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Abstract. We investigate the rationality of Weil sums of binomials of
the form WK,s

u =
∑︁

x∈K ψ(xs − ux), where K is a finite field whose

canonical additive character is ψ, and where u is an element of K×

and s is a positive integer relatively prime to |K×|, so that x ↦→ xs is a
permutation ofK. The Weil spectrum forK and s, which is the family of
valuesWK,s

u as u runs through K×, is of interest in arithmetic geometry
and in several information-theoretic applications. The Weil spectrum
always contains at least three distinct values if s is nondegenerate (i.e.,
if s is not a power of p modulo |K×|, where p is the characteristic of K).
It is already known that if the Weil spectrum contains precisely three
distinct values, then they must all be rational integers. We show that
if the Weil spectrum contains precisely four distinct values, then they
must all be rational integers, with the sole exception of the case where
|K| = 5 and s ≡ 3 (mod 4).

1. Introduction

In this paper, we assume that K is a finite field of characteristic p and
order q = pn. Let ζ = exp(2πi/p). The canonical additive character of K

is ψ : K → Q(ζ) given by ψ(x) = ζTr(x), where Tr: K → Fp with Tr(x) =

x + xp + · · · + xq/p. We use s to denote an invertible exponent over K,
that is, a positive integer with gcd(s, q − 1) = 1. This ensures that s has a
multiplicative inverse, 1/s, modulo q − 1 and makes x ↦→ xs a permutation

of the field K with inverse map x ↦→ x1/s. For each u ∈ K, we define

WK,s
u =

∑︂
x∈K

ψ(xs − ux) =
∑︂
x∈K

ζTr(x
s−ux), (1)

which is a Weil sum of a binomial (if u ̸= 0) or a Weil sum of a monomial
(if u = 0). When the field K and the exponent s are clear from context, we
omit the superscript and write Wu. Note that Weil sum values lie in Z[ζ],
the ring of algebraic integers in Q(ζ). In fact, it is known that they lie in
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Z[ζ] ∩ R; see [Kat12, Theorem 2.1(c)], or see [Tra70, Theorem 2.3] for an
earlier equivalent statement in terms of crosscorrelation of linear recursive
sequences.

Theorem 1.1 (Trachtenberg, 1970). If K is a finite field and s is an in-

vertible exponent over K, then WK,s
u ∈ R for every u ∈ K.

A multiset of elements from a set X is a function µ from X into the non-
negative integers, where for x ∈ X the value µ(x) is the frequency (number
of instances) of x in the multiset. Thus, µ represents a normal set if and
only if it maps X into {0, 1} (in which case µ is identified with the subset
µ−1({1}) of X). The Weil spectrum for the field K and the exponent s is the

multiset of values WK,s
u as u runs through K×. That is, the Weil spectrum

is a multiset of elements from Z[ζ], where a given value A ∈ Z[ζ] has a

frequency, written NK,s
A (or NA when K and s are clear from context), with

NK,s
A = |{u ∈ K× :WK,s

u = A}|. (2)

We define the value set for the field K and the exponent s, written WK,s, to
be the set of distinct values in the Weil spectrum, that is,

WK,s = {WK,s
u : u ∈ K×}. (3)

Note that we do not recordWK,s
0 in WK,s, but this value is always 0 because

x ↦→ xs is a permutation of K and
∑︁

x∈K ψ(x) = 0.
The evaluation and estimation of Weil sums has been studied extensively

[Klo27, DH36, Aku65, Kar67, Car78, Car79, Cou98, CP03, CP11, SV20],
including special cases such as Kloosterman sums, which are of the form

W
K,|K|−2
u − 1. Weil sums are used to count points in algebraic sets over

finite fields; see, for example, Sections 7.7 and 7.11 of [Kat19] and Section 5
of this paper. In the Kloosterman case, the Weil spectra for fields of charac-
teristic 2 and 3 were studied in [LW87] and [KL89], and Sections 7.2–7.4 of
[Kat19] describe applications of Weil spectra in information theory, which
we summarize here. The Walsh spectrum of the permutation x ↦→ xs of K is

obtained from the Weil spectrum by also including the valueWK,s
0 = 0. The

Walsh spectrum measures the nonlinearity of the permutation, which indi-
cates its resistance to linear cryptanalysis. The crosscorrelation spectrum of
two maximum length linear recursive sequences is obtained by subtracting
1 from each value in the Weil spectrum. This crosscorrelation spectrum
determines the performance of communications networks and remote sens-
ing systems employing these sequences for modulation. Weil spectra also
determine the weight distribution of certain error correcting codes, thus in-
dicating the performance of the codes.

For a finite field K, we say that two exponents s and s′ are equivalent to
mean that s′ ≡ pksℓ (mod q−1) for some k ∈ Z and ℓ ∈ {−1, 1}; this defines
an equivalence relation, and equivalent exponents produce the same Weil
spectrum by [Tra70, Theorems 2.4, 2.5] (in the language of crosscorrelation),
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or see [Kat19, Lemmas 7.5.2, 7.5.6]1. We say that s is degenerate over K
to mean that it is equivalent to 1, that is, s is a power of p modulo q − 1.
If K has four or fewer elements, then all exponents are degenerate over
K; larger finite fields always have at least one nondegenerate exponent (see
[Kat19, Lemma 7.5.4]). If s is degenerate, then WK,s = {0, q} if q > 2 and
WK,s = {q} if q = 2; see [Kat19, Corollary 7.5.5].

We say the Weil spectrum for K and s is v-valued (resp., at least v-
valued, at most v-valued) to mean that |WK,s| = v (resp., |WK,s| ≥ v,
|WK,s| ≤ v). Thus, Weil spectra of degenerate exponents are at most 2-
valued, and Helleseth showed that Weil spectra of nondegenerate exponents
are always at least 3-valued in [Hel76, Theorem 4.1].

Theorem 1.2 (Helleseth, 1976). Let K be a finite field and s be an invertible
exponent over K. Then the Weil spectrum for K and s is at least 3-valued
if and only if s is nondegenerate over K.

There is much interest in which pairs (K, s) produce Weil spectra with few
values (e.g., 3-valued or 4-valued spectra). All known 3-valued spectra have
been classified into ten infinite families (see [Kat19, Table 7.1]), and 4-valued
spectra have been studied in [Nih72, Theorems 3-6, 3-7], [Hel76, Theorem
4.13], [Dob98, Proposition 1], [HR05, Theorem 6], [DFHR06, Theorem 23],
[ZLFG14, Theorem II.5], and [XHW14, Theorem 1]. Although each Weil
sum value is always an algebraic integer in some cyclotomic extension of Q,
one observes that Weil spectra with few distinct values often have all of their
values in Z. We say that the Weil spectrum for K and s is rational (or that
WK,s is rational) to mean WK,s ⊆ Z. Helleseth proved a simple criterion for
rationality in [Hel76, Theorem 4.2].

Theorem 1.3 (Helleseth, 1976). Let K be a finite field of characteristic p
and s be an invertible exponent over K. Then the Weil spectrum for K and
s is rational if and only if s ≡ 1 (mod p− 1).

Later, in [Kat12, Theorem 1.7], it was proved that 3-valued Weil spectra
are invariably rational.

Theorem 1.4 (Katz, 2012). Let K be a finite field and s be an invertible
exponent over K. If the Weil spectrum for K and s is 3-valued, then it is
rational.

Thus, in view of Theorem 1.3, when K is a field of characteristic p and
s ̸≡ 1 (mod p−1), the Weil spectrum for K and s cannot be 3-valued. Katz
and Langevin set an open problem [KL16, Problem 3.6], part of which is to
find an analogue of Theorem 1.4 for 4-valued spectra. The main result of
this paper is this analogue, which we now state.

1Lemma 7.5.6 of [Kat19] has a typographical error: a1/d should be fixed to read a−1/d

there.
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Theorem 1.5. Let K be a finite field and s be an invertible exponent over
K. If the Weil spectrum for K and s is 4-valued, then it is rational unless
K = F5 and s ≡ 3 (mod 4) (in which case WK,s = {(5±

√
5)/2,±

√
5}).

By Theorem 1.3, this means that, other than in the exceptional case when
|K| = 5 and s ≡ 3 (mod 4), the condition s ≡ 1 (mod p−1) is necessary for
the Weil spectrum to be 4-valued. Since the Walsh spectrum of the power
permutation x ↦→ xs over K is obtained from the Weil spectrum for K and

s by including WK,s
0 = 0, Theorems 1.4 and 1.5 show that all the values in

a four-valued Walsh spectrum must lie in Z.
The remainder of this paper is devoted to proving Theorem 1.5. We start

in Section 2 by using Galois theory and algebraic number theory to study the
structure of Weil spectra. Then, in Section 3, we present some archimedean
and p-adic bounds on Weil sum values. Section 4 introduces some algebraic
sets over finite fields, which we then relate to Weil sums in Section 5 via a
group algebra. Finally, we prove Theorem 1.5 in Section 6.

2. Algebraic number theory

In this section we introduce the number systems that are used in our
proof of Theorem 1.5. Algebraic number theory provides several results
that constrain the structure of Weil spectra and thus help us achieve our
proof.

Recall that K is a finite field of characteristic p and order q = pn, that s
is a positive integer such that gcd(s, q − 1) = 1, and that ζ = exp(2πi/p).
We use N to denote the set of nonnegative integers and Z+ to denote the set
of strictly positive integers. We know that Gal(Q(ζ)/Q) is a cyclic group
of order p − 1; an element of this Galois group fixes all elements of Q and
maps ζ to ζj for some j ∈ F×

p . Let γ denote a primitive element of the
prime subfield Fp and let σ denote the automorphism in Gal(Q(ζ)/Q) that
maps ζ to ζγ : note that σ is a generator of the Galois group. Then [Kat12,
Theorem 2.1(b)] shows that σ(Wu) = Wγ1−1/su for every u ∈ K, where 1/s
is interpreted as the multiplicative inverse of s modulo p− 1. Thus, σ maps
the value set WK,s (see (3)) to itself. From now on, we let τ : WK,s → WK,s

be the permutation obtained by restricting σ, so that for every u ∈ K, we
have

τ(Wu) =Wγ1−1/su, (4)

where 1/s is interpreted as the multiplicative inverse of s modulo p− 1.
The following result indicates important relationships between the expo-

nent s, the characteristic p of the field K, the order of τ , the order of the
element γ1−1/s in (4), and the degree of the extension of Q generated by the
values in the Weil spectrum.

Proposition 2.1. The following are all equal:

(i) the order of the permutation τ of WK,s,
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(ii) the degree, [Q(WK,s) : Q], of the field extension of the rationals
generated by WK,s,

(iii) the order of γ1−1/s in F×
p (where 1/s indicates the multiplicative

inverse of s modulo p− 1), and
(iv) the quantity (p− 1)/ gcd(p− 1, s− 1).

Let m denote the common value of these. If p = 2, then m = 1, but if p > 2,
then p ≡ 1 (mod 2m).

Proof. Since Q(WK,s) is a subfield of Q(ζ) and since Gal(Q(ζ)/Q) is a cyclic
group generated by σ, the Galois correspondence shows that [Q(WK,s) : Q]
equals the order of the restriction to Q(WK,s) of σ, which is the same as
the order of τ . Lemma 5.3 of [AKL15] shows that [Q(WK,s) : Q] equals

(p − 1)/ gcd(p − 1, s − 1), which is the order of γ1−1/s = (γ1/s)s−1 because
γ has order p− 1 and s is invertible modulo p− 1 (since gcd(s, q − 1) = 1).

If p = 2, then Q(ζ) = Q(−1) = Q, so Q(WK,s) = Q andm = 1. When p >
2, Theorem 1.1 shows that Q(WK,s) is a subfield of Q(ζ)∩R = Q(ζ + ζ−1),
an extension of Q of degree (p− 1)/2, and so m | (p− 1)/2. □

Remark 2.2. Proposition 2.1 shows that WK,s is rational when p = 2 or 3.

Recall from (2) that the frequency of a value A in the Weil spectrum is
NA = |{u ∈ K× :Wu = A}|. The action of τ on the Weil spectrum gives us
information about these frequencies.

Lemma 2.3. Suppose that τ has order m, and let A0, A1, . . . , Ak−1 be dis-
tinct elements of WK,s that τ permutes in a k-cycle, that is, τ(Ai) = Ai+1

for every i ∈ Z/kZ. Then k | m and NA0 = NA1 = · · · = NAk−1
, which is a

multiple of m/k.

Proof. Let Ui = {u ∈ K× :Wu = Ai} for each i ∈ Z/kZ and let λ = γ1−1/s,
where we interpret 1/s as the multiplicative inverse of s modulo p− 1. For
u ∈ U0 and j ∈ Z we have, by (4), thatWλju = τ j(Wu) = τ j(A0) = Aj mod k.
In particular, we have k | m since τ has order m. Moreover, Wλku = A0 =
Wu, so U0 is a union of cosets of the subgroup ⟨λk⟩ of the group K×. Since
λ is of order m by Proposition 2.1 and k | m, this subgroup is of order
m/k, and so NA0 = |U0| is a multiple of m/k. Lastly, for any j ∈ Z, the
map u ↦→ λju provides a bijection from U0 to Uj mod k because we have
seen that Wλju = Aj mod k for every u ∈ U0, and we can similarly prove
Wλ−jv = τ−j(Wv) = τ−j(Aj mod k) = A0 for every v ∈ Uj mod k. □

Let f be a permutation of a finite setX. The cycle type of f is the multiset
of lengths of cycles that is obtained when f is written as a composition of
disjoint cycles. Note that the sum of the values in the cycle type of a
permutation f is equal to the size of the set being permuted. We say that f
is a single cycle to mean that f can be written as a single cycle that contains
all elements of X. The next two results explore constraints on the cycle type
of τ .
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Lemma 2.4. When p = 2, the cycle type of τ is a collection of |WK,s|
instances of 1. When p is odd, the cycle type of τ contains no number larger
than (p− 1)/2.

Proof. Let m be the order of τ . When p = 2, the field Q(ζ) = Q(−1) = Q,
so σ and τ are identity maps. When p is odd, Proposition 2.1 implies that
m ≤ (p − 1)/2, so the desired result follows since m is the least common
multiple of all the numbers in the cycle type of τ . □

Proposition 2.5. The permutation τ is a single cycle if and only if K = F2

(and then s is degenerate and τ is a 1-cycle).

Proof. Suppose p = 2. Lemma 2.4 shows that τ is a single cycle if and only if
|WK,s| = 1, which happens exactly when K = F2 (and then every exponent
is degenerate and τ is a 1-cycle).

Now suppose p is odd. Let WK,s = {A0, . . . , Ak−1} and suppose for
a contradiction that τ is a single cycle. Then NA0 = · · · = NAk−1

by
Lemma 2.3. The sum

∑︁
u∈K× Wu of q − 1 Weil sum values is equal to q by

[Kat12, Proposition 3.1(b)], so that

kNA0 = q − 1 and

NA0(A0 + · · ·+Ak−1) = q.

Note that A0 + · · ·+Ak−1 ∈ Z since it is an algebraic integer fixed by σ (of
which τ is a restriction). Thus, NA0 is a common divisor of q and q − 1,
and hence NA0 = 1 and k = q − 1. But then, by Lemma 2.4, we must have
(p− 1)/2 ≥ k = q − 1 ≥ p− 1, which is impossible. □

3. Bounds on Weil sum values

In this section we discuss some archimedean and non-archimedean bounds
on the Weil sum WK,s

u that are used in proving the main result (Theo-
rem 1.5). Recall that we use N to refer to the set of nonnegative integers.
We use the p-adic valuation, vp. One begins with vp : Z → N ∪ {∞}, where
vp(0) = ∞ and vp(a) = max{j ∈ N : pj | a} when a ̸= 0. Then one extends
the domain of vp to Q by letting vp(a/b) = vp(a)− vp(b) when a, b ∈ Z and
b ̸= 0. Furthermore, one can extend the domain of vp to Q(ζ), in which
case vp(ζ − 1) = 1/(p − 1); see [Lan02, Theorem 4.1], [Lan90, p. 7], and
[Hel76, p. 218]. For the purposes of this paper, the most important facts
about vp (which we shall use without proof) are that vp(ab) = vp(a) + vp(b)
and that vp(a + b) ≥ min{vp(a), vp(b)}, with vp(a + b) = min{vp(a), vp(b)}
if vp(a) ̸= vp(b).

From (1), we know that Weil sums are sums of pth roots of unity, so we
first explore linear combinations of these roots.

Lemma 3.1. For any t ∈ Q and any v ∈ Q(ζ), there is one and only
one way to write v as a Q-linear combination of 1, ζ, . . . , ζp−1 such that the
coefficients sum to t.
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Proof. Our claim will follow if we show that the map φ : Qp → Q(ζ)×Q with
φ(w0, w1, . . . , wp−1) = (w0 + w1ζ + · · · + wp−1ζ

p−1, w0 + w1 + · · · + wp−1)
is an isomorphism of Q-vector spaces. Since φ is clearly a Q-linear map
between two Q-vector spaces of dimension p, it suffices to show that ker(φ)
is trivial. Let pr1 : Q(ζ) × Q → Q(ζ) and pr2 : Q(ζ) × Q → Q be the
projection maps. Since {1, ζ, . . . , ζp−1} spans the (p − 1)-dimensional Q-
space Q(ζ) and has dependence relation 1+ζ+ · · ·+ζp−1 = 0, we know that
pr1 ◦φ is surjective, which makes ker(pr1 ◦φ) equal to the 1-dimensional
space spanQ{(1, 1, . . . , 1)}. Then ker(φ) is a subspace of ker(pr1 ◦φ), but
(pr2 ◦φ)(1, 1, . . . , 1) ̸= 0, so ker(φ) must be trivial. □

Now we shall apply the previous result to obtain an archimedean bound
on nondegenerate Weil sums. Recall that we let K be a finite field with
characteristic p and order q = pn and that s is a positive integer with
gcd(s, q − 1) = 1.

Lemma 3.2. For any u ∈ K, there exist unique w0, . . . , wp−1 ∈ N with

w0 > 0 such that
∑︁p−1

i=0 wi = q and Wu =
∑︁p−1

i=0 wiζ
i. If s is nondegenerate,

then wi < q for every i ∈ {0, 1, . . . , p− 1} and |Wu| < q.

Proof. By definition (1), a Weil sum Wu is a sum of q terms from the set

{ζ0, ζ1, . . . , ζp−1}, so we can writeWu =
∑︁p−1

i=0 wiζ
i for some w0, . . . , wp−1 ∈

N such that
∑︁p−1

i=0 wi = q. The uniqueness of this representation follows from
Lemma 3.1. Note that w0 > 0 because one term in Wu is ψ(0s − u · 0) = ζ0.

When s is nondegenerate, [Kat12, Theorem 2.1(f)] tells us |Wu| < q,
which makes it impossible for wi = q for any i (else |Wu| = |qζi| = q). □

The next two results explore p-adic bounds on Weil sums.

Lemma 3.3. For all u ∈ K, we have vp(Wu) > 0.

Proof. This is [Kat12, Theorem 2.1(e)]. For an equivalent version in terms
of crosscorrelation, see [Hel76, Theorem 4.5]. □

Lemma 3.4. Suppose that s is nondegenerate. If u ∈ K and vp(Wu) ≥
vp(q) = n, then Wu = 0. In particular, either vp(Wu) < vp(q) or else
vp(Wu) = ∞.

Proof. Let u ∈ K and use Lemma 3.2 to write Wu =
∑︁

0≤i<pwiζ
i, where

w0, . . . , wp−1 are nonnegative integers that are strictly less than q with∑︁
0≤i<pwi = q. Suppose that vp(Wu) ≥ vp(q) = n. Then q = pn di-

vides Wu in Z[ζ], so that Wu = qr for some r ∈ Z[ζ], which we write as∑︁
0≤i<p riζ

i, where each ri = wi/q is a nonnegative rational number strictly

less than 1 with
∑︁

0≤i<p ri = 1. Then we write r as
∑︁

0≤i<p−1(ri − rp−1)ζ
i,

which is the unique Q-linear combination of 1, ζ, . . . , ζp−2 equal to r, and
since r ∈ Z[ζ], the coefficients ri − rp−1 are all in Z. Since 0 ≤ ri < 1 for
every i, this forces r0 = · · · = rp−1, so that r = 0, and then Wu = 0. □
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Recall from Section 2 that γ is a primitive element of the prime subfield Fp

and σ is the generator of Gal(Q(ζ)/Q) that maps ζ to ζγ . If p ≡ 1 (mod 4),
then it is well known from algebraic number theory that Q(ζ) ⊇ Q(

√
p)

and that Q(ζ)/Q(
√
p) is an extension of degree (p− 1)/2 with Galois group⟨︁

σ2
⟩︁
. The algebraic integers in Q(

√
p) are precisely elements of the form

(a + b
√
p)/2 with a, b ∈ Z and a ≡ b (mod 2). We are interested in how

one obtains such elements from Weil sums. To explore this, we use Gauss’s
determination of the quadratic Gauss sum when p ≡ 1 (mod 4) (see [LN97,
Theorem 5.15]): ∑︂

i∈F×
p

η(i)ζi =
√
p, (5)

where η is the quadratic character (Legendre symbol) of F×
p .

Lemma 3.5. Suppose that p ≡ 1 (mod 4). An expression of the form∑︁
i∈Fp

wiζ
i with rational coefficients wi lies in Q(

√
p) if and only if, for

every i, j ∈ Fp, we have wi = wj when η(i) = η(j). In this case, if we write
w+ for the common value of the wi’s with η(i) = +1 and w− for the common
value of the wi’s with η(i) = −1, then our sum becomes(︃

w0 −
w+ + w−

2

)︃
+

(︃
w+ − w−

2

)︃
√
p.

Proof. Since Gal(Q(ζ)/Q(
√
p)) =

⟨︁
σ2
⟩︁
, we know that A =

∑︁
i∈Fp

wiζ
i ∈

Q(
√
p) if and only if it is fixed by σ2, that is, if and only if∑︂

i∈Fp

wiζ
i =

∑︂
i∈Fp

wiζ
iγ2

=
∑︂
i∈Fp

wγ−2iζ
i,

and then Lemma 3.1 tells us that this happens if and only if wi = wγ−2i for

every i ∈ Fp, which is true if and only if wi = wj whenever j ∈ i
⟨︁
γ2
⟩︁
, i.e.,

whenever η(i) = η(j). In this case, write w+ and w− as in the statement of
this lemma, and then our sum becomes

A = w0 + w+

∑︂
i∈⟨γ2⟩

ζi + w−
∑︂

i∈F×
p ∖⟨γ2⟩

ζi

= w0 +

(︃
w+ + w−

2

)︃ ∑︂
i∈F×

p

ζi +

(︃
w+ − w−

2

)︃ ∑︂
i∈F×

p

η(i)ζi,

where the penultimate summation is clearly −1 and the ultimate one is the
quadratic Gauss sum (5). □

We now apply the previous result to Weil sums.

Lemma 3.6. Let p be a prime with p ≡ 1 (mod 4) and suppose that s is an

invertible exponent over K. Any Weil sum WK,s
u in Q(

√
p) can be written

uniquely in the form (I + J
√
p)/2, where I, J ∈ Z. Furthermore, I ≡ J

(mod 2) and vp(I) ≥ 1. If s is nondegenerate, then −q < −2(q−1)/(p−1) <
I < 2q and |J | ≤ 2(q − 1)/(p− 1) < q.
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Proof. From Lemmas 3.2 and 3.5, it follows that any Weil sum in Q(
√
p)

can be written as(︃
2w0 − (w+ + w−)

2

)︃
+

(︃
w+ − w−

2

)︃
√
p,

where w0, w+, w− ∈ Z. Thus, if we let I = 2w0 − (w+ + w−) and J =
w+ − w−, then I, J ∈ Z and our Weil sum is (I + J

√
p)/2; since {1,√p} is

Q-linearly independent, the I and J are uniquely determined. Since J ∈ Z,
we know that vp(J

√
p) has strictly positive p-adic valuation, as does the

entire Weil sum (by Lemma 3.3), and so vp(I) must be a strictly positive
integer. Note also that I ≡ J (mod 2) since, as we stated in the paragraph
before Lemma 3.5, algebraic integers in Q(

√
p) are of the form (a+ b

√
p)/2

where a, b ∈ Z and a ≡ b (mod 2).
From now on, let us suppose that s is nondegenerate. Then by Lemma 3.2,

we know that w0, w+, w− are all nonnegative integers that are strictly less
than q with w0 ≥ 1 and w0 + (w+ + w−)(p− 1)/2 = q. Thus,

|J | ≤ w+ + w− ≤ 2

(︃
q − 1

p− 1

)︃
,

and since w0 < q, we know that w+ + w− > 0, so

−2

(︃
q − 1

p− 1

)︃
< 2− 2

(︃
q − 1

p− 1

)︃
≤ I < 2w0 + (w+ + w−)(p− 1) = 2q,

where since p− 1 > 2, we have 2(q − 1)/(p− 1) < q − 1 < q.
□

4. Algebraic sets over finite fields

In this section, we study a certain type of algebraic set over the finite field
K. It turns out that these sets are closely related to sums of products of
Weil sum values (as we shall see in Section 5), and thus will help us prove
our main result (Theorem 1.5).

Recall that K is a finite field of characteristic p and order q = pn and
that s is a positive integer such that gcd(s, q − 1) = 1. First, we introduce
two notations that enable us to express our algebraic sets very compactly.

Notation 4.1. If k ∈ Z+ and u = (u1, . . . , uk), v = (v1, . . . , vk) ∈ Kk then

u · v denotes u1v1 + · · ·+ ukvk and ∥u∥s denotes (us1 + · · ·+ usk)
1/s, so that

∥u∥ss = us1 + · · ·+ usk.

Notation 4.2. For k ∈ Z+, t = (t1, . . . , tk) ∈ (K×)k, and a, b ∈ K, we use
Qt

a,b to denote the number of solutions v = (v1, . . . , vk) ∈ Kk to the system
of equations

t · v = a

∥v∥s = b.

The next four results relate various values of Qt
a,b with each other.
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Lemma 4.3. For any k ∈ Z+, any t ∈ (K×)k, and any b ∈ K we have∑︁
a∈K Qt

a,b =
∑︁

a∈K Qt
b,a = qk−1.

Proof. The second summation counts the points in the hyperplane t · v = b
in Kk, while the first sum counts points with ∥v∥ss = bs, which has the same
cardinality because x ↦→ xs is a permutation of K. □

Lemma 4.4. For k ∈ Z+, any u ∈ K×, any t ∈ (K×)k, and any a, b ∈ K,
we have Qut

a,b = Qt
a/u,b and Qt

ua,ub = Qt
a,b.

Proof. The first equality follows from observing that ut · v = a if and
only if t · v = a/u. The second follows from the bijection (v1, . . . , vk) ↦→
(v1/u, . . . , vk/u) from the set of points counted by Qt

ua,ub to that counted

by Qt
a,b. □

Lemma 4.5. Let k ∈ Z+ and t ∈ (K×)k. For any a ∈ K×, we have

Qt
a,0 = Qt

0,a =
qk−1 −Qt

0,0

q − 1
. (6)

Moreover, if b ∈ K, we have

∑︂
a∈K×

Qt
a,b =

∑︂
a∈K×

Qt
b,a =

⎧⎨⎩q
k−1 −Qt

0,0 if b = 0

qk−2qk−1+Qt
0,0

q−1 if b ̸= 0.
(7)

Proof. Lemma 4.4 shows that Qt
a,0 (resp., Q

t
0,a) has the same value for every

a ∈ K×, so (6) and the b = 0 case of (7) follow from Lemma 4.3. The b ̸= 0
case of (7) then similarly follows from Lemma 4.3, using (6). □

Lemma 4.6. For any k ∈ Z+, any b, t1, . . . , tk ∈ K×, and any a ∈ K, we
have

Q
(t1,...,tk)
a,b =

Q
(a/b,t1,...,tk)
0,0 −Q

(t1,...,tk)
0,0

q − 1
.

Proof. For the rest of this proof, let t = (t1, . . . , tk) and t
′ = (a/b, t1, . . . , tk),

and let u and v′ be shorthand for (u1, . . . , uk) and (v0, v1, . . . , vk), respec-
tively. Then

Qt′
0,0 −Qt

0,0 = |{v′ ∈ Kk+1 : v0 ̸= 0, t′ · v′ = 0, ∥v′∥s = 0}|

= |{(v0, u) ∈ K× ×Kk : t · u = a, ∥u∥s = b}|
= (q − 1)Qt

a,b,

where the second equality uses the reparameterization with uj = −bvj/v0 for
j ∈ {1, . . . , k} and the fact that the invertibility of s makes (−1)s = −1. □

Now we compute certain values of Qt
a,b that will be useful later.

Lemma 4.7. Let t1, t2 ∈ K× and let δ denote the Kronecker delta.

(i) We have Q
(t1)
a,b = δa,t1b.
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(ii) If at least one of a or b is zero, then

Q
(t1,t2)
a,b =

{︄
1 + (q − 1)δt1,t2 if a = b = 0,

1− δt1,t2 otherwise.

Proof. The first claim is clear because Q
(t1)
a,b counts the number of v1 ∈ K

such that t1v1 = a and (vs1)
1/s = b. Applying this result to the fact that

Q
(t1,t2)
0,0 = (q − 1)Q

(t2)
t1,1

+ Q
(t2)
0,0 by Lemma 4.6 gives the expression in the

first case of the second claim, and then the second case follows from using

Lemma 4.5 to deduce the value of Q
(t1,t2)
a,0 and Q

(t1,t2)
0,a . □

We explore certain special values of Qt
a,b that are critical for our proof of

Theorem 1.5.

Lemma 4.8. Let w ∈ K.

(i) We have Q
(1,−1)
1,w = Q

(1,−1)
1,−w .

(ii) If p is odd, then Q
(1,−1)
1,1 − 1 = Q

(1,−1)
1,−1 − 1 = Q

(1,1)
1,−1.

(iii) When p is odd and w = 21/s−1, then Q
(1,1)
1,w is odd; otherwise Q

(1,1)
1,w

is even.

Proof. Recall that (−1)s = −1 since s is invertible.
The first result follows from the observation that (x1, x2) ∈ K2 satisfies

the system of equations corresponding to Q
(1,−1)
1,w if and only if (−x2,−x1)

satisfies the system of equations corresponding to Q
(1,−1)
1,−w .

Now Q
(1,1)
1,−1 counts how many (x1, x2) ∈ K2 satisfy x1 + x2 = 1 and xs1 +

xs2 = (−1)s, and since these equations preclude x2 = 0 in odd characteristic,
we can reparameterize with x2 = −1/y for y ∈ K× and eliminate x1 to see

that Q
(1,1)
1,−1 is the same as the number of y ∈ K× such that (y+1)s+ys = 1,

which is Q
(1,−1)
1,1 − 1 because (0 + 1)s + 0s = 1.

For the third result, note that the system of equations that corresponds

to Q
(1,1)
1,w is symmetric in both unknowns, so (x1, x2) satisfies this system if

and only if (x2, x1) does. This implies that Q
(1,1)
1,w is even except when there

is some x ∈ K such that 2x = 1 and 21/sx = w, which happens exactly
when p is odd, x = 1/2, and w = 21/s−1. □

5. Group algebra

In this section, we use a group algebra that gives us a convenient way to
encapsulate all the Weil spectrum values in a single object; this builds upon
the methods of Feng [Fen12] and developments in [Kat15]. After introducing
the relevant group algebra here, we define the key group algebra elements
of interest in Section 5.1 and demonstrate their relation to the cardinalities
of algebraic sets studied in Section 4. Then we present other related group
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algebra elements designed to have a particular symmetry in Section 5.2, and
focus on a particularly important case of this symmetry in Section 5.3.

Let L = Q(ζ, ξ), where ξ = exp(2πi/(q − 1)), and consider the group
L-algebra L[K×], whose elements are of the form S =

∑︁
u∈K× Su[u], where

Su ∈ L for each u ∈ K×. We write the elements of K× in brackets to
distinguish them from similar-appearing elements in L. We identify any
subset U ofK× with

∑︁
u∈U [u] in L[K

×]. For S =
∑︁

u∈K× Su[u] ∈ L[K×], we

define its conjugate to be S =
∑︁

u∈K× Su[u
−1]. We also let |S| =

∑︁
u∈K× Su;

this is the cardinality of S if S is a group algebra element representing a
subset of K×. Moreover, if t ∈ Z, we write S(t) to denote

∑︁
u∈K× Su[u

t].
Below, we record some easily proved observations.

Lemma 5.1. For any S, T ∈ L[K×] and any t ∈ Z, we have

(i) |S(t)| = |S|;
(ii) |S| = |S|;
(iii) |S + T | = |S|+ |T |;
(iv) |ST | = |S||T |;
(v) SK× = |S|K×;

(vi) if S is a subgroup of K×, then S = S(−1) = S and S2 = |S|S; and
(vii) (SS)1 =

∑︁
u∈K× |Su|2.

LetK×y denote the group of multiplicative characters fromK× to L×. The

identity element of K×y is called the principal character and is written χ0; it
maps every element ofK× to 1. We define the application of a multiplicative

character χ ∈ K×y to a group algebra element S =
∑︁

u∈K× Su[u] ∈ L[K×]
by linear extension:

χ(S) =
∑︂

u∈K×

Suχ(u),

and we call χ(S) the Fourier coefficient of S at χ.
The following facts, which we record without proof, are easy to verify.

Lemma 5.2. The following facts hold for any S, T ∈ L[K×] and any χ ∈
K×y:

(i) χ0(S) = |S|,
(ii) χ(S(t)) = χt(S) for any t ∈ Z,
(iii) χ(S) = χ(S),
(iv) χ(S + T ) = χ(S) + χ(T ), and
(v) χ(ST ) = χ(S)χ(T ).

The next lemma follows from Theorem 5.4 of [LN97].

Lemma 5.3. We have∑︂
u∈K×

χ(u) = χ(K×) =

{︄
q − 1 if χ = χ0

0 otherwise.
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The next result says that a group algebra element is determined by its
Fourier transform.

Lemma 5.4. If S, T ∈ L[K×], then S = T if and only if χ(S) = χ(T ) for

all χ ∈ K×y.

Proof. This follows from the fact that the Fourier transform (the map from

L[K×] to LK×y

that takes S to the function Sp : K×y → L with Sp(χ) = χ(S))
is an isomorphism of L-algebras with the inverse map

LK×y

→ L[K×]

R ↦→ Rq =
∑︂

u∈K×

Rqu[u],

where

Rqu =
1

|K×|
∑︂

χ∈K×y

R(χ)χ(u). □

5.1. Weil sums in the group algebra. Recall that ψ : K → Q(ζ) is the
canonical additive character of K. We define

Ψ =
∑︂

u∈K×

ψ(u)[u]

and

WK,s =
∑︂

u∈K×

WK,s
u [u], (8)

and when the field K and the exponent s are clear from context, we simply
write W =

∑︁
u∈K× Wu[u]. We now relate W to Ψ.

Lemma 5.5. We have W = ΨΨ(1/s) +K×.

Proof. Applying the reparameterization z = −xs, y = −ux to ΨΨ(1/s) =∑︁
y,z∈K× ψ(y)ψ(z)[yz−1/s] gives

ΨΨ(1/s) =
∑︂

u,x∈K×

ψ(xs)ψ(−ux)[u] =
∑︂

u∈K×

(Wu − 1)[u],

from which the result follows. □

Let χ ∈ K×y. Then the Gauss sum G(χ) is given by
∑︁

u∈K× ψ(u)χ(u).
Note that G(χ) = χ(Ψ). We list some useful facts about Gauss sums, which
will be useful later when we calculate the Fourier transform of group algebra
elements that generalize W .

Lemma 5.6. Let χ0 be the principal character and χ ∈ K×y. Then

(i) |Ψ| = χ0(Ψ) = G(χ0) = −1,
(ii) |χ(Ψ)| = |G(χ)| = √

q for χ ̸= χ0, and

(iii) G(χ) = χ(−1)G(χ).
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Proof. For a proof of the first and second parts, see [LN97, Theorem 5.11];
for a proof of the third part, see [LN97, Theorem 5.12(iii)]. □

We record two more useful calculations concerning Ψ and W .

Lemma 5.7. If t ∈ Z and gcd(t, q − 1) = 1, then Ψ(t)Ψ(t) = q[1]−K×.

Proof. See [Kat15, Corollary 2.3]. □

Lemma 5.8. We have |W | = q and WW = q2[1].

Proof. The first result follows from Lemmas 5.5, 5.1, and 5.6, which give us

|W | = |Ψ||Ψ(1/s)|+ |K×| = (−1)2 + q − 1. The second is proved as follows:

WW = (ΨΨ(1/s) +K×)(ΨΨ(1/s) +K×)

= ΨΨΨ(1/s)Ψ(1/s) +ΨΨ(1/s)K× +ΨΨ(1/s)K× +K×K×

= (|K|[1]−K×)2 + |ΨΨ(1/s)|K× + |ΨΨ(1/s)|K× + |K×|K×

= |K|2[1]− 2|K|K× + |K×|K× + (|K×|+ 2)K×

= |K|2[1],

where the third equality uses Lemmas 5.7 and 5.1, and the fourth equality
uses Lemmas 5.1 and 5.6. □

The proof of our main result requires us to use generalizations ofW whose
coefficients are products of Weil sum values rather than individual ones. We
introduce a convenient notation for these.

Notation 5.9. Let k ∈ Z+ and let t = (t1, t2, . . . , tk) ∈ (K×)k. We write

W [t] =
∑︂

u∈K×

Wt1u · · ·Wtku[u].

Often, we just write W [t1,...,tk] instead of W [(t1,...,tk)] and W
[t]
u for (W [t])u.

Also, note that W [1] =W .

Lemma 5.10 and Proposition 5.13 below make a connection between the
group algebra elements just defined in Notation 5.9 and the cardinalities of
algebraic sets defined in Notation 4.2. The connecting object is defined in
Notation 5.11.

Lemma 5.10. Let k ∈ Z+ and let t = (t1, . . . , tk) ∈ (K×)k. Then

|W [t]| =
∑︂

u∈K×

Wt1u · · ·Wtku =
q2Qt

0,0 − qk

q − 1
.

Proof. This is Lemma 7.7.2 of [Kat19]. □

Recall the notations · and ∥·∥s from Notation 4.1, which we use for the
rest of this section.
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Notation 5.11. Let k ∈ Z+ and let t = (t1, t2, . . . , tk) ∈ (K×)k. Then,
adopting the convention that [0] is the 0 of the group algebra L[K×], we
write

V [t] =
∑︂
v∈Kk

t·v=1

[∥v∥s]−Qt
1,0K

×,

so that

V [t] =
∑︂

u∈K×

(Qt
1,u −Qt

1,0)[u].

We often write V [t1,...,tk] instead of V [(t1,...,tk)] and use the notation V
[t]
u to

mean (V [t])u.

The following calculation is needed for our proof of Proposition 5.13,
which connects W [t] to V [t].

Lemma 5.12. Let k ∈ Z+ and t ∈ (K×)k. Then

|V [t]| = qk−1 − q ·Qt
1,0 =

qQt
0,0 − qk−1

q − 1
.

Proof. The first equality comes from using Notation 5.11 to write |V [t]| =∑︁
u∈K× Qt

1,u − (q − 1) · Qt
1,0 =

∑︁
u∈K Qt

1,u − q · Qt
1,0 and then applying

Lemma 4.3. The second equality then follows from Lemma 4.5. □

Now we show the relation between V [t] and W [t].

Proposition 5.13. For k ∈ Z+ and t ∈ (K×)k, we have

W [t] =WV [t].

Proof. Since both sides of this equation are elements of L[K×], it suffices to

show that χ(W [t]) = χ(WV [t]) for all χ ∈ K×y by Lemma 5.4.
For the principal character χ0 we have

χ0(WV [t]) = |W ||V [t]| =
q2Qt

0,0 − qk

q − 1
= |W [t]| = χ0(W

[t]),

where the first and last equalities follow from Lemma 5.2, the second comes
from Lemmas 5.8 and 5.12, and the third comes from Lemma 5.10.

Now let χ be any non-principal character. On one hand, we have

χ
(︂
W [t]

)︂
=
∑︂

u∈K×

⎛⎝∑︂
x1∈K

ψ(xs1 − t1ux1)

⎞⎠ · · ·

⎛⎝∑︂
xk∈K

ψ(xsk − tkuxk)

⎞⎠χ(u)

=
∑︂
x∈Kk

t·x ̸=0

ψ(∥x∥ss)
∑︂

u∈K×

ψ(−(t · x)u)χ(u)

= G(χ)
∑︂

w∈K×

∑︂
x∈Kk

t·x=w

ψ(∥x∥ss)χ−1(−w)
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= G(χ)
∑︂

z∈K×

∑︂
v∈Kk

t·v=1

ψ(∥v∥ssz)χ−1(−z1/s)

= G(χ)
∑︂
v∈Kk

t·v=1
∥v∥s ̸=0

∑︂
z∈K×

ψ(∥v∥ssz)χ−1/s(−1)χ−1/s(z)

= G(χ)G(χ−1/s)χ−1/s(−1)
∑︂
v∈Kk

t·v=1
∥v∥s ̸=0

χ1/s(∥v∥ss)

= G(χ)G(χ−1/s)χ−1/s(−1)χ

⎛⎜⎝∑︂
v∈Kk

t·v=1

[∥v∥s]

⎞⎟⎠ ,

where we use Lemma 5.3 to impose t · x ̸= 0 following the second equals
sign, and we use the Gauss sum in the third and second-to-last equalities
and the reparameterization w = z1/s, x = z1/sv in the fourth equality.

On the other hand, Lemmas 5.5, 5.2, 5.3, and Notation 5.11 give us

χ(WV [t]) = χ(Ψ)χ(Ψ(1/s)) · χ

⎛⎜⎝∑︂
v∈Kk

t·v=1

[∥v∥s]

⎞⎟⎠ ,

where

χ(Ψ)χ(Ψ(1/s)) = G(χ)χ1/s(Ψ) = G(χ)G(χ1/s) = G(χ)G(χ−1/s)χ−1/s(−1)

by Lemmas 5.6 and 5.2, so the result is proved. □

For future convenience, we explicitly calculate some values of |W [t]| and
V [t].

Lemma 5.14. For any t1, t2, t3 ∈ K×, we have

(i) |W | = q,

(ii) |W [t1,t2]| =

{︄
q2 if t1 = t2

0 if t1 ̸= t2,

(iii) |W [t1,t2,t3]| = q2V
[t1,t2]
1/t3

, and

(iv) |W [1,1,1,1]| = q2
∑︁

u∈K×

(︂
V

[1,1]
u

)︂2
.

Proof. The first result is from Lemma 5.8.
Next, we use Theorem 1.1 and Lemma 5.8 to obtain

|W [t1,t2]| =
∑︂

x,y∈K×

xy=t1/t2

WxW1/y = (WW )t1/t2 =

{︄
q2 if t1/t2 = 1

0 otherwise.
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For (iii), we use Theorem 1.1 to show that |W [t1,t2,t3]| =
(︁
W [t1,t2]W

)︁
1/t3

.

Then, Lemmas 5.13 and 5.8 and Notation 5.11 give us that(︂
W [t1,t2]W

)︂
1/t3

=
(︂
WV [t1,t2]W

)︂
1/t3

= q2V
[t1,t2]
1/t3

.

Lastly, we observe that
∑︁

u∈K× W 4
u = (W [1,1]W [1,1])1, so the fourth result

follows from Lemmas 5.13 and 5.8, which tell us that

W [1,1]W [1,1] = (WV [1,1])(WV [1,1]) = q2V [1,1]V [1,1]. □

Lemma 5.15. If t = (t1, t2) ∈ (K×)2, then we have

V [t] =

⎧⎨⎩
∑︁

v∈K2

v·t=1
[∥v∥s] if t1 = t2∑︁

v∈K2

v·t=1
[∥v∥s]−K× otherwise,

that is,

V [t] =

{︄∑︁
u∈K× Qt

1,u[u] if t1 = t2∑︁
u∈K×(Qt

1,u − 1)[u] otherwise,

so that V
[t]
u ≥ −1 for every u ∈ K×, and if t1 = t2 then V

[t]
u ≥ 0 for every

u ∈ K×. Furthermore,

|V [t]| =

{︄
q if t1 = t2

0 otherwise.

Proof. These facts follow from Notation 5.11 and Lemma 5.12, as well as
the formula for Qt

1,0 found in Lemma 4.7 and the fact that Qt
1,u values are

always nonnegative, since they count solutions to systems of equations. □

5.2. Symmetrized Weil sums. In later sections we study Weil spectra

where there is a symmetry among the Weil sums WK,s
u . Here we present

some general results.
Fix some k ∈ Z+ and suppose that p ≡ 1 (mod k). Then we let

T =
k−1∑︂
i=0

[λi],

where λ is a primitive kth root of unity in F×
p . We also let

Ω =
∑︂

u∈K×

(︄
k−1∑︂
i=0

Wλiu

)︄
[u].

We call Ωu =
∑︁k−1

i=0 Wλiu the k-laterally symmetrized Weil sum at u, and we
use the word bilateral to mean 2-lateral. Note that Ω has real coefficients
by Theorem 1.1. First, we relate Ω to W and T .

Lemma 5.16. We have Ω =WT .
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Proof. Reordering the sums in the definition of Ω gives us

Ω =

k−1∑︂
i=0

∑︂
u∈K×

Wλiu[u] =

k−1∑︂
i=0

W · [λ−i] =W ·
k−1∑︂
i=0

[λi]. □

We compute power moments for Ω.

Lemma 5.17. We have

(i)
∑︁

u∈K× Ω0
u = q − 1;

(ii)
∑︁

u∈K× Ωu = kq;

(iii)
∑︁

u∈K× Ω2
u = kq2; and

(iv) if k = 2, then
∑︁

u∈K× Ω3
u = 2q2(V

[1,1]
1 + 3V

[1,1]
−1 ).

Proof. The first equation comes from the fact that |K×| = q−1. The second
and third results follow from Lemmas 5.16 and 5.8 as well as the fact that
the coefficients of Ω are real, so that

∑︁
u∈K× Ωu = |Ω| = |W ||T | = qk and∑︁

u∈K× Ω2
u = (ΩΩ)1 = (WTWT )1 = q2(T 2)1 = q2k. Lastly, if k = 2, then∑︂

u∈K×

Ω3
u =

∑︂
u∈K×

(Wu +W−u)
3 = 2

∑︂
u∈K×

W 3
u + 6

∑︂
u∈K×

W 2
uW−u,

so the desired result follows from Lemma 5.14(iii). □

When p is odd and k = 2, we have further results, which we explore in
the next section.

5.3. Bilateral symmetry in the group algebra. In Propositions 6.4 and
6.5 below we study bilaterally symmetrized Weil sums. Here, we present
some general results that hold in this situation. To this end, suppose that
p is odd and let

S = [1]− [−1], Φ =
∑︂

u∈K×

(Wu −W−u)[u], Υ =
∑︂

u∈K×

(Wu −W−u)
2[u],

T = [1] + [−1], Ω =
∑︂

u∈K×

(Wu +W−u)[u].

Note that this use of T and Ω is consistent with the notation introduced in
Section 5.2 when k = 2. Also, note that Φ, Ω, and Υ have real coefficients
by Theorem 1.1. For convenience of notation, we set

V = V [1,1] and U = V [1,−1].

We relate the various group algebra elements that we have just defined.

Lemma 5.18. We have Φ =WS and Υ =W (TV − 2U).

Proof. These results come from the above notation and Proposition 5.13. □

Before we prove further results, we shall restate in the notation of this
section a few key facts that we have proved earlier.

Lemma 5.19. We have
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(i) Uu = Q
(1,−1)
1,u − 1 and Vu = Q

(1,1)
1,u so in particular, Uu ≥ −1 and

Vu ≥ 0 for all u ∈ K×;
(ii) Uu = U−u for any u ∈ K×;
(iii) U1 = U−1 = V−1; and
(iv)

∑︁
u∈K× Uu = 0 and

∑︁
u∈K× Vu = q.

Proof. Part (i) follows from the definitions of U and V and Lemma 5.15.
Then, using the result in part (i) and the assumption that p is odd, parts
(ii) and (iii) follow from the first two parts of Lemma 4.8. Lastly, the part
(iv) comes from Lemma 5.15. □

We compute some power moments for Φ and a related sum that involves
both Φ and Ω.

Lemma 5.20. We have

(i)
∑︁

u∈K× Φu = 0,

(ii)
∑︁

u∈K× Φ2
u = 2q2,

(iii)
∑︁

u∈K× Φ2
u · Ωu = 2q2(V1 − V−1), and

(iv)
∑︁

u∈K× Φ4
u = q2

∑︁
u∈K×(Vu + V−u − 2Uu)

2.

Proof. Recall that Φ and Υ have real coefficients.
To prove the first part, we use Lemmas 5.18 and 5.1(iv) to get |Φ| =

|W ||S| = 0. The second part follows from Lemmas 5.18, 5.8, and 5.1(vii),
which give us

∑︁
u∈K× Φ2

u = (ΦΦ)1 = (WSWS)1 = q2(SS)1 = 2q2.

We can prove the third part by observing that
∑︁

u∈K× Φ2
u ·Ωu = (Υ ·Ω)1

and then using Lemmas 5.18, 5.16, 5.8, and 5.19(iii) to get that

(Υ·Ω)1 =
(︁
WW (2TV − 2UT )

)︁
1
= 2q2(V1+V−1−U1−U−1) = 2q2(V1−V−1).

The fourth and final part is a consequence of Lemmas 5.1(vii) (using the
fact that all coefficients in our group algebra elements here are real), 5.18
and 5.8, since we have∑︂

u∈K×

Φ4
u = (ΥΥ)1

=
(︁
WW (TV − 2U)(TV − 2U)

)︁
1

= q2
∑︂

u∈K×

((TV − 2U)u)
2

= q2
∑︂

u∈K×

(Vu + V−u − 2Uu)
2. □

6. Cyclotomic actions on value sets of size four

In this section, we examine the action on the value set WK,s (see (3)) of τ ,
the restriction of the generator σ of Gal(Q(ζ)/Q) to WK,s. We shall prove
our main theorem (Theorem 1.5), which is:
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Theorem 6.1. Let K be a finite field and s be an invertible exponent over
K. If the Weil spectrum for K and s is 4-valued, then it is rational unless
K = F5 and s ≡ 3 (mod 4) (in which case WK,s = {(5±

√
5)/2,±

√
5}).

Suppose WK,s = {A,B,C,D}, where A, B, C, and D are distinct. Recall
that σ is a generator of Gal(Q(ζ)/Q) and that τ is the restriction of σ to
WK,s. We saw in (4) that τ always permutes the elements of WK,s, so here
τ must act trivially, as a transposition (while keeping two values fixed), as
a composition of two disjoint transpositions, as a 3-cycle (while keeping one
value fixed), or as a 4-cycle on the set {A,B,C,D}. We shall address each of
the non-trivial actions in the next four propositions, and then finally prove
the theorem. Throughout this section, we shall use the notation (from (2)

in the Introduction) where NK,s
A (or simply NA) denotes the frequency of a

value A in the Weil spectrum for the field K and the exponent s.

Proposition 6.2 (No action as a 4-cycle). If |WK,s| = 4, then τ does
not permute WK,s as a 4-cycle.

Proof. This follows from Proposition 2.5, since |WK,s| = 1 whenK = F2. □

Proposition 6.3 (No action as a 3-cycle). If |WK,s| = 4, then τ does
not permute WK,s as a 3-cycle (while fixing one value).

Let |WK,s| = 4. Assume that τ permutes WK,s as a 3-cycle to show a
contradiction, so we write WK,s = {A,B,C,D} and τ = (A)(BCD), i.e.,
τ(A) = A, τ(B) = C, τ(C) = D, and τ(D) = B. For clarity, we break the
proof into steps.

Step 1. The exponent s is nondegenerate.

Proof. This is from Theorem 1.2.

Step 2. We have p ≡ 1 (mod 6), so p ≥ 7, and there is a primitive third
root of unity λ ∈ F×

p such that τ(Wu) =Wλu for all u ∈ K×.

Proof. This is from Proposition 2.1 and (4), since τ has order 3.

Step 3. We have 3 | NA and NB = NC = ND.

Proof. This is from Lemma 2.3, since τ has order 3, permutes A in a 1-cycle,
and permutes B,C,D in a 3-cycle.

Step 4. Let X = 3A and Y = B + C + D. Then X and Y are rational
integers with 3 | X and

3q2 − 3q(X + Y ) + (q − 1)XY = 0. (9)

Proof. We know that A and Y are in Z because σ (of which τ is a restriction)
fixes both of these algebraic integers. Thus, X is a rational integer with 3 |
X. By Step 2, we can let Ωu =Wu+Wλu+Wλ2u =Wu+τ(Wu)+τ

2(Wu) for
all u ∈ K×, as in Section 5.2 (with k = 3). Notice that Ωu only assumes two
values as u runs throughK×, namelyX = 3A (NA times) and Y = B+C+D
(3NB times by Step 3). This means that

∑︁
u∈K×(Ωu −X)(Ωu − Y ) = 0, so

we obtain (9) from the first three results in Lemma 5.17.
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Step 5. We have max{vp(X), vp(Y )} ≥ vp(q).

Proof. If max{vp(X), vp(Y )} < vp(q), then vp((q−1)XY ) < vp(3q
2−3q(X+

Y )), contradicting (9) in Step 4.

Step 6. We have 0 /∈ {X,Y }.

Proof. We assume 0 ∈ {X,Y } to show contradiction. Then {X,Y } = {0, q}
by (9). Now q is a power of the prime p with p ≥ 7 (by Step 2), but X is a
rational integer with 3 | X (by Step 4), so we cannot haveX = q. Thus, X =
3A = 0 and Y = B+C+D = q. Since s is nondegenerate by Step 1, we have
|B|, |C|, |D| < q by Lemma 3.2, so that B+C+D = q makes at least two of
B, C, D positive, while [AKL15, Corollary 2.3] makes at least one negative,

and so BCD < 0. Now Lemma 5.14(iii) gives us |W [1,λ,λ2]| = q2V
[1,λ]
λ , that

is,
∑︁

u∈K× WuWλuWλ2u = q2V
[1,λ]
λ . Recalling the relation involving τ and λ

from Step 2, this means that
∑︁

u∈K× Wu τ(Wu) τ
2(Wu) = q2V

[1,λ]
λ . Then in

view of the fact that WK,s = {A,B,C,D} with τ(B) = C, τ(C) = D, and
τ(D) = B, and since we have shown that A = 0 here and NB = NC = ND

in Step 3, we have 3NBBCD = q2V
[1,λ]
λ . Since BCD < 0, Lemma 5.15

forces V
[1,λ]
λ = −1, and hence 3NBBCD = −q2. But BCD ∈ Z since it is

an algebraic integer fixed by τ , which is a restriction of σ, the generator of
Gal(Q(ζ)/Q). This means that 3 | q2, contradicting p ≥ 7 from Step 2.

Step 7. We have vp(X) < vp(q) and vp(Y ) ≥ vp(q).

Proof. Recall from Step 4 that X = 3A. Therefore, by Step 2 we have
vp(X) = vp(3A) = vp(A), and then by Step 6 and Lemma 3.4, we know
that vp(A) < vp(q). Thus vp(X) < vp(q) and so by Step 5 we know that
vp(Y ) ≥ vp(q).

Step 8. We have Y = rq for some r ∈ {±1,±2}.

Proof. Recall from Step 4 that Y = B+C+D. By Steps 6 and 1 combined
with Lemma 3.2, we know that 0 < |Y | = |B + C + D| < 3q. Thus,
0 < |Y | < pq by Step 2. Now Step 4 shows that Y ∈ Z, so by Step 7 we have
vp(Y ) = vp(q). Then Y = rq for some r ∈ Z and recall that 0 < |Y | < 3q.

Step 9. We conclude that τ does not permute WK,s as a 3-cycle.

Proof. We rule out each of the four possible values of r in Step 8 using the
following formula for X ∈ Z, which comes from (9) and Y = rq:

X =
3q(r − 1)

(q − 1)r − 3
(10)

(note that the denominator is not zero because q−1 ≥ p−1 ≥ 6 by Step 2).
If r = 1, then X = 0, which contradicts Step 6. If r = −2 (resp., −1, 2),

then (10) becomes 4+(q−4)/(2q+1) (resp., 6−12/(q+2), 1+(q+5)/(2q−5)).
None of these expressions can be a rational integer, since q is a power of some
prime p ≥ 7 by Step 2, so Step 4 is contradicted. □
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Proposition 6.4 (Action as a composition of two disjoint 2-cycles).
The following are equivalent:

(i) |WK,s| = 4 and τ permutes WK,s as a composition of two disjoint
transpositions;

(ii) q = 5 and s ≡ 3 (mod 4).

When these hold, WK,s = {(5±
√
5)/2,±

√
5}.

Suppose that q = 5 and s ≡ 3 (mod 4). In fact, we may assume s = 3
since WK,s′ = WK,s′′ if s

′ ≡ s′′ (mod q − 1) (see the definition of equivalent

exponents in Section 1). Let ζ = e2πi/5. The polynomial x3−x represents 0

thrice and each of ±1 only once over K = F5, and soWK,s
1 = 3+(ζ+ζ−1) =

(5 +
√
5)/2 by Lemma 3.5. Similarly, x3 − 2x represents 0 once and each

of ±1 twice over K; x3 − 3x represents 0 once and each of ±2 twice; and
x3 − 4x represents 0 three times and each of ±2 once over K, so we can

calculate that WK,s
2 =

√
5, WK,s

3 = −
√
5, and WK,s

4 = (5 −
√
5)/2. Then

since σ(
√
5) = −

√
5 (because σ restricts to the generator of Gal(Q(

√
5)/Q)),

it is clear that τ acts on WK,s as a product of two disjoint transpositions.
Now suppose that |WK,s| = 4 and suppose that τ acts on WK,s as a

composition of two disjoint transpositions. For clarity, the remainder of the
proof is broken up into steps.

Step 1. We have p ≡ 1 (mod 4), so p ≥ 5, and τ(Wu) = W−u for all
u ∈ K×.

Proof. This is from Proposition 2.1 and (4), since τ has order 2.

Step 2. We write WK,s = {A,B,C,D} with

A =
E + F

√
p

2
, B =

E − F
√
p

2
, C =

G+H
√
p

2
, and D =

G−H
√
p

2
,

where E,F,G,H ∈ Z with E ≡ F (mod 2), G ≡ H (mod 2), vp(E) ≤
vp(G), and τ = (AB)(CD), i.e., τ(A) = B, τ(B) = A, τ(C) = D, and
τ(D) = C.

Proof. Since τ has order 2 and since Step 1 tells us that p ≡ 1 (mod 4),
Proposition 2.1 shows that the elements of WK,s are algebraic integers in
Q(

√
p), the unique degree 2 extension of Q that lies in Q(ζ). Thus, each

element of WK,s has the form described in Lemma 3.6, and the four elements
consist of two pairs of Galois conjugates because of the action of τ . This
establishes the existence of the integers E, F , G, and H which are used to
describe our four elements of WK,s above (making sure to arrange so that
vp(E) ≤ vp(G)), and we also name the elements A, B, C, and D as above,
so that the Galois conjugate pairs are {A,B} and {C,D}; this means that
τ must act as (AB)(CD).

Step 3. We have NA = NB and NC = ND.

Proof. This is due to Lemma 2.3 since τ = (AB)(CD) from Step 2.
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Step 4. We have the following equations:

NA +NC =
q − 1

2
(11)

NAE +NCG = q (12)

NAE
2 +NCG

2 = q2 (13)

NAF
2p+NCH

2p = q2 (14)

NA(E
3 + 3pEF 2) +NC(G

3 + 3pGH2) = 4q2V
[1,1]
1 . (15)

Proof. For u ∈ K×, let Ωu = Wu + W−u and Φu = Wu − W−u. This is
consistent with the notation we introduced in Section 5.2 (with k = 2) and
in Section 5.3 since p ≡ 1 (mod 2) by Step 1. Thus, by Step 1, we have
Ωu =Wu + τ(Wu) and Φu =Wu − τ(Wu) for every u ∈ K×.

As we run through u ∈ K×, Steps 2 and 3 tell us that Ωu has

2NA instances of E 2NC instances of G

while Φu has

NA instances of F
√
p NA instances of − F

√
p

NC instances of H
√
p NC instances of −H

√
p,

so that (11), (12), and (13) follow from parts (i), (ii), and (iii) of Lemma 5.17
and (14) follows from 5.20(ii). The left-hand side of Lemma 5.14(iii) (with
t1 = t2 = t3 = 1) is summing W 3

u over all u ∈ K×, and since NA = NB and
NC = ND by Step 3, we obtain (15).

Step 5. We have G = 0.

Proof. Add EG times (11) and −(E +G) times (12) to (13) to get

0 = EG

(︃
q − 1

2

)︃
− (E +G)q + q2. (16)

Recall from Step 2 that vp(E) ≤ vp(G). Note that if either vp(G) < vp(q)
or vp(E) > vp(q), then one of the terms in (16) would have strictly lower
p-adic valuation than the other terms. Thus, vp(E) ≤ vp(q) ≤ vp(G), so
that E ̸= 0 and q | G. On the other hand, since NA, NC ∈ Z+, (13) tells us
that

q2 = NAE
2 +NCG

2 > NCG
2 ≥ G2,

and so G = 0.

Step 6. We have E = q and NA = 1.

Proof. Since G = 0 by Step 5, (12) and (13) imply that E = q and NA = 1.

Step 7. We have NC = (q − 3)/2.

Proof. Since NA = 1 by Step 6, (11) gives us that NC = (q − 3)/2.

Step 8. The quantity F is odd and H = 2I for some I ∈ Z \ {0}.
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Proof. We know that G = 0 by Step 5 and E = q by Step 6. Furthermore,
q is odd since p is odd by Step 1. Step 2 tells us that E ≡ F (mod 2) and
G ≡ H (mod 2), so F is odd and H is even. But H ̸= 0, else C = D (see
Step 2), so H = 2I for some I ∈ Z \ {0}.

Step 9. We must have q ≤ 5.

Proof. We can substitute the results from Steps 5–8 into (15) and (14) to
obtain

3F 2 =
q

p
· (4V [1,1]

1 − q) (17)

F 2 + 2(q − 3)I2 =
q2

p
. (18)

Since p ≡ 1 (mod 4) by Step 1, we have gcd(q/p, 3) = gcd(q/p, 2(q−3)) = 1,

and therefore since V
[1,1]
1 ∈ Z, (17) and (18) consecutively give us that

(q/p) | F 2 and (q/p) | I2. Now we know from Step 8 that F, I ̸= 0, so
F 2/(q/p), I2/(q/p) ≥ 1. If we substitute this into (18), the equality becomes
the inequality

q =
q2/p

q/p
=
F 2

q/p
+ 2(q − 3) · I

2

q/p
≥ 1 + 2(q − 3) = 2q − 5,

so that q ≤ 5.

Step 10. We conclude that q = 5 and s ≡ 3 (mod 4).

Proof. Steps 1 and 9 give us that an action with two disjoint transpositions
can only occur when q = p = 5. We now consider the possible values
for s. Since WK,s′ = WK,s′′ if s′ ≡ s′′ (mod q − 1) (see the definition of
equivalent exponents in Section 1), it suffices to consider the cases when
s ≡ 0, 1, 2, 3 (mod 4). We cannot have s ≡ 0, 2 (mod 4), for then gcd(s, q−
1) = gcd(s, 4) ̸= 1, so s would not be invertible. Nor can we have s ≡ 1
(mod 4), for then s would be degenerate and this would make |WK,s| ≤ 2
by Theorem 1.2. Thus s ≡ 3 (mod 4). □

Proposition 6.5 (No action as a transposition). If |WK,s| = 4, then τ
does not permute the elements of WK,s as a transposition.

Suppose that |WK,s| = 4. Assume that τ permutes WK,s as a transpo-
sition to show a contradiction. For clarity, the proof of this proposition is
broken into steps.

Step 1. We have p ≡ 1 (mod 4), so p ≥ 5, and there exist A,B,E, F ∈ Z
with |A| ≤ |B|, F > 0, and E ≡ F (mod 2) such that WK,s = {A,B,C =
(E + F

√
p)/2, D = (E − F

√
p)/2} and τ acts on WK,s as (A)(B)(CD), i.e.,

τ(A) = A, τ(B) = B, τ(C) = D, and τ(D) = C. Moreover, both NA and
NB are even and NC = ND.

Proof. Since τ has order 2, we know by Proposition 2.1 that p ≡ 1 (mod 4)
and that Q(WK,s) = Q(

√
p), the unique degree 2 extension of Q that lies
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in Q(ζ). This means that the two elements of WK,s exchanged by τ are
Galois conjugate algebraic integers in Q(

√
p), and hence can be written as

C = (E + F
√
p)/2 and D = (E − F

√
p)/2 for some E,F ∈ Z where E ≡ F

(mod 2) and F > 0 by Lemma 3.6. The other two elements of WK,s are
algebraic integers fixed by τ (and hence by σ), so they must be rational
integers; we label these A and B in such a way that |A| ≤ |B|. Then both
NA and NB are even and NC = ND by Lemma 2.3.

Step 2. We have τ(Wu) =W−u for all u ∈ K×, so as in Sections 5.2 (with
k = 2) and 5.3 we can let

Ω =
∑︂

u∈K×

(Wu +W−u)[u] =
∑︂

u∈K×

(Wu + τ(Wu))[u],

Φ =
∑︂

u∈K×

(Wu −W−u)[u] =
∑︂

u∈K×

(Wu − τ(Wu))[u],

V = V [1,1], U = V [1,−1], and T = [1] + [−1].

Proof. Since Step 1 implies that τ has order 2 and p ≡ 1 (mod 2), Proposi-
tion 2.1 and (4) give us that τ(Wu) =W−u for all u ∈ K× and we have the
bilateral symmetry alluded to in Sections 5.2 (with k = 2) and 5.3.

Step 3. The integer E is odd and there exist rational integers X < Y <
Z such that {X,Y, Z} = {2A, 2B,E}. Let MR = |{u ∈ K× : Ωu =
R}| for R ∈ {X,Y, Z}. Then we have {(X,MX), (Y,MY ), (Z,MZ)} =
{(2A,NA), (2B,NB), (E, 2NC)} and the following equations hold:

q − 1 =MX +MY +MZ (19)

2q =MXX +MY Y +MZZ (20)

2q2 =MXX
2 +MY Y

2 +MZZ
2 (21)

MX =
2q2 − 2q(Y + Z) + (q − 1)Y Z

(X − Y )(X − Z)
(22)

MY =
2q2 − 2q(X + Z) + (q − 1)XZ

(Y −X)(Y − Z)
(23)

MZ =
2q2 − 2q(X + Y ) + (q − 1)XY

(Z −X)(Z − Y )
(24)

V1 + 3V−1 = (X + Y + Z)− XY + Y Z + ZX

q
+

(q − 1)XY Z

2q2
(25)

q2 = NCF
2p (26)

V1 − V−1 = E (27)

2F 2p =
∑︂

u∈K×

(Vu + V−u − 2Uu)
2. (28)

Proof. Since NC = ND by Step 1, we observe that as u runs through K×,
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Φu has Ωu has
NA +NB instances of 0 NA instances of 2A
NC instances of F

√
p NB instances of 2B

NC instances of −F√p 2NC instances of E

and Ωu = E for those u such that Φu ̸= 0. Thus, we obtain (26)–(28)
from Lemma 5.20(ii)–(iv). Note that (26) and Step 1 imply that E and F
are odd, whereas 2A and 2B must be distinct and even, so that there are
rational integers X < Y < Z with {X,Y, Z} = {2A, 2B,E} and we can
let MX , MY , and MZ be as stated above. Equations (19)–(21) then follow
from Lemma 5.17(i)–(iii), which we also use to prove (22) from the following
observation:

MX(X − Y )(X − Z) =
∑︂

u∈K×

(Ωu − Y )(Ωu − Z),

and (23) and (24) follow similarly by exchanging the roles of X, Y , and Z.
Similarly, one can prove (25) using all parts of Lemma 5.17 (and the fact

that V = V [1,1]) from the following observation:

0 =
∑︂

u∈K×

(Ωu −X)(Ωu − Y )(Ωu − Z).

Step 4. We have −q < −2(q − 1)/(p − 1) < X < Y < Z < 2q and
vp(X), vp(Y ), vp(Z) ≥ 1. If any of X, Y , or Z is nonzero, then its p-adic
valuation is less than the p-adic valuation of q. If none of X, Y , and Z is
zero, then vp(XY ), vp(Y Z), vp(ZX) > vp(q).

Proof. The first chain of inequalities follows from Step 3 and Lemma 3.6
(which applies due to Step 1 and Theorem 1.2), once we notice that 2A,
2B, and E take the place of I in Lemma 3.6. Lemma 3.6 also tells us
that vp(X), vp(Y ), vp(Z) ≥ 1. Next, MXX

2, MY Y
2, and MZZ

2 are all even
rational integers by Step 3, so ifX ̸= 0 but vp(X) ≥ vp(q), then 2q2 |MXX

2,
and hence MXX

2 = 2q2 and Y = Z = 0 by (21). This contradicts Step 3.
Analogous arguments show that the same result holds for Y and Z. In
particular, if 0 ̸∈ {X,Y, Z}, then vp(X), vp(Y ), vp(Z) < vp(q). Thus, if we
write (25) as

2q2(V1 + 3V−1) = 2q2(X + Y + Z)− 2q(XY + Y Z + ZX) + (q − 1)(XY Z),

then (q − 1)XY Z has a strictly smaller p-adic valuation than every other
term on the right-hand side of the above equation. This implies that

vp(X) + vp(Y ) + vp(Z) = vp(2q
2(V1 + 3V−1)) ≥ 2vp(q),

and so the desired inequalities follow from subtracting one of the terms on
the left-hand side from both sides.

Step 5. We have −q < X < Y = 0 < Z < q.
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Proof. Recall from Step 3 that MX is a strictly positive count, so the nu-
merator and denominator in (22) must have the same sign. Thus, to prove
this step, it suffices to show that Y = 0 since −q < X < Y < Z by Step 4,
for then the numerator in (22), which is positive, becomes 2q(q − Z).

Suppose that Y ̸= 0. By Step 3, we know that Z > 0, since otherwise the
right-hand side of (20) would be negative. Moreover, the numerator in (22)
is positive, that is,

2q2 − 2q(Y + Z) + (q − 1)Y Z > 0. (29)

Thus, using Step 4 and the fact that p ≥ 5 from Step 1 in (29) gives us

Y Z >
2q(Y + Z − q)

q − 1
>

2q

q − 1

(︃
−2

(︃
q − 1

5− 1

)︃
+ 1− q

)︃
= −3q > −pq.

We cannot have Y < 0, for that would imply both 0 ̸∈ {X,Y, Z} and
vp(Y Z) ≤ vp(q), which contradicts Step 4. So we must have Y > 0. If we
use the same argument, replacing (22) with (24), Z with Y , and Y with X,
we show that X < 0 is also impossible, and so obtain X ≥ 0.

If X > 0, then Step 4 implies that X,Y, Z ≥ p, so (20), (19), and the fact
that q ≥ p ≥ 5 by Step 1 give us the contradiction

2q ≥ p(MX +MY +MZ) = p(q − 1) ≥ 5q − p ≥ 4q.

This forces X = 0 < Y < Z by Step 3, so that (20) and (21) give

2qZ = (MY Y +MZZ)Z > MY Y
2 +MZZ

2 = 2q2,

and hence Z > q. On the other hand, MZZ
2 ≤ 2q2 by (21), so MZ = 1.

With this information, (20) and (21) become

MY Y + Z = 2q (30)

MY Y
2 + Z2 = 2q2. (31)

Since vp(Z) < vp(q) by Step 4, (30) and (31) imply that vp(MY Y ) = vp(Z)
and vp(MY Y

2) = vp(Z
2), and hence that vp(MY ) = 0 and vp(Y ) = vp(Z).

Moreover, (23) can be rewritten as

MY Y =
2q(Z − q)

Z − Y
,

so that vp(Y ) = vp(q) + vp(Z) − vp(Z − Y ), and so vp(Z − Y ) = vp(q). In
other words, q | Z − Y . Since 0 < Y < Z < 2q by Step 4, this is only
possible if Z = Y + q. If we substitute this equation for Z into (30) and
(31) and solve for Y , we obtain 3Y = q, which is impossible because p ≡ 1
(mod 4) by Step 1.

Step 6. We have E = X < 0 and A = Y/2 = 0 and B = Z/2 > 0.
Moreover, |E| < |B| and V−1 > 0 and B = 2V−1/(1− E/q).

Proof. Recall from Step 3 that {X,Y, Z} = {2A, 2B,E} is a set of three
distinct numbers and that E is odd. Since |A| ≤ |B| by Step 1 and Y = 0
is even by Step 5, we must have 0 = Y = A and {X,Z} = {2B,E}. We
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obtain B = 2V−1/(1− E/q) by substituting these facts into (25) and using
(27) (note that we can divide by 1−E/q since Step 5 implies that |E| < q).

Now, since B is nonzero, 1 − E/q is positive (since |E| < q), and V−1 is
nonnegative (by Lemma 5.19(i)), we must have B = Z/2 is positive, and
hence V−1 > 0 and E = X < 0. It then follows that 1 < 1 − E/q < 2 and
V−1 < B < 2V−1. Lastly, Lemma 5.19(i) tells us that V1 ≥ 0, so E ≥ −V−1

by (27), and thus |E| < |B|.

Step 7. There exists an odd integer m with 0 < m < n such that NC = pm

and F = pn−(m+1)/2. Let ℓ = vp(B) − vp(E). Then vp(NB) = m − 2ℓ.
Moreover, we have

NBB +NCE = q (32)

2NBB
2 +NCE

2 = q2. (33)

Proof. The results aboutm, NC , and F follow from (26) since NC < q, while
(32) and (33) come from equations (20) and (21) and Steps 3 and 6. Lastly,
(33) implies that vp(NBB

2) = vp(NCE
2) since 2NBB

2 > 0 and NCE
2 > 0

by Step 6 and p ∤ 2 by Step 1, so vp(NB) = m− 2ℓ.

Step 8. We have ℓ > 0, and there exist β, ε, ν ∈ Z+ all relatively prime to
p such that

B = βpn−m+2ℓ, E = −εpn−m+ℓ, and NB = 2νpm−2ℓ. (34)

Moreover, we have the following equations:

2νβ − εpℓ = 1 (35)

4νβ2 + ε2 = pm−2ℓ. (36)

Proof. Steps 1, 6, and 7 allow us to write B = βpvp(E)+ℓ, NB = 2νpm−2ℓ,
E = −εpvp(E), and NC = pm with β, ε, ν ∈ Z+ all relatively prime to p, so
that (32) and (33) become

2νβpm+vp(E)−ℓ − εpm+vp(E) = pn (37)

4νβ2 + ε2 = p2n−m−2vp(E). (38)

It thus suffices to show that ℓ > 0, for then m + vp(E) − ℓ < m + vp(E),
and hence m + vp(E) − ℓ = n by (37), so that vp(E) = n −m + ℓ, and so
the expressions for E and B at the beginning of this proof become those in
(34) while (37) and (38) become (35) and (36).

Suppose ℓ ≤ 0, and let g = n−m− vp(E). Then (37) and (38) become

2νβp−ℓ − ε = pg (39)

4νβ2 + ε2 = p2g+m. (40)

By Step 6, we have ε = |E|/pvp(E) < |B|/pvp(E)+ℓ = β, so (39) gives us

pg > 2νβp−ℓ − β ≥ β(2ν − 1), (41)
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and hence g > 0 since β, ν ≥ 1. Note that this implies that ℓ = 0, for
otherwise the p-adic valuation of the left-hand side of (39) would be 0. We
can thus solve (39) for ε and substitute the resulting expression into (40) to
get

4β2ν(ν + 1)− 4νβpg + p2g − p2g+m = 0. (42)

Since g > 0, the third and fourth terms on the left-hand side of (42) have
strictly larger p-adic valuation than the second term does, so we must have
vp(4β

2ν(ν + 1)) = vp(4νβp
g), that is, vp(ν + 1) = g. So ν = −1 + µpg for

some µ ≥ 1 such that p ∤ µ. But if we substitute this into pg > β(2ν − 1)
from (41) and rearrange to obtain an upper bound for µ, then (keeping in
mind that p ≥ 5 by Step 1) we obtain

µ <
1

2β
+

3

2pg
≤ 1

2
+

3

2 · 5
=

4

5
,

which is a contradiction. We thus have ℓ > 0, as we wished.

Step 9. We have both BE − 2CD = βp2n−2m+2ℓ and C2 + D2 − BE =
p2n−2m+2ℓ(pm−2ℓ − β).

Proof. These results come from using the expressions for C and D in Step 1
and those for B, E, and F in Steps 7 and 8 to write

BE − 2CD = p2n−2m+2ℓ

(︃
pm−2ℓ − ε2

2
− βεpℓ

)︃
C2 +D2 −BE = p2n−2m+2ℓ

(︃
pm−2ℓ + ε2

2
+ βεpℓ

)︃
and then using (35) and (36) to simplify these expressions.

Step 10. Let SR = {u ∈ K× :Wu = R} for R ∈ WK,s. If we identify these
subsets of K× with group algebra elements as described before Lemma 5.1,
then, using the definitions of W = WK,s from (8) in Section 5.1 and of T ,
U , V from Step 2, we have

WT =
∑︂

u∈K×

(Wu +W−u)[u] = 2BSB + E(SC + SD) (43)

WU =
∑︂

u∈K×

WuW−u[u] = B2SB + CD(SC + SD) (44)

WV T =
∑︂

u∈K×

(W 2
u +W 2

−u)[u] = 2B2SB + (C2 +D2)(SC + SD). (45)

Proof. The left-hand equalities follow from the definitions of T , U , and V
and also Proposition 5.13 in the case of (44) and (45). The right-hand
equalities follow from the fact that W−u = τ(Wu) (by Step 2) and the
values for Wu in Steps 1 and 6.

Step 11. We have β = 1, so B = pn−m+2ℓ.
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Proof. We can eliminate SC + SD from (43) and (44) to get

W (EU − CDT ) = B(BE − 2CD)SB. (46)

Then we can multiply both sides of (46) by W/(B(BE − 2CD)) to get, by
Lemma 5.8 and Steps 8 and 9, that

WSB =
q2(EU − CDT )

β2p3n−3m+4ℓ
. (47)

Note that the coefficients of WSB ∈ L[K×] are algebraic integers, while the
coefficients of the right-hand side of (47) are rational numbers, so the coef-
ficients in (47) must all be rational integers. In particular, β divides every
coefficient of the numerator of the right-hand side of the above equation.
Since gcd(q, β) = 1 = gcd(β, ε) = gcd(β,E) by Step 8 and (35), we must
have β | Uu for all u ̸∈ {±1}. If β > 1, then β ∤ −1, so Uu ≥ 0 for every
u ̸= ±1 by Lemma 5.19(i). We also know that U1 = U−1 = V−1 > 0 by
Lemma 5.19(iii) and Step 6. But then

∑︁
u∈K× Uu > 0, which contradicts

Lemma 5.19(iv). Thus β = 1 and B = pn−m+2ℓ by Step 8.

Step 12. We have 3 ≤ 3ℓ < m < 4ℓ and

ε2 + 2pℓε− (pm−2ℓ − 2) = 0. (48)

Proof. Equation (48) comes from using Step 11 and eliminating ν from (35)
and (36). Then (48) and Step 8 imply that pm−3ℓ > 2ε > 1, so m > 3ℓ ≥ 3.

Recall from Step 8 that ε > 0, so (48) implies ε = −pℓ+
√︁
p2ℓ + pm−2ℓ − 2.

If we assume that m > 4ℓ, then ε ≥ −pℓ+
√︁
p2ℓ + p2ℓ+1 − 2, and since ℓ > 0

by Step 8, we obtain ε ≥ −pℓ+√
p ·pℓ > pℓ because

√
p ≥

√
5 > 2 by Step 1.

But then Steps 8 and 11 give us that |E| = εpn−m+ℓ > pn−m+2ℓ = |B|,
which contradicts Step 6. So m ≤ 4ℓ, and this inequality is actually strict
since m is odd by Step 7.

Step 13. Let δ0 = 1 and δx = 0 if x ̸= 0. For any u ∈ K×, we have

Vu + V−u = qδu2−1 − 2(pm−2ℓ − 1)Uu.

Moreover, if u ̸∈ {±1}, then Uu ∈ {−1, 0}.

Proof. First, we eliminate SB from (43) and (44) (respectively, (43) and
(45)) and use Steps 9 and 11 to get

W (BT − 2U) = p2n−2m+2ℓ(SC + SD) (49)

W (V T −BT ) = (pm−2ℓ − 1)p2n−2m+2ℓ(SC + SD). (50)

Then, we substitute (49) into (50) and use Step 11 to obtain

W
(︂
−2(pm−2ℓ − 1)U − V T + qT

)︂
= 0.

Note that W is a unit in L[K×] because WW = q2 by Lemma 5.8, so

V T = qT − 2(pm−2ℓ − 1)U,
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and hence we achieve the above general result. When u ̸∈ {±1}, we also
have Uu ∈ {−1, 0} since both Vu and V−u are nonnegative and Uu ≥ −1 by
Lemma 5.19(i), while −2(pm−2ℓ − 1) is strictly negative by Step 12.

Step 14. We conclude that τ does not permute WK,s as a transposition.

Proof. Using the expression for F in Step 7 and the expression for Vu+V−u

from Step 13, (28) becomes

2p2n−m =
∑︂

u∈{±1}

(q2 − 4qpm−2ℓUu) + 4p2m−4ℓ
∑︂

u∈K×

U2
u . (51)

We now use the fact from Step 13 that Uu ∈ {−1, 0} for u /∈ {±1} to write∑︁
u∈K× U2

u =
∑︁

u∈{±1} Uu(Uu+1)−
∑︁

u∈K× Uu. Then, since
∑︁

u∈K× Uu = 0

and U1 = U−1 = V−1 by Lemma 5.19(iii),(iv), we see that (51) simplifies to

p2n−m = q2 − 4qpm−2ℓV−1 + 4p2m−4ℓV−1(V−1 + 1). (52)

We also have from Step 6 that 2V−1 = B(1 − E/q), so 2pm−2ℓV−1 = q − E
by Step 11. Using this fact, the expression for E in Step 8, and (48) in (52),
we obtain

p2n−m = q2 − 2q(q − E) + 2pm−2ℓ(q − E) + (q − E)2

= ε2p2n−2m+2ℓ + 2εpn−ℓ + 2pn+m−2ℓ

= p2n−m − 2εp2n−2m+3ℓ − 2p2n−2m+2ℓ + 2εpn−ℓ + 2pn+m−2ℓ,

that is,

p2n−2m+2ℓ(1 + εpℓ) = pn−ℓ(ε+ pm−ℓ). (53)

Since ℓ > 0 andm > ℓ by Step 12 and since p ∤ ε (see Step 8), p-adic valuation
shows that 2n − 2m + 2ℓ = n − ℓ. Then divide (53) by pn−ℓ = p2n−2m+2ℓ

and rearrange to obtain

ε(pℓ − 1) = pm−ℓ − 1.

This means that pℓ−1 | pm−ℓ−1, which implies that ℓ | m− ℓ, and so ℓ | m.
But 3ℓ < m < 4ℓ by Step 12, so we have a contradiction. □

Now we are ready to prove Theorem 1.5 (which was restated at the be-
ginning of this section as Theorem 6.1).

Proof of Theorem 1.5. Suppose |WK,s| = 4. Since τ permutes the elements
of WK,s (see (4)), τ must act trivially, as a transposition (while keeping two
values fixed), as a composition of two disjoint transpositions, as a 3-cycle
(while keeping one value fixed), or as a 4-cycle on WK,s. But Propositions
6.2, 6.3, and 6.5 exclude the possibilities that τ acts as a 4-cycle, as a 3-
cycle, and as a transposition, respectively, while Proposition 6.4 states that
τ permutes WK,s as a composition of two disjoint transpositions precisely

when q = 5 and s ≡ 3 (mod 4), in which case WK,s = {(5 ±
√
5)/2,±

√
5}.

That is, other than the aforementioned case, τ can only act trivially onWK,s,
and hence WK,s is rational by Proposition 2.1, as we wished to prove. □
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