RATIONALITY OF FOUR-VALUED FAMILIES OF WEIL
SUMS OF BINOMIALS

DANIEL J. KATZ AND ALLISON E. WONG

ABSTRACT. We investigate the rationality of Weil sums of binomials of
the form Wk* = Y owex Y(@® — ux), where K is a finite field whose
canonical additive character is v, and where u is an element of K*
and s is a positive integer relatively prime to |[K*|, so that z — z° is a
permutation of K. The Weil spectrum for K and s, which is the family of
values WX as u runs through K, is of interest in arithmetic geometry
and in several information-theoretic applications. The Weil spectrum
always contains at least three distinct values if s is nondegenerate (i.e.,
if s is not a power of p modulo |K*|, where p is the characteristic of K).
It is already known that if the Weil spectrum contains precisely three
distinct values, then they must all be rational integers. We show that
if the Weil spectrum contains precisely four distinct values, then they
must all be rational integers, with the sole exception of the case where
|[K| =5 and s =3 (mod 4).

1. INTRODUCTION

In this paper, we assume that K is a finite field of characteristic p and
order ¢ = p". Let ( = exp(2wi/p). The canonical additive character of K
is : K — Q(¢) given by ¥(z) = ¢(™®), where Tr: K — F, with Tr(z) =
z+aP + -+ 29P. We use s to denote an invertible exponent over K,
that is, a positive integer with ged(s,q — 1) = 1. This ensures that s has a
multiplicative inverse, 1/s, modulo ¢ — 1 and makes = — z* a permutation
of the field K with inverse map x — /5. For each u € K, we define

Wios =" p(a® —uz) = Y (), (1)

zeK zeK

which is a Weil sum of a binomial (if u # 0) or a Weil sum of a monomial
(if w = 0). When the field K and the exponent s are clear from context, we
omit the superscript and write W,. Note that Weil sum values lie in Z[(],
the ring of algebraic integers in Q(¢). In fact, it is known that they lie in
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Z[¢] N R; see [Katl2, Theorem 2.1(c)], or see [Tra70, Theorem 2.3] for an
earlier equivalent statement in terms of crosscorrelation of linear recursive
sequences.

Theorem 1.1 (Trachtenberg, 1970). If K is a finite field and s is an in-
vertible exponent over K, then WL e R for every u € K.

A multiset of elements from a set X is a function p from X into the non-
negative integers, where for x € X the value p(z) is the frequency (number
of instances) of z in the multiset. Thus, u represents a normal set if and
only if it maps X into {0,1} (in which case p is identified with the subset
p1({1}) of X). The Weil spectrum for the field K and the exponent s is the
multiset of values WJ( * as u runs through K*. That is, the Weil spectrum
is a multiset of elements from Z[(], where a given value A € Z[(] has a

frequency, written Nf’s (or N4 when K and s are clear from context), with
N ={ue KX Wi = A}|. (2)

We define the value set for the field K and the exponent s, written Wg 5, to
be the set of distinct values in the Weil spectrum, that is,

Wi s = {WEs u e K. (3)

Note that we do not record WOK * in Wi g, but this value is always 0 because
x — z° is a permutation of K and ) ¥(x) = 0.
The evaluation and estimation of Weil sums has been studied extensively

[Klo27, [DH36L [Aku65l, Kar67, [Car78, [Car79, [Coud8, (CP03, [CP11l [SV20],
including special cases such as Kloosterman sums, which are of the form

Wf IKI=2 1 Weil sums are used to count points in algebraic sets over
finite fields; see, for example, Sections 7.7 and 7.11 of [Kat19] and Section
of this paper. In the Kloosterman case, the Weil spectra for fields of charac-
teristic 2 and 3 were studied in [LW87] and [KL89], and Sections 7.2-7.4 of
[Kat19] describe applications of Weil spectra in information theory, which
we summarize here. The Walsh spectrum of the permutation x — x° of K is
obtained from the Weil spectrum by also including the value WOK * = 0. The
Walsh spectrum measures the nonlinearity of the permutation, which indi-
cates its resistance to linear cryptanalysis. The crosscorrelation spectrum of
two maximum length linear recursive sequences is obtained by subtracting
1 from each value in the Weil spectrum. This crosscorrelation spectrum
determines the performance of communications networks and remote sens-
ing systems employing these sequences for modulation. Weil spectra also
determine the weight distribution of certain error correcting codes, thus in-
dicating the performance of the codes.

For a finite field K, we say that two exponents s and s’ are equivalent to
mean that s’ = p¥s* (mod ¢—1) for some k € Z and £ € {—1,1}; this defines
an equivalence relation, and equivalent exponents produce the same Weil
spectrum by [Tra70, Theorems 2.4, 2.5] (in the language of crosscorrelation),



RATIONALITY OF FOUR-VALUED FAMILIES OF WEIL SUMS OF BINOMIALS 3

or see [Kat19, Lemmas 7.5.2, 7.5.6]|H We say that s is degenerate over K
to mean that it is equivalent to 1, that is, s is a power of p modulo ¢ — 1.
If K has four or fewer elements, then all exponents are degenerate over
K; larger finite fields always have at least one nondegenerate exponent (see
[Kat19, Lemma 7.5.4]). If s is degenerate, then Wg s = {0, ¢} if ¢ > 2 and
Wg,s = {q} if ¢ = 2; see [Katl9, Corollary 7.5.5].

We say the Weil spectrum for K and s is v-valued (resp., at least v-
valued, at most v-valued) to mean that Wk | = v (resp., [Wgk | > v,
Wk s| < v). Thus, Weil spectra of degenerate exponents are at most 2-
valued, and Helleseth showed that Weil spectra of nondegenerate exponents
are always at least 3-valued in [Hel76, Theorem 4.1].

Theorem 1.2 (Helleseth, 1976). Let K be a finite field and s be an invertible
exponent over K. Then the Weil spectrum for K and s is at least 3-valued
if and only if s is nondegenerate over K.

There is much interest in which pairs (K, s) produce Weil spectra with few
values (e.g., 3-valued or 4-valued spectra). All known 3-valued spectra have
been classified into ten infinite families (see [Kat19, Table 7.1]), and 4-valued
spectra have been studied in [Nih72, Theorems 3-6, 3-7], [Hel76, Theorem
4.13], [Dob98|, Proposition 1], [HRO5, Theorem 6], [DFHR06, Theorem 23],
[ZLFG14, Theorem II.5], and [XHW14, Theorem 1]. Although each Weil
sum value is always an algebraic integer in some cyclotomic extension of Q,
one observes that Weil spectra with few distinct values often have all of their
values in Z. We say that the Weil spectrum for K and s is rational (or that
Wg s is rational) to mean W ; C Z. Helleseth proved a simple criterion for
rationality in [Hel76, Theorem 4.2].

Theorem 1.3 (Helleseth, 1976). Let K be a finite field of characteristic p
and s be an invertible exponent over K. Then the Weil spectrum for K and
s is rational if and only if s=1 (mod p —1).

Later, in [Kat12, Theorem 1.7], it was proved that 3-valued Weil spectra
are invariably rational.

Theorem 1.4 (Katz, 2012). Let K be a finite field and s be an invertible
exponent over K. If the Weil spectrum for K and s is 3-valued, then it is
rational.

Thus, in view of Theorem when K is a field of characteristic p and
s # 1 (mod p—1), the Weil spectrum for K and s cannot be 3-valued. Katz
and Langevin set an open problem [KL16, Problem 3.6], part of which is to
find an analogue of Theorem for 4-valued spectra. The main result of
this paper is this analogue, which we now state.

!Lemma 7.5.6 of [Kat19] has a typographical error: a'/? should be fixed to read a~'/4

there.
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Theorem 1.5. Let K be a finite field and s be an invertible exponent over
K. If the Weil spectrum for K and s is 4-valued, then it is rational unless
K =F5 and s =3 (mod 4) (in which case Wk s = {(5 & v/5)/2, £V/5}).

By Theorem [I.3] this means that, other than in the exceptional case when
|K|=5and s =3 (mod 4), the condition s =1 (mod p—1) is necessary for
the Weil spectrum to be 4-valued. Since the Walsh spectrum of the power
permutation x — x°® over K is obtained from the Weil spectrum for K and
s by including WOK * = 0, Theorems and u show that all the values in
a four-valued Walsh spectrum must lie in Z.

The remainder of this paper is devoted to proving Theorem We start
in Section[2] by using Galois theory and algebraic number theory to study the
structure of Weil spectra. Then, in Section [3|, we present some archimedean
and p-adic bounds on Weil sum values. Section {4] introduces some algebraic
sets over finite fields, which we then relate to Weil sums in Section [5| via a
group algebra. Finally, we prove Theorem in Section [6]

2. ALGEBRAIC NUMBER THEORY

In this section we introduce the number systems that are used in our
proof of Theorem Algebraic number theory provides several results
that constrain the structure of Weil spectra and thus help us achieve our
proof.

Recall that K is a finite field of characteristic p and order ¢ = p™, that s
is a positive integer such that ged(s,q — 1) = 1, and that { = exp(27i/p).
We use N to denote the set of nonnegative integers and Z. to denote the set
of strictly positive integers. We know that Gal(Q(¢)/Q) is a cyclic group
of order p — 1; an element of this Galois group fixes all elements of Q and
maps ¢ to ¢ for some j € Fy. Let v denote a primitive element of the
prime subfield F), and let o denote the automorphism in Gal(Q(¢)/Q) that
maps ¢ to ¢7: note that o is a generator of the Galois group. Then [Kat12]
Theorem 2.1(b)] shows that o(Wy) = W,1-1/s,, for every u € K, where 1/s
is interpreted as the multiplicative inverse of s modulo p — 1. Thus, ¢ maps
the value set Wy s (see ) to itself. From now on, we let 7: Wk ¢ — Wk ¢
be the permutation obtained by restricting o, so that for every u € K, we
have

(W) = Wopa/ay, (4)

where 1/s is interpreted as the multiplicative inverse of s modulo p — 1.
The following result indicates important relationships between the expo-
nent s, the characteristic p of the field K, the order of 7, the order of the

element v1~1/5 in , and the degree of the extension of (Q generated by the
values in the Weil spectrum.

Proposition 2.1. The following are all equal:

(i) the order of the permutation T of Wk s,
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(ii) the degree, [Q(Wk ) : Q], of the field extension of the rationals
generated by W s,
(iii) the order of v~/ in Fy (where 1/s indicates the multiplicative
inverse of s modulo p— 1), and
(iv) the quantity (p — 1)/ ged(p — 1,5 — 1).
Let m denote the common value of these. If p =2, then m =1, but if p > 2,
then p =1 (mod 2m).

Proof. Since Q(Wg s) is a subfield of Q(¢) and since Gal(Q(¢)/Q) is a cyclic
group generated by o, the Galois correspondence shows that [Q(Wg s) : Q]
equals the order of the restriction to Q(Wg s) of o, which is the same as
the order of 7. Lemma 5.3 of [AKL15] shows that [Q(Wgk ) : Q] equals
(p—1)/ged(p — 1,5 — 1), which is the order of v!~1/% = (y1/%)5~1 because
~ has order p — 1 and s is invertible modulo p — 1 (since ged(s,qg — 1) = 1).

Ifp=2,then Q(¢) = Q(—1) =Q,s0 Q(Wg,) = Qand m = 1. Whenp >
2, Theorem [1.1] shows that Q(Wk s) is a subfield of Q(¢) "R = Q(¢ + ¢ 1),
an extension of Q of degree (p —1)/2, and som | (p—1)/2. O

Remark 2.2. Proposition shows that Wk , is rational when p = 2 or 3.

Recall from that the frequency of a value A in the Weil spectrum is
Ny =|{ue K*: W, = A}|. The action of 7 on the Weil spectrum gives us
information about these frequencies.

Lemma 2.3. Suppose that T has order m, and let Ag, A1, ..., Ax_1 be dis-
tinct elements of Wy s that T permutes in a k-cycle, that is, 7(A;) = Ai1
for every i € Z/kZ. Then k| m and Na, = Na, = --- = Na,_,, which is a
multiple of m/k.

Proof. Let U; = {u € K* : W, = A;} for each i € Z/kZ and let A = '~/
where we interpret 1/s as the multiplicative inverse of s modulo p — 1. For
u € Uy and j € Z we have, by , that Wy, = 7/ (Wy,) = 77 (A40) = Aj mod k-
In particular, we have k | m since 7 has order m. Moreover, Wy, = Ay =
W, so Uy is a union of cosets of the subgroup (AF) of the group K*. Since
A is of order m by Proposition and k | m, this subgroup is of order
m/k, and so Ny, = |Up| is a multiple of m/k. Lastly, for any j € Z, the
map v — Mu provides a bijection from U to Uj mod 1 because we have
seen that Wy, = A modax for every u € Uy, and we can similarly prove
Wi—ip =77 (Wy) = 777(Aj mod k) = Ao for every v € Uj mod k- O

Let f be a permutation of a finite set X. The cycle type of f is the multiset
of lengths of cycles that is obtained when f is written as a composition of
disjoint cycles. Note that the sum of the values in the cycle type of a
permutation f is equal to the size of the set being permuted. We say that f
s a single cycle to mean that f can be written as a single cycle that contains
all elements of X. The next two results explore constraints on the cycle type
of 7.
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Lemma 2.4. When p = 2, the cycle type of T is a collection of Wk s
instances of 1. When p is odd, the cycle type of T contains no number larger
than (p —1)/2.

Proof. Let m be the order of 7. When p = 2, the field Q(¢) = Q(—1) = Q,
so o and 7 are identity maps. When p is odd, Proposition [2.1] implies that
m < (p—1)/2, so the desired result follows since m is the least common
multiple of all the numbers in the cycle type of 7. O

Proposition 2.5. The permutation 7 is a single cycle if and only if K = Fq
(and then s is degenerate and T is a 1-cycle).

Proof. Suppose p = 2. Lemma[2.4]shows that 7 is a single cycle if and only if
Wk s| = 1, which happens exactly when K = Fy (and then every exponent
is degenerate and 7 is a 1-cycle).

Now suppose p is odd. Let Wk, = {Ao,...,Ax,_1} and suppose for
a contradiction that 7 is a single cycle. Then Ny, = --- = Ny, , by
Lemma The sum ), x Wy of ¢ — 1 Weil sum values is equal to ¢ by
[Kat12, Proposition 3.1(b)], so that

ENa, =q—1 and
NAO(A0+"'+Ak—1) =q.

Note that Ag+ -+ 4+ Ax_1 € Z since it is an algebraic integer fixed by o (of
which 7 is a restriction). Thus, N4, is a common divisor of ¢ and ¢ — 1,
and hence Ny, =1 and k = ¢ — 1. But then, by Lemma we must have
(p—1)/2>k=q—12>p—1, which is impossible. O

3. BounNnDS ON WEIL SUM VALUES

In this section we discuss some archimedean and non-archimedean bounds
on the Weil sum W that are used in proving the main result (Theo-
rem [1.5)). Recall that we use N to refer to the set of nonnegative integers.
We use the p-adic valuation, v,. One begins with v,: Z — NU {oco}, where
v,(0) = 00 and vp(a) = max{j € N:p’ | a} when a # 0. Then one extends
the domain of v, to Q by letting v,(a/b) = vp(a) — vp(b) when a,b € Z and
b # 0. Furthermore, one can extend the domain of v, to Q(¢), in which
case vp(¢ — 1) = 1/(p — 1); see [Lan02, Theorem 4.1], [Lan90, p. 7], and
[Hel76, p. 218]. For the purposes of this paper, the most important facts
about v, (which we shall use without proof) are that v,(ab) = v,(a) + v,(b)
and that vy,(a + b) > min{v,(a),v,(b)}, with vy(a + b) = min{v,(a),v,(b)}
if vp(a) # vp(b).

From , we know that Weil sums are sums of pth roots of unity, so we
first explore linear combinations of these roots.

Lemma 3.1. For any t € Q and any v € Q((), there is one and only
one way to write v as a Q-linear combination of 1,¢, ..., (P~ such that the
coefficients sum to t.
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Proof. Our claim will follow if we show that the map ¢: QP — Q(¢) x Q with
o(wo, wi, ..y wp—1) = (wo + wi1¢ + -+ + wp— 1P~ wy + wy + -+ + wp—1)
is an isomorphism of Q-vector spaces. Since ¢ is clearly a Q-linear map
between two Q-vector spaces of dimension p, it suffices to show that ker(y)
is trivial. Let pr;: Q(¢) x Q — Q(¢) and pry: Q(¢) x Q — Q be the
projection maps. Since {1,(,...,(P"'} spans the (p — 1)-dimensional Q-
space Q(¢) and has dependence relation 14 ¢+ ---+¢P~! = 0, we know that
pr; op is surjective, which makes ker(pr; op) equal to the 1-dimensional
space spang{(1,1,...,1)}. Then ker(y) is a subspace of ker(pr; oy), but
(praop)(1,1,...,1) # 0, so ker(¢) must be trivial. O

Now we shall apply the previous result to obtain an archimedean bound
on nondegenerate Weil sums. Recall that we let K be a finite field with
characteristic p and order ¢ = p" and that s is a positive integer with
ged(s,g —1) = 1.

Lemma 3.2. For any u € K, there ewist unique wo,...,wp—1 € N with
wo > 0 such that Zf:_& w; = q and W, = Zf;& w;Ct. If s is nondegenerate,
then w; < q for every i € {0,1,...,p— 1} and |W,| < q.

Proof. By definition (), a Weil sum W, is a sum of ¢ terms from the set
{¢Y, ¢, ..., ¢P71}, so we can write W, = Z?:_ol w;¢" for some wo, ..., wy—1 €
N such that le?:_ol w; = ¢q. The uniqueness of this representation follows from
Lemmal3.1} Note that wg > 0 because one term in W, is 1(0° —u - 0) = ¢°.

When s is nondegenerate, [Katl2, Theorem 2.1(f)] tells us |W,| < ¢,

which makes it impossible for w; = ¢ for any i (else |W,| = [¢¢t| =¢q). O
The next two results explore p-adic bounds on Weil sums.
Lemma 3.3. For all u € K, we have v,(W,,) > 0.

Proof. This is [Katl2, Theorem 2.1(e)]. For an equivalent version in terms
of crosscorrelation, see [Hel76, Theorem 4.5]. O

Lemma 3.4. Suppose that s is nondegenerate. If w € K and vy(W,) >
vp(q) = n, then W, = 0. In particular, either v,(W,) < vp(q) or else
vp(Wy,) = o0.

Proof. Let u € K and use Lemma to write W,, = 20§i<p w;C?, where
wo, ..., Wp—1 are nonnegative integers that are strictly less than ¢ with
Eo<i<pwi = ¢. Suppose that v,(W,) > vy(q¢) = n. Then ¢ = p" di-
vides W, in Z[(], so that W, = ¢r for some r € Z[¢], which we write as
Zogi <p r;¢*, where each r; = w;/q is a nonnegative rational number strictly
less than 1 with » 5, 7 = 1. Then we write r as > ;1 (ri — rp-1)C",
which is the unique Q-linear combination of 1,¢,...,(?~2 equal to r, and
since r € Z[(], the coefficients r; — 7,—1 are all in Z. Since 0 < r; < 1 for
every 1, this forces ro = --- = rp_1, so that r = 0, and then W, = 0. O
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Recall from Section [2]that v is a primitive element of the prime subfield IF,,
and o is the generator of Gal(Q(¢)/Q) that maps  to ¢?. If p=1 (mod 4),
then it is well known from algebraic number theory that Q(¢) 2 Q(\/p)
and that Q(¢)/Q(/p) is an extension of degree (p —1)/2 with Galois group
<02>. The algebraic integers in Q(,/p) are precisely elements of the form
(a +by/p)/2 with a,b € Z and a = b (mod 2). We are interested in how
one obtains such elements from Weil sums. To explore this, we use Gauss’s
determination of the quadratic Gauss sum when p =1 (mod 4) (see [LN97,
Theorem 5.15]):

> 0 = /b, (5)
i€Fy
where 7 is the quadratic character (Legendre symbol) of F,;.

Lemma 3.5. Suppose that p = 1 (mod 4). An expression of the form
Zier w;Ct with rational coefficients w; lies in Q(y/p) if and only if, for
every i,j € I, we have w; = w; when n(i) = n(j). In this case, if we write
wy for the common value of the w;’s with n(i) = +1 and w— for the common
value of the w;’s with n(i) = —1, then our sum becomes

(=) + () v

Proof. Since Gal(Q(¢)/Q(,/p)) = (o?), we know that A = D icF, wi(t €
Q(/p) if and only if it is fixed by o2, that is, if and only if

Z wiCZ = Z wiC’WQ = Z w’y*%é.zv

i€Fp i€Fp icFy
and then Lemma @ tells us that this happens if and only if w; = w,-2; for
every i € [F,, which is true if and only if w; = w; whenever j € i<72>, ie.,
whenever 7(i) = n(j). In this case, write w4 and w_ as in the statement of
this lemma, and then our sum becomes

A=wy+wyi Z ¢ +w- Z ¢t

i€(y?) i€FX ~(~2)

. w4 + w— ; Wi — W N
= wop + <2> ZC + <2> Zn(@)c,
i€Fy i€Fy
where the penultimate summation is clearly —1 and the ultimate one is the
quadratic Gauss sum . (]

We now apply the previous result to Weil sums.

Lemma 3.6. Let p be a prime with p =1 (mod 4) and suppose that s is an
invertible exponent over K. Any Weil sum Wi in Q(y/p) can be written
uniquely in the form (I + J./p)/2, where I,J € Z. Furthermore, I = J
(mod 2) and vy(I) > 1. If s is nondegenerate, then —q < —2(¢—1)/(p—1) <

I<2qand|J|<2(¢—-1)/(p—1) <gq.
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Proof. From Lemmas and it follows that any Weil sum in Q(,/p)

can be written as

() (255

where wg, wy,w_ € Z. Thus, if we let I = 2wy — (wy + w—) and J =
wy —w_, then I,J € Z and our Weil sum is (I + J,/p)/2; since {1,,/p} is
Q-linearly independent, the I and J are uniquely determined. Since J € Z,
we know that v,(J,/p) has strictly positive p-adic valuation, as does the
entire Weil sum (by Lemma [3.3)), and so v,(I) must be a strictly positive
integer. Note also that I = J (mod 2) since, as we stated in the paragraph
before Lemma algebraic integers in Q(,/p) are of the form (a + b,/p)/2
where a,b € Z and a = b (mod 2).

From now on, let us suppose that s is nondegenerate. Then by Lemmal3.2]
we know that wg, w4, w_ are all nonnegative integers that are strictly less
than ¢ with wp > 1 and wp + (w4 +w_)(p — 1)/2 = q. Thus,

q—1
J| < _<2(—
|J] <wy +w- < <p_1>7
and since wy < ¢, we know that w4 +w_ > 0, so
q—1 q—1
2| — 22— <I<2 _ —1)=2
(457) <2-2(12) <1< 2w+ oy +w)p- 1) =20
where since p — 1 > 2, we have 2(¢ — 1)/(p—1) < ¢—1<q.

4. ALGEBRAIC SETS OVER FINITE FIELDS

In this section, we study a certain type of algebraic set over the finite field
K. Tt turns out that these sets are closely related to sums of products of
Weil sum values (as we shall see in Section , and thus will help us prove
our main result (Theorem [L.5)).

Recall that K is a finite field of characteristic p and order ¢ = p™ and
that s is a positive integer such that ged(s,q — 1) = 1. First, we introduce
two notations that enable us to express our algebraic sets very compactly.

Notation 4.1. If k € Z, and u = (u1,...,u),v = (vy,...,vx) € K¥ then
u - v denotes ujvy + - - - + ugvy, and |jul|s denotes (uf + - - -+ uf)'/%, so that
lull§ = ui +--- + .

Notation 4.2. For k € Z,, t = (t1,...,tx) € (K*)*, and a,b € K, we use
QZ » to denote the number of solutions v = (vy,...,vx) € K* to the system
of equations

t-v=a
[v][s = .

The next four results relate various values of Qz’b with each other.
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Lemma 4.3. For any k € Zy, any t € (K*)*, and any b € K we have
_ _ k-
> ack QZ,b =D aek Qi,a =q¢" 1

Proof. The second summation counts the points in the hyperplane t-v =b
in K* while the first sum counts points with ||v||$ = b%, which has the same
cardinality because x — z* is a permutation of K. ([

Lemma 4.4. Fork € Z,, anyu € K*, any t € (K*)*, and any a,b € K,

we have Zfb = sz/u,b and QZa,ub = Z,b'
Proof. The first equality follows from observing that ut - v = a if and
only if ¢t - v = a/u. The second follows from the bijection (v1,...,v;) —
(v1/u,...,v5/u) from the set of points counted by Q! , to that counted
by Z,b' O
Lemma 4.5. Let k € Zy and t € (K*)*. For any a € K*, we have
k—1 t
q - Qo,o
ho = Qb0 = o1 (6)

Moreover, if b € K, we have

k—1 t .
Z t } : t ’
Qa,b - Qb,a - qk_qufl_‘_QaO (7)

e e e )

Proof. Lemma shows that Q;O (resp., Q67a) has the same value for every
a€ K*, so @ and the b = 0 case of follow from Lemma The b # 0

case of then similarly follows from Lemma using @ O
Lemma 4.6. For any k € Z, any b,t1,...,tp € K*, and any a € K, we
have
(a/btiyestr)  AE15etn)
Q(tl,...,tk) _ 0,0 0,0
a,b q— 1

Proof. For the rest of this proof, let t = (¢1,...,t;) and t' = (a/b,t1,...,tx),
and let u and v’ be shorthand for (uy,...,ux) and (vg,v1,...,vg), respec-

tively. Then
fo— Qbo = v/ € K*1wg 20,80/ =0, |/}, = 0}
— () € K* x K¥ 3 t-u=a, Jul = b}
=(-1) Z,b:

where the second equality uses the reparameterization with u; = —bv; /vy for
j €{1,...,k} and the fact that the invertibility of s makes (—1)°* = —1. O

Now we compute certain values of wa that will be useful later.

Lemma 4.7. Let t1,to € K* and let § denote the Kronecker delta.
(i) We have QS}J) = Oa,tyb-
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(ii) If at least one of a or b is zero, then

Q(tl’tQ) _ 1+ (q - 1)(5,517752 ifa=b=0,
ab 1 — 0ty 1 otherwise.

Proof. The first claim is clear because QS})) counts the number of v; € K
such that t;v1 = a and (vf)l/ $ = b. Applying this result to the fact that

é%,h) = (¢ — 1)Qg2% + Qét’é) by Lemma gives the expression in the
first case of the second claim, and then the second case follows from using
Lemma [4.5| to deduce the value of QSB’Q) and Q(()t’(ll’tg). O

We explore certain special values of thb that are critical for our proof of
Theorem [L5l

Lemma 4.8. Let w € K.
. 1,—1 1,-1
(i) We have Qg ) :Qg ).

W y — W

(i) If p is odd, then Qgi_l) _ 1= an_—ll) 1= le,lg.

(i) When p is odd and w = 2/5~1, then Q%{j) s odd; otherwise Q&’Ul)
18 even.

Proof. Recall that (—1)® = —1 since s is invertible.
The first result follows from the observation that (z1,x2) € K? satisfies

Y if and only if (—xo, —x1)

satisfies the system of equations corresponding to le’:wl ),

the system of equations corresponding to Qﬁ’u_

Now le_ll) counts how many (z1,72) € K2 satisfy 1 + 22 = 1 and 2§ +
x5 = (—1)®, and since these equations preclude x2 = 0 in odd characteristic,
we can reparameterize with xo = —1/y for y € K* and eliminate z1 to see
that le_ll) is the same as the number of y € K* such that (y+1)°+y* =1,
which is Q1 — 1 because (0+1)° +0° = 1.

For the third result, note that the system of equations that corresponds
to leu} ) is symmetric in both unknowns, so (x1,x2) satisfies this system if

and only if (x2,z1) does. This implies that lewl ) is even except when there

is some z € K such that 22 = 1 and 2%z = w, which happens exactly
when p is odd, z = 1/2, and w = 21/571, O

5. GROUP ALGEBRA

In this section, we use a group algebra that gives us a convenient way to
encapsulate all the Weil spectrum values in a single object; this builds upon
the methods of Feng [Fen12] and developments in [Kat15]. After introducing
the relevant group algebra here, we define the key group algebra elements
of interest in Section 5.1l and demonstrate their relation to the cardinalities
of algebraic sets studied in Section [l Then we present other related group
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algebra elements designed to have a particular symmetry in Section [5.2} and
focus on a particularly important case of this symmetry in Section [5.3

Let L = Q((,€&), where & = exp(27i/(q — 1)), and consider the group
L-algebra L[K*], whose elements are of the form S =} -« Sy[u], where
S, € L for each v € K*. We write the elements of K* in brackets to
distinguish them from similar-appearing elements in L. We identify any
subset U of K> with ) ;[u] in L[K*]. For S =) _x Suu] € LIK*], we
define its conjugate to be S =" pox Sulu™!]. We also let [S] = Y, c g« Sui
this is the cardinality of S if S is a group algebra element representing a
subset of K. Moreover, if t € Z, we write S®) to denote 3°, o« Sulul].

Below, we record some easily proved observations.

Lemma 5.1. For any S,T € L[K*] and any t € Z, we have
(i) 1SV] = |8];
(i) S| = |S|;
(i) |S+T| = [S|+[T];
(i) |ST| = [S||T};
(v) SK* = |S|K*;
(vi) if S is a subgroup of K*, then S = SD =8 and S? = |S|S; and
(vii) (SS)1 = Fyexx [Sul®.

Let K* denote the group of multiplicative characters from K™ to L*. The

identity element of K* is called the principal character and is written xo; it
maps every element of K * to 1. We define the application of a multiplicative

character x € K* to a group algebra element S = > -« Sylu] € L[K*]
by linear extension:

X(S) =Y Sux(w),
ue K%

and we call x(S) the Fourier coefficient of S at x.
The following facts, which we record without proof, are easy to verify.

Lemma 5.2. The following facts hold for any S,T € L[K*] and any x €
K*:

(v) x(ST) = x(S)x(T).
The next lemma follows from Theorem 5.4 of [LN97].

Lemma 5.3. We have

> X(U)ZX(KX)I{Q_l A

0 otherwise.
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The next result says that a group algebra element is determined by its
Fourier transform.

Lemma 5.4. If S,T € LIK*]|, then S =T if and only if x(S) = x(T") for
all x € K*.

Proof. This follows from the fact that the Fourier transform (the map from

LIK*] to LK™ that takes S to the function S KX = L with S(x) = x(9))
is an isomorphism of L-algebras with the inverse map

LK & LK~
R—R= " Ryl
ue K%

where )
Ru = e > ROOx(w). O

xEK X

5.1. Weil sums in the group algebra. Recall that ¢ : K — Q(() is the
canonical additive character of K. We define

=) u)y
ue K%
and
whs = W, (8)
ue KX
and when the field K and the exponent s are clear from context, we simply
write W = 3" - x Wy[u]. We now relate W to V.

Lemma 5.5. We have W = W (1/s) 4 K<,

Proof. Applying the reparameterization z = —z%y = —ux to U l/s) —
Doy ek (y)v(z)[yz"1/%] gives

VW) = N (@ )p(—u)u] = D (Wi — 1D)[ul,

u,xe KX ueKx

from which the result follows. O

Let x € K*. Then the Gauss sum G(x) is given by >, ¥(u)x(u).
Note that G(x) = x(¥). We list some useful facts about Gauss sums, which
will be useful later when we calculate the Fourier transform of group algebra
elements that generalize W.

Lemma 5.6. Let xo be the principal character and x € I/(\X Then

(i) |¥] = x0(¥) = G(xo0) = —1,
(i) Ix(V)| = |G(x)| = \/q for x # X0, and

(i) G(x) = x(=1)G(X)-
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Proof. For a proof of the first and second parts, see [LN97, Theorem 5.11];
for a proof of the third part, see [LN97, Theorem 5.12(iii)]. O

We record two more useful calculations concerning ¥ and W.

Lemma 5.7. Ift € Z and ged(t,q — 1) = 1, then $OW®) = ¢[1] — K*.
Proof. See [Katl5l Corollary 2.3]. O
Lemma 5.8. We have |W| = q and WW = ¢[1].

Proof. The first result follows from Lemmas and which give us
W= [9|[w1/9)] + |K*| = (—1)* 4+ ¢ — 1. The second is proved as follows:

WW = (U007 + K*)(Uw(/9) + K*)
= VOO Dw0/s) 4 g/ KX 4 /o) KX 4 KX KX
= (|K|[1] = KX)? + [0 /9| K% + [/ KX 4 |KX| K>
= |K|*’[1] = 2|K|K* 4 |[K*|K* + (|K*| + 2)K*

= |K*[1],
where the third equality uses Lemmas [5.7] and and the fourth equality
uses Lemmas [5.1] and O

The proof of our main result requires us to use generalizations of W whose
coefficients are products of Weil sum values rather than individual ones. We
introduce a convenient notation for these.

Notation 5.9. Let k € Z, and let t = (t1,t2,...,tx) € (K*)F. We write
wlt — Z Wi Wipu[u].

ue K%

Often, we just write Wt instead of W)l and Wil for (wity,.
Also, note that W = w.

Lemma and Proposition below make a connection between the
group algebra elements just defined in Notation [5.9] and the cardinalities of
algebraic sets defined in Notation The connecting object is defined in
Notation 5111

Lemma 5.10. Let k € Zy and let t = (t1,...,t;) € (K*)*. Then

2t k
q Qoyo —4q
Wit = Z Wi Wiu = —1
u€ K>
Proof. This is Lemma 7.7.2 of [Kat19]. O

Recall the notations - and |[-||s from Notation which we use for the
rest of this section.
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Notation 5.11. Let k € Z, and let t = (t1,to,...,t;) € (K*)*. Then,
adopting the convention that [0] is the 0 of the group algebra L[K*], we
write

VI =3 [[lofls] — Qf oK,

veKk
t-v=1

v = 3" (@1, - Qo]

ue K%

We often write VIt instead of VIt and use the notation Vum to
mean (V[1),,.

so that

The following calculation is needed for our proof of Proposition [5.13
which connects W to V11,

Lemma 5.12. Let k € Z, and t € (K*)*. Then
4Qp0 — """
V[t] =gt 1_g.0t, =229 *
| | =q q Ql,o q—1
Proof. The first equality comes from using Notation to write |[VII| =
EUGKX Qtl u (q - 1) : 5,0 = ZUEK Qﬁ,u —q- Qtl,() and then applying
Lemma [4.3] The second equality then follows from Lemma (4.5 (]
Now we show the relation between VI and Wt
Proposition 5.13. For k € Z; and t € (K*)*, we have
wht = wyl,

Proof. Since both sides of this equation are elements of L[K*], it suffices to
show that x(W) = x(WV) for all x € K* by Lemma
For the principal character yo we have

= (Wl = oW,

20t _ ok
Yo(WVIHy = |w||viH| = oo~
q—

1

where the first and last equalities follow from Lemmal5.2] the second comes
from Lemmas and and the third comes from Lemma [5.10)
Now let x be any non-principal character. On one hand, we have

% (WM) — Z Z ¢(mi — tluajl) e Z w(xz - tkuxk) X(’U,)

u€K* \r1€K zpeK
= > elllzl3) D (=t x)u)x(u)
zeKk ue KX
t-x#0
—e) Y Y wllleln (~w)
weKX geKk

t-x=w
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) D D wllivllzx T (==1)

2eK* peKk
t-v=1

X)) DY wlvlizax (= x T (2)

veKk ze KX

t-v=1

llvls7#0

= GG T (=1) >0 XMl

veKk
t-v=1
llvlls#0

= GG =0 [ D lolls] |
veKE
t-v=1
where we use Lemma to impose t - x # 0 following the second equals
sign, and we use the Gauss sum in the third and second-to-last equalities

and the reparameterization w = z!/%, 2 = 2}/5v in the fourth equality.
On the other hand, Lemmas and Notation [5.11] give us

XOWVI) = 3 (U)x(O75)) x| D (llolls] |

veKk
tv=1
where
XWX (PI/2) = GOOXY*(¥) = GG (M) = GLIG ()X (-1)
by Lemmas [5.6] and so the result is proved. O

For future convenience, we explicitly calculate some values of |W| and
Vi,

Lemma 5.14. For any t1,to,t3 € K*, we have

(i) Wl =q.
(ii) [Wlt2l| = ¢ ifti =1t
0 Zf t1 75 l2,
(i) (W1t = 2[5, ana
| e
(i0) WE0) = 2 5o (Vi)

Proof. The first result is from Lemma [5.8
Next, we use Theorem [I.1] and Lemma [5.§] to obtain

_ 2 ift/ty =1
|W[t1’t2]’ = Z wal/y = (WW)tl/tQ = {q 1/t

0 otherwise.
T,y KX

zy=ty1/t2
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For ((iii), we use Theorem [1.1|to show that [W{tt2tsl] = (Wit t21Ty)
Then, Lemmas and and Notation [5.11] give us that

rew),, = (rvesiw),, i

1/t3'

1/t3

Lastly, we observe that 3, g« Wit = (WILUWILI); | so the fourth result
follows from Lemmas and which tell us that

w1 — (WV[I’I])(WV[L”) _ q2v[171]v[1,1}. n
Lemma 5.15. Ift = (t1,t2) € (K*)2, then we have
> vere2[llvlls] if t1 =t
V[t] — v-t=1

Y overlllvlls] = KX otherwise,
vt=1

that is,
i _ {Zuem Q! [u] if t1 = to

>ouerx (@1, — V[u]  otherwise,

so that Vu[t] > —1 for every u € K*, and if t1 = to then Vum > 0 for every
u € K*. Furthermore,

0 otherwise.

’V[t]| _ {q iftl =tg

the formula for Qf , found in Lemma and the fact that Qf, values are
always nonnegative, since they count solutions to systems of equations. [

Proof. These facts follow from Notation and Lemma [5.12] as well as

5.2. Symmetrized Weil sums. In later sections we study Weil spectra
where there is a symmetry among the Weil sums WS, Here we present
some general results.

Fix some k € Z and suppose that p =1 (mod k). Then we let

k=1
T = Z[AZ]’
i=0

where A is a primitive kth root of unity in F;. We also let
k—1
Q=) (Z WM> [u].
ue K*x \i=0

We call 2, = Zi‘:ol Wiy, the k-laterally symmetrized Weil sum at u, and we
use the word bilateral to mean 2-lateral. Note that ) has real coefficients
by Theorem First, we relate Q to W and T

Lemma 5.16. We have Q = WT.
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Proof. Reordering the sums in the definition of Q) gives us

k—1 k—1 k—1
Q= "> Wyfu=> W-N =W ) [\N]. 0
=0 =0

=0 ye K ¥

We compute power moments for €2.

Lemma 5.17. We have
(1) Sercr O =4 1;

(ZZ) ZUEKX Q“ = kq’

fiii) e 2 = kq?; and

(iv) if k=2, then 3,0 % = 2 (V" 4+ 3V 141,
Proof. The first equation comes from the fact that |[K*| = ¢—1. The second
and third results follow from Lemmas [5.16] and 5.8 as well as the fact that
the coefficients of Q are real, so that )z« Qu = [Q| = [W||T| = ¢k and
Suerx 22 =(QQ); = (WTWT), = ¢*(T?)1 = ¢*k. Lastly, if k = 2, then

D= Wu+ W) =2 ) Wl+6 Y WiW.,,

u€e K% uc KX ue K> ue K>
so the desired result follows from Lemma [5.14)(iii)| O

When p is odd and k = 2, we have further results, which we explore in
the next section.

5.3. Bilateral symmetry in the group algebra. In Propositions|6.4/and
below we study bilaterally symmetrized Weil sums. Here, we present
some general results that hold in this situation. To this end, suppose that
p is odd and let

S=[1]-[-1, &= Z (Wy = W_)u], T= Z (W, — qu)Q[u]a
ueKx ueK*

T=[]+[-1], Q= (Wy+W_u)ul.
ue K>

Note that this use of T and 2 is consistent with the notation introduced in
Section [5.2| when & = 2. Also, note that ®, 2, and T have real coefficients
by Theorem For convenience of notation, we set

v=vtl and  U=vL
We relate the various group algebra elements that we have just defined.
Lemma 5.18. We have ® =WS and T = W(TV — 2U).
Proof. These results come from the above notation and Proposition[5.13] O

Before we prove further results, we shall restate in the notation of this
section a few key facts that we have proved earlier.

Lemma 5.19. We have
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(i) U, = 1_1) —1and V, = (1 U 50 in particular, U, > —1 and
Vau ZOfor allu € K*;
(ii) U, = U_y for any u € K*;
(iii) U1 = U_1 = V_l; and
(i) D pexx Uu=0and Y cpx Vu = q.

Proof. Part |(i)| follows from the definitions of U and V' and Lemma
Then, using the result in part and the assumption that p is odd, parts
(i1)| and follow from the first two parts of Lemma Lastly, the part

(iv)| comes from Lemma O

We compute some power moments for ® and a related sum that involves
both @ and (2.

Lemma 5.20. We have

(1) 2uerx Pu=0,
(”) ZuEKX - 2q ’
(iii) > ek <I>2 Q. =2¢*(Vy — V1), and

(Z"U) ZuEKX (I)i = q2 ZuEKX (Vu +V_u— 2Uu)2
Proof. Recall that ® and T have real coefficients.

To prove the first part, we use Lemmas m and (iv)| to get |®| =
|W||S| = 0. The second part follows from Lemmas 5 8 and [5.1

which give us Y, cx P2 = (2®); = (WSWS), = 2¢°.
We can prove the third part by observing that Zue K ‘I>u Q= (T-Q)

and then using Lemmas and [5.19(iii)| to get that
(T-Q)1 = (WW(QTV - 2UT)), = 2¢°(Vi+V_1-U1—U_1) = 2¢*(Vi —V_1).
The fourth and final part is a consequence of Lemmas (using the

fact that all coefficients in our group algebra elements here are real),
and [5.8] since we have

> ot

ue K%

= (WW(TV —2U)(TV - 20)),
=¢ ) (TV -2U),)?
ue K%

= q2 Z (Vi + Vou — 2Uu)2' .
uc KX

6. CYCLOTOMIC ACTIONS ON VALUE SETS OF SIZE FOUR

In this section, we examine the action on the value set W s (see (3))) of 7,
the restriction of the generator o of Gal(Q(¢)/Q) to Wk 5. We shall prove
our main theorem (Theorem [L.5)), which is:
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Theorem 6.1. Let K be a finite field and s be an invertible exponent over
K. If the Weil spectrum for K and s is 4-valued, then it is rational unless

K =F5 and s =3 (mod 4) (in which case Wk s = {(5 & v/5)/2, £V/5}).

Suppose Wk s = {A, B,C, D}, where A, B, C, and D are distinct. Recall
that o is a generator of Gal(Q(¢)/Q) and that 7 is the restriction of ¢ to
Wk s. We saw in that 7 always permutes the elements of Wy g, so here
7 must act trivially, as a transposition (while keeping two values fixed), as
a composition of two disjoint transpositions, as a 3-cycle (while keeping one
value fixed), or as a 4-cycle on the set {A, B, C, D}. We shall address each of
the non-trivial actions in the next four propositions, and then finally prove
the theorem. Throughout this section, we shall use the notation (from
in the Introduction) where Nf’s (or simply N4) denotes the frequency of a
value A in the Weil spectrum for the field K and the exponent s.

Proposition 6.2 (No action as a 4-cycle). If |\Wk | = 4, then T does
not permute Wi s as a 4-cycle.

Proof. This follows from Proposition[2.5] since [Wg ;| = 1 when K = Fy. [

Proposition 6.3 (No action as a 3-cycle). If |Wg | = 4, then T does
not permute W s as a 3-cycle (while fizing one value).

Let |[Wg s| = 4. Assume that 7 permutes Wk s as a 3-cycle to show a
contradiction, so we write Wi o = {4, B,C,D} and 7 = (A)(BCD), i.e.,
T(A) = A, 7(B) = C, 7(C) = D, and 7(D) = B. For clarity, we break the
proof into steps.

Step 1. The exponent s is nondegenerate.
Proof. This is from Theorem

Step 2. We have p = 1 (mod 6), so p > 7, and there is a primitive third
root of unity A € F)’ such that 7(W,) = W), for all u € K*.

Proof. This is from Proposition and (4)), since 7 has order 3.
Step 3. We have 3 | NA and NB = NC = ND.

Proof. This is from Lemma [2.3] since 7 has order 3, permutes A in a 1-cycle,
and permutes B, C, D in a 3-cycle.

Step 4. Let X =3A and Y = B+ C + D. Then X and Y are rational
integers with 3 | X and

3¢ = 3¢(X +Y) + (¢ —1)XY = 0. (9)

Proof. We know that A and Y are in Z because o (of which 7 is a restriction)
fixes both of these algebraic integers. Thus, X is a rational integer with 3 |
X. By Step we can let Q, = W+ Wy, +Wye, = Wy +1(W,,)+72(W,) for
all u € K, as in Section[5.2] (with k = 3). Notice that 2, only assumes two
values as u runs through K, namely X = 34 (N4 times) and Y = B+C+D
(3Np times by Step |3). This means that )z« (2, — X)(Q, —Y) =0, so
we obtain @ from the first three results in Lemma
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Step 5. We have max{v,(X),v,(Y)} > vp(q).

Proof. Tf max{v,(X),vp(Y)} < vp(q), then v,((¢—1)XY) < v,(3¢*> —3q(X +
Y’)), contradicting @ in Step

Step 6. We have 0 ¢ {X,Y'}.

Proof. We assume 0 € {X,Y} to show contradiction. Then {X,Y} = {0, ¢}
by @D Now ¢ is a power of the prime p with p > 7 (by Step , but X is a
rational integer with 3 | X (by Step, so we cannot have X = ¢q. Thus, X =
3A=0andY = B+C+D = q. Since s is nondegenerate by Step[I} we have
|B|,|C|, |D| < ¢ by Lemma[3.2] so that B+ C + D = q makes at least two of
B, C, D positive, while [AKL15], Corollary 2.3] makes at least one negative,

and so BCD < 0. Now Lemma 5.1 gives us [WEAN| = q2V/\[1’A], that

is, > ucrx WuWauWie, = qQV/\[l’A . Recalling the relation involving 7 and A

from Step [2| this means that >, jox Wu 7(Wy) 72(W,,) = QQVF’M. Then in

view of the fact that Wi s = {4, B,C, D} with 7(B) = C, 7(C) = D, and
7(D) = B, and since we have shown that A = 0 here and Np = No = Np

in Step [3, we have 3NgBCD = ¢*V\"*. Since BCD < 0, Lemma

forces V/\l’)‘] = —1, and hence 3NgBCD = —¢?. But BCD € 7 since it is

an algebraic integer fixed by 7, which is a restriction of o, the generator of
Gal(Q(¢)/Q). This means that 3 | ¢, contradicting p > 7 from Step

Step 7. We have v,(X) < vp(q) and v,(Y) > vp(q).

Proof. Recall from Step [4] that X = 3A. Therefore, by Step [2] we have
vp(X) = vp(3A) = vp(A), and then by Step [f] and Lemma we know
that v,(A) < vp(q). Thus v,(X) < vp(¢) and so by Step [5| we know that
vp(Y) 2 vp(q).

Step 8. We have Y = rq for some r € {£+1, £2}.

Proof. Recall from Step [ that Y = B+ C + D. By Steps [6] and [I] combined
with Lemma we know that 0 < |Y| = |B+ C + D| < 3q. Thus,
0 < |Y| < pg by Step[2} Now Step [d] shows that Y € Z, so by Step [7] we have
vp(Y) = vp(q). Then Y = rq for some r € Z and recall that 0 < |Y| < 3g.

Step 9. We conclude that 7 does not permute Wg  as a 3-cycle.

Proof. We rule out each of the four possible values of r in Step [8] using the
following formula for X € Z, which comes from @ and Y = rq:
3q(r —1)

(g—1)r—3

(note that the denominator is not zero because g—1 > p—1 > 6 by Step .
If r =1, then X = 0, which contradicts Step @ If r = —2 (resp., —1, 2),

then becomes 4+(q—4)/(2¢g+1) (resp., 6—12/(¢+2), 1+(¢+5)/(2¢—5)).

None of these expressions can be a rational integer, since ¢ is a power of some

prime p > 7 by Step [2] so Step [4] is contradicted. O

X = (10)
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Proposition 6.4 (Action as a composition of two disjoint 2-cycles).
The following are equivalent:
(1) Wk s| =4 and T permutes Wi s as a composition of two disjoint
transpositions;
(ii) g =5 and s =3 (mod 4).
When these hold, Wk s = {(5 £/5)/2, +V/5}.

Suppose that ¢ = 5 and s = 3 (mod 4). In fact, we may assume s = 3
since Wi ¢ = Wi o if s = s” (mod g — 1) (see the definition of equivalent
exponents in Section . Let ¢ = €2™/5_ The polynomial z3 — z represents 0
thrice and each of £1 only once over K = 5, and so WlK’S =3+(+¢H =
(5 ++/5)/2 by Lemma Similarly, 2% — 2x represents 0 once and each
of +1 twice over K; x3 — 3z represents 0 once and each of +2 twice; and
x> — 4x represents 0 three times and each of +2 once over K, so we can
calculate that W,% = /5, WJ©* = —/5, and W;* = (5 — v/5)/2. Then
since o(v/5) = —/5 (because o restricts to the generator of Gal(Q(v/5)/Q)),
it is clear that 7 acts on Wy ¢ as a product of two disjoint transpositions.

Now suppose that |[Wg | = 4 and suppose that 7 acts on Wk s as a
composition of two disjoint transpositions. For clarity, the remainder of the
proof is broken up into steps.

Step 1. We have p = 1 (mod 4), so p > 5, and 7(W,) = W_, for all
ue K*.

Proof. This is from Proposition and , since 7 has order 2.
Step 2. We write Wg s = {A, B,C, D} with

E+F E-F H —H
Azi—i_z \/ﬁ,B:72 \/ﬁ,C—G+2 \/ﬁ, andDziG > \/ﬁ,
where E,F,G,H € Z with E = F (mod 2), G = H (mod 2), vy(E) <
vp(G), and 7 = (AB)(CD), ie., 7(A) = B, 7(B) = A, 7(C) = D, and

T(D) =C.

Proof. Since 7 has order 2 and since Step (1] tells us that p = 1 (mod 4),
Proposition shows that the elements of Wk ¢ are algebraic integers in
Q(y/p), the unique degree 2 extension of Q that lies in Q(¢). Thus, each
element of W , has the form described in Lemma and the four elements
consist of two pairs of Galois conjugates because of the action of 7. This
establishes the existence of the integers E, F', G, and H which are used to
describe our four elements of Wg ; above (making sure to arrange so that
vp(E) < vp(G)), and we also name the elements A, B, C, and D as above,
so that the Galois conjugate pairs are {A, B} and {C, D}; this means that
7 must act as (AB)(CD,).

Step 3. We have N4 = Ng and N¢g = Np.
Proof. This is due to Lemma [2.3|since 7 = (AB)(CD) from Step
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Step 4. We have the following equations:

Na+ Ng = % (11)
NyE + NcG =q (12)

NAE? + NoG? = ¢ (13)

NuF?p+ NcH?p = ¢* (14)

NA(E® + 3pEF?) + No(G3 + 3pGH?) = 4¢2vitY, (15)

Proof. For u € K*, let Q, = W, + W_,, and &, = W,, — W_,. This is
consistent with the notation we introduced in Section (with £ = 2) and
in Section since p = 1 (mod 2) by Step Thus, by Step [1, we have
Q, =W, +7(W,) and &, = W,, — 7(W,,) for every u € K*.

As we run through v € K, Steps [2] and [3| tell us that €2, has

2N 4 instances of F 2N¢ instances of G
while ®,, has
N4 instances of F'\/p Ny instances of — F'\/p
N¢ instances of H./p Nc¢ instances of — H/p,

so that , , and follow from parts and of Lemma
and follows from |5.20}(ii)l The left-hand side of Lemma [5.14(iii)| (with

t1 = te =tz = 1) is summing ij over all u € K*, and since N4 = Ng and
Nc = Np by Step (3, we obtain .

Step 5. We have G = 0.
Proof. Add EG times and —(E + G) times to to get
-1
oe 56 (1) (s o "

Recall from Step [2] that v,(E) < v,(G). Note that if either v,(G) < vp(q)
or vp(E) > wvp(q), then one of the terms in would have strictly lower
p-adic valuation than the other terms. Thus, v,(E) < v,(q) < vp(G), so
that £ # 0 and ¢ | G. On the other hand, since Ng, N¢ € Z, tells us
that

¢®> = NAE? + NcG? > NoG? > G2,
and so G = 0.

Step 6. We have F = q and Ny = 1.

Proof. Since G = 0 by Step and imply that £ = q and Ny = 1.
Step 7. We have N¢ = (¢ — 3)/2.

Proof. Since Na =1 by Step [} gives us that No = (¢ — 3)/2.

Step 8. The quantity F is odd and H = 21 for some I € Z \ {0}.
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Proof. We know that G = 0 by Step [fl and E = ¢ by Step [6] Furthermore,
q is odd since p is odd by Step |1, Step [2 tells us that £ = F (mod 2) and
G = H (mod 2), so F' is odd and H is even. But H # 0, else C = D (see
Step [2), so H = 2I for some I € Z\ {0}.

Step 9. We must have ¢ < 5.

Proof. We can substitute the results from Steps into and to
obtain

(4 — ) (17)

3p2 =4
p
q2
p

F?42(q—3)I* = (18)
Since p =1 (mod 4) by Step we have ged(q/p, 3) = ged(q/p,2(qg—3)) =1,
and therefore since Vl[l’l] € Z, and consecutively give us that
(¢/p) | F? and (¢/p) | I?>. Now we know from Step [§] that F,I # 0, so
F?/(q/p),I?/(q/p) > 1. If we substitute this into (18], the equality becomes
the inequality

2 2 2
“/p F I

SO (g —3) S >1+2(q—3) =2¢ -5,
q/p  q/p ( ) ( )

q/p
so that ¢ < 5.
Step 10. We conclude that ¢ =5 and s = 3 (mod 4).

Proof. Steps|[I] and [J] give us that an action with two disjoint transpositions
can only occur when ¢ = p = 5. We now consider the possible values
for s. Since Wi g = Wi g if s = " (mod g — 1) (see the definition of
equivalent exponents in Section , it suffices to consider the cases when
$=0,1,2,3 (mod 4). We cannot have s = 0,2 (mod 4), for then ged(s,q —
1) = ged(s,4) # 1, so s would not be invertible. Nor can we have s = 1
(mod 4), for then s would be degenerate and this would make [Wg 4| < 2
by Theorem Thus s = 3 (mod 4). O

Proposition 6.5 (No action as a transposition). If |Wg | =4, then 7
does not permute the elements of Wk s as a transposition.

Suppose that |[Wg | = 4. Assume that 7 permutes Wy s as a transpo-
sition to show a contradiction. For clarity, the proof of this proposition is
broken into steps.

Step 1. We have p =1 (mod 4), so p > 5, and there exist A, B,E,F € Z
with |A] < |B|, F >0, and £ = F' (mod 2) such that Wi = {A,B,C =
(E+F\p)/2,D = (E—F,/p)/2} and T acts on Wk ; as (A)(B)(CD), i.e.,
7(A) = A, 7(B) = B, 7(C) = D, and 7(D) = C. Moreover, both N4 and
Np are even and No = Np.

Proof. Since 7 has order 2, we know by Proposition that p =1 (mod 4)
and that Q(Wg ) = Q(\/p), the unique degree 2 extension of Q that lies
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in Q(¢). This means that the two elements of Wi ¢ exchanged by 7 are
Galois conjugate algebraic integers in Q(,/p), and hence can be written as
C=(E+F\/p)/2and D= (E — F,/p)/2 for some E,F € Z where £ = F
(mod 2) and F' > 0 by Lemma The other two elements of Wy  are
algebraic integers fixed by 7 (and hence by o), so they must be rational
integers; we label these A and B in such a way that |A| < |B|. Then both
N4 and Np are even and No = Np by Lemma 2.3

Step 2. We have 7(W,,) = W_, for all w € K*, so as in Sections (with
k = 2) and |5.3| we can let

Q= (Wut+Wo)ul = > (Wy+7(Wa))[ul,

ue KX uceKX*
¢ = Z (W = W_y)[u] = Z (W = 7(Wa))[ul,
ue KX uceKX*
v=viti  py=yhl and T =[1]+[-1].

Proof. Since Step |1|implies that 7 has order 2 and p =1 (mod 2), Proposi-
tion and give us that 7(W,,) = W_, for all u € K* and we have the
bilateral symmetry alluded to in Sections (with k£ = 2) and

Step 3. The integer F is odd and there exist rational integers X <Y <
Z such that {X,Y,Z} = {24,2B,E}. Let Mg = [{u € K* : Q, =
R}| for R € {X,Y,Z}. Then we have {(X,Mx),(Y,My),(Z,Mz)} =
{(24,N4), (2B, Np), (E,2N¢)} and the following equations hold:

q—1=Mx+ My + My (19)
20" = MxX* + MyY? + Mz 2" (21)
202 —2q(Y + Z) + (¢ - 1)YZ
My = 22
* (X _Y)(X - 2) (22)
2¢> —29(X +2) + (¢ - 1)XZ
My = )
v Y —X)(Y - 2) (23)
2¢° —2¢(X +Y) + (¢ - )XY
Mz = 24
z (Z—-X)(Z—-Y) (24)
XY +YZ+ZX —1)XYZ
Vit 3Vy = (XY +2) - g +2E, 2;2 (25)
q2 = NcFQp (26)
2F%p = Y (Vu+ Voy —2U,)% (28)
ue KX

Proof. Since No = Np by Step |1, we observe that as u runs through K*,
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®,, has ‘ Q, has
N4 + Np instances of 0 | N4 instances of 24
Nc¢ instances of F'\/p | Np instances of 2B
Nc¢ instances of —F'\/p | 2N¢ instances of E/

and , = F for those uw such that ®, # 0. Thus, we obtain 1)
from Lemma [5.20(ii)H(iv)l Note that and Step [l|imply that E and F
are odd, whereas 2A and 2B must be distinct and even, so that there are
rational integers X < Y < Z with {X,Y,Z} = {24,2B,E} and we can
let Mx, My, and Mz be as stated above. Equations 1) then follow
from Lemma [5.17(i)H(iii), which we also use to prove (22)) from the following

observation:

Mx(X =Y)(X=2)= > (% —-Y)(Q—-2),
ueKx

and and follow similarly by exchanging the roles of X, Y, and Z.
Similarly, one can prove using all parts of Lemma (and the fact
that V = VL) from the following observation:

0= (U—X)(Qu—Y)(Qu—2)
ueKx

Step 4. We have —¢ < —2(¢ —1)/(p—1) < X <Y < Z < 2q and
vp(X),vp(Y),vp(Z) > 1. If any of X, Y, or Z is nonzero, then its p-adic
valuation is less than the p-adic valuation of ¢q. If none of X, Y, and Z is
zero, then v, (XY),v,(YZ),v,(ZX) > vp(q).

Proof. The first chain of inequalities follows from Step [3| and Lemma [3.6
(which applies due to Step [I| and Theorem , once we notice that 2A,
2B, and E take the place of I in Lemma Lemma (3.6] also tells us
that v,(X), vp(Y),v,(Z) > 1. Next, Mx X2, MyY?, and MzZ? are all even
rational integers by Step so if X # 0 but v,(X) > v,(q), then 2¢* | Mx X2,
and hence MxX? =2¢> and Y = Z = 0 by . This contradicts Step
Analogous arguments show that the same result holds for Y and Z. In
particular, if 0 ¢ {X,Y, Z}, then v,(X),v,(Y),vp(Z) < vp(q). Thus, if we
write as

2¢°(Vi +3V_1) =23 (X + Y + Z) = 2¢(XY + Y Z + ZX) + (¢ — 1)(XY Z),

then (¢ — 1)XY Z has a strictly smaller p-adic valuation than every other
term on the right-hand side of the above equation. This implies that

Up(X) 4+ 0p(Y) + vp(Z) = vp(2¢° (V1 + 3V_1)) > 2u,(q),

and so the desired inequalities follow from subtracting one of the terms on
the left-hand side from both sides.

Step 5. We have ¢ < X <Y =0< Z <gq.
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Proof. Recall from Step [3| that My is a strictly positive count, so the nu-
merator and denominator in must have the same sign. Thus, to prove
this step, it suffices to show that ¥ = 0 since —¢ < X <Y < Z by Step[4]
for then the numerator in , which is positive, becomes 2¢(q — Z).
Suppose that Y £ 0. By Step [3] we know that Z > 0, since otherwise the
right-hand side of would be negative. Moreover, the numerator in
is positive, that is,
2¢* —2q(Y + Z) + (¢ — 1)Y Z > 0. (29)
Thus, using Step [4] and the fact that p > 5 from Step (1| in gives us
2q(Y + Z — 2 -1
al (U Y ) T B
qg—1 q—1 5—1

We cannot have Y < 0, for that would imply both 0 ¢ {X,Y,Z} and
vp(YZ) < vp(q), which contradicts Step 4l So we must have Y > 0. If we
use the same argument, replacing with , Z with Y, and Y with X,
we show that X < 0 is also impossible, and so obtain X > 0.

If X > 0, then Step implies that X, Y, Z > p, so , , and the fact
that ¢ > p > 5 by Step [I] give us the contradiction

2q 2 p(Mx + My + Mz) = p(q—1) = 5¢ — p = 4q.
This forces X =0 <Y < Z by Step |3, so that and give
207 = (MyY + Myz2Z)Z > MyY? + Mz 2% = 2¢°,

and hence Z > ¢. On the other hand, MzZ? < 2¢? by , so Mz = 1.
With this information, and become

MyY + 7 =2q (30)
MyY? + 7% = 2¢°. (31)

Since vy(Z) < vp(q) by Step and imply that v,(MyY') = v,(2)
and v,(MyY?) = v,(Z?), and hence that v,(My) = 0 and v,(Y) = v,(Z).
Moreover, can be rewritten as

YZ >

29(Z — q)

Z-Y 7
so that vp(Y) = vp(q) + vp(Z) —vp(Z —Y), and so vp(Z —Y) = vp(q). In
other words, ¢ | Z — Y. Since 0 < Y < Z < 2q by Step {4 this is only
possible if Z =Y + q. If we substitute this equation for Z into and
and solve for Y, we obtain 3Y = ¢, which is impossible because p = 1
(mod 4) by Step
Step 6. We have F = X < 0and A =Y/2 =0and B = Z/2 > 0.
Moreover, |E| < |B| and V_; >0 and B =2V_;/(1 — E/q).

Proof. Recall from Step [3| that {X,Y,Z} = {2A4,2B,E} is a set of three
distinct numbers and that E is odd. Since |A| < |B| by Step|ljand Y = 0
is even by Step |5, we must have 0 = Y = A and {X,Z} = {2B,FE}. We

MyY =
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obtain B = 2V_; /(1 — E/q) by substituting these facts into and using
(27) (note that we can divide by 1 — E/q since Step 5| implies that |F| < q).

Now, since B is nonzero, 1 — E/q is positive (since |E| < ¢), and V_; is
nonnegative (by Lemma [5.19(i)), we must have B = Z/2 is positive, and
hence V1 > 0 and £ = X < 0. It then follows that 1 <1 — E/q < 2 and
V_1 < B < 2V_;. Lastly, Lemma [5.19(i)| tells us that V; >0, so E > —V_;
by ([27), and thus |E| < |B.

Step 7. There exists an odd integer m with 0 < m < n such that No = p™
and F = p"~("+D/2 Let £ = v,(B) — v,(E). Then v,(Ng) = m — 2/.
Moreover, we have

NpB + NcE =q (32)
2NpB? + NoE? = ¢*. (33)

Proof. The results about m, N¢, and F follow from since N¢ < ¢, while

(32)) and come from equations and and Steps and@ Lastly,
(33) implies that v,(NpB?) = v,(NcE?) since 2NgB? > 0 and NoE? > 0
by Step [6] and p { 2 by Step [I} so v,(Np) = m — 2C.

Step 8. We have ¢ > 0, and there exist 3,¢e,v € Z, all relatively prime to
p such that

B=pBp" 2 E=—ep" ™ and  Np=2up™ % (34)
Moreover, we have the following equations:

whB—ept =1 (35)

Avp? 4 & = pm . (36)

Proof. Steps @, and [7] allow us to write B = gp*(E)+ Np = 2upm—2t

E = —ep»E) and No = p™ with B,e,v € Z all relatively prime to p, so
that and become

2uBp™ B gpmtun(B) = pn (37)

4V,82 + 62 — p2n7m72'vp(E). (38)

It thus suffices to show that ¢ > 0, for then m + v,(E) — ¢ < m + v,(E),
and hence m + v,(E) — £ = n by (7)), so that v,(E) = n —m + ¢, and so
the expressions for E and B at the beginning of this proof become those in

while and become and .
Suppose £ <0, and let g =n —m — v,(E). Then and become

2vBp~" — e =p’ (39)
4ufp? 4 &2 = p2tm, (40)

By Step@ we have ¢ = |E|/p*»(F) < |B|/p*»(E)*tt = 3, s0 gives us
P!> 2whp~ = B> p2v - 1), (41)
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and hence g > 0 since 5, > 1. Note that this implies that ¢ = 0, for
otherwise the p-adic valuation of the left-hand side of would be 0. We
can thus solve for € and substitute the resulting expression into to
get,

48%0(v 4+ 1) — dvBp? + p?9 — p*9t™ = 0. (42)
Since g > 0, the third and fourth terms on the left-hand side of have
strictly larger p-adic valuation than the second term does, so we must have
vp(482v(v + 1)) = v,(4vBpY), that is, vy(v + 1) = g. So v = —1 + up? for
some 1 > 1 such that p { . But if we substitute this into p9 > f(2v — 1)
from and rearrange to obtain an upper bound for p, then (keeping in
mind that p > 5 by Step (1)) we obtain

1 3 1 3 4
< —

which is a contradiction. We thus have ¢ > 0, as we wished.

Step 9. We have both BE — 2CD = Bp** ?m*2¢ and C? + D? — BE =
an—2m+2€(pm—26 _ 5)

Proof. These results come from using the expressions for C' and D in Step
and those for B, F, and F in Steps[7] and [§] to write

on—omiae (P € ¢
BE—2CD = p b pep
m—2/ 2
02 + D2 — BE = p2n72m+2€ (p 5 +e€ + ngf)

and then using and to simplify these expressions.

Step 10. Let Sgp = {u € K* : W, = R} for R € Wk ;. If we identify these
subsets of K* with group algebra elements as described before Lemma
then, using the definitions of W = W+ from in Section and of T,
U, V from Step [2, we have

WT = > (Wy+W_u)[u] = 2BSp + E(Sc + Sp) (43)
ue Kx

WU = Y W,W_ulu] = B*Sp + CD(Sc + Sp) (44)
ue Kx

WVT = Y (W2+W?)[ul = 2B*Sp + (C* + D*)(Sc + Sp). (45
ue KX

Proof. The left-hand equalities follow from the definitions of T, U, and V
and also Proposition in the case of and . The right-hand
equalities follow from the fact that W_, = 7(W,) (by Step [2) and the
values for W, in Steps [I] and [6]

Step 11. We have 8 = 1, so B = p" ™+,
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Proof. We can eliminate S¢ 4+ Sp from and to get
W (EU — CDT) = B(BE — 2CD)S. (46)

Then we can multiply both sides of by W/(B(BE — 2CD)) to get, by
Lemma 5.8 and Steps [§] and [9] that

¢*(EU — CDT)
l32p3n—3m+4€

WSp = (47)

Note that the coefficients of WS € L[K*] are algebraic integers, while the
coefficients of the right-hand side of are rational numbers, so the coef-
ficients in must all be rational integers. In particular, 8 divides every
coefficient of the numerator of the right-hand side of the above equation.

Since ged(q, 8) = 1 = ged(B,¢) = ged(B, E) by Step [§ and (BF), we must
have g | U, for all uw ¢ {£1}. If 3 > 1, then 8t —1, so U, > 0 for every
u # £1 by Lemma [5.19i)l We also know that Uy = U_; = V_; > 0 by
Lemma@ iii)| and Step @ But then ) xx U, > 0, which contradicts

Lemma iv)l Thus 8 =1 and B = p" "% by Step
Step 12. We have 3 < 3/ < m < 4/ and
g2+ 2ple — (P2 —2) =0. (48)

Proof. Equation comes from using Step|11|and eliminating v from
and (36). Then (48) and Step [§] imply that p™ =3¢ > 2 > 1, so m > 3¢ > 3.

Recall from St that € > 0, so implies € = —pl+/p2 + pm—2t — 2,
If we assume that m > 4/, then € > —p’+ /p2¢ + p2¢+1 — 2, and since £ > 0
by Step we obtain ¢ > —pg—i—\/ﬁpe > p’ because N V5 > 2 by Step .
But then Steps [§] and [11| give us that |E| = ep~ ™+ > pn=m+26 — |B|,
which contradicts Step [} So m < 4¢, and this inequality is actually strict
since m is odd by Step

Step 13. Let 6g = 1 and §, = 0 if z # 0. For any u € K*, we have
Vi+Vou=qd2_1— 2(pm72£ — 1)U,.
Moreover, if u ¢ {£1}, then U, € {—1,0}.

Proof. First, we eliminate Sp from and (respectively, (43]) and
) and use Steps |§| and [L1] to get

W (BT — 2U) = p*~2m+2(S + Sp) (49)
W (VT — BT) = (p™ =% — 1)p*" 2245 + Sp). (50)
Then, we substitute into and use Step (11| to obtain

W (—2(pm*2’f U -VT+ qT) —0.

Note that W is a unit in L[K*] because WW = ¢ by Lemma SO
VT =qT —2(p™ % — 1)U,
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and hence we achieve the above general result. When u ¢ {+1}, we also
have U, € {—1,0} since both V,, and V_, are nonnegative and U, > —1 by
Lemma while —2(p™~2¢ — 1) is strictly negative by Step

Step 14. We conclude that 7 does not permute Wy ; as a transposition.

Proof. Using the expression for F' in Step [7| and the expression for V,, +V_,

from Step becomes

2p2n—m: Z (q274qpm—2€Uu)+4p2m—4Z Z Ug (51)
ue{£1} ueK X

We now use the fact from Step (13| that U, € {—1,0} for u ¢ {£1} to write

Suerx U2 = Zue{ﬂ} Uu(Uy+1) =3 ,cxx Uu. Then, since -, cjex Uy =0
and Uy = U_y = V_; by Lemma 5. I([i0)|[(iv)] we see that simplifies to

p2n—m — q2 _ 4qpm—2ZV71 +4p2m—4ZV7 (Vfl 4 1) (52)

We also have from Step |§| that 2V_; = B(1 — E/q), so 2p™~ %V 1 = q -
by Step Using this fact, the expression for E in Step |§ I, and (48) in ,

we obtain

PP = —2(q— E)+ 20" ¥ (q— E) + (¢ — E)?

_ 52p2n 2m+2€+25pn76+2pn+m72£

m

— p -m _ 2€p2n72m+3f o 2p2n72m+2€ + 2€pn7£ 4 2pn+m,24

that is,
p2n 2m+2£(1+€p) n £(€+p ) (53)

Since £ > 0 and m > £ by Stepand since p 1 € (see Step, p-adic valuation
shows that 2n — 2m + 2¢ = n — £. Then divide by pnt = pPr2mA2
and rearrange to obtain

e(pt —1)=pm -1

This means that p’ —1 | p™ ¢ — 1, which implies that £ | m —¢, and so £ | m.
But 3¢ < m < 4/ by Step so we have a contradiction. O

Now we are ready to prove Theorem (which was restated at the be-
ginning of this section as Theorem [6.1)).

Proof of Theorem[1.5 Suppose |Wg s| = 4. Since 7 permutes the elements
of Wk (see (), 7 must act trivially, as a transposition (while keeping two
values fixed), as a composition of two disjoint transpositions, as a 3-cycle
(while keeping one value fixed), or as a 4-cycle on W ;. But Propositions
and [6.5] exclude the possibilities that 7 acts as a 4-cycle, as a 3-
cycle, and as a transposition, respectively, while Proposition states that
7 permutes Wg , as a composition of two disjoint transpositions precisely
when ¢ = 5 and s = 3 (mod 4), in which case Wy s = {(5 + v/5)/2, £v/5}.
That is, other than the aforementioned case, 7 can only act trivially on W ,
and hence Wp , is rational by Proposition as we wished to prove. [
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