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a b s t r a c t

Given a graph H and a function f (n), the Ramsey–Turán number
RT(n,H, f (n)) is the maximum number of edges in an n-vertex H-
free graph with independence number at most f (n). For H being
a small clique, many results about RT(n,H, f (n)) are known and
we focus our attention on H = Ks for s ≤ 13.

By applying Szemerédi’s Regularity Lemma, the dependent
random choice method and some weighted Turán-type results,
we prove that these cliques have the so-called phase transitions
when f (n) is around the inverse function of the off-diagonal
Ramsey number of Kr versus a large clique Kn for some r ≤ s.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. History

Given a graph H and a function f (n), the Ramsey–Turán number, denoted by RT(n,H, f (n)), is the
aximum number of edges in an n-vertex H-free graph with independence number at most f (n).
uch problems were studied first by Erdős and Sós [10]. Denote by T (n, r) the Turán graph, which
s the complete r-partite graph on n vertices where the size of each part is as equal as possible.
urán theorem [21] states that T (n, r) is the unique n-vertex Kr+1-free graph with the maximum
umber of edges. Since the independence number of T (n, r) is linear in n, substantially different
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tructure appears when H is a clique and f (n) is a sublinear function, i.e. f (n) = o(n). Erdős and
ós [10] proved that when the forbidden subgraph H ⊆ G is an odd clique, then for s ≥ 1,

RT(n, K2s+1, o(n)) =
1
2

(
s− 1
s

)
n2

+ o(n2).

The case when H is an even clique proved to be harder, hence more interesting. Szemerédi [20]
proved RT(n, K4, o(n)) ≤

1
8n

2
+ o(n2), which was the first published application of his Regularity

emma. Bollobás and Erdős [6] proved RT(n, K4, o(n)) = 1
8n

2
+ o(n2) by constructing the so-called

ollobás–Erdős graph, which was a major surprise at the time, as the function was expected to be
(n2). Finally, Erdős, Hajnal, Sós and Szemerédi [9] settled the even clique case, showing for s ≥ 2

RT(n, K2s, o(n)) =
1
2

(
3s− 5
3s− 2

)
n2

+ o(n2).

et

ρτ (H, f ) := lim sup
n→∞

RT(n,H, f (n))
n2 and ρτ (H, f ) := lim inf

n→∞

RT(n,H, f (n))
n2 .

f ρτ (H, f ) = ρτ (H, f ), then we define ρτ (H, f ) := ρτ (H, f ) = ρτ (H, f )2 and call it the Ramsey-
urán density of the graph H with respect to the function f . It is easy to see that ρτ (H, f ) = c if
nd only if RT(n,H, f (n)) = cn2

+ o(n2). Let ρτ (H, o(f )) := limδ→0 ρτ (H, δf ). We say that H has a
Ramsey-Turán phase transition at f (n) if

ρτ (H, f )− ρτ (H, o(f )) > 0.

Combining Turán Theorem and the above results, we conclude that cliques have their first phase
transition at f (n) = n. It is natural to investigate whether phase transitions exist for other values
of f (n). For cases concerning small cliques, many results are known. We summarize most of them
after introducing the necessary definitions and notation.

The Ramsey number R(t,m) is the minimum integer n such that every n-vertex graph contains
either a clique Kt or an independent set of size m. We use Q(t, n) to denote the inverse Ramsey
number, which is the minimum independence number of a Kt-free graph on n vertices. In other
words, R(t,m) = n if and only if Q(t, n) = m. We use the function Q(t, n) usually as follows: If
an n-vertex graph Gn satisfies α(Gn) = o(Q(t, n)), then every vertex set of Gn of size at least cn
spans a Kt , for every fixed constant c . It follows immediately that we should restrict our attention
to f (n) ≥ Q(t, n) if the forbidden graph is H = Kt : as by the definition of Q(t, n), there exists no
n-vertex Kt-free graph with independence number less than Q(t, n).

In this paper, all logarithms are base 2 and w(n) is a function going to infinity arbitrarily slowly
as n → ∞. Then, g(n) := ne−ω(n)

√
log n satisfies that n1−ϵ

≪ g(n) ≪ n for every ϵ > 0.
It was proved by Shearer [18], Pontiveros, Griffiths, Morris [17], and Bohman, Keevash [5] that(

1
4
− o(1)

)
m2

logm
≤ R(3,m) ≤ (1+ o(1))

m2

logm
,

which implies(
1
√
2
− o(1)

)√
n log n ≤ Q(3, n) ≤

(√
2+ o(1)

)√
n log n.

For t ≥ 4, we do not know the exact order of magnitude of R(t,m), but there are many
ell-known conjectures about them, below is one of them.

onjecture 1. For every integer ℓ ≥ 3, there exist c = c(ℓ) > 0 and N = N(ℓ) > 0 such that if
> N, then

R(ℓ − 1,m) ≤ R(ℓ,m)/mc .

2 The existence of ρτ (H, f ) is expected. In the following results, we will abuse the notation a bit, i.e., the upper (lower)
bounds of ρτ (H, f ) are actually upper (lower) bounds of ρτ (H, f ) (ρτ (H, f )).
2
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Conjecture 1 holds when ℓ = 3, 4 and is believed to be true for larger ℓ. Many results in
amsey–Turán theory are conditional on Conjecture 1 or its analogues. We will use ⋄ to mark such
esults.

• K3-free:
[15]: ρτ (K3, n/2) = 1/4; ρτ (K3, o(n)) = 0.

• K4-free:
[21]: ρτ (K4, n/3) = 1/3; [20], [6]: ρτ (K4, o(n)) = 1/8;
[19]: ρτ (K4, ne−ω(n)

√
log n) = 0.

• K5-free:
[21]: ρτ (K5, n/4) = 3/8;
[10]: ρτ (K5, o(n)) = 1/4; [3]: ρτ (K5, 2

√
n log n) = 1/4;

[3]: ρτ (K5, o(
√
n log n)) = 0.

• K6-free:
[21]: ρτ (K6, n/5) = 2/5; [9]: ρτ (K6, o(n)) = 2/7;
[3]: ρτ (K6, ne−ω(n)

√
log n) = 1/4; [19]: ρτ (K6, 2

√
n log n) = 1/4;

[8]: ρτ (K6, o(
√
n log n)) ≤ 1/6; [19]: ρτ (K6,

√
ne−ω(n)

√
log n) = 0.

• K7-free:
[21]: ρτ (K7, n/6) = 5/12;
[10]: ρτ (K7, o(n)) = 1/3; [3]: ρτ (K7, 2

√
n log n) = 1/3;

[3]: ρτ (K7, o(
√
n log n)) = 1/4; [3]: ρτ (K7,Q(4, n)) = 1/4;

[3]: ρτ (K7, o(Q(4, n))) = 0.

• K8-free:
[21]: ρτ (K8, n/7) = 3/7; [9]: ρτ (K8, o(n)) = 7/20;
[3]: ρτ (K8, ne−ω(n)

√
log n) = 1/3; [3]: ρτ (K8, 2

√
n log n) = 1/3;

[11]: ρτ (K8, o(
√
n log n)) = 1/4; [3]: ρτ (K8,Q(4, n)) = 1/4;

[3]: ρτ (K8, o(Q(4, n))) ≤ 3/16; [3]: ρτ (K8,Q(4, g(n))) = 0.

• K9-free:
[21]: ρτ (K9, n/8) = 7/16;
[10]: ρτ (K9, o(n)) = 3/8; [3]: ρτ (K9, 2

√
n log n) = 3/8;

(∗)a: ρτ (K9, o(
√
n log n)) ≤ 3/10; [3]: ρτ (K9,Q(3, g(n))) = 1/4;

(∗): (⋄) ρτ (K9, o(Q(4, n))) = 1/4; [3]: (⋄) ρτ (K9,Q(5, n)) = 1/4;
[3]: (⋄) ρτ (K9, o(Q(5, n))) = 0.

a Results with (∗) will be proved in this paper. We include them here for completeness.

• K10-free:
[21]: ρτ (K10, n/9) = 4/9; [9]: ρτ (K10, o(n)) = 5/13;
[3]: ρτ (K10, ne−ω(n)

√
log n) = 3/8; [3]: ρτ (K10, 2

√
n log n) = 3/8;

[3]: ρτ (K10, o(
√
n log n)) = 1/3; [3]: ρτ (K10,Q(4, n)) = 1/3;

(∗): (⋄) ρτ (K10, o(Q(4, n))) = 1/4; [3]: (⋄) ρτ (K10,Q(5, n)) = 1/4;
[3]: (⋄) ρτ (K10, o(Q(5, n))) ≤ 1/5; [3]: (⋄) ρτ (K10,Q(5, g(n))) = 0.

• K11-free:
[21]: ρτ (K11, n/10) = 9/20;
[10]: ρτ (K11, o(n)) = 2/5; [3]: ρτ (K11,

√
n log n) = 2/5;

[3]: ρτ (K11, o(
√
n log n)) ≤ 7/20;

[3]: ρτ (K11,
√
ne−ω(n)

√
log n) = 1/3; [3]: ρτ (K11,Q(4, n)) = 1/3;

(∗): (⋄) ρτ (K11, o(Q(4, n))) = 1/4; [3]: (⋄) ρτ (K11,Q(6, n)) = 1/4;

[3]: (⋄) ρτ (K11, o(Q(6, n))) = 0.

3
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• K12-free:
[21]: ρτ (K12, n/11) = 5/11; [9]: ρτ (K12, o(n)) = 13/32;
[3]: ρτ (K12, ne−ω(n)

√
log n) = 2/5; [3]: ρτ (K12,

√
n log n) = 2/5;

[3]: ρτ (K12, o(
√
n log n)) ≤ 8/22;

[3]: ρτ (K12,
√
ne−ω(n)

√
log n) = 1/3; [3]: ρτ (K12,Q(4, n)) = 1/3;

(∗): ρτ (K12, o(Q(4, n))) ≤ 4/13;
[3]: (⋄) ρτ (K12,Q(4, g(n))) = 1/4; [3]: (⋄) ρτ (K12,Q(6, n)) = 1/4;
[3]: (⋄) ρτ (K12, o(Q(6, n))) ≤ 5/24; [3]: (⋄) ρτ (K12,Q(6, g(n))) = 0.

• K13-free:
[21]: ρτ (K13, n/12) = 11/24;
[10]: ρτ (K13, o(n)) = 5/12; [3]: ρτ (K13,

√
n log n) = 5/12;

[3]: ρτ (K13, o(
√
n log n)) = 3/8; [3]: ρτ (K13,Q(4, n)) = 3/8;

[3]: (⋄) ρτ (K13, o(Q(4, n))) = 1/3; [3]: (⋄) ρτ (K13,Q(5, n)) = 1/3;
(∗): ρτ (K13, o(Q(5, n))) ≤ 4/15; (∗): (⋄) ρτ (K13, o(Q(5, n))) = 1/4;
[3]: (⋄) ρτ (K13,Q(7, n)) = 1/4; [3]: (⋄) ρτ (K13, o(Q(7, n))) = 0.

Although different from the focus of this paper, it is worth mentioning that Lüders and Reiher [13]
have studied the transition behaviors of cliques at f (n) = n more accurately. For all s ≥ 2, they
proved that if δ is sufficiently small, then

ρτ (K2s−1, δn) =
1
2

(
s− 2
s− 1

+ δ

)
and ρτ (K2s, δn) =

1
2

(
3s− 5
3s− 2

+ δ − δ2
)

.

hen s = 2, let G be a K3-free graph on n vertices with α(G) ≤ δn, then e(G) ≤
1
2δn

2 since the
eighborhood of every vertex is an independent set. Hence, ρτ (K3, o(n)) = 0. Ajtai, Komlós and
zemerédi [1] proved sharper results.

.2. Main results

Recall that Q(3, n) = Θ(
√
n log n). Kim, Kim and Liu [11] determined ρτ (K8, o(

√
n log n)),

hich is exactly ρτ (K8, o(Q(3, n))) = 1/4. We extend this result to larger cliques, thus improve
the following upper bounds in [3]: ρτ (K9, o(Q(3, n))) ≤ 5/16, ρτ (K10, o(Q(4, n))) ≤ 5/18,
ρτ (K11, o(Q(4, n))) ≤ 3/10 and ρτ (K12, o(Q(4, n))) ≤ 7/22.

Theorem 2. ρτ (K9, o(Q(3, n))) ≤ 3/10.

Theorem 3. ρτ (Kt , o(Q(4, n))) ≤ 1/4 for 9 ≤ t ≤ 11.

Theorem 4. ρτ (K12, o(Q(4, n))) ≤ 4/13.

Theorem 5. ρτ (K13, o(Q(5, n))) ≤ 4/15.

If Conjecture 1 holds for ℓ = 5, then we have a better result for the K13-free case, which improves
τ (K13, o(Q(5, n))) ≤ 7/24 given in [3] under the same assumption.

heorem 6. If Conjecture 1 is true for ℓ = 5, then ρτ (K13, o(Q(5, n))) = 1/4.

emark. Assuming Conjecture 1 holds, we explain below that the upper bounds given in Theorems 3
nd 6 are tight, which can also be seen by the results listed after Conjecture 1 in Section 1.1.
oreover, we conjecture that the bounds given in Theorems 2 and 4 are best possible.

• Theorem 3: Let H be a K5-free graph on n/2 vertices with independence number Q(5, n/2). The
existence of such graphs is guaranteed by Ramsey’s theorem and e(H) = o(n2) by [3]. If Conjecture 1

holds for ℓ = 5, then α(H) = Q(5, n/2) = o(Q(4, n)). Let G be obtained from the union of two

4
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ertex-disjoint copies of H , say A and B, by joining every vertex in A to every vertex in B. Then, G
s K9-free, thus K10-free and K11-free, with n2/4+ o(n2) edges and α(G) = o(Q(4, n)).
• Theorem 6: Let H be a K7-free graph on n/2 vertices with independence number Q(7, n/2).
Similarly, the existence of such graphs is guaranteed by Ramsey’s theorem and e(H) = o(n2) by [3].
If Conjecture 1 holds for ℓ = 6 or for ℓ = 7, then α(H) = Q(7, n/2) = o(Q(5, n)). Let G be obtained
from the union of two vertex-disjoint copies of H , say A and B, by joining every vertex in A to every
vertex in B. Then, G is K13-free with n2/4+ o(n2) edges and α(G) = o(Q(5, n)).
• Theorem 2: We conjecture that ρτ (K6, o(

√
n log n)) = 1/6. If it was true, then there exists a K6-

free graph H1 on 3n/5 vertices with independence number o(Q(3, n)) and with 1
6 (

3n
5 )2 = 3n2/50

edges. Let H2 be a K4-free graph on 2n/5 vertices with independence number o(Q(3, n)) and with
o(n2) edges, the existence of such graphs could be proved with the first moment method. Let G be
obtained from the vertex-disjoint union of H1 and H2 by joining every vertex in H1 to every vertex in
H2. Then, G is K9-free with e(G) ≤ 3n2/50+6n2/25+o(n2) = 3n2/10+o(n2) and α(G) = o(Q(3, n)).
• Theorem 4: We conjecture that ρτ (K8, o(Q(4, n))) = 3/16. If it was true, then there exists a K8-free
graph H1 on 8n/13 vertices with independence number o(Q(4, n)) and with 3

16 (
8n
13 )

2
= 12n2/169

dges. Let H2 be a K5-free graph on 5n/13 vertices with independence number o(Q(4, n)) and with
(n2) edges, the existence of such graphs could be proved with the first moment method. Let G
e obtained from the vertex-disjoint union of H1 and H2 by joining every vertex in H1 to every
ertex in H2. Then, G is K12-free with e(G) ≤ 12n2/169 + 40n2/169 + o(n2) = 4n2/13 + o(n2) and
(G) = o(Q(4, n)).

. Preliminaries

.1. Definitions and notation

In this paper, we will use standard definitions and notation. All graphs considered are simple
ndirected graphs. Given disjoint sets A, B ⊆ V (G), denote by N(A, B) the common neighborhood of
in B. In the case when A = {v} ⊆ V (G), we will write N(v, B) for the set of neighbors of v in B
nd let d(v, B) := |N(v, B)|. Given a graph G and U ⊆ V (G), the induced subgraph G[U] is the graph
hose vertex set is U and whose edge set is spanned by vertices in U . If G[V1, . . . , Vp] is the induced
ubgraph of G on the partition of vertices V1∪· · ·∪Vp ⊆ G where the edges are whose endpoints are
in Vi, Vj with i ̸= j, then δcr(V1, . . . , Vp) := min

{i,j}∈([p]2 )

{
minv∈Vi d(v, Vj)

}
is the minimum crossing

degree of G with respect to the partition V1 ∪ · · · ∪ Vp. We may omit floors and ceilings when they
are not essential.

2.2. Tools

The following theorem is a corollary of Shearer’s bound on R(3, n).

Theorem 7 ([11]). There exists k0 ∈ N such that for all k ≥ k0, every graph with at least 2k2/log k
vertices contains either a triangle or an independent set of size k.

Although the exact order of magnitude of R(4, n) is not known, Mattheus and Verstraete [16]
determined R(4, n) up to a factor of order log2 n very recently.

Theorem 8 ([16]).

Ω

(
n3

log4 n

)
≤ R(4, n) ≤ O

(
n3

log2 n

)
.

Therefore,

Ω

(
n

1
3 (log n)

2
3

)
≤ Q(4, n) ≤ O

(
n

1
3 (log n)

4
3

)
.

For t ≥ 5, the following is known.
5
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heorem 9 ([1,4]). For t ≥ 5, we have

Ω

(
n

t+1
2

(log n)
t+1
2 −

1
t−2

)
≤ R(t, n) ≤ O

(
nt−1

(log n)t−2

)
.

n particular,

Ω

(
n

1
4 (log n)

3
4

)
≤ Q(5, n) ≤

(
n

1
3 (log n)

8
9

)
.

For disjoint vertex sets A and B in G, denote by dG(A, B) := e(G[A,B])
|A||B| the density of the pair (A, B) in

. For ϵ > 0, we say that a pair (A, B) is ϵ-regular if for every A′ ⊆ A and B′ ⊆ B such that |A′| ≥ ϵ|A|
and |B′| ≥ ϵ|B|, we have |dG(A′, B′)− dG(A, B)| ≤ ϵ. If additionally dG(A, B) ≥ γ , then we say that
(A, B) is (ϵ, γ )-regular. A partition V1 ∪ · · · ∪ Vm of V (G) is ϵ-regular if it is an equipartition and all
but at most ϵm2 pairs (Vi, Vj) are ϵ-regular.

Lemma 10 (Szemerédi’s Regularity Lemma, [12]). Suppose 0 < 1/M ′
≪ ϵ, 1/M ≪ 1 and n ≥ M. For

every n-vertex graph G there exists an ϵ-regular partition V (G) = V1 ∪ · · · ∪ Vm with M ≤ m ≤ M ′.

Lemma 11 (Slicing Lemma, [20]). Let ϵ < α, γ , 1/2. Suppose that (A, B) is an (ϵ, γ )-regular pair in a
raph G. If A′ ⊆ A and B′ ⊆ B satisfies |A′| ≥ α|A| and |B′| ≥ α|B|, then (A′, B′) is an (ϵ′, γ − ϵ)-regular
air in G, where ϵ′ := max{ϵ/α, 2ϵ}.

Let ϵ, γ > 0. For a given graph G with partition V1 ∪ · · · ∪ Vm, we define the cluster graph
:= R(ϵ, γ ) as follows: V (R) = [m]; ij ∈ E(R) if and only if (Vi, Vj) is an (ϵ, γ )-regular pair in G. We
se the following lemma to derive Turán-type properties of the cluster graph.

emma 12 ([3]). Let G be an n-vertex graph with α(G) < Q(p, n2−ω(n) log1−1/q n). We apply Szemerédi’s
egularity Lemma to G to obtain an ϵ-regular partition of V (G) and the corresponding cluster graph

R = R(ϵ, γ ), where ϵ ≪ γ . If there exists a Kq in R, then we can find a Kpq in G.

We also need the following dependent random choice type of lemma, which is a generalization
of Lemma 3.1 in [11].

Lemma 13. Let k ≥ 2 be a fixed integer. Suppose G = Z1 ∪ · · · ∪ Zk is a k-partite graph with |Zi| = n
for each i ∈ [k]. Let 0 < γ < 1, c ≫

1
log n and 2 ≤ t ∈ N be fixed real numbers. If |N(v, Zi)| ≥ γ n for

very v ∈ Zk and i ∈ [k − 1], then there exists S ⊆ Zk of size |S| = 1
2n

1−c such that every t-tuple of
ertices T ∈

(S
t

)
satisfies |N(T , Zi)| ≥ γ

2(k−1)(t+1)
c n for each i ∈ [k− 1].

roof. For each i ∈ [k − 1], let Qi be a set of vertices in Zi chosen uniformly at random with
epetition such that |Qi| := q := −

c
2(k−1) logγ n. Call T ∈

(Zk
t

)
a bad t-tuple if there exists i ∈ [k− 1]

uch that |N(T , Zi)| < γ an, where a :=
2(k−1)(t+1)

c . Let S ′ := N(∪k−1
i=1 Qi, Zk). Define a random variable

X to be the number of bad t-tuples T with T ⊆ S ′. For every bad t-tuple T ∈
(Zk
t

)
, we have

P[T ⊆ S ′] = P

[
k−1⋃
i=1

Qi ⊆ N(T )

]
=

k−1∏
i=1

(
|N(T , Zi)|

|Zi|

)q

≤

(
γ an
n

)q

= γ aq.

By linearity of expectation, we have

E[X] ≤
(
n
)

γ aq
≤ ntγ aq.
t
6
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e also have

E[|S ′|] =
∑
v∈Z1

P[v ∈ S ′] =
∑
v∈Z1

P

[
k−1⋃
i=1

Qi ⊆ N(v)

]

=

∑
v∈Z1

k−1∏
i=1

(
|N(v, Zi)|

|Zi|

)q

≥ n
(γ n

n

)(k−1)q
= nγ (k−1)q.

herefore,

E[|S ′| − X] ≥ nγ (k−1)q
− ntγ aq

= n1−c/2
− n−1

≥
1
2
n1−c/2

≥
1
2
n1−c,

hich implies that there exist Q1, . . . ,Qk−1 such that |S ′| − X ≥
1
2n

1−c . Let S ⊆ Zk be the set
btained by deleting one vertex from every bad t-tuple in S ′, then S will satisfy the conclusion of
he lemma. □

.3. Weighted Turán-type results

Among others, we utilize a series of weighted Turán-type results to analyze the properties of the
luster graph.
Let G be a graph. The standard clique edge-weighting is an assignment w of weights to the edges

f G as follows. Let e be an edge and r be the order of the largest clique containing e in G. Then we
efine the weight of the edge e as

w(e) :=
r

2(r − 1)
.

We extend the definition of the weight function w to G:

w(G) :=
∑
e∈E(G)

w(e).

otice that the weights are defined such that for every r ≥ 2,

lim
n→∞

w(T (n, r))
n2 =

1
4
.

heorem 14 ([7,14]). Let G be an n-vertex graph and w be the standard clique edge-weighting. Then

w(G) ≤
n2

4
.

quality holds when n is a multiple of some r and G = T (n, r) is the Turán graph.

The following variations of the standard clique edge-weighting theorem were discussed in [2].

heorem 15 (Theorem 3.4, [2]). Let G be an n-vertex K4-free graph with a weight function w on E(G) as
ollows: if an edge e ∈ E(G) is contained in some triangle, then let w(e) := 4/5; otherwise, let w(e) := 1.
hen

w(G) ≤
(

4
15

+ o(1)
)
n2.

oreover, for every ε > 0 if n is sufficiently large and w(G) =
( 4
15 + o(1)

)
n2, then G is in edit distance

t most εn2 from T (n, 3).

A triangle in G is called a-heavy if for every edge e of it w(e) > a. A triangle in G is called b-chubby
f for some edge e of it w(e) > b. The following result is an immediate corollary of Theorem 3.2

n [2].

7
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heorem 16 ([2]). Let G be an n-vertex K4-free graph with a weight function w : E(G) → [0, 1]. Let
∈ [0, 1] be fixed. Suppose that G contains no a-heavy triangle.
i) If a = 2/3, then

w(G) ≤
(

3
10

+ o(1)
)
n2.

ii) If a = 3/4, then

w(G) ≤
(

4
13

+ o(1)
)
n2.

.4. Proof idea of the main results

Let 9 ≤ t ≤ 13 be the size of the clique we want to forbid and f (n) be the corresponding
nverse Ramsey number depending on the choice of t , i.e., for t = 9, f (n) = Q(3, n) or Q(4, n); for
10 ≤ t ≤ 12, f (n) = Q(4, n); while for t = 13, f (n) = Q(5, n). Fix γ > 0 and let

0 < 1/n0 ≤ 1/n ≪ δ < 1/M ′
≪ ϵ ≪ γ ≪ 1. (1)

Let G be an n-vertex Kt-free graph with α(G) ≤ δf (n). By applying Lemma 10 to G, we obtain
an ϵ-regular partition V (G) = V1 ∪ · · · ∪ Vm with 1/ϵ ≤ m ≤ M ′. Let R := R(ϵ, γ /2) be the
corresponding cluster graph on m vertices. By Lemma 12, we know that R contains no large clique.
More specifically: By the p = 2 version of Lemma 12, R is K5-free when t = 9, f (n) = Q(3, n); By
he p = 3 version of Lemma 12, R is K4-free when 9 ≤ t ≤ 12, f (n) = Q(4, n), and R is K5-free when
= 13, f (n) = Q(5, n). Note that each edge ij ∈ E(R) corresponds to at most dG(Vi, Vj)( n

m )2 edges in
G. The number of the rest of the edges of G, which are exactly those not corresponding to E(R), is
at most

ϵm2
( n
m

)2
+

γ

2

( n
m

)2 (m
2

)
+

(
n/m
2

)
m ≤ ϵn2

+
γ

4
n2

+
1
2m

n2
≤

γ

3
n2, (2)

hich is small. Instead of computing e(G) directly as in [11], we apply the weighted Turán-type
esults from Section 2.3 to obtain an upper bound on e(R), thus obtain an upper bound on the
orresponding number of edges in G, which makes up most of E(G).

. Proofs of the main results

.1. K9-free: Proof of Theorem 2

Let all the parameters be as in (1). Let G be an n-vertex K9-free graph with α(G) ≤ δQ(3, n). To
rove Theorem 2, it suffices to prove that

e(G) ≤
3
10

n2
+ γ n2.

Let R := R(ϵ, γ /2) be the corresponding cluster graph on m vertices. By the p = 2 version of
emma 12, R is K5-free. In fact, we can prove that R contains no K4.

laim 17. R is K4-free.

roof. Suppose that {1, 2, 3, 4} spans a K4 in R. Then, (Vi, Vj) is ϵ-regular with d(Vi, Vj) ≥ γ /2 for
very pair {i, j} ∈

(
[4]
2

)
. For each i ∈ [4], there exists a subset V ∗

i ⊆ Vi such that |V ∗

i | = (1−3ϵ)|Vi| and
δcr (G[V ∗

1 , V ∗

2 , V ∗

3 , V ∗

4 ]) ≥ γ |V ∗

i |/4. Applying Lemma 13 to G[V ∗

1 , V ∗

2 , V ∗

3 , V ∗

4 ] with k = 4, c = 1/3 and
t = 2 gives us a set S ⊆ V ∗

1 of size 1
2 |V

∗

1 |
2/3

≥
1
3 (

n
m )2/3 such that every P ∈

(S
2

)
satisfies |N(P, V ∗

i )| ≥
γ

4 )
54
|V ∗

i | ≥ γ 56 n
m for each i ∈ {2, 3, 4}. Recall that α(G) ≤ δQ(3, n) and Q(3, n) = Θ(

√
n log n).

ince 1
3 (

n
m )2/3 > α(G), the set S contains an edge uv ∈ E(G) with |N({u, v}, V ∗

i )| ≥ γ 56 n
m for each

∈ {2, 3, 4}.
8
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By applying Lemma 11 and deleting all vertices of low degree if necessary, we could get subsets
′

i ⊆ N({u, v}, V ∗

i ) for i ∈ {2, 3, 4} satisfying that |V ′

2| = |V ′

3| = |V ′

4| ≥ γ 60 n
m , δcr (G[V ′

2, V
′

3, V
′

4]) ≥
γ |V ′

i |/5, and (V ′

i , V
′

j ) is (
√

ϵ, γ /4)-regular for every pair {i, j} ∈
(
{2,3,4}

2

)
. We apply Lemma 13 to

[V ′

2, V
′

3, V
′

4] with k = 3, c = 1/3 and t = 2. This gives us a set S ′ ⊆ V ′

2 of size 1
2 |V

′

2|
2/3

≥ γ 41( n
m )2/3

uch that every P ∈
(S′
2

)
satisfies |N(P, V ′

i )| ≥ ( γ

5 )
36
|V ′

i | ≥ γ 97 n
m for each i ∈ {3, 4}. Since

41( n
m )2/3 > α(G), the set S ′ contains an edge xy ∈ E(G) with |N({x, y}, V ′

i )| ≥ γ 97 n
m for each

∈ {3, 4}.
Again, by applying Lemma 11 and deleting all vertices of low degree if necessary, we could get

′′

i ⊆ N({x, y}, V ′

i ) for i ∈ {3, 4} such that |V ′′

3 | = |V ′′

4 | ≥ γ 99 n
m , δ(G[V ′′

3 , V ′′

4 ]) ≥ γ |V ′′

i |/6 and
V ′′

3 , V ′′

4 ) is (ϵ1/4, γ /5)-regular. We apply Lemma 13 once more to G[V ′′

3 , V ′′

4 ] with k = 2, c = 1/3
nd t = 2. This gives us a set S ′′ ⊆ V ′′

3 of size 1
2 |V

′′

3 |
2/3

≥ γ 67( n
m )2/3 such that every P ∈

(S′′
2

)
satisfies

N(P, V ′′

4 )| ≥ ( γ

6 )
18
|V ′′

4 | ≥ γ 118 n
m . Again, S ′′ contains an edge zw ∈ E(G) with |N({z, w}, V ′′

4 )| ≥ γ 118 n
m

ince γ 67( n
m )2/3 > α(G). Note that Q(3, γ 118 n

m ) > δQ(3, n) ≥ α(G). Therefore, |N({z, w}, V ′′

4 )|
contains a K3, which together with uv, xy and zw forms a K9 in G, a contradiction. □

Now we analyze the triangles in R. Recall that a triangle ijk in R is (2/3+γ )-heavy if dG(Vi′ , Vj′ ) >

2/3+ γ for all pairs i′j′ ∈
(
{i,j,k}

2

)
.

Claim 18. No triangle in R is (2/3+ γ )-heavy.

Proof. Suppose that {1, 2, 3} spans a (2/3 + γ )-heavy triangle in R. Then all pairs (Vi, Vj) with
ij ∈

(
[3]
2

)
are ϵ-regular with dG(Vi, Vj) > 2/3+ γ , so there exist V ∗

i ⊆ Vi for every i ∈ [3] such that
|V ∗

i | = (1 − 2ϵ)|Vi| and δcr (G[V ∗

1 , V ∗

2 , V ∗

3 ]) ≥ (2/3 + γ /2)|V ∗

i |. We will work with these sets with
high minimum crossing degree.

We claim that V ∗

1 contains a triangle, otherwise, by Theorem 7, V ∗

1 would contain an independent
set of size at least

1
2

√
|V ∗

1 | log |V
∗

1 | ≥
1
2

√
(1− 2ϵ)

n
m

log
(
(1− 2ϵ)

n
m

)
>

1
m

√
n log n ≥ α(G),

contradiction. Suppose that S spans a triangle in V ∗

1 , then each vertex in S has at least (2/3 +

/2)|V ∗

i | neighbors in V ∗

i for i ∈ {2, 3} because δcr (G[V ∗

1 , V ∗

2 , V ∗

3 ]) ≥ (2/3+ γ /2)|V ∗

i |. Then the size
f the intersection of the three neighborhoods, which is |N(S, V ∗

i )|, is at least 3
2γ |V

∗

i | ≥ γ 2 n
m for

∈ {2, 3}.
Using Lemma 11 and again deleting vertices of low degree, we could obtain V ′

i ⊆ N(S, V ∗

i )
or i ∈ {2, 3} satisfying that |V ′

2| = |V ′

3| ≥ γ 4 n
m , δ(G[V ′

2, V
′

3]) ≥ (2/3 + γ /4)|V ′

i | and (V ′

2, V
′

3) is
(
√

ϵ, 2/3 + γ /3)-regular. Again, by the low independence number condition, V ′

2 must contain a
riangle.

Let T be a triangle in V ′

2, then we have |N(T , V ′

3)| ≥
3
4γ |V

′

3| ≥ γ 6 n
m . Again, by the low

independence number condition, N(T , V ′

3) contains a triangle, which together with S and T forms a
K9, a contradiction. □

Define a weight function on E(R) as follows: If ij ∈ E(R) satisfies dG(Vi, Vj) ∈ (2/3, 2/3+ γ ), then
et w(ij) := 2/3, otherwise, let w(ij) := dG(Vi, Vj). By Claim 18 and Theorem 16,

w(R) ≤
(

3
10

+
γ

6

)
m2,

as we can always assume M , thus m, to be sufficiently large at the very first step. Let a be the
number of edges ij ∈ E(R) with dG(Vi, Vj) ∈ (2/3, 2/3 + γ ). Then a ≤ m2/2 and every such edge ij
contributes dG(Vi, Vj)(n/m)2 ≤ (2/3 + γ )(n/m)2 = (w(ij) + γ )(n/m)2 edges to G. Notice that every
other edge ij ∈ E(R) contributes exactly dG(Vi, Vj)(n/m)2 = w(ij)(n/m)2 edges to G. Therefore, E(R)
contributes∑

dG(Vi, Vj)
( n
m

)2
≤ w(R)

( n
m

)2
+ aγ

( n
m

)2
≤

(
3
10

+
2γ
3

)
n2
ij∈E(R)

9
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dges to G. Combining with (2),

e(G) ≤
(

3
10

+ γ

)
n2

and we completed the proof of Theorem 2.

3.2. Kt-free for t = 9, 10, 11: Proof of Theorem 3

Let t ∈ {9, 10, 11} and all the parameters be as in (1). Let G be an n-vertex Kt-free graph with
≥ n0 and α(G) ≤ δQ(4, n). To prove Theorem 3, it suffices to prove that

e(G) ≤
1
4
n2

+ γ n2.

et R := R(ϵ, γ /2) be the corresponding cluster graph. By the p = 3 version of Lemma 12, R is K4-
ree. Instead of considering (2/3+ γ )-heavy triangles in R, we will use (3/4+ γ )-chubby triangles:
ecall that a triangle ijk in R is (3/4+ γ )-chubby if dG(Vi′ , Vj′ ) > 3/4+ γ for some i′j′ ∈

(
{i,j,k}

2

)
.

laim 19. No triangle in R is (3/4+ γ )-chubby.

roof. Suppose that {1, 2, 3} spans a (3/4+γ )-chubby triangle in R with d(V2, V3) > 3/4+γ . Since
ll pairs (Vi, Vj) for ij ∈

(
[3]
2

)
are ϵ-regular, we have that for each i ∈ [3], there exists V ∗

i ⊆ Vi such
hat |V ∗

i | = (1−2ϵ)|Vi| and δcr (G[V ∗

1 , V ∗

2 , V ∗

3 ]) ≥ γ |V ∗

i |/3. We will find a K11 in these sets with high
inimum crossing degree, using the dependent random choice method.
Apply Lemma 13 to G[V ∗

1 , V ∗

2 , V ∗

3 ] with k = 3, c = 1/5 and t = 3. This gives us a set S ⊆ V ∗

1 of
ize 1

2 |V
∗

1 |
4/5

≥
1
3 (

n
m )4/5 such that every triple P ∈

(S
3

)
satisfies |N(P, V ∗

i )| ≥ ( γ

3 )
80
|V ∗

i | ≥ γ 82 n
m for

ach i ∈ {2, 3}. Recall that α(G) ≤ δQ(4, n) and Q(4, n) = O(n2/5), so 1
3 (

n
m )4/5 > (α(G))2. Therefore,

S contains a triangle uvw with |N({u, v, w}, V ∗

i )| ≥ γ 82 n
m for each i ∈ {2, 3}.

By applying Lemma 11 and deleting all vertices of low degree if necessary, we could get subsets
V ′

i ⊆ N({u, v, w}, V ∗

i ) for i ∈ {2, 3} such that |V ′

2| = |V ′

3| ≥ γ 84 n
m , δ(G[V ′

2, V
′

3]) ≥ (3/4 + γ /5)|V ′

i |

nd (V ′

2, V
′

3) is (
√

ϵ, 3/4+γ /4)-regular. We claim that V ′

2 contains a K4. Otherwise, by the definition
f inverse Ramsey number, we could always choose δ small enough such that there exists an
ndependent set of size at least

Q
(
4, |V ′

2|
)
≥ Q

(
4,

γ 84

m
n
)

> δQ(4, n) ≥ α(G),

a contradiction.
Let T be a K4 in V ′

2, then |N(T , V ′

3)| ≥
4γ
5 |V ′

3| ≥ γ 86 n
m since δ(G[V ′

2, V
′

3]) ≥ (3/4+γ /5)|V ′

i |. Again,
y the low independence number condition, N(T , V ′

3) contains a K4, which together with T and uvw

orms a K11 ⊇ Kt , a contradiction. □

Let a be the number of edges in R contained in some triangle, then a ≤ m2/2. Let b := e(R)− a.
ecall that R is K4-free. By Theorem 14,

a ·
3
4
+ b ≤

(
1
4
+

γ

6

)
m2.

By Claim 19, every edge ij ∈ E(R) contained in some triangle satisfies that dG(Vi, Vj) ≤ 3/4 + γ .
Therefore, E(R) contributes∑

ij∈E(R)

dG(Vi, Vj)
( n
m

)2
≤ a ·

(
3
4
+ γ

)( n
m

)2
+ b ·

( n
m

)2
≤

(
1
+

γ
)
n2

+ aγ
( n )2

≤

(
1
+

2γ
)
n2
4 6 m 4 3
10
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e
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e

dges to G. Combining with (2),

e(G) ≤
(
1
4
+ γ

)
n2

as desired.

3.3. K12-free: Proof of Theorem 4

The proof for this case is similar to the one in Section 3.1, with the use of (3/4+γ )-heavy triangles
instead of (2/3+γ )-heavy triangles. Let all the parameters be as in (1). Let G be an n-vertex K12-free
graph with α(G) ≤ δQ(4, n) and R := R(ϵ, γ /2) be the corresponding cluster graph. Note that R is
4-free by the p = 3 version of Lemma 12. Our aim now is to prove that

e(G) ≤
4
13

n2
+ γ n2.

Claim 20. No triangle in R is (3/4+ γ )-heavy.

Proof. Suppose that {1, 2, 3} spans a (3/4 + γ )-heavy triangle in R. Then all pairs (Vi, Vj) with
j ∈

(
[3]
2

)
are ϵ-regular with dG(Vi, Vj) > 3/4 + γ , so there exist subsets V ∗

i ⊆ Vi for every i ∈ [3]
such that |V ∗

i | = (1− 2ϵ)|Vi| and δcr (G[V ∗

1 , V ∗

2 , V ∗

3 ]) ≥ (3/4+ γ /2)|V ∗

i |. We will still use these sets
with high minimum crossing degree.

We claim that V ∗

1 contains a K4. Otherwise, by the definition of inverse Ramsey number, V ∗

1
contains an independent set of size at least

Q(4, |V ∗

1 |) = Q
(
4,

1− 2ϵ
m

n
)

> δQ(4, n) ≥ α(G),

a contradiction. Suppose that S spans a K4 in V ∗

1 . Then the size of |N(S, V ∗

i )| is at least 2γ |V
∗

i | ≥ γ 2 n
m

or i ∈ {2, 3} since δcr (G[V ∗

1 , V ∗

2 , V ∗

3 ]) ≥ (3/4+ γ /2)|V ∗

i |.
Using Lemma 11 and again deleting vertices of low degree, we obtain V ′

i ⊆ N(S, V ∗

i ) for
∈ {2, 3} satisfying that |V ′

2| = |V ′

3| ≥ γ 4 n
m , δ(G[V ′

2, V
′

3]) ≥ (3/4 + γ /4)|V ′

i | and (V ′

2, V
′

3) is
(
√

ϵ, 3/4 + γ /3)-regular. Again, by the low independence number condition, V ′

2 must contain a
4.
Let T be a K4 in V ′

2, then we have |N(T , V ′

3)| ≥ γ |V ′

3| ≥ γ 5 n
m . Again, by the low indepen-

dence number condition, N(T , V ′

3) contains a K4, which together with S and T forms a K12, a
contradiction. □

Define a weight function on E(R) as follows: If ij ∈ E(R) satisfies dG(Vi, Vj) ∈ (3/4, 3/4+ γ ], then
w(ij) := 3/4, otherwise, let w(ij) := dG(Vi, Vj). By Claim 20 and Theorem 16,

w(R) ≤
(

4
13

+
γ

6

)
m2.

Let a be the number of edges ij ∈ E(R) with dG(Vi, Vj) ∈ (3/4, 3/4 + γ ). Then a ≤ m2/2 and
every such edge ij contributes dG(Vi, Vj)(n/m)2 ≤ (3/4+ γ )(n/m)2 = (w(ij)+ γ )(n/m)2 edges to G.
Notice that every other edge ij ∈ E(R) contributes exactly dG(Vi, Vj)(n/m)2 = w(ij)(n/m)2 edges to
G. Therefore, E(R) contributes∑

ij∈E(R)

dG(Vi, Vj)
( n
m

)2
≤ w(R)

( n
m

)2
+ aγ

( n
m

)2
≤

(
4
13

+
2γ
3

)
n2

dges to G. Combining with (2), we completed the proof of Theorem 4.
11
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.4. K13-free: Proof of Theorem 5

Let all the parameters be as in (1). Let G be an n-vertex K13-free graph with α(G) ≤ δQ(5, n) and
:= R(ϵ, γ /2) be the corresponding cluster graph. Our aim now is to prove

e(G) ≤
4
15

n2
+ γ n2.

Recall that by the p = 3 version of Lemma 12, R is K5-free. Similarly as in Sections 3.1–3.3, we will
first prove that R contains no K4 and then analyze the triangles in R.

Claim 21. R is K4-free.

Proof. The proof is similar to the proof of Claim 17 where we apply the dependent random choice
method. The only difference is the choice of c and t in the application of Lemma 13.

Suppose that {1, 2, 3, 4} spans a K4 in R. Then, for each i ∈ [4], there exists a subset V ∗

i ⊆ Vi
such that |V ∗

i | = (1 − 3ϵ)|Vi| and δcr (G[V ∗

1 , V ∗

2 , V ∗

3 , V ∗

4 ]) ≥ γ |V ∗

i |/4. Applying Lemma 13 to
[V ∗

1 , V ∗

2 , V ∗

3 , V ∗

4 ] with k = 4, c = 1/5 and t = 3 gives us a set S ⊆ V ∗

1 of size 1
2 |V

∗

1 |
4/5

≥
1
3 (

n
m )4/5

uch that every triple P ∈
(S
3

)
satisfies |N(P, V ∗

i )| ≥ ( γ

4 )
120 n

m ≥ γ 121 n
m for each i ∈ {2, 3, 4}. Recall

that α(G) ≤ δQ(5, n) and Q(5, n) = O(n1/3), so 1
3 (

n
m )4/5 > (α(G))2. Therefore, S contains a triangle

uvw with |N({u, v, w}, V ∗

i )| ≥ γ 121 n
m for each i ∈ {2, 3, 4}.

By applying Lemma 11 and deleting all vertices of low degree if necessary, we could get subsets
V ′

i ⊆ N({u, v, w}, V ∗

i ) for i ∈ {2, 3, 4} satisfying that |V ′

2| = |V ′

3| = |V ′

4| ≥ γ 123 n
m , δcr (G[V ′

2, V
′

3, V
′

4]) ≥
|V ′

i |/5, and (V ′

i , V
′

j ) is (
√

ϵ, γ /4)-regular for every pair {i, j} ∈
(
{2,3,4}

2

)
. We apply Lemma 13 to

[V ′

2, V
′

3, V
′

4] with k = 3, c = 1/5 and t = 3. This gives us a set S ′ ⊆ V ′

2 of size 1
2 |V

′

2|
4/5

≥ γ 124( n
m )4/5

uch that every triple P ∈
(S′
3

)
satisfies |N(P, V ′

i )| ≥ ( γ

5 )
80
|V ′

i | ≥ γ 204 n
m for each i ∈ {3, 4}. Since

124( n
m )4/5 > (α(G))2, S ′ contains a triangle xyz with |N({x, y, z}, V ′

i )| ≥ γ 204 n
m for each i ∈ {3, 4}.

Again, by applying Lemma 11 and deleting all vertices of low degree if necessary, we could get
V ′′

i ⊆ N({x, y, z}, V ′

i ) for i ∈ {3, 4} such that |V ′′

3 | = |V ′′

4 | ≥ γ 206 n
m , δ(G[V ′′

3 , V ′′

4 ]) ≥ γ |V ′′

i |/6 and
V ′′

3 , V ′′

4 ) is (ϵ1/4, γ /5)-regular. We apply Lemma 13 once more to G[V ′′

3 , V ′′

4 ] with k = 2, c = 1/5
nd t = 3. This gives us a set S ′′ ⊆ V ′′

3 of size 1
2 |V

′′

3 |
4/5

≥ γ 207( n
m )4/5 such that every triple P ∈

(S′′
3

)
atisfies |N(P, V ′′

4 )| ≥ ( γ

6 )
40
|V ′′

3 | ≥ γ 247 n
m . Since γ 207( n

m )4/5 > (α(G))2, S ′′ contains a triangle abc with

|N({a, b, c}, V ′′

4 )| ≥ γ 247 n
m . Note that Q

(
5, γ 247

m n
)

> δQ(5, n) ≥ α(G). Therefore, N({a, b, c}, V ′′

4 )
contains a K5, which together with uvw, xyz and abc forms a K14 ⊇ K13, a contradiction. □

Recall that a triangle ijk in R is (4/5+ γ )-chubby if dG(Vi′ , Vj′ ) > 4/5+ γ for some i′j′ ∈
(
{i,j,k}

2

)
.

Claim 22. No triangle in R is (4/5+ γ )-chubby.

Proof. The proof is almost the same as of Claim 19, with Q(4, ·) replaced by Q(5, ·). Thus we could
find a triangle in V ∗

1 and two copies of K5 in V ′

2, V
′

3 respectively, together forming a K13, which leads
to a contradiction. □

Let a be the number of edges contained in some triangle, then a ≤ m2/2. Let b := e(R) − a. By
Claim 21 and Theorem 15,

a ·
4
5
+ b ≤

(
4
15

+
γ

6

)
m2.

By Claim 22, every edge ij ∈ E(R) contained in some triangle satisfies that dG(Vi, Vj) < 4/5 + γ .
Therefore, E(R) contributes at most

a
(
4
5
+ γ

)( n
m

)2
+ b

( n
m

)2
≤

(
4
15

+
γ

6
+

aγ
m2

)
n2

≤

(
4
15

+
2
3
γ

)
n2

dges to G. Combining with (2), we completed the proof of Theorem 5.
12
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.5. An improved result for K13-free case

Now we prove Theorem 6 by assuming that Conjecture 1 holds for ℓ = 5. We only need to
lightly modify the proof of Theorem 5. Let all the parameters be as in (1). Let G be a K13-free graph
n n ≥ n0 vertices with α(G) ≤ δQ(5, n) and R := R(ϵ, γ /2) be the corresponding cluster graph.
ince we assume that Conjecture 1 holds for ℓ = 5, R is K4-free by the p = 4 version of Lemma 12.
y an argument similar to the proof of Claim 21, we have the following claim.

laim 23. R is triangle-free.

roof. Since we assume the ℓ = 5 case of Conjecture 1 is true now, instead of finding a triangle
n V1, we find a K4 in V ∗

1 . By applying the dependent random choice method one more time, we
an still find a K4 and a K5 in V ′

2, V
′

3 respectively, which would force to have a K13 in G, leading to
contradiction. □

Now we apply Theorem 14 instead of Theorem 15 and get the required result.

. Concluding remarks

In our paper, we considered the following general problem:

roblem 24. Given an integer s and a function f (n), what is RT(n, Ks, f (n)), i.e. the maximum
umber of edges in an n-vertex Ks-free graph with independence number at most f (n)?

One obstacle to solving Problem 24 is Conjecture 1: it is not known if there is a jump of order
c between different off-diagonal Ramsey numbers, where c is a constant. Conditioning on that
onjecture 1 holds, Theorem 3.9 in [3] answers Problem 24 when f (n) = Q(p, n).

heorem 25 ([3], Theorem 3.9). If r = ⌊
s−1
p−1⌋ and Conjecture 1 holds for ℓ = p, then

ρτ (Ks,Q(p, n)) =
1
2

(
1−

1
r

)
.

The extremal graph in Theorem 25 is obtained from a balanced complete r-partite graph by
eplacing each of the r parts by a Kp-free graph with independence number Q(p, n/r). Given integers
and p, if ⌊ s−1

p−1⌋ = ⌊
s−1
p ⌋, then it follows from Theorem 25 that Ks has no phase transition at

(p, n) assuming Conjecture 1 holds. The complications of determining the existence of phase
ransitions come when the parameters s and p do not satisfy ⌊

s−1
p−1⌋ = ⌊

s−1
p ⌋. The first such instance

s s = 4, p = 2. It was resolved in [6] using the Bollobás–Erdős graph, implying that K4 has a phase
ransition at f (n) = n/3. More generally, the Bollobás–Erdős graph was used for the constructions
n the cases where s = 2r, p = 2, and the extremal graph in such a case is obtained from a complete
-partite graph by changing one pair of classes to the Bollobás–Erdős graph. For larger p, we do not
ave such constructions, and the current methods for proving upper bounds are not expected to
rove that no such construction using the Bollobás–Erdős graph exists.
We think that it would be extremely interesting to find such constructions. A good first step

oward this would be to predict that what type of constructions would be the most useful for our
roblem. This could potentially be done by creating some weighted Turán-type problems, whose
olutions would be useful for such approaches. Such steps were initiated in our paper: Theorems 14,
5, and 16 were conjectured by us at the early stage in our project, and were solved in [2,7,14]. It
s worth mentioning that weighted Turán-type results are interesting by their own and could be
pplied to some other problems. More information about them could be found in [2].
In the rest of this section, we state two general propositions, which could be proved by our

ethods. However, we are still far from fully answering Problem 24, even with the assumption
hat Conjecture 1 holds.

Conditional on Conjecture 1, we first give the following generalization of Theorem 3 by an
rgument similar to Section 3.2.
13
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roposition 26. If 2p+ 1 ≤ s ≤ 2p+ 3 and Conjecture 1 holds for ℓ = p ≥ 4, then

ρτ (Ks, o(Q(p, n))) =
1
4
.

Remark. When p = 4, we get Theorem 3. Theorem 6 is a special case when p = 5 and s = 2p+3 =

13. If p ≥ 6, then r := ⌊
s−1
p−1⌋ = 2. Combining with Theorem 25, we conclude that Ks has no phase

ransition at Q(p, n) if 2p+ 1 ≤ s ≤ 2p+ 3 and Conjecture 1 holds for ℓ = p ≥ 4.

roof of Proposition 26. For the upper bound, the proof idea is the same as in the proof of
heorem 3 in Section 3.2 and we only give a sketch here. Let G be an n-vertex Ks-free graph with

α(G) ≤ δQ(p, n), where 2p + 1 ≤ s ≤ 2p + 3. Let R := R(ϵ, γ /2) be the corresponding cluster
graph after applying Szemerédi’s Regularity Lemma to G. Since we assume that Conjecture 1 holds
for ℓ = p ≥ 4, we can apply Lemma 12 and conclude that R is K4-free. By Theorem 14, it suffices
to show that no triangle in R is (3/4+ γ )-chubby, where the definition of (3/4+ γ )-chubby is the
same as in Section 3.2. Suppose for a contradiction that {1, 2, 3} spans a (3/4+ γ )-chubby triangle
in R with d(V2, V3) > 3/4+ γ . We follow the notation in the proof of Claim 19 and use the subsets
V ∗

1 , V ∗

2 , V ∗

3 with high minimum crossing degree. Apply Lemma 13 to G[V ∗

1 , V ∗

2 , V ∗

3 ] with k = 3 and
t = p − 1. Since we assume that Conjecture 1 holds for ℓ = p, instead of finding a K3 in S ⊆ V ∗

1 ,
we could find a Kp−1 whose vertices have linearly many common neighbors in both V ∗

2 and V ∗

3 . As
α(G) ≤ δQ(p, n) and d(V ′

2, V
′

3) > 3/4, we could find a K4 in V ′

2, say T , and a Kp in N(T , V ′

3), which
implies that G contains a K2p+3 ⊇ Ks, a contradiction.

For the lower bound, let H be a Kp+1-free graph on n/2 vertices with independence number
o(Q(p, n)) and with o(n2) edges. Such a graph exists by taking q = p + 1 in Theorem 25. Let G be
obtained from the union of two vertex-disjoint copies of H , say A and B, by joining every vertex in
A to every vertex in B. Then, G is K2p+1-free, thus Ks-free for 2p+ 1 ≤ s ≤ 2p+ 3, with n2/4+ o(n2)
edges and α(G) ≤ o(Q(p, n)). □

Notice that in all proofs of the main results, we only applied Lemma 12 with q ≤ 5. Since
emma 12 holds for all p, q ≥ 2, it seems natural to generalize our method by applying Lemma 12
ith larger p, q and try to solve Problem 24 for larger s, with f (n) = o(Q(p, n)) for some p < s.
nfortunately, we would encounter obstacles here. When s ≤ (p−1)qwith q ≥ 6, although we could
ssume that Conjecture 1 holds for ℓ = p and thus forbid Kq in the cluster graph R by Lemma 12, the
nformation we obtain from the large cliques contained in R, say Kq−1, . . . , K5, is not as useful as we
hought due to the existence of K3 in R. To be more specific, in order to generalize Theorem 3 with
he application of Theorem 14, it is necessary to show that no triangle in R is (3/4 + γ )-chubby.
owever, by the proof of Proposition 26, this would require s ≤ 2p + 3, thus reduce the case
≤ (p−1)q to the condition of Proposition 26. This again implies that weighted Turán-type results
ould be beneficial to our approach.
Assume that Conjecture 1 holds for ℓ = t ≥ 4. By applying Lemma 12 with q = 4 or the

ependent random choice method, we have the following general result, which together with
heorem 25 implies that Ks has no phase transition at Q(t, n) if 3t + 1 ≤ s ≤ 4t − 4 and Ks has
hase transition at Q(t, n) if s = 4t − 3. Notice that the case t = 4, which implies that s = 13, has
een proved in [2].

roposition 27. If 3t + 1 ≤ s ≤ 4t − 3 and Conjecture 1 holds for ℓ = t ≥ 4, then

ρτ (Ks, o(Q(t, n))) =
1
3
.

roof. For the upper bound, the proof idea is the same as in the proofs of the main results in
ection 3 and we only give a sketch here. Let G be an n-vertex Ks-free graph with α(G) ≤ δQ(t, n),
here 3t + 1 ≤ s ≤ 4t − 3. Let R be the corresponding cluster graph on m vertices after applying
zemerédi’s Regularity Lemma to G. Since we assume that Conjecture 1 holds for ℓ = t , we can
how that R is K4-free by applying Lemma 13 three times as in the proof of Claim 21. Therefore,

2 2
E(R) contributes at most T (m, 3)(n/m) = n /3 edges to G.

14
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o
o
A

A

c

R

For the lower bound, let H be a Kt+1-free graph on n/3 vertices with α(H) = o(Q(t, n)) and with
(n2) edges. Such a graph exists by taking s = t+1 in Theorem 25. Let G be obtained from the union
f three vertex-disjoint copies of H , say A1, A2, A3, by joining every vertex in Ai to every vertex in
j for every ij ∈

(
[3]
2

)
. Then, G is Ks-free for s ≥ 3t + 1 with at least n2/3 edges. □
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