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ABSTRACT

In the fields of location theory and spatial optimization, heuristic
algorithms have been developed to overcome the NP-hard nature
of solutions to their problems, which results in an exponential
increase in computation time. These algorithms aim to generate
good initial solutions, narrow the solution space, and guide the
search process to optimality. Geographically stratified random
sampling (GSRS) can be regarded as a method to generate such
high-quality initial solutions. This study investigates the appli-
cation of GSRS to solving the p-median location problem on
a continuous surface solution space punctuated with weighted
demand points, and its impact on the performance of the popular
ALTERN heuristic algorithm. Results demonstrate the effective-
ness of GSRS in finding optimal p-median solutions, but only
for smaller p values: the ALTERN heuristic with initial solutions
generated by local spatial means from GSRS for these smaller p
always produces optimal final solutions. In contrast, implement-
ing a random search by executing a large number of random
initial solutions often produces non-optimal results. Findings
reported in this paper also highlight that sample size and de-
gree of positive spatial autocorrelation (PSA) in the geographic
distribution of weights influence how close final solutions are to

E-mail addresses: changho.lee@utdallas.edu (C. Lee), dagriffith@utdallas.edu (D.A. Griffith), ywchun@utdallas.edu

(Y. Chun), hkim56@utk.edu (H. Kim).

https://doi.org/10.1016/j.spasta.2023.100768

2211-6753/© 2023 Elsevier B.V. All rights reserved.



C. Lee, D.A. Griffith, Y. Chun et al. Spatial Statistics 57 (2023) 100768

optimality for larger p. Increasing the sample size leads solutions
to be concentrated near their optimal counterparts, as does
increasing PSA levels.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The NP-hard nature of location problems poses significant challenges in finding optimal solutions
within a reasonable timeframe. These problems require exponential time in the number of medians
and the number of demand points for exact solutions, making it impractical for many, if not most,
real-world applications. To overcome this challenge, heuristic algorithms have been developed
as efficient and effective alternatives. These algorithms focus on finding optimal or near-optimal
approximate solutions by employing strategies such as generating good initial solutions, narrowing
the solution space, and guiding the search process (Beheshti and Shamsuddin, 2013).

The selection of an appropriate initial solution is crucial to efficiently exploring a solution space.
A well-informed initial solution can significantly improve the effectiveness of an algorithm by
providing a starting point close to its desired optimal solution. Perttunen (1994) emphasizes the
importance of an initial solution that is in proximity to the optimal solution. In the context of edge
exchange heuristics for routing problems, that study investigates the impact of the initial solution’s
quality on performance. Computational experiments conducted with Euclidean traveling salesman
problems reveal that judiciously constructed initial solutions outperform randomly generated
solutions. This outcome highlights the significance of selecting a suitable initial solution, as it can
influence the overall performance of an algorithm in terms of optimality and time efficiency.

One important variant of location problems is the p-median, which involves determining the
optimal placement of a single or multiple facilities to minimize aggregate (weighted) travel distance
from demand points to the selected p facilities. Due to its NP-hard nature, finding exact optimal
solutions for large-sized p-median problems becomes computationally infeasible (Kariv and Hakimi,
1979). While random initial solutions are dominantly utilized in heuristics, they generally do not
reflect important spatial patterns in their demand weights, such as spatial autocorrelation (SA).
Instead, heuristic approaches commonly compare multiple solutions using different random initial
solutions, and then report the best solution from a collection of, say, 10,000. However, leveraging
prior knowledge, such as an initial solution, can be highly beneficial in efficiently searching for
near-optimal solutions. By incorporating an initial solution that captures essential characteristics
of the problem, the algorithm can more effectively navigate the solution space and improve the
likelihood of finding optimal p-median solutions (Mu and Tong, 2018).

Using geographically (i.e., tessellation) stratified random sampling (GSRS) can furnish valuable
prior knowledge for the initial solution when identifying a p-median solution. GSRS is a sampling
technique that divides a study area into n distinct geographic strata, and then randomly selects
a sample of size one from within each stratum. One effect of GSRS is to avoid concentrations
of samples in a small area of a map, thus enhancing the spatial coverage of the sample, making
it more representative. This sampling approach effectively captures the spatial variability of the
area, reducing bias. Another effect is the grouping of similar values, for positive SA (PSA), such
that repeated local samples mimic a single value with measurement error. Hence, GSRS exploits
redundant information represented by PSA to effectively reduce the dimensionality of a p-median
problem (after Griffith et al., 2022). In doing so, it enables the derivation of high-quality initial
solutions that accurately represent the spatial distribution of demand locations in a p-median
location problem.

This paper aims to investigate the effects of GSRS on the initial heuristic solution for identifying
p-medians on continuous surfaces using the ALTERN heuristic (Cooper, 1964). Four research ques-
tions are formulated based upon simulation experiments. First, the paper explores the effectiveness
of GSRS in achieving optimal p-median solutions for all demand locations. Second, it examines the
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impact of increasing the size of GSRS on the frequency of optimal solution achievement. Third, it
summarizes an investigation about how different levels of PSA influence p-median solutions. Finally,
it assesses how initial solutions derived from GSRS guide heuristic solutions toward optimality.
Overall, the objective of this paper is to examine if integrating GSRS, varying sampling sizes and
PSA levels, and executing the ALTERN heuristic can establish an effective approach for achieving
optimal p-median solutions.

2. Literature review

The integration of GSRS into solving the p-median problem involves combining principles from
spatial statistics and location theory. While GSRS and p-medians are popular in their respective
research fields, namely spatial statistics and spatial optimization, there is a lack of research
discussing their synthesis and potential synergies. One perspective connecting them discusses that
GSRS offers the advantage of using a smaller sample size to represent a population. PSA latent in
attribute variables geotagged to locations (e.g., weights), as well as direct interactions among these
locations, can bolster this advantage (Griffith, 1992). By employing localized randomized sampling
locations systematically spaced over a two-dimensional surface containing PSA, GSRS ensures a
comprehensive geographic coverage and more precise descriptive statistics estimates, effectively
representing the original geographic landscape with greater accuracy (Griffith, 2005). Therefore,
opting for GSRS samples instead of using the entire set of demand locations has the potential
to effectively reduce a problem size without greatly compromising its capability to yield optimal
solutions for an original location problem.

Overton and Stehman (1993) further demonstrated that the GSRS design outperforms a strict
systematic design in terms of variance estimation and overall precision. The strict systematic sample
is obtained by randomly shifting a triangular grid, whereas the GSRS involves selecting one random
point per stratum. The strata are formed by hexagons naturally created from the tessellation of a
triangular grid. These researchers evaluate the performance of a proposed variance estimator using
different surface model representations of a synthetic continuous response variable, such as linear,
quadratic, and sinusoidal gradient surfaces. These surfaces represent spatial continuity and the
presence of differing degrees of SA. The tessellation-stratified design avoids challenges associated
with high-resolution patterns in strict systematic sampling, while still providing the advantage of
equal representation across the spatial domain, similar to a systematic design. Its success lies in
its ability to tap its design effect for possible improved precision; in the worst case scenario of a
random mixture of attribute values (i.e., white noise rather than a geographic gradient), it renders
the same precision as a classic random sample governed by the Central Limit Theorem.

Due to its advantages, GSRS has been widely utilized as an effective sampling methodology to
capture the overall trend on a continuous surface. It has found applications in various fields such as
ecology, remote sensing, and land cover monitoring. For instance, Stevens (1997) proposed GSRS as
a suitable approach for sampling ecological resources like mineral reserves, vegetation cover, and
chemical concentration in streams. In the field of remote sensing, Stehman (2009) demonstrated
that GSRS improves upon random sampling, addressing biasing problems in accuracy assessment
of land cover. Brink and Eva (2009) employed a 1% sampling rate within each stratum of GSRS to
monitor land cover change in sub-Saharan regions over 25 years; this implementation overlooks the
twofold trade-off benefits of gaining improved geographic coverage and reducing within-sample SA
by employing smaller strata and drawing a single sample observation from each. Similarly, Hope
et al. (2003) utilized GSRS-derived 4-by-4-km squares to incorporate spatial statistical analyses of
biotic, abiotic, and human variables, covering the entire Central Arizona-Phoenix area.

Meanwhile, efforts to efficiently and effectively solve the p-median problem have been made
to address the challenges posed by NP-hard problems and local optimality traps compromising
heuristic approaches. Existing studies, such as Rosing et al. (1998), primarily focus on the p-median
problems with discretized weights surfaces. These studies explore various solution techniques,
including heuristic algorithms and integer linear programming. However, a lack of research exists
that investigates the integration of the p-median problem with continuous surfaces, leaving room
for further investigation and exploration in this area.
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Rosing et al. (1998) conduct a comparative analysis between the Teitz & Bart heuristic (T&B;
Teitz and Bart, 1968) and Tabu search (Rolland et al.,, 1997). The results show that Tabu search
outperforms T&B in terms of both speed and solution quality (optimality or near-optimality).
Additionally, these researchers introduce the concept of heuristic concentration, which yields
better solutions compared to Tabu search, although they do not compare solution times. Heuristic
concentration incorporates a component called the concentration set, derived from multiple runs of
T&B, which has a high probability of including the facilities that constitute the optimal solution to
the proposed problem (Rosing and ReVelle, 1997). Furthermore, Rosing and Hodgson (2002) utilize
combinations within the concentration set to identify an optimal p-median solution, resulting in a
significant reduction in the proposed problem size. The GSRS tactic follows this type of logic, using
random sampling in a spatial statistics context to formulate an equivalent to this aforementioned
concentration set.

Few attempts exist that integrate spatial statistics into solving location problems, aiming to
leverage its advantages. Griffith et al. (2022) highlight the benefits of integrating SA principles into
location problems. These benefits include addressing spatial outliers and hot/cold spots to reduce
problem complexity, imputing missing data to enhance accuracy, and increasing the likelihood of
achieving a global optimum through the use of GSRS, which to date has been limited to very small
p cases. This paper builds upon these integration efforts by specifically focusing on the integration
of GSRS, in terms of its management of SA, into location problems on continuous surfaces. The
chief goal is to overcome particularly solution time and computer memory limitations imposed by
NP-hard problems while shifting heuristic algorithm solutions to guaranteed optimality.

3. Methods

The principal idea of the proposed method is to generate good initial solutions for a heuristic
algorithm with a smaller representative sample set using GSRS. Fig. 1 provides a 6-by-6 grid illus-
trative example of GSRS, with the simulation experiment utilizing various sample-size-increasing
tessellation configurations (i.e., 6-by-6 to 10-by-10 grids), from which a single sample is to be drawn
from each grid cell stratum, the specimen sample here denoted by red. The anticipation is that
such a sample set represents a spatial pattern of its full parent dataset better than a non-spatial
random sample set with the same size, because it tends to better reflect the spatial characteristics
of demands with improved coverage of the study area and a reduction in sample SA (Griffith,
2005). For example, weights at two closely located demand points tend to have similar values if the
weights surface has a high level of PSA. In contrast, a GSRS sample does not necessarily contain more
information about spatial characteristics if the weights surface is completely spatially random. The
effectiveness of GSRS as an initial solution for p-median heuristics is investigated with simulation
experiments in this paper. These experiments consider the following factors: the level of SA in a
weights surface of demands, and the number of strata, n, in GSRS.

3.1. Experimental design

The simulation experiment is designed to generate output allowing an investigation of two
issues. First, it supports examining if p-median solutions using small size GSRS samples concentrate
at their optimal solutions determined with their entire demand set. Because a Central Limit Theorem
is in effect (e.g., classical random sampling occurs within each stratum), the expectation is that such
solutions disperse around their optimal solutions, especially if the sample sets reflect the entire
demand set well. Second, it empowers checking if p-median ALTERN solutions using GRSR samples
can have a positive impact on the performance of a p-median heuristic for continuous space. For the
first, multiple p-median solutions are calculated using GSRS, and then their spatial mean is obtained.
For the second, ALTERN solutions are produced using these spatial means as an initial solution, and
then the results are compared to ALTERN solutions with non-spatially random initial solutions. The
final benchmark is a comparison between these and their exact solution counterparts.

The first step of the experiment begins by initializing 700 random demand locations within a
unit square. Then weights values are assigned to these 700 demand points. Four different formulae
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Fig. 1. A 6-by-6 GSRS illustration for a unit square geographic landscape.

(random, weak, moderate, and strong) are utilized in order to generate different levels of PSA;
that is, surfaces with four different SA degrees are constructed in order to examine if the level
of SA has an impact on p-median heuristic solution quality. Details about the weights surfaces are
discussed in the next section. Subsequently, a GSRS sample set is drawn using square strata with
a 6-by-6 tessellation (i.e., 36 strata establishing that n = 36). This action involves selecting one
demand location from each square stratum. Then, a p-median solution for the small GSRS sample
is computed. This exercise is repeated 100 times, which produces 100 p-median solutions, one for
each of the 100 GSRS samples. This procedure also involves two more factors: conducting the same
process with a range of other sizes of strata coarseness, specifically, 7-by-7, 8-by-8, 9-by-9, and
10-by-10 (i.e., n = 49, 64, 81, and 100 across the experimental steps); and, the p-median is solved
for a variety of p values ranging from 2 to 15.

To assess the performance of the GSRS, each set of 100 replicate p-median solutions is compared
with its exact optimal solution based upon the entire population of discrete 700 weights; construc-
tion of continuous weights surfaces merely ensures that each entry in a randomly selected set of 700
demand points has a weight attached to it affiliated with a given SA level. If GSRS subsets perform
well, then their solutions concentrate close to their associated optimal solutions. Spatial means and
standard distances respectively index the central tendencies and dispersions of these clusterings. To
ensure robustness (i.e., engage the Law of Large Numbers), this entire process was repeated 1,000
times, resulting in 1,000 sets of spatial means. Standard distances measure similarities between
these spatial means and their corresponding optimal solutions. This analysis allows an evaluation
of GSRS effectiveness with regard to capturing the geographic distribution of all demand locations,
as well as its ability to produce solutions that closely position themselves near their individual
optimal solutions. Fig. 2a illustrates the first step of the experiment.

Design of the second step of the experiment is to assess the ALTERN algorithm performance
based upon initial solutions using the spatial means obtained from the first step. Fig. 2b presents an
overview of this process. The next execution is of the ALTERN heuristic for the p-median problem
with n = 700 utilizing each of the 1,000 sets of spatial means as initial solutions. These are the
sources of the output summarized and evaluated here. To establish a benchmark, a control set
is constructed with non-spatial random initial solutions. The comparison between these results
without using GSRS (a control set) and those results obtained using GSRS help uncover the impact
of GSRS integration on the quality of enhanced ALTERN heuristic solutions.
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(a) Exact p-median solutions from GSRS (b) ALTERN solutions using spatial means

Fig. 2. A flow chart for the experimental design.

3.2. Location problem settings

The experimental environment was established based on the two designs devised by Rosing
and Hodgson (2002) and Overton and Stehman (1993), which involve a set of different weights
surfaces. In this experiment, four different types of weights surfaces are utilized, each embedding a
different PSA level, from random, through weak and moderate, to strong. Fig. 3 displays the spatial
distribution of demands and weights surfaces using the following four formulae:

Random : fiihdom (U, V) = Poisson (. = 4) + 1 (1)
Weak : fyeax (U, v) = 0.5 x [sin (10urxr) + sin (10vr)] +5 4+ 0.5 x Normal (c =0, = 1)
(2)
Moderate : foderate (U, V) = 10 x [(u — 0.5)* + (v — 0.5)*] + 3.5 4+ Normal (¢ = 0, j. = 1)
(3)
Strong : frong (U, V) =5 X (U+Vv) +0.5 x Normal (0 =0, = 1) (4)

where u and v represent (u, v) coordinates of the 700 demand locations scattered across a 2-D square
surface ranging from O to 1 for both u and v. The random weights surface is generated as Poisson
pseudo-random numbers having a mean of 4, with one (4+1) added to each in order to avoid zero
weights; hence, the mean of the weights is five. The weak surface is generated with a cyclic pattern
using sine and cosine functions. The moderate surface has a quadratic form with low weights around
the center, and large weights around the edge, of the unit square. The strong surface is generated
with a linear gradient coupled with a diagonal orientation aligning along a line spanning the lower
left-hand corner to the upper right-hand corner. Note that all of the weights surfaces have a mean
of approximately 5. In addition, the weights surfaces in Fig. 3b-3e are scientific visualizations via
spatial interpolation (i.e., spherical variogram model in ordinary kriging interpolation) based upon
the demand locations and their attached weights.
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Fig. 3. Demand locations and four specimen weights surfaces.

3.3. The ALTERN heuristic algorithm: An overview

The ALTERN heuristic algorithm whose name derives from beginning with an initial allocation
(i.e., grouping) of demand points, and then iteratively and alternately optimally locating p medians
followed by re-allocating demand points to them, until no further changes occur—is capable of
solving p-median problems in continuous space. Its nickname acronyms include ALT and ALA; it
is based on Cooper’s (1964) proposed ALTERNating (the source of the acronym) location-allocation
algorithm. This algorithm follows two principles for solving the p-median problem. The first involves
dividing the demand point set into p groups, effectively allocating the n demand points to an original
set of p unknown spatial medians but p known subregions housing them. For each of these p subsets
of demand points, the single facility Weber problem (Weber, 1922) can be solved, to determine the
unknown median points. The 1-median problem may be formulated as the following Eq. (5), with
a single median location denoted by (U, V):

n
MIN:Z = Z wi\/(ui —U)? + (vj — V)2, (5)

i=1

where n sets of (u;, v;) and (U, V) are Cartesian coordinates.

Cooper’s second principle states that when the locations of p spatial medians are known, the
n demand points can be re-assigned to their closest medians to reveal an optimal allocation. The
ALTERN heuristic algorithm alternates between these two principles until the computed objective
function value with the sum of weighted distances no longer decreases This algorithm incorporates
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the Weber function that numerically solves a pair of partial differential equations (0Z/0U = 0 and
0Z/0V = 0) derived from Eq. (5) as the following Eq. (6), as described by Kuhn and Kuenne (1962):

n wilj n W;Vj
int PO 2ict PG
:U,» , and V(T+1) — i

~n  w ~n
Dzt E Dict d,g_r') (6)

where di(’) = \/(ui — U(r))2 + (vi — \/(r))2

The distinguishing feature of the ALTERN algorithm is its ability to identify p-medians on a contin-
uous surface, setting it apart from other heuristic algorithms based on integer linear programming
techniques that require a discrete solution space. Its drawback is that they may not be optimal.

g+ —

4. Results and discussion

This section presents the results of these aforementioned experiments that underscore the
effectiveness of GSRS samples in achieving optimal solutions for the p-median location problem
on a continuous surface. It begins with the results of examining whether or not p-median solutions
with GSRS subsets concentrate around the global optimal solutions with all demand points. Then
it presents how initial solutions generated using subset solutions with GSRS contribute to ensuring
the optimality of the heuristic solutions for the entire set of n demand points.

4.1. Results of the first step in the experiment: Spatial patterns of spatial means using GSRS

The p-median solution results obtained with GSRS reveal two noteworthy outcomes. First, spatial
means of the p-median locations using these samples tend to densely concentrate on or near their
corresponding optimal locations. Fig. 4 illustrates this result, where the spatial means (blue dots)
closely align with their respective optimal locations (red circles) for the example of p = 4 medians
obtained when strong PSA prevails. Second, as the sample size (i.e., number of strata) increases,
the sample p-median solutions tend to increase their concentration around their corresponding
spatial means. In Fig. 4, the point clouds in four pastel colors are the p-median solutions obtained
from GSRS samples that progressively get closer to their affiliated spatial means (blue dots) as the
number of strata increases. When the number of strata is 81 and 100, the four separate point clouds
become conspicuously distinct. In contrast, for smaller numbers of strata, these point clouds tend
to constitute overlapping groups. As an aside, the pastel colors were arbitrarily chosen to represent
four groups corresponding to the four globally optimal solutions (calculated with the entire set of
demand points). These point clouds disperse around both the spatial means and the globally optimal
solutions.

The two previous findings show that increasing the strata size for GSRS can lead to a convergence
of solutions toward optimality. This pattern is also observed for the other p-median cases (i.e.,p = 2,
..., 15). Fig. 5 showcases a decrease in the mean of the standard distances (SDs) for all cases as the
number of strata in GSRS increases. The mean of SD represents the average dispersion of a solution;
more specifically, the average value of SD calculated for each allocation to p groups.

Furthermore, an increase in the PSA level consistently leads to decreases in the mean SD for each
p median, except for p = 6 paired with a moderate surface, and p = 5 paired with a strong surface
(as shown in Fig. 5). Notably, the SD mean is highest for the random surface, whereas the strongest
SA surface exhibits its smallest values. Values for the weak and moderate SA surfaces show similar
or slightly different tendencies. These findings signify a significant contribution of GSRS, particularly
when a surface displays a high PSA level, to computing excellent quality initial ALTERN p-median
solutions, and subsequently their globally optimal ALTERN counterparts.

These results show that overall, the quality of the solutions obtained with GSRS is extremely
encouraging. Individual solutions are dispersed but they form sampling distribution clusters around
their optimal solutions. Because the affiliated spatial means are very close to their globally optimal
solutions for the entire set of demand points, findings reported here suggest that spatial scientists
should use the spatial means of a large number of sample p-median solutions acquired with GSRS
as initial solutions when executing the ALTERN heuristic for large-to-massively-large n, and p < 15.
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4.2. Results of the second step of the experiment: Global optimality of heuristic solutions using GSRS

Results from the second experimental step clearly indicate that initial solutions generated using
GSRS spatial means contribute noticeably to ensuring optimality of the final ALTERN heuristic
solutions. Fig. 6 provides a clear demonstration of the effectiveness of GSRS spatial means as
excellent initial solutions for the ALTERN algorithm, exemplified by the p = 5 case coupled with
a 6-by-6 strata tessellation. Fig. 6b illustrates that the ALTERN heuristic achieves near-perfect
optimality in 1,000 runs when using GSRS spatial means (Fig. 6a) as initial solutions, with only
a few exceptions. In contrast, when random initial solutions are utilized (Fig. 6¢), the resulting
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ALTERN solutions exhibit higher variance in their geographic distributions, with their empirical
minima deviating significantly from their respective optimal solutions (Fig. 6d).

For all p values, ranging from 2 to 15, across four weights surfaces and various numbers of
strata in GSRS, the ALTERN solutions consistently demonstrate near-perfect optimality. Optimality
is assessed based on a threshold of 0.093, to isolate rounding errors based upon the variance
of random distances between two points in a unit square (Bdsel, 2021), applied to the means
of objective function distances,' the average distance between solutions with samples and their
optimal counterparts. Table 1 provides a tabulation of the optimality frequencies observed for the
ALTERN solutions. These results indicate that the ALTERN solutions achieve optimality frequencies
exceeding the threshold, except for the case of p = 6 using an initial solution generated from a
10-by-10 square tessellation on a moderate PSA surface. However, even in this exceptional case,
the frequency of achieving optimality is remarkably high, with 971 out of 1,000 runs resulting in

1 The threshold of 0.093 was established with a simulation experiment calculating average distance between two
randomly located points (10,000,000 replications) in: a unit square and circle which captures all polygons in the transition
from one to the other; and, in a rectangle and ellipse analogous to expanding a landscape shape respectively from a square
and a circle. The area was kept constant, which means the dimensions of the landscapes expanded or contracted from 1.
In all cases, the simulated 2.5% critical value was around 0.093.
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Table 1
The frequencies of global optimality with a threshold of 0.093 under 1000 ALTERN runs.
Initial PSA Sample p=2 3 4 5 6 7 8 9 10 11 12 13 14 15
solution size
100 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Stron 81 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
8 64 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
49 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
36 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
100 1000 1000 1000 1000 971 1000 1000 1000 1000 1000 1000 1000 1000 1000
Moderate 81 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
64 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
ALTERN 49 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
éssllg;g 36 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
100 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Weak 81 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
64 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
49 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
36 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
100 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Random 81 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
64 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
49 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
36 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
ALTERN Strong NA 675 1000 1000 594 756 430 912 794 857 952 950 954 963 982
with
random Moderate  NA 573 950 978 736 201 494 688 844 932 965 983 980 898 861
initial Weak NA 608 984 999 821 515 393 564 812 909 967 959 1000 932 904
solution
Random NA 592 949 984 692 622 564 473 547 807 901 988 947 967 851

NA: GSRS is not applicable. One random initial solution is used.

optimal solutions. These frequencies are obtained by conducting 1,000 executions of the ALTERN
algorithm, each with 1,000 different sets of spatial means. In contrast, the ALTERN solutions using
random initial solutions exhibit lower frequencies of global optimality, with exceptions occurring
for p = 3 and 4 on a strong PSA surface, and p = 13 medians on a weak PSA surface.

Taking a microscopic perspective, the majority of cases demonstrate that ALTERN heuristic final
solutions with initial exact solutions from GSRS outperform those with random initial solutions
across various conditions, including the number of p, PSA levels, and the number of strata in GSRS.
However, deviant cases exist, namely p = 4 on a random surface, and p = 3 and 4 on a strong
PSA surface, where the means of objective function distances for ALTERN algorithm output with
GSRS initial solutions are higher than those with random initial solutions; outcomes presumably
attributable to rounding errors. Fig. 7 provides a portrayal of this finding.

Regarding PSA levels, the exceptional objective function distance means occur for different p
medians across all surfaces. On a random surface, p = 4 and 13 exhibit relatively high peaks in
their objective function distance means. On a weak PSA surface, p = 7 shows a high peak, while on
a moderate PSA surface, p = 7 and 13 have high peaks. On a strong PSA surface, p = 3, 7, and 8
display relatively high peaks. These irregular peaks behavior indicates that change in the number of
p medians to be calculated has a more pronounced influence on the irregular patterns of objective
function distance means than change in the geographic distribution of weights’ PSA levels.

When considering the number of GSRS strata, many cases utilizing a 6-by-6 square tessellation
show the lowest objection function distance means. The red dots and lines in Fig. 7 denote results
obtained using a 6-by-6 square tessellation for p = 7 on a random surface, p = 8 and 13 on a
weak PSA surface, p = 6, 9, and 14 on a moderate PSA surface, and p = 4, 9, 11, and 14 on a
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Fig. 7. Mean objective function distances for ALTERN heuristic solutions and their optimal counterparts for the four
weights surfaces. The black dots and lines denote the results obtained from ALTERN solutions with random initial solutions,
and the other dots and lines denote the impact of varying the number of tessellation strata.. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

strong PSA surface, all of which outperform the results obtained with other numbers of strata. This
outcome suggests that a 6-by-6 square tessellation may be sufficient to obtain high-quality initial
solutions when initializing the ALTERN heuristic algorithm. This conjecture warrants extensive
future research.

Considering both the number of strata and PSA levels, the objective function distance means on
a random surface remains similar regardless of the sizes used, whereas the means on PSA surfaces
show variation depending on the number of strata. However, no regular patterns of change in these
means are observed for all surfaces and p medians when increasing the GSRS strata number.

In summary, the experiment undertaken for this research yields three important findings.
First, the use of GSRS proves to be highly beneficial in generating initial solutions of excellent
quality, particularly when a surface exhibits PSA (the preponderance of GIScience cases). The spatial
means obtained from GSRS closely align with the optimal locations of p-medians, indicating their
effectiveness in capturing an underlying spatial pattern. Additionally, as the number of strata
increases, the sample p-median solutions appear to converge on both their optimal solutions and
their spatial means, further emphasizing the contribution of GSRS to securing more efficient optimal
location-allocation solutions.

Second, results summarized in this paper highlight that the initial solutions generated by GSRS
spatial means significantly improve the ability of the ALTERN heuristic to identify globally optimal
solutions. Across various scenarios, including different numbers of p, weights surface PSA levels, and
strata numbers, ALTERN algorithmic solutions consistently achieve optimality, as assessed by a very
small threshold buffer applied to the objective function distance means to account for rounding
error. Finally, results show that a 6-by-6 square tessellation for GSRS yields particularly high-
quality initial solutions. This finding suggests that a 6-by-6 square tessellation may be sufficient
for obtaining optimal solutions when initializing the ALTERN heuristic, at least for p = 2, ..., 15.

5. Conclusion

This paper highlights the significance of GSRS in finding optimal p-median solutions and improv-
ing the performance of the ALTERN heuristic algorithm for continuous space optimal solutions. The
findings and contributions reflect upon improved computational efficiency by integrating spatial
statistics with spatial optimization techniques. On the one hand, GSRS is shown to be effective in
helping secure optimal p-median solutions for a large number of demand locations. By using spatial
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means generated through GSRS as initial solutions, the ALTERN heuristics algorithm consistently
produces optimal solutions (except for rounding error). Increasing the number of GSRS strata results
in higher quality initial solutions, as spatial means move closer to their corresponding optimal
solutions. This outcome emphasizes the importance of larger sample sizes in generating high-quality
initial solutions. Meanwhile, the presence of PSA contributes to the concentration and proximity of
solutions vis-a-vis optimality, although the level of PSA may not consistently reveal improvement
gains. This contention suggests that SA facilitates the identification of optimal p-median locations,
in turn possibly influencing the ALTERN heuristic algorithm’s performance. In other words, initial
solutions established with GSRS significantly contribute to ensuring that ALTERN heuristic solutions
are globally optimal, whereas random initial solutions, for example, often yield non-optimal results.
These GSRS-derived initial solutions provide a well-informed starting point for a heuristic algorithm.

On the other hand, this paper provides valuable insights into considerations such as the number
of GSRS strata, PSA levels latent in geographic distributions of weights, and the quality of initial
solutions leading to optimal solutions. These findings contribute to a better understanding of p-
median heuristics and offer practical guidance for efficiently obtaining high-quality solutions in
real-world scenarios.

However, there are certain limitations to consider in the interpretation of the results. First, the
p-median simulation tests were conducted using a specific set of 700 demand locations, which
may introduce bias attributable to the underlying demand points location pattern, regardless of
its selection randomness. Future tests should include a broader and more diverse set of random
demand locations to ensure generalizability. Additionally, future research should explore discrete
heuristic methods for solving larger p-median problems to provide insights into the performance
of different algorithms in scenarios with a higher number (i.e., p > 15) of medians.
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