapeake Bay, located in the Mid-Atlantic region of
the eastern United States, is the largest and the first estu-
ary in the nation targeted for restoration and protection. The
Chesapeake Bay watershed (Fig. 1) covers a 166,000 km?
drainage area within six states and the District of Colom-
bia. The watershed is under significant pressure to meet the
Total Daily Maximum Load mandates from the US Environ-
mental Protection Agency (US EPA 2009). Climate change
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could greatly affect the Bay’s recovery and economy. Heavy
storms and higher temperatures could increase soil erosion,
nutrient loss, flooding, and increased water temperature,
stressing fish in the Bay watersheds. There are many efforts
to evaluate potential climate change impacts and explore
adaptation strategies in the Bay watershed (Hanson et al.
2022; Ansari et al. 2024; Maloney et al. 2020; Najjar et al.
2010; Saha et al. 2023).

2.2 Climate Data

National Aeronautics Space Administration (NASA)
has recently downscalled and bias-corrected GCM data
(Thrasher et al. 2022) from CMIP6 experiments through
the project NASA Earth Exchange Global Daily Down-
scaled Projections (NEX-GDDP-CMIP6). Its predecessor,
NEX-GDDP-CMIPS5  (https://www.nccs.nasa.gov/services/
data-collections/land-based-products/nex-gddp), has been

widely used throughout the world in climate impact stud-
ies (Jain et al. 2019; Li et al. 2020; Liao et al. 2019; Singh
et al. 2019; Vigliano et al. 2018; Wang et al. 2020; Wu et
al. 2020; Zhao et al. 2021). In this study, downscaled pre-
cipitation from 30 CMIP6 GCMs for the historical and
future scenario SSP245 (Supplementary Table 1) (https://
www.nccs.nasa.gov/services/data-collections/land-based-
products/nex-gddp-cmip6, accessed in October 2022) was
used. The NEX-GDDP-CMIP6 provides the dataset for
only one variant in each GCM, which had rlilp1fl for 23
GCMs, rlilplf2 for 5 GCMs, and r3ilplfland rlilplf3
for one GCM each. More details about the GCMs used and
their variants are provided in the Supplementary File). The
Global Meteorological Forcing Datasets (GMFD; https://
rda.ucar.edu/datasets/ds314.0/, accessed in October 2022)
served as the reference observed data for the bias correc-
tion and evaluations. Both datasets are available at 0.25°
resolution.
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2.3 Bias Correction of Climate Projections

The climate projections from NEX-GDDP-CMIP6 are
already downscaled and bias corrected to 0.25° resolution
to match GMFD. However, we noticed that the extreme
precipitation was still substantially underestimated by the
downscaled GCMs, and the magnitude of the bias varied
substantially (Fig. 2). Hence, an Extremes Weighted Empir-
ical Quantile Mapping (EW-EQM; Rohith and Cibin 2024)
bias correction was applied to overcome this underesti-
mation. The EW-EQM is similar to the widely used con-
ventional EQM (Bo¢ et al. 2007) as given in Eq. (1), with
the difference that separate bias correction was applied to
extremes and non-extremes.

Py = FyN (Foon (Peowr)) (1)

where Pgoys and Fgopy are probabilities and the empiri-
cal distribution of GCM simulated precipitation, respec-
tively, and F),! is the inverse of the empirical distribution
of observed precipitation. In this study, a high precipitation
threshold was set to differentiate extremes such that the
number of extremes is equal to the number of years of data
used in each analysis period (30 years). The extreme precip-
itation days were removed (or converted to zero) before bias
correction was applied to non-extreme precipitation occur-
rences. The extracted extremes were bias-corrected sepa-
rately and inserted back into the non-extremes time series.
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Fig. 2 Density plot of GMFD and NEX-GDDP-CMIP6 simulated

extreme precipitation (50 extremes) at a location in the Mid-Atlantic
region of the United States (US)
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This method allows a better representation of extremes
in the bias-corrected data and a more logical selection of
GCMs for impact studies, as demonstrated in the Results
and Discussion section. Further, the bias correction meth-
odology employed assumes stationarity in the bias in both
historical and future periods.

2.4 Reliability Ensemble Averaging

The framework developed in this study to identify suit-
able GCMs for impact study is based on the REA method
extensively used to calculate the uncertainty, range, and
ensemble mean of GCM projections (Giorgi and Mearns
2002, 2003). In the context of REA, ensemble refers to
simulations/projections from different GCMs, not different
realizations of the same GCM. REA facilitates comprehen-
sive and quantitative assessment of the impact of climate
change based on collective information from an ensemble
of future projections. One of the primary goals of REA is to
derive an ensemble average for future projections to act as
a plausible representation of the ensemble in the absence of
observations in the future period. The framework, as pro-
posed by Giorgi and Mearns (2002), involves the evalua-
tion of two criteria: (i) model performance criteria and (ii)
model convergence criteria. The model performance criteria
evaluate the ability of each GCM to replicate the historically
observed climate patterns and assign reliability scores to
them. For example, assuming P represents the total annual
precipitation, a reliability score for P simulated by GCMs
for the historical period is estimated as,

1

Bbi = RAISE(CDF (P, ,CDF (B) @

where Py, ,, is the precipitation simulations by the GCM for
the historical period, P is the observed precipitation, CDF
is the cumulative distribution function, RMSE is the root
mean square error, and Ry ; is the reliability score. The Ry ;
is a function of the bias between the GCM simulated pre-
cipitation CDF and actual observed CDF in the historical
period. The lower the bias, the higher the performance and
reliability of the GCM to represent the current-day climate.
A weight wy ; can be assigned to each GCM based on the
reliability score to facilitate the calculation of the ensemble
weighted average by giving a higher weight to GCMs witih
higher reliability score than those with higher bias relative
to the observations. The weights for N GCMs can be esti-
mated as,

Wh; =

€)
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The weights wy, ; estimated for each GCM in the historical
period are termed model performance weights, represent-
ing historical model performance. These weights can be
used to estimate the ensemble average for the future period,
assuming that the GCMs with higher reliability scores in the
historical period are the ones with future projections that
agree closely with the ensemble projections. However, the
historical performance of GCM does not necessarily mean a
higher degree of convergence in the projections (Giorgi and
Mearns 2002).

The model convergence criterion evaluates how well
projections from different GCMs converge. Similar to bias
in the historical performance criteria, a distance was calcu-
lated between ensemble weighted average CDF and CDF
from individual model projections to evaluate the model
convergence criteria. The lower the distance of individual
GCMs CDF to the weighted ensemble mean, the higher the
GCM convergence. An initial ensemble weighted average
was calculated as,

N
CDF (Pf.mmz_(].j) = Z“«‘h.i x CDF <Pf.m,i.j) j =4... k (4)

i=1

where Py, ; ; is the projected precipitation for i GCM at j®
quantile and Py ,, .., 18 the initial ensemble weighted aver-
age for the future. A set of new GCM reliability scores and
weights were estimated based on distances between ensem-
ble weighted CDF and individual GCM CDF as follows:

1
Rp,; = RMSE (CDF (Py.), CDF (Pfim.avg)) ©)
w Rp; 6
iy —
Z;LRD:Z ©

The procedure to estimate the ensemble weighted average
and the weights was repeated until the weights converged.
The final converged weights are termed convergence
weights. If most of the GCMs were assigned similar
weights, it indicates that the climate change projections
are slightly sensitive to model differences. The GCMs with
lower convergence weights are the outliers or the ones that
do not agree with projections from most GCMs.

Further, we extend the methodology to select GCMs that
represent the variability of projections, which is termed
model divergence criteria. Similar to the identification
of GCMs that are close to the ensemble mean, the GCMs
closer to the 5 and 95 percentiles of the ensemble GCMs
were identified to represent the variability or uncertainty in
projections. This leads to the selection of at least 4 GCMs,
one accounting for historical performance, one for future
ensemble mean, and two for projected variability. The

performance and convergence weights of the GCMs were
compared across the watershed to evaluate if a GCM con-
vergence in projections implies a better performance in the
historical period (Giorgi and Mearns 2002).

3 Results and Discussions

Three climate change indices were evaluated: annual maxi-
mum 1-day precipitation, average annual precipitation, and
average annual wet-day precipitation intensity. RAlmax
(annual maximum 1-day precipitation) is critical for flood
risk assessments and stormwater management designs.
RAsum (average annual precipitation) and SDDI (Simple
Precipitation Intensity Index) are critical for water resources
management, agricultural water management, and drought
risk assessments. An empirical CDF of all three climate
indices from observed data, all the 30 downscaled simula-
tions and projections, along with the selected GCM from
both historical performance criteria and future convergence
criteria, are plotted in Fig. 3 for a randomly selected location
(longitude = -75.375 W and latitude =41.375 N). The GCM
simulations in the historical period were underestimated
entirely (more than 50%) for RA 1max and SDII (Fig. 3a and
¢). They had 0% overlap with the observed CDFs, while the
agreement is better for RAsum because the GCM simula-
tions were bias-corrected to match only the RAsum. Since
there is a consistent underestimation of RAlmax and SDII
by GCMs, the selected GCM for the region from the con-
ventional performance criteria is simply the one with higher
magnitudes (red lines in Fig. 3) for these indices. Figure 3
(red lines) shows that the GCM, which had the highest mag-
nitude in the historical period, may continue to simulate
higher magnitudes for SDII in the future (Fig. 3f). Hence,
the higher magnitude GCM may not be the most probable
case but the most extreme GCM.

Further, it should also be noted that RA1max and SDII
of the historical downscaled GCM data did not preserve the
observed interannual variability (Fig. 3a and c¢) and could
have also led to lower interannual variability in the future
(Fig. 3d and f). Here, the interannual variability was inferred
based on the spread of CDF plots, as the variables plotted are
at an annual scale. In contrast, the interannual variability of
RAsum, which influences water availability-based impact
decisions, was well reproduced by the downscaled historical
GCM simulations, and the GCM selection worked reason-
ably well as the selected GCMs were close to the observed
values in the historical period and ensemble averages in the
future period. The underestimation of both mean and inter-
annual variability of RAlmax and SDII could substantially
influence decisions related to extreme events, such as floods
and droughts. This highlights the need for advanced bias
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Fig.3 Cumulative distribution function (CDF) plot of the daily annual
maximum (RA1max), total annual precipitation (RAsum), and aver-
age wet-day intensity (SDII) climate indices at a location (longitude =
-75.375 W and latitude=41.375 N) in the Chesapeake Bay watershed
in the historical (1976-2005) and future (2021-2050) periods. The cli-
mate simulations and projections are the NEX-GDDP data for CMIP6.
The black line indicates the observed precipitation in the historical

correction methods that can account for multiple indices in
bias correction.

The GCM selected based on future convergence crite-
ria (green lines in Fig. 3) falls very close to the ensemble
mean and is 100% within the 90% band of all GCM in both
the historical and the future periods. However, the initial
weights that were used in the future convergence criteria
to obtain the ensemble mean were based on historical per-
formance weights. Performance weights were higher for
the GCMs with higher magnitudes for RA1max and SDII,
which may not be the most reliable GCMs. Hence, EW-
EQM was applied to NEX-GDDP data to correct the bias in
RAlmax and SDDI. From Fig. 4, all three climate indices
are well represented by GCMs after EW-EQM bias correc-
tion, and the observed CDF is more than 96% within the
90% band of all GCMs. The selected GCM based on the
performance criteria was close to the observed and within
the 90% band of GCMs in both historical and future peri-
ods. However, historical performance-based selected GCMs
were not the closest to the ensemble average of the future
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All GCM 90% band

period and the reliability ensemble average in the future period; the
grey band indicates the 90% band of simulated data from 30 GCMs;
the red line indicates the CDF of the selected GCM based on historical
performance criteria for each climate index; and the green line indi-
cates the CDF of the selected GCM based on the future convergence
criteria for each climate index

projection (Fig. 4d and e, & 4f), and future convergence-
based selected GCMs were not the closest to the observed
in the historical period (Fig. 4a and b, & 4c). This indicates
that a GCM that performed well in the historical period may
not be the one that converges well in the future period.

To better understand whether there is a relationship
between the historical performance of GCMs and their
future convergence, a correlation coefficient was calculated
between REA performance and convergence weights of all
the GCMs for each grid in the watershed and all three vari-
ables. A scatter plot of REA performance and convergence
weights is presented in Fig. 5, along with a histogram of the
correlation coefficient across all the grids for each index. The
correlation coefficient is mostly less than 0.5 for all the indi-
ces and was statistically significant at only less than 3.8%,
5.2%, and 4.1% of grids at 95% confidence for RAlmax,
RAsum, and SDII, respectively. This clearly indicates that
the GCMs that performed well in the historical period may
not always converge well with ensembles in the future. This
warrants consideration of historical performance and future
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and the reliability ensemble average in the future period; the grey band
indicates the 90% coverage of simulated data from 30 GCMs; the red
line indicates the CDF of the selected GCM based on the historical
performance criteria for each climate index; and the green line indicate
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Fig. 6 Violin plot representing the density of REA weight for each
GCM and in each criterion (performance and convergence) across 372
grids of the Chesapeake Bay watershed. The yellow horizontal line
indicates a value of REA weight equal to 0.0333, which is 1/number

convergence in identifying suitable GCMs for computation-
ally intensive hydrological impact studies.

The selection of GCMs demonstrated in Figs. 3 and 4
was for a single location (grid point) in the watershed. How-
ever, actual hydrological applications require the identifica-
tion of GCMs for larger regions, such as watersheds. One
way to identify that could be by taking the median of REA
weights for each GCM across the watershed, and the GCM
with a higher median would be a more suitable GCM across
the watershed. In the violin plot (Fig. 6), it was observed
that there are a few GCMs that have REA weights consis-
tently higher than others across the watershed. For example,
from the performance criteria, TaiESM1, BCC-CSM2-MR,
and CanESMS5 had their REA performance weight consis-
tently higher than others for RAsum. Similar observations
can be found with EC-Earth3-Veg-LR and EC-Earth3 for
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of GCMs (30 in this study), indicating a value of GCM weight if all
the GCMs are equally reliable. The number of data points used in the
violin plot for each index, GCM, and time period was 372 (one for
each grid in the watershed)

future convergence criteria. For RA Imax, INM-CM5-0 and
IPSL-CM6A-LR were more suitable than others for the
performance criteria, and CMCC-ESM2 and MPI-ESM1-
2-HR were suitable in the convergence criteria. Similarly,
for SDII, CanESM5 and TaiESM1 were more suitable in
the performance criteria and EC-Earth3-Veg-LR, GFDL-
ESM4, and HadGEM3-GC31-LL in the convergence cri-
teria. A violin plot of REA weights of downscaled GCM
divergence (closest to 5 and 95 percentiles) is presented in
Figure S1 (Supplementary).

The final GCMs identified (in the order of performance,
convergence, 5 percentile, and 95 percentile) were INM-
CM5-0, CMCC-ESM2, CanESMS, and GFDL-CM4 for
RAlImax, TaiESM1, EC-Earth3-Veg-LR, NorESM2-LM,
and TaiESM1 for RAsum, and CanESMS5, EC-Earth3-Veg-
LR, MIROC-ES2L and EC-Earth3 for SDII. It can be noted
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that TaiESM1, which was the selected GCM based on the
historical performance criteria for RAsum, was also the 95
percentile variability GCM in the future projections. A rank-
ing of GCM based on historical performance is also pre-
sented in Figure S2.

The inferences of this study establish that information
from both historical simulations and future projections of
GCMs needs to be accounted for when identifying the most
suitable GCMs for regional impact studies. The frame-
work developed facilitates the selection of at least 4 GCMs
among the pool, that represent historical performance,
future convergence, and future variability in the projec-
tions. This selection allows to quantify uncertainty in future
projections without the use of ensemble GCMs in compu-
tationally intensive hydrological impact studies. It should
also be noted that the selection of GCMs presented here is
not directly based on raw GCM simulations or NEX-GDDP
outputs but bias-corrected data of NEX-GDDP outputs, as
explained earlier. Using different bias correction techniques,
a different source of data, climate, or performance indices
may result in different selected GCMs. This work aims to
demonstrate the need to consider future convergence and
divergence information along with the historical perfor-
mance in the selection of GCMs. Hence, we recommend that
specific applications use the methodology to select GCMs
specific to their case. The methodology can also be seam-
lessly extended to a sector-specific ranking that accounts for
multiple indices simultaneously (Baghel et al. 2022), mul-
tiple approaches of weighting and constraining projections
(Brunner et al. 2020), and multiple regions.

4 Conclusions

This study develops an approach to account for the GCMs’
ability to converge to the ensemble mean, their divergence
information in the future, and their historical performance
in order to identify suitable GCMs for impact studies. The
historical performance of the GCM was quantified based
on its ability to simulate observed climate indices. Future
convergence ability was assessed based on the multi-model
ensemble mean estimated from Reliability Ensemble Aver-
aging. The GCM divergence information was quantified
based on their closeness to the 5 and 95 percentiles of the
ensemble in the projections. Bias-corrected simulations/
projections for 30 GCMs of CMIP6 provided by NEX-
GDDP were used to demonstrate the methodology in the
Chesapeake Bay watershed. The results show that if only
conventional performance criteria are used, the consistent
underestimation of extremes by the GCM could lead to a
selection of GCMs that suggest the most extreme cases in
the ensemble. The accuracy of the bias correction method

can greatly benefit the historical performance-based ranking
and selection of GCMs. The proposed model convergence
and divergence criteria overcome the assumption that a
more reliable GCM in the historical period will continue to
converge well with the ensemble in the future. Many GCMs
that performed better in the historical period did not con-
verge well on the future projections. Finally, the selection
of at least four GCMs was recommended: one for histori-
cal performance, one for future convergence, and two for
future variability. This generic approach can be extended to
any region and sector and help identify suitable GCMs for
computationally intensive climate change-related decision-
making applications.

Supplementary Information The online  version  contains
supplementary material available at https://doi.org/10.1007/s41748-
024-00410-3.
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