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1. Introduction
1.1. History

Given a graph H and a function f(n), the Ramsey-Turan number, denoted by RT(n, H, f(n)), is the
maximum number of edges in an n-vertex H-free graph with independence number at most f(n).
Such problems were studied first by Erdés and Sés [10]. Denote by T(n, r) the Turan graph, which
is the complete r-partite graph on n vertices where the size of each part is as equal as possible.
Turdn theorem [21] states that T(n, r) is the unique n-vertex K., ;-free graph with the maximum
number of edges. Since the independence number of T(n, r) is linear in n, substantially different
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structure appears when H is a clique and f(n) is a sublinear function, i.e. f(n) = o(n). Erdés and
S6s [10] proved that when the forbidden subgraph H C G is an odd clique, then for s > 1,

1/s-1)\ , 2
RT(n, Kys11, 0o(n)) = A n“ + o(n®).
The case when H is an even clique proved to be harder, hence more interesting. Szemerédi [20]
proved RT(n, K4, o(n)) < %nz + o(n?), which was the first published application of his Regularity
Lemma. Bollobas and Erdds [6] proved RT(n, Ky, o(n)) = %nz + o(n?) by constructing the so-called
Bollobas-Erdds graph, which was a major surprise at the time, as the function was expected to be
o(n?). Finally, Erdés, Hajnal, S6s and Szemerédi [9] settled the even clique case, showing for s > 2

1/35—-5
RT(n, Kz5, 0(n)) = 2 (35 — 2) n? + o(n?).

Let

©T(H, f):= limsup sz(n)) and pt(H,f) = liminfw
— 00 n — n—oo n

If pT(H,f) = pt(H,f), then we define pt(H, f) := pt(H,f) = pt(H, f)* and call it the Ramsey-

Turdn density of the graph H with respect to the function f. It is easy to see that pt(H,f) = c if

and only if RT(n, H, f(n)) = cn® + o(n?). Let pt(H, o(f)) := lims_,o pt(H, 8f ). We say that H has a

Ramsey-Turdn phase transition at f(n) if

/OT(H’f) - IOT(H7 O(.f)) > 0.

Combining Turan Theorem and the above results, we conclude that cliques have their first phase
transition at f(n) = n. It is natural to investigate whether phase transitions exist for other values
of f(n). For cases concerning small cliques, many results are known. We summarize most of them
after introducing the necessary definitions and notation.

The Ramsey number R(t, m) is the minimum integer n such that every n-vertex graph contains
either a clique K; or an independent set of size m. We use Q(t, n) to denote the inverse Ramsey
number, which is the minimum independence number of a K;-free graph on n vertices. In other
words, R(t, m) = n if and only if Q(t,n) = m. We use the function Q(t, n) usually as follows: If
an n-vertex graph G, satisfies a(G,) = 0(Q(t, n)), then every vertex set of G, of size at least cn
spans a K;, for every fixed constant c. It follows immediately that we should restrict our attention
to f(n) > Q(t, n) if the forbidden graph is H = K;: as by the definition of Q(t, n), there exists no
n-vertex K;-free graph with independence number less than Q(t, n).

In this paper, all logarithms are base 2 and w(n) is a function going to infinity arbitrarily slowly
as n — oo. Then, g(n) := ne~“(Mv1%gn satisfies that n'~¢ < g(n) < n for every € > 0.

It was proved by Shearer [18], Pontiveros, Griffiths, Morris [17], and Bohman, Keevash [5] that

2 2
(1—0(1>) M _RGEm) < (1+0(1)

logm logm
which implies

(\% - o(l)) Vnlogn <Q(3,n) < (ﬁ—i—o(l)) Vnlogn.

For t > 4, we do not know the exact order of magnitude of R(t, m), but there are many
well-known conjectures about them, below is one of them.

Conjecture 1. For every integer £ > 3, there exist c = c({) > 0 and N = N(£) > 0 such that if
m > N, then
R(¢ — 1, m) < R(¢, m)/m".
2 The existence of pt(H, f) is expected. In the following results, we will abuse the notation a bit, i.e., the upper (lower)
bounds of pz(H, f) are actually upper (lower) bounds of pT(H, f) (pz(H, f)).
2
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Conjecture 1 holds when ¢ = 3,4 and is believed to be true for larger £. Many results in
Ramsey-Turan theory are conditional on Conjecture 1 or its analogues. We will use ¢ to mark such

results.

o [5-free:
[15]: pr(Ks, n/2) = 1/4;

o [,-free:
[21]: pt(K4,n/3) = 1/3;
[19]: pT(Ka, ne~®mvioeny — o,

o K5-free:

[21]: pt(Ks,n/4) = 3/8;
[10]: pT(Ks, o(n)) = 1/4;
[3]: pt(Ks, 0(+/nlogn)) = 0.

o Ks-free:

[21]: pt(Ks,n/5) = 2/5;

[3]: pT(Ks, ne~*Mviogny = 1/4;
[8]: pT(Ks, o(+/nlogn)) < 1/6;

o ;-free:

[21]: pT(K7,n/6) =5/12;
[10]: pt(K7, 0(n)) = 1/3;

[3]: pt(K7, 0(/nlogn)) = 1/4;
[3]: pt(K7,0(Q(4,n))) =0.

o Kg-free:

[21]: pt(Ks,n/7) = 3/7;

[3]: pt(Ks, ne~®mvioeny — 1/3;
[11]: pt(Ks, o(+/nlogn)) = 1/4;
[3]: pT(Ks, 0(Q(4, n))) < 3/16;

o Ky-free:
[21]: pt(Kg,n/8) = 7/16;
[10]: pt(Kg, o(n)) = 3/8;
()" pt(Ko, o(+/nlogn)) < 3/10;
(x): (0) pT(Ko, 0(Q(4, n))) = 1/4;
[3]: () pT(Ko, o(Q(5, n))) = 0.

2 Results with (x)

o Kqo-free:

[21]: pt(Ki0, 1/9) = 4/9;

[3]: pT(Kip, ne@lnVioen) = 3/8;
[3]: pT(Ki0, 0(«/nlogn)) = 1/3;
(%): (0) pT(Ki0, 0(Q(4, n))) = 1/4;
[3]: (¢) pT(Kio, 0(Q(5, n))) < 1/5;

o K;;-free:

[21]: pt(Ki1,n/10) = 9/20;
[10]: pT(K11, o(n)) = 2/5;

[3]: pt(Kq1, 0(s/nlogn)) < 7/20;

[31: pT(Kir, /e “WVIoET) = 1/3;

(): (0) pT(Ki1, 0(Q(4, n))) = 1/4;
[3]: () pr (K11, 0(Q(6, n))) = 0.

pt (K3, 0(n)) = 0.

[20], [6]: pT (Ka, 0o(n)) = 1/8;

[3]: pt(K5,2+/nlogn) = 1/4;

[9]: pT(Kg, 0(n)) = 2/7;

[19]: pt(Ks, 24/nlogn) = 1/4;
[19]: pt(Kg, /e~ mMviogny — .

[31: pr(Ks, 2/mTogn) = 1/3;
[3] IOT(I<77 Q(4’ n)) = 1/41

[9]: p
[Bl:p
[Bl:p
[B]:p

7(Kg, o(n)) = 7/20;
7(Ks, 24/nlogn) = 1/3;
(Ks, Q(4, n)) = 1/4;
7(Ks, Q(4, g(n))) = 0.

[3]: pz(Ko, 24/nlogn) = 3/8;
[3]: pT(Ky, Q(3, g(n))) = 1/4;
[3]: () pt(Kg, Q(5, n)) = 1/4;

[9]:
[3]:
[3]:
[3]:
[3]:

[3]:

[3]:
[3]:

will be proved in this paper. We include them here for completeness.

p1(Ki0, 0(n)) =5/13;
pt(Kqo, 24/nlogn) = 3/8;
pt(Kio, Q(4, n)) = 1/3;

(©) pt(K10, Q(5, n)) = 1/4;
(©) pt(Kio, Q(5, g(n))) = 0.

pt(Ki1, v/nlogn) =2/5;

pT(KH! Q,(47 n)) = 1/3v
(©) pr(Ki1, Q6, n)) = 1/4;
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o Kqp-free:
[21]: pr(Kiz, n/11) = 5/11;
[3]: pT(Kiz, ne~t"Vieen) = 2/5;

[3]: pT(Ki2,0(+/nlogn)) < 8/22;
[3]: pT(Kia, /me~mVioeny — 1/3;
(%): pt(Ki2,0(Q(4, n))) < 4/13;
[3]: (©) pT(Ki2, Q(4, g(n))) = 1/4;
[3]: (¢) pT (K12, 0(Q(6, n))) < 5/24;
o Kq3-free:

[21]: pT(Ki3,n/12) = 11/24;
[10]: pt(Ki3, 0(n)) =5/12;

[3]: pT(Kis, o(+/nlogn)) = 3/8;
[3]: () pT(Ki3, 0(Q(4, n))) = 1/3;
(%): pt(Ky3, 0(Q(5, n))) < 4/15;
[3]: (0) p(Ki3, Q(7, ) = 1/4;

European Journal of Combinatorics 118 (2024) 103872

[9]: pT(Ki2, 0(n)) = 13/32;
[3]: pt(Ki2, o/nlogn) = 2/5;

[B]: p7(Ki2, Q(4,n)) = 1/3;

[3]: () pr(Ki2, Q(6, 1)) = 1/4;
[3]: () pr(Ki2, Q(6, g(n))) =0

[3]: pt(Ky3, /nlogn) =5/12;
[3]: pT(Ki3, Q(4, n)) = 3/8,;

[3]: () pT(Ki3, Q(5,n)) = 1/3;
(): (©) pT(Ki3, o(Q(5, n))) = 1/4;
[3]: (¢) pr(Ki3, 0(Q(7,n))) =0

Although different from the focus of this paper, it is worth mentioning that Liiders and Reiher [13]
have studied the transition behaviors of cliques at f(n) = n more accurately. For all s > 2, they
proved that if § is sufficiently small, then

1 2 1/3s—-5
pt(Kys_1,8n) = 3 <S + 8) and pt(Kys, 6n) = 3 < s +6— 82> .

-1 3s—2

When s = 2, let G be a Ks3-free graph on n vertices with «(G) < dn, then e(G) < %Snz since the
neighborhood of every vertex is an independent set. Hence, pt(K3, o(n)) = 0. Ajtai, Komlés and
Szemerédi [1] proved sharper results.

1.2. Main results

Recall that Q(3,n) = ©(4/nlogn). Kim, Kim and Liu [11] determined p1(Kg, o(s/nlogn)),
which is exactly pt(Ks, 0o(Q(3,n))) = 1/4. We extend this result to larger cliques, thus improve
the following upper bounds in [3]: pt(Kg, 0(Q(3,n))) < 5/16, pt(Kqg,0(Q(4,n))) < 5/18,
pt(Ki1, 0(Q(4,n))) < 3/10 and pt(Ki2, 0(Q(4, n))) < 7/22.

Theorem 2. p1(Kg, 0(Q(3, n))) < 3/10.
Theorem 3. pt(K;, 0(Q(4,n))) <1/4for9 <t <11.
Theorem 4. pt(Kiy, 0(Q(4, n))) < 4/13.

Theorem 5. pt(Ki3,0(Q(5, n))) < 4/15.

If Conjecture 1 holds for £ = 5, then we have a better result for the K;3-free case, which improves
p7(Kq3,0(Q(5, n))) < 7/24 given in [3] under the same assumption.
Theorem 6. If Conjecture 1 is true for £ = 5, then pt(Ki3, 0(Q(5, n))) = 1/4.

Remark. Assuming Conjecture 1 holds, we explain below that the upper bounds given in Theorems 3
and 6 are tight, which can also be seen by the results listed after Conjecture 1 in Section 1.1.
Moreover, we conjecture that the bounds given in Theorems 2 and 4 are best possible.

e Theorem 3: Let H be a Ks-free graph on n/2 vertices with independence number Q(5, n/2). The
existence of such graphs is guaranteed by Ramsey’s theorem and e(H) = o(n?) by [3]. If Conjecture 1
holds for £ = 5, then a(H) = Q(5,n/2) = 0(Q(4, n)). Let G be obtained from the union of two

4
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vertex-disjoint copies of H, say A and B, by joining every vertex in A to every vertex in B. Then, G
is Ko-free, thus Kyo-free and K;;-free, with n?/4 + o(n?) edges and «(G) = 0(Q(4, n)).

e Theorem 6: Let H be a K;-free graph on n/2 vertices with independence number Q(7, n/2).
Similarly, the existence of such graphs is guaranteed by Ramsey’s theorem and e(H) = o(n?) by [3].
If Conjecture 1 holds for £ = 6 or for £ = 7, then «(H) = Q(7, n/2) = 0(Q(5, n)). Let G be obtained
from the union of two vertex-disjoint copies of H, say A and B, by joining every vertex in A to every
vertex in B. Then, G is K;3-free with n?/4 + o(n?) edges and «(G) = o(Q(5, n)).

e Theorem 2: We conjecture that pt(Kg, o(4/nlogn)) = 1/6. If it was true, then there exists a Kg-
free graph H; on 3n/5 vertices with independence number o(Q(3, n)) and with %(35—”)2 = 3n?/50
edges. Let H, be a K4-free graph on 2n/5 vertices with independence number o(Q(3, n)) and with
o(n?) edges, the existence of such graphs could be proved with the first moment method. Let G be
obtained from the vertex-disjoint union of H; and H; by joining every vertex in H; to every vertex in
H,. Then, G is Ky-free with e(G) < 3n?/50+4 6n?/25 4 o(n?) = 3n?/10 4+ o0(n?) and «(G) = 0(Q(3, n)).
e Theorem 4: We conjecture that pt(Ks, 0(Q(4, n))) = 3/16. If it was true, then there exists a Kg-free
graph Hy on 8n/13 vertices with independence number o(Q(4, n)) and with (%)> = 12n?/169
edges. Let H, be a Ks-free graph on 5n/13 vertices with independence number o(Q(4, n)) and with
o(n?) edges, the existence of such graphs could be proved with the first moment method. Let G
be obtained from the vertex-disjoint union of H; and H, by joining every vertex in H; to every
vertex in H,. Then, G is Ky,-free with e(G) < 12n%/169 + 40n% /169 + o(n?) = 4n?/13 + o(n?) and
a(G) = o(Q(4, n)).

2. Preliminaries
2.1. Definitions and notation

In this paper, we will use standard definitions and notation. All graphs considered are simple
undirected graphs. Given disjoint sets A, B C V(G), denote by N(A, B) the common neighborhood of
A in B. In the case when A = {v} C V(G), we will write N(v, B) for the set of neighbors of v in B
and let d(v, B) := |N(v, B)|. Given a graph G and U C V(G), the induced subgraph G[U] is the graph
whose vertex set is U and whose edge set is spanned by vertices in U. If G[V1, . .., V,] is the induced
subgraph of G on the partition of vertices V;U- - -UV,, € G where the edges are whose endpoints are
in Vi, V; with i # j, then 8(V, ..., V,) == min{i’jle(“zﬂ) {min,ey, d(v, Vj)} is the minimum crossing

degree of G with respect to the partition V; U - -- U V,. We may omit floors and ceilings when they
are not essential.

2.2. Tools
The following theorem is a corollary of Shearer’s bound on R(3, n).

Theorem 7 ([11]). There exists ko € N such that for all k > ko, every graph with at least 2k?/log k
vertices contains either a triangle or an independent set of size k.

Although the exact order of magnitude of R(4, n) is not known, Mattheus and Verstraete [16]
determined R(4, n) up to a factor of order log? n very recently.

Theorem 8 ([16]).

n’ n’
Q( 7y )5R(4,n)§o< 5 )
log® n log“n

Therefore,
2 (n%(logn)%) <Q(4,n)<0 (n%(logn)%) .

For t > 5, the following is known.




J. Balogh, C. Chen, G. McCourt et al. European Journal of Combinatorics 118 (2024) 103872

Theorem 9 ([1,4]). For t > 5, we have

S8 t—1
2 L < R(t n) <0 ni
(logn) s —72 ) ~ 77 " \logny-2 /)"

In particular,

2 ( %(logn) ) <Q(5,n) < (n%(lognﬁ) .
For disjoint vertex sets A and B in G, denote by dg(A, B) := e(ﬁ\[ﬁl‘;ﬁ]) the density of the pair (A, B) in
G. For € > 0, we say that a pair (A, B) is e-regular if for every A’ C A and B’ C B such that |[A'| > €|A|
and |B'| > €|B|, we have |dg(A’, B') — dg(A, B)| < e. If additionally dg(A, B) > y, then we say that
(A, B) is (e, y)-regular. A partition V1 U --- UV, of V(G) is e-regular if it is an equipartition and all
but at most em? pairs (V;, V;) are e-regular.

Lemma 10 (Szemerédi’s Regularity Lemma, [12]). Suppose 0 < 1/M’ < ¢, 1/M « 1 and n > M. For
every n-vertex graph G there exists an e-regular partition V(G) =V, U--- UV, withM <m < M.

Lemma 11 (Slicing Lemma, [20]). Let € < «, y, 1/2. Suppose that (A, B) is an (e, y )-regular pair in a
graph G. If A’ C A and B' C B satisfies |A'| > «|A| and |B'| > «|B|, then (A’, B') is an (€', y — €)-regular
pair in G, where € := max{e/«, 2¢}.

Let €, > 0. For a given graph G with partition V; U --- U V,;, we define the cluster graph
R :=R(e, y) as follows: V(R) = [m]; ij € E(R) if and only if (V;, V;) is an (e, y)-regular pair in G. We
use the following lemma to derive Turan-type properties of the cluster graph.

Lemma 12 ([3]). Let G be an n-vertex graph with «(G) < Q(p, n2~Mg'"""n) ‘we apply Szemerédi’s
Regularity Lemma to G to obtain an e-regular partition of V(G) and the corresponding cluster graph
R =R(e, y), where € < y. If there exists a Kq in R, then we can find a Kpq in G.

We also need the following dependent random choice type of lemma, which is a generalization
of Lemma 3.1 in [11].

Lemma 13. Let k > 2 be a fixed integer Suppose G = Z1 U - - - U Z, is a k-partite graph with |Z;| = n
foreachie [k].Let0 <y < 1,¢c> logn and2 <teN befxed real numbers. If |IN(v, Z;)| > yn for
every v € Zy and i € [k — 1], then there extsts S C Z of size |S| = 1 n'=¢ such that every t-tuple of

vertices T € (°) satisfies [N(T, Z;)| = y — 11 for each i e [k — 1].

Proof. For eachi € [k — 1], let Q, be a set of vertices in Z; chosen uniformly at random with
repetition such that |Q;| := q := 2(1< 7 log, n. Call T € (Z") a bad t-tuple if there exists i € [k — 1]
such that |[N(T, Z)| < y°n, where a := M .Let §" := N(U'-'Q;, Z). Define a random variable
X to be the number of bad t-tuples T with T C §'. For every bad t-tuple T € (Zt") we have

k—1 k—1
, I INCT,Z)N\® _ (v'n\* _ .
P[TQS]:P|:I IQigN(T):|: (T) 5(7) :)/q.

i=1 i=1

By linearity of expectation, we have

E[X] < ('t’)y“q < 'y,
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We also have

E[ISI]—ZH”[UEH—ZP{U ()}

veZp veZy i=1
_ Z 1—[ |N(U Zl > (Lﬂ)(k—l)q _ ny(k_Uq.
|Z| - n
veZy i=1
Therefore,
E[|5/| —X] > ny(kfl)q Tl )/ 1 —c/2 n*l > %nlfc/z % 17c’
which implies that there exist Qq, ..., Qx_1 such that |S'| — X > % 1=¢ Let S C Z be the set

obtained by deleting one vertex from every bad t-tuple in S’, then S will satisfy the conclusion of
the lemma. O

2.3. Weighted Turdn-type results

Among others, we utilize a series of weighted Turan-type results to analyze the properties of the
cluster graph.

Let G be a graph. The standard clique edge-weighting is an assignment w of weights to the edges
of G as follows. Let e be an edge and r be the order of the largest clique containing e in G. Then we
define the weight of the edge e as

r
w(e) = 2 — 1)

We extend the definition of the weight function w to G:

w(G) = Z w(e).

ecE(G)

Notice that the weights are defined such that for every r > 2,
w(T(n,r)) 1

lim ————~ = —.
n—o00 n2 4

Theorem 14 ([7,14]). Let G be an n-vertex graph and w be the standard clique edge-weighting. Then
n2

Z .

Equality holds when n is a multiple of some r and G = T(n, r) is the Turdn graph.

w(G) <

The following variations of the standard clique edge-weighting theorem were discussed in [2].

Theorem 15 (Theorem 3.4, [2]). Let G be an n-vertex K4-free graph with a weight function w on E(G) as
follows: if an edge e € E(G) is contained in some triangle, then let w(e) := 4/5; otherwise, let w(e) := 1.

Then
4 2.
w(G) < <]5+0( ))

Moreover, for every ¢ > 0 if n is sufficiently large and w(G) = (]5 + 0(1)) n®, then G is in edit distance
at most en? from T(n, 3).

A triangle in G is called a-heavy if for every edge e of it w(e) > a. A triangle in G is called b-chubby
if for some edge e of it w(e) > b. The following result is an immediate corollary of Theorem 3.2
in [2].
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Theorem 16 ([2]). Let G be an n-vertex K4-free graph with a weight function w : E(G) — [0, 1]. Let
a € [0, 1] be fixed. Suppose that G contains no a-heavy triangle.
(i) If a = 2/3, then

w(G) < (]30+o(1)> n?.

(ii) If a = 3/4, then

4 2
w(G) < (13 —I—o(l))

2.4. Proof idea of the main results

Let 9 < t < 13 be the size of the clique we want to forbid and f(n) be the corresponding
inverse Ramsey number depending on the choice of t, i.e,, for t = 9, f(n) = Q(3, n) or Q(4, n); for
10 <t < 12, f(n) = Q(4, n); while for t = 13, f(n) = Q(5, n). Fix y > 0 and let

0<1/np<1/nKs<1/M «Ke <Ky <1 (1)

Let G be an n-vertex K;-free graph with «(G) < §f(n). By applying Lemma 10 to G, we obtain
an e-regular partition V(G) = V; U --- UV, with 1/e < m < M. Let R := R(¢, y/2) be the
corresponding cluster graph on m vertices. By Lemma 12, we know that R contains no large clique.
More specifically: By the p = 2 version of Lemma 12, R is Ks-free when t = 9, f(n) = Q(3,n); B
the p = 3 version of Lemma 12, R is K;-free when 9 < t < 12, f(n) = Q(4, n), and R is Ks-free when
t = 13, f(n) = Q(5, n). Note that each edge ij € E(R) corresponds to at most dg(V;, Vj)(%)2 edges in
G. The number of the rest of the edges of G, which are exactly those not corresponding to E(R), is
at most

AL )2 y ( n )2 m n/m _ Y2
m°(— == m < en? < =n*, 2
€ (m 2 )T e+ 2" =3 )
which is small. Instead of computing e(G) directly as in [11], we apply the weighted Turan-type

results from Section 2.3 to obtain an upper bound on e(R), thus obtain an upper bound on the
corresponding number of edges in G, which makes up most of E(G).

3. Proofs of the main results
3.1. Ko-free: Proof of Theorem 2

Let all the parameters be as in (1). Let G be an n-vertex Ko-free graph with «(G) < 8Q(3, n). To
prove Theorem 2, it suffices to prove that

3
e(G) < —n? + yn?.
()_10 +y

Let R := R(e, y/2) be the corresponding cluster graph on m vertices. By the p = 2 version of
Lemma 12, R is Ks-free. In fact, we can prove that R contains no Kj.

Claim 17. R is Ky-free.

Proof. Suppose that {1, 2, 3, 4} spans a K, in R. Then, (V;, V}) is e-regular with d(V;, V;) > y /2 for
every pair {i, j} € ([‘2”). For eachi € [4], there exists a subset V;* C V; such that |V*| = (1—3¢)|V;| and
8T(GIVY, V3, Vi, Vi) = vV /4 Applying Lemma 13 to G[V}, V5, V3, Vil withk =4,c = 1/3 and
t =2 gives us aset S C V; of size 3|V;|*® > 1(2)?/? such that every P € (3) satisfies [N(P, V}")| >
(XY = y° L for eachl € {2 3, 4}. Recall that «(G) < §Q(3,n) and Q(3,n) = O(/nlogn).
Smce 1(“1)2/3 > a(G), the set S contains an edge uv € E(G) with [N({u, v}, V)| > y°°L for each
ie{2,3,4}.
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By applying Lemma 11 and deleting all vertices of low degree if necessary, we could get subsets

V! € N({u, v}, v*) for i € {2, 3,4} satisfying that [V;| = |Vj] = |V,| > y*°L §7(G[V;, V}, V,]) >
yIV/ |/5 and (V;, J is (J/€, y /4)-regular for every pair {i,j} € ({2‘;’4)). We apply Lemma 13 to
G[V,, V4, Vil with k = 3, ¢ = 1/3 and t = 2. This gives us a set S’ C V; of size %lVZ/lz/3 >y (L3

such that every P ¢ (g) satisfies [N(P, V)| > (£)*®|V/| = y¥L for each i € {3,4}. Since
y* (£ > «(G), the set S’ contains an edge xy € E(G) with [N({x,y}, V{)| = y*"L for each
ici(3 4.

Again, by applying Lemma 11 and deleting all vertices of low degree if necessary, we could get
V! C N({x,y},V/) for i € {3,4} such that |VJ| = |V;| > y%®L §(G[V},V/]) = y|V/|/6 and
(V§,Vvy) is ("4, y/5)-regular. We apply Lemma 13 once more to G[V”, V] with k = 2.c=1/3
and t = 2. This gives us a set S” C V; of size 1|V;/|** > y¥(2)2/3 such that every P € (%, ) satisfies
IN(P, V”)| > (L) = y182 Agam s” contams an edgezw € E(G) with [N({z, w}, V)| > y 8L
since y®’(& )2/3 > «(G). Note that Q(3,y'82) > §Q(3,n) > «(G). Therefore, |N({z, w}, V”)|
contains a I<3, which together with uv, xy and zw forms a Ky in G, a contradiction. O

Now we analyze the triangles in R. Recall that a triangle ijk in Ris (2/3 +y)-heavy if dg(Vy, Vy) >
2/3 +y for all pairs ij' € (5").

Claim 18. No triangle in R is (2/3 + y)-heavy.

Proof. Suppose that {1, 2, 3} spans a (2/3 + y)-heavy triangle in R. Then all pairs (V;, V;) with
ij € ([;]) are e-regular with dg(V;, V;) > 2/3 + y, so there exist V;* C V; for every i € [3] such that
V¥ = (1 = 2€)Vj| and §7(G[VF, V', V51) = (2/3 + v /2)IV;*|. We will work with these sets with
high minimum crossing degree.

We claim that V' contains a triangle, otherwise, by Theorem 7, V§ would contain an independent
set of size at least

‘/|V*|log|V* > \/1—26)— log ((1 —2€)— ) > l\/nlogn > a(G),

a contradiction. Suppose that S spans a triangle in V}, then each vertex in S has at least (2/3 +
¥ /2)|V*| neighbors in V;* for i € {2, 3} because 6 (G[V}, V', VI1) = (2/3 4+ y/2)|V{*|. Then the size
of the intersection of the three neighborhoods, which is [N(S, V{*)|, is at least %y|Vi*| > yZ% for
ie{2,3}.

Using Lemma 11 and again deleting vertices of low degree, we could obtain V/ € N(S, V}*)
for i e {2,3} satisfying that |V]| = [Vi| > y“” 8(G[Vy, Vi1) = (2/3 4+ y/4)V/| and (V3,V3) is
(€, 2/3 + y/3)-regular. Again, by the low 1ndependence number condition, V;, must contain a
triangle.

Let T be a triangle in V;, then we have [N(T,Vj)| > %y|V3’| > y -+ Again, by the low
independence number condition, N(T, V;) contains a triangle, which together with S and T forms a
Ky, a contradiction. O

Define a weight function on E(R) as follows: If ij € E(R) satisfies d¢(V;, V) € (2/3,2/3 +y), then
let w(ij) := 2/3, otherwise, let w(ij) := dg(V;, V;). By Claim 18 and Theorem 16,

3 y 2
R)I<|—=+= ,
w( )_<10+6)m

as we can always assume M, thus m, to be sufficiently large at the very first step. Let a be the
number of edges ij € E(R) with d¢(Vi, V;) € (2/3,2/3 + y). Then a < m?/2 and every such edge ij
contributes dg(V;, V;)(n/m)?* < (2/3 + y)(n/m)* = (w(ij) + y)(n/m)? edges to G. Notice that every
other edge ij € E(R) contributes exactly dg(V;, Vj)(n/m)2 = w(if)(n/m)? edges to G. Therefore, E(R)
contributes

ZdGV”VJ( ) <w(R)(%)z+ay(%)2 (130+2?y)

ijeE(R)

9
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edges to G. Combining with (2),

3 2
e(G) < (E“’)"

and we completed the proof of Theorem 2.
3.2. Kq-free for t =9, 10, 11: Proof of Theorem 3

Let t € {9, 10, 11} and all the parameters be as in (1). Let G be an n-vertex K;-free graph with
n > ng and a(G) < 8Q(4, n). To prove Theorem 3, it suffices to prove that

1
e(G) < an + yn?.

Let R := R(e, y /2) be the corresponding cluster graph. By the p = 3 version of Lemma 12, R is Ky-
free. Instead of considering (2/3 + y)-heavy triangles in R, we will use (3/4 + y)-chubby triangles:
Recall that a triangle ijk in R is (3/4 + y)-chubby if dg(Vy, Vi) > 3/4 + y for some ij € ({”2”").

Claim 19. No triangle in R is (3/4 + y )-chubby.

Proof. Suppose that {1, 2, 3} spans a (3/4+ y )-chubby triangle in R with d(V,, V3) > 3/4+y. Since
all pairs (V;, V;) for ij € ([gl) are e-regular, we have that for each i € [3], there exists V;* C V; such
that |V*| = (1—2¢)|V;| and §7(G[V}, V5, VI]) = v|V{*|/3. We will find a Ky, in these sets with high
minimum crossing degree, using the dependent random choice method.

Apply Lemma 13 to G[V}, V5, V3] with k = 3,c = 1/5 and t = 3. This gives us a set S C V' of
size 2|VF[*° > 1(Z)¥5 such that every triple P € (3) satisfies N(P, V;")| > (§)®|V| = y®2L for
each i € {2, 3}. Recall that a(G) < §Q(4, n) and Q(4, n) = 0(n*?), so 1(2£)*¥> > (a(G))>. Therefore,
S contains a triangle uvw with [N({u, v, w}, V{")| > y32 2 for each i € {2, 3}.

By applying Lemma 11 and deleting all vertices of low degree if necessary, we could get subsets
V/ € N({u, v, w}, V{*) for i € {2, 3} such that |V;| = [V5] > 342 §(G[V;, V4]) > (3/4+ v/5)V/|
and (Vj, V3) is (/€, 3/4+y /4)-regular. We claim that V; contains a K,. Otherwise, by the definition
of inverse Ramsey number, we could always choose § small enough such that there exists an
independent set of size at least

84

Q4. 1v3]) = Q(4, %n) > 5Q(4, 1) = &(G),

a contradiction.

Let T be a K4 in V, then |N(T, V3)| > 4?V|v3/| >y & since 5(G[V3, V4]) > (3/4+y/5)|V{|. Again,
by the low independence number condition, N(T, V;) contains a K4, which together with T and uvw
forms a K;; 2 K;, a contradiction. O

Let a be the number of edges in R contained in some triangle, then a < m?/2. Let b := e(R) — a.
Recall that R is K4-free. By Theorem 14,

3 1 vy 5
a-—+b<|-+=|m".
4 th= (4 + 6)
By Claim 19, every edge ij € E(R) contained in some triangle satisfies that dg(V;, V;) < 3/4 + .
Therefore, E(R) contributes

) e (o) G e G

ijeE(R
1 v\, <n)2 1 2y\ ,
<{-+Z)nP4ay (=) <|[-+=)n
_(4+6> tar\n) =3t 3
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edges to G. Combining with (2),

G<1 2
e(G) < Z‘H’“

as desired.

3.3. Kqp-free: Proof of Theorem 4

The proof for this case is similar to the one in Section 3.1, with the use of (3/4+y )-heavy triangles
instead of (2/3+ y )-heavy triangles. Let all the parameters be as in (1). Let G be an n-vertex Ki,-free
graph with «(G) < 8Q(4, n) and R := R(e, y/2) be the corresponding cluster graph. Note that R is
K4-free by the p = 3 version of Lemma 12. Our aim now is to prove that

4
e(G) < —n? n’.
()_13 +vy

Claim 20. No triangle in R is (3/4 + y)-heavy.

Proof. Suppose that {1, 2, 3} spans a (3/4 + y)-heavy triangle in R. Then all pairs (V;, V;) with
ij € ([gl) are e-regular with dg(V;, V;) > 3/4 + y, so there exist subsets V;* C V; for every i € [3]
such that |V*| = (1 — 2¢)|Vi| and 67 (G[V7, V5, VI1) > (3/4 + v /2)IV*|. We will still use these sets
with high minimum crossing degree.

We claim that V' contains a Kj. Otherwise, by the definition of inverse Ramsey number, V7

contains an independent set of size at least
1—2¢

Q4, Vi) = Q<4, n) > 3Q(4,n) > «(G),
a contradiction. Suppose that S spans a K4 in V;. Then the size of [N(S, V;*)| is at least 2y |V/*| > y2%
for i € {2, 3} since §(G[V}, V5, V51) = (3/4 + y /2)IV]].

Using Lemma 11 and again deleting vertices of low degree, we obtain V; < N(S, V) for
i € {2,3} satisfying that |V;| = |Vj| > )/4%, 8(G[Vs, Vi) = (3/4 + y/4)IV{] and (V3, V3) is
(€, 3/4 + y/3)-regular. Again, by the low independence number condition, V; must contain a
Ky.

Let T be a K4 in V}, then we have [N(T,V;)| > y|Vi| > yS%. Again, by the low indepen-
dence number condition, N(T, V}) contains a K,, which together with S and T forms a Kj, a
contradiction. O

Define a weight function on E(R) as follows: If ij € E(R) satisfies d¢(V;, V;) € (3/4, 3/4+ y], then
w(ij) := 3/4, otherwise, let w(ij) := dg(V;, V;). By Claim 20 and Theorem 16,

w(R) < (; + ’g) m?.

Let a be the number of edges ij € E(R) with dg(V;,V;) € (3/4,3/4+ y). Then a < m?/2 and
every such edge ij contributes d¢(V;, V;)(n/m)? < (3/4 + y)(n/m)? = (w(ij) + y)(n/m)? edges to G.
Notice that every other edge ij € E(R) contributes exactly dg(V;, Vj)(n/m)2 = w(ij)(n/m)? edges to
G. Therefore, E(R) contributes

ny? ny? n\2 (4 2
> detvi ) (&) swm (5) +ay (B) < (5 L)
. m m m 13 3
€E(R)

edges to G. Combining with (2), we completed the proof of Theorem 4.

11



J. Balogh, C. Chen, G. McCourt et al. European Journal of Combinatorics 118 (2024) 103872
3.4. Kq3-free: Proof of Theorem 5

Let all the parameters be as in (1). Let G be an n-vertex Ky3-free graph with «(G) < §Q(5, n) and
R :=R(e, y/2) be the corresponding cluster graph. Our aim now is to prove

4
e(G) < —n? + yn?.
()_15 +y

Recall that by the p = 3 version of Lemma 12, R is Ks-free. Similarly as in Sections 3.1-3.3, we will
first prove that R contains no K, and then analyze the triangles in R.

Claim 21. R is K4-free.

Proof. The proof is similar to the proof of Claim 17 where we apply the dependent random choice
method. The only difference is the choice of ¢ and t in the application of Lemma 13.

Suppose that {1, 2, 3, 4} spans a K, in R. Then, for each i € [4], there exists a subset V;* C V;
such that |V*| = (1 — 3¢€)|Vi| and §(G[VS, VS, V5, V1) > y|V|/4. Applying Lemma 13 to
GV}, V3, Vi, Vil withk=4,c=1/5and t = 3 gives us a set S C V; of size J|V;|*> > J(L)*°
such that every triple P (5) satisfies [N(P, V)| > (4)'2°& > 1211 for each i € {2, 3, 4}. Recall
that «(G) < 8Q(5, n) and Q(5, n) = 0(n'/?), so (m)“/5 > (a(G)). Therefore, S contains a triangle
uvw with [N({u, v, w}, V)| = y 'L for each i € {2, 3, 4}.

By applying Lemma 11 and deleting all vertices of low degree if necessary, we could get subsets
V! € N({u, v, w} V*)fori € {2, 3, 4} satisfying that |V}| = |Vj| = |V;| > y'2 L §7(G[V3, V5, V1) >
yIV{|/5, and (V/, ] is (J/€, y /4)-regular for every pair {i,j} € ({2’;'4)). We apply Lemma 13 to
GlV,, V4, Vsl with k = 3, ¢ = 1/5 and t = 3. This gives us a set S’ C V; of size %|V2/|4/5 > y 1AL/
such that every triple P € (53/) satisfies [N(P, V/)| > (£)*|V/| = y?**L for each i € {3, 4}. Since
y 4L > («(G))%, S’ contains a triangle xyz with |N({x, y, z}, V{)| > y2°4 L for each i € {3, 4}.

Agam by applying Lemma 11 and deleting all vertices of low degree if necessary, we could get
V/ € N({x,y.z},V{) for i € {3,4} such that |V]| = |V;| > y?®L §(G[V},V,]) > y|V{'|/6 and
(V§, V) is ("4, y /5)-regular. We apply Lemma 13 once more to G[Vy, V;] with k = 2,¢ = 1/5
and t = 3. This gives us a set S” C VJ of size 1 |V”|4/5 > y?9(1)5 such that every triple P € (53”)
satisfies IN(P, V)| > (£)*0|vy| > y247 L Since y2°7( Y5 > (a(G))?, S” contains a triangle abc with
IN({a, b, ¢}, V})| > y* L. Note that Q(5, T”) > 8Q(5,n) > «(G). Therefore, N({a, b, c}, V)
contains a Ks, which together with uvw, xyz and abc forms a K14 2 Kj3, a contradiction. O

Recall that a triangle ijk in R is (4/5 + y )-chubby if d¢(Vy, Vi) > 4/5 + y for some i'j' € (” k’).

Claim 22. No triangle in R is (4/5 + y )-chubby.

Proof. The proof is almost the same as of Claim 19, with Q(4, -) replaced by Q(5, -). Thus we could
find a triangle in V;* and two copies of K5 in VJ, V] respectively, together forming a K3, which leads
to a contradiction. O

Let a be the number of edges contained in some triangle, then a < m?/2. Let b := e(R) — a. By
Claim 21 and Theorem 15,

4 4 y
—+b< 2,
@5t <]5+6>m

By Claim 22, every edge ij € E(R) contained in some triangle satisfies that dg(V;, V;) < 4/5 + .
Therefore, E(R) contributes at most

4+ <n)2+b<n)2 4+ + 4+2
al = i i il

577 ) \m m 15 6 15" 37
edges to G. Combining with (2), we completed the proof of Theorem 5.

12
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3.5. An improved result for Ki3-free case

Now we prove Theorem 6 by assuming that Conjecture 1 holds for £ = 5. We only need to
slightly modify the proof of Theorem 5. Let all the parameters be as in (1). Let G be a Ky3-free graph
on n > ng vertices with «(G) < 8Q(5,n) and R := R(e, y/2) be the corresponding cluster graph.
Since we assume that Conjecture 1 holds for £ = 5, R is K4-free by the p = 4 version of Lemma 12.
By an argument similar to the proof of Claim 21, we have the following claim.

Claim 23. R is triangle-free.

Proof. Since we assume the ¢ = 5 case of Conjecture 1 is true now, instead of finding a triangle
in Vi, we find a K4 in V}. By applying the dependent random choice method one more time, we
can still find a K4 and a K5 in V;, V; respectively, which would force to have a Kj3 in G, leading to
a contradiction. O

Now we apply Theorem 14 instead of Theorem 15 and get the required result.
4. Concluding remarks
In our paper, we considered the following general problem:

Problem 24. Given an integer s and a function f(n), what is RT(n, K, f(n)), i.e. the maximum
number of edges in an n-vertex K;-free graph with independence number at most f(n)?

One obstacle to solving Problem 24 is Conjecture 1: it is not known if there is a jump of order
n¢ between different off-diagonal Ramsey numbers, where c is a constant. Conditioning on that
Conjecture 1 holds, Theorem 3.9 in [3] answers Problem 24 when f(n) = Q(p, n).

Theorem 25 ([3], Theorem 3.9). If r = L;:—llj and Conjecture 1 holds for ¢ = p, then

1 1
,01'(1(5, Q(p! n)) =3 (1 - 7) .
2 r

The extremal graph in Theorem 25 is obtained from a balanced complete r-partite graph by
replacing each of the r parts by a K,-free graph with independence number Q(p, n/r). Given integers
s and p, if L;:—H = L%J, then it follows from Theorem 25 that K; has no phase transition at
Q(p, n) assuming Conjecture 1 holds. The complications of determining the existence of phase
transitions come when the parameters s and p do not satisfy L;‘TH = L%J. The first such instance
is s = 4, p = 2. It was resolved in [6] using the Bollobas-Erdds graph, implying that K, has a phase
transition at f(n) = n/3. More generally, the Bollobas-Erdds graph was used for the constructions
in the cases where s = 2r, p = 2, and the extremal graph in such a case is obtained from a complete
r-partite graph by changing one pair of classes to the Bollobas-Erdds graph. For larger p, we do not
have such constructions, and the current methods for proving upper bounds are not expected to
prove that no such construction using the Bollobas-Erdés graph exists.

We think that it would be extremely interesting to find such constructions. A good first step
toward this would be to predict that what type of constructions would be the most useful for our
problem. This could potentially be done by creating some weighted Turdan-type problems, whose
solutions would be useful for such approaches. Such steps were initiated in our paper: Theorems 14,
15, and 16 were conjectured by us at the early stage in our project, and were solved in [2,7,14]. It
is worth mentioning that weighted Turan-type results are interesting by their own and could be
applied to some other problems. More information about them could be found in [2].

In the rest of this section, we state two general propositions, which could be proved by our
methods. However, we are still far from fully answering Problem 24, even with the assumption
that Conjecture 1 holds.

Conditional on Conjecture 1, we first give the following generalization of Theorem 3 by an
argument similar to Section 3.2.

13
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Proposition 26. If2p + 1 < s < 2p + 3 and Conjecture 1 holds for £ = p > 4, then

1

pr(Ks, o(Qp. n))) = .

Remark. When p = 4, we get Theorem 3. Theorem 6 is a special case whenp =5and s =2p+3 =
13.If p > 6, then r := L;%U = 2. Combining with Theorem 25, we conclude that K; has no phase
transition at Q(p, n) if 2p + 1 < s < 2p + 3 and Conjecture 1 holds for ¢ = p > 4.

Proof of Proposition 26. For the upper bound, the proof idea is the same as in the proof of
Theorem 3 in Section 3.2 and we only give a sketch here. Let G be an n-vertex Ks-free graph with
o(G) < 8Q(p, n), where 2p + 1 < s < 2p + 3. Let R := R(e, y/2) be the corresponding cluster
graph after applying Szemerédi’s Regularity Lemma to G. Since we assume that Conjecture 1 holds
for £ = p > 4, we can apply Lemma 12 and conclude that R is K4-free. By Theorem 14, it suffices
to show that no triangle in R is (3/4 + y )-chubby, where the definition of (3/4 + y )-chubby is the
same as in Section 3.2. Suppose for a contradiction that {1, 2, 3} spans a (3/4 + y )-chubby triangle
in R with d(V,, V3) > 3/4+ y. We follow the notation in the proof of Claim 19 and use the subsets
vy, V5, V5 with high minimum crossing degree. Apply Lemma 13 to G[V], V5, Vi] with k = 3 and
t = p — 1. Since we assume that Conjecture 1 holds for ¢ = p, instead of finding a K53 in S C V7,
we could find a K,_; whose vertices have linearly many common neighbors in both V and V. As
o(G) < 8Q(p,n) and d(V;, Vi) > 3/4, we could find a K4 in V;, say T, and a K, in N(T, V3), which
implies that G contains a K;,43 2 K;, a contradiction.

For the lower bound, let H be a Kp;-free graph on n/2 vertices with independence number
0(Q(p, n)) and with o(n?) edges. Such a graph exists by taking ¢ = p + 1 in Theorem 25. Let G be
obtained from the union of two vertex-disjoint copies of H, say A and B, by joining every vertex in
A to every vertex in B. Then, G is Kyp41-free, thus K-free for 2p+ 1 < s < 2p+ 3, with n?/4 + o(n?)
edges and a(G) < o(Q(p, n)). O

Notice that in all proofs of the main results, we only applied Lemma 12 with g < 5. Since
Lemma 12 holds for all p, g > 2, it seems natural to generalize our method by applying Lemma 12
with larger p, g and try to solve Problem 24 for larger s, with f(n) = o(Q(p, n)) for some p < s.
Unfortunately, we would encounter obstacles here. When s < (p—1)q with g > 6, although we could
assume that Conjecture 1 holds for £ = p and thus forbid K; in the cluster graph R by Lemma 12, the
information we obtain from the large cliques contained in R, say K;_1, ..., Ks, is not as useful as we
thought due to the existence of K3 in R. To be more specific, in order to generalize Theorem 3 with
the application of Theorem 14, it is necessary to show that no triangle in R is (3/4 + y)-chubby.
However, by the proof of Proposition 26, this would require s < 2p + 3, thus reduce the case
s < (p— 1)q to the condition of Proposition 26. This again implies that weighted Turan-type results
would be beneficial to our approach.

Assume that Conjecture 1 holds for £ = t > 4. By applying Lemma 12 with ¢ = 4 or the
dependent random choice method, we have the following general result, which together with
Theorem 25 implies that K; has no phase transition at Q(t,n) if 3t + 1 < s < 4t — 4 and K; has
phase transition at Q(t, n) if s = 4t — 3. Notice that the case t = 4, which implies that s = 13, has
been proved in [2].

Proposition 27. If 3t + 1 < s < 4t — 3 and Conjecture 1 holds for £ =t > 4, then

1
pr(Ks, o(Qt, n))) = 2.

Proof. For the upper bound, the proof idea is the same as in the proofs of the main results in
Section 3 and we only give a sketch here. Let G be an n-vertex K;-free graph with «(G) < §Q(t, n),
where 3t + 1 < s < 4t — 3. Let R be the corresponding cluster graph on m vertices after applying
Szemerédi's Regularity Lemma to G. Since we assume that Conjecture 1 holds for £ = t, we can
show that R is K4-free by applying Lemma 13 three times as in the proof of Claim 21. Therefore,
E(R) contributes at most T(m, 3)(n/m)? = n?/3 edges to G.
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For the lower bound, let H be a K, 1-free graph on n/3 vertices with «(H) = o(Q(t, n)) and with
o(n?) edges. Such a graph exists by taking s = t+1 in Theorem 25. Let G be obtained from the union
of three vertex-disjoint copies of H, say Aj, A,, A3, by joining every vertex in A; to every vertex in
A; for every ij € (). Then, G is K;-free for s > 3t + 1 with at least n?/3 edges. O
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