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Fast and Low-Complexity Soft-Decision
Generalized Integrated Interleaved Decoder

Yok Jye Tang and Xinmiao Zhang

Abstract—Generalized integrated interleaved (GII) codes are
essential to next-generation digital communication and storage
systems since they can achieve very high decoding throughput
with low complexity. Only hard-decision GII decoding has been
considered in previous work. To further improve the error-
correcting capability, soft-decision decoding algorithms utilizing
the channel probability information need to be developed. The
decoding of GII codes constructed based on BCH codes consists of
multiple rounds of BCH decoding. Among existing soft-decision
decoding algorithms of BCH codes, the Chase algorithm that
carries out decoding trials on multiple test vectors can achieve a
better trade-off on the coding gain and complexity. Although one-
pass Chase algorithms can derive the error-locator polynomials
for all the test vectors in one run, the exhaustive Chien search
is carried out previously on each error-locator polynomial to
decide which one is correct and it leads to long latency. For
the first time, this paper proposes an efficient soft-decision
GII decoding algorithm. Different methods of incorporating the
Chase process into the GII scheme are analyzed and compared
to identify the best GII Chase decoding algorithm. Besides, a new
error-locator polynomial selection scheme is developed to avoid
carrying out the Chien search on each error-locator polynomial
by pre-flipping a bit in the received word. Accordingly, the error-
locator polynomial can be selected by testing whether it consists
of a pre-determined factor. The latency is further reduced by pre-
computing short remainder polynomials in our second proposed
scheme. In addition, formulas have been developed to estimate
the error-correcting performance of the proposed designs. This
paper also develops low-complexity hardware architectures to
implement the proposed GII-BCH Chase decoders. For an
example GII-BCH code with 8 sub-codewords of 4095 bits over
GF (212), the proposed GII-BCH Chase decoder can achieve
significant coding gain over hard-decision decoder with negligible
silicon area overhead. Besides, our proposed designs can reduce
the worst-case latency of GII-BCH Chase nested decoding rounds
by 54%-80%.

Index Terms—BCH codes, Chase decoding, error-correcting
codes, generalized integrated interleaved codes, hardware archi-
tecture, soft-decision decoding.

I. INTRODUCTION

For next-generation digital communications and storage,
error-correcting codes that can achieve hyper throughput with
high coding gain are needed. Generalized integrated inter-
leaved (GII) codes [1], [2] are one of the best candidates
that meet such requirements. A [m, v] GII code consists of m
sub-codewords. Each sub-codeword can be a Reed-Solomon
(RS) or BCH codeword. Their nestings form v codewords of
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stronger RS or BCH codes. Most of the time, the decoding
is carried out on each sub-word separately and it can easily
achieve hundreds of megabit/s throughput [3], [4] with low
complexity. Besides, the nested codewords can be utilized to
correct more errors. As a result, GII codes achieve orders of
magnitude lower decoding failure rates compared to individual
RS or BCH codes. GII decoding consists of two stages. The
first stage is the traditional RS/BCH decoding of individual
sub-words. When any of the sub-words is not corrected in
the first stage, the second-stage nested decoding consisting
of multiple rounds of more powerful RS/BCH decoding is
activated. GII decoder hardware implementation architectures
are available in [3]–[6].

Previous GII schemes [1], [2] only consider hard-decision
RS/BCH decoding based on the Berlekamp’s algorithm [7].
Soft-decision GII decoding algorithms that utilize the channel
probability information can improve the error-correcting per-
formance. The Chase algorithm [8] flips the η least reliable
bits of a RS/BCH word and carries out 2η decoding trials. It
achieves a better trade-off on error-correcting performance and
decoding complexity compared to other soft-decision decoding
algorithms of RS/BCH codes [9]–[14]. To avoid restarting
the decoding for each test vector, one-pass Chase algorithms
[15]–[17] have been developed to derive the error-locator
polynomials of all the test vectors in one run. However, the
exhaustive Chien search is carried out on each error-locator
polynomial until finding one whose degree equals the root
number. The Chien search can not be shared among the test
vectors and has long latency. In the GII decoding scenario,
the Chase decoding can be activated multiple times over the
decoding rounds and the long latency caused by the Chien
search is an even more significant issue to address. To avoid
implementing the Chien search for each test vector, different
schemes [18], [19] have been proposed to select the correct
error-locator polynomial. However, the scheme in [18] still has
high complexity and it requires a large number of clock cycles
to identify the correct error-locator polynomial, especially for
codes with higher error-correcting capabilities. Although the
polynomial selection in [19] has low complexity and short
latency, it is only applicable to interpolation-based RS/BCH
decoding. Since GII decoding can not be carried out using the
interpolation-based scheme, the polynomial selection in [19]
can not be applied to the Chase process in the GII decoding.

For the first time, this paper considers soft-decision GII
decoding. Different methods of integrating the Chase process
into the GII decoding are analyzed and compared in this paper
to identify the best GII Chase decoding algorithm. Besides,
a new polynomial selection scheme for the Chase decoding
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is developed by pre-flipping a bit in the received sub-word.
Accordingly, the error-locator polynomial can be selected
based on whether it has a pre-determined factor. For codes
over GF (2q), the error-locator polynomial of a correctable
test vector is selected with a probability of 1 − 2−q using
such a scheme. Hence, for codes over higher-order finite fields,
the Chien search only needs to be carried out once in most
cases. To further speed up the polynomial selection process,
the remainders of dividing each error-locator polynomial by
the pre-determined factor can be computed without deriving
the polynomial itself. Since the remainders are very short,
multiple of them can be calculated in parallel with low
complexity. In addition, formulas for estimating the error-
correcting performance of the proposed designs are given. This
paper also develops low-complexity hardware architectures to
implement our proposed GII-BCH Chase decoders. For an
example GII code that consists of 8 sub-codewords with 4095
bits over GF (212), our proposed GII-BCH Chase decoder
has much better error-correcting performance and negligible
silicon area overhead compared to a hard-decision GII-BCH
decoder. Besides, our proposed polynomial selection schemes
can reduce the worst-case latency by 54%-80% in each nested
decoding round.

The structure of this paper is as follows. Background
information is introduced in Section II. Different GII Chase
decoding schemes are proposed, analyzed, and compared in
Section III. Section IV presents our proposed pre-bit-flipping
polynomial selection scheme for Chase decoding. The method
of pre-computing the remainder polynomials for our polyno-
mial selection scheme is proposed in Section V. Section VI
presents the formulas for estimating the error-correcting per-
formance of the proposed designs. Low-complexity hardware
architectures for implementing the proposed GII-BCH Chase
decoders are provided in Section VII. Complexity analyses and
comparisons are given in Section VIII and conclusions follow
in Section IX.

II. GII-BCH CHASE DECODING

A ([m, v], n) GII codeword is divided into m sub-
codewords, c0(x), c1(x), · · · , cm−1(x), each of which is a
codeword of C0(n, k0) Reed-Solomon (RS) or BCH code with
length n and dimension k0. Besides, linear combinations of
the m sub-codewords produce v codewords of stronger RS or
BCH codes C1(n, k1), · · · , Cv(n, kv) (k0>k1≥k2≥· · ·≥kv)
[1], [2] as follows

C ,{c(x) = [c0(x), · · · , cm−1(x)] : ci(x) ∈ C0,

c̃l(x) =
m−1∑
i=0

hl,i(x)ci(x) ∈ Cv−l, 0 ≤ l < v}.
(1)

Let β be an n-th root of unity in GF (2q). For GII-RS codes,
hl,i(x) is the constant finite field element βli. For GII-BCH
codes, hl,i(x) is the standard basis polynomial representation
of βli. All the hl,i(x) form the entries of the nesting matrix

H(x) =


h0,0(x) h0,1(x) · · · h0,m−1(x)
h1,0(x) h1,1(x) · · · h1,m−1(x)

...
... · · ·

...
hv−1,0(x) hv−1,1(x) · · · hv−1,m−1(x)

 .
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Fig. 1: Data flow of [m, v] GII decoding.

For systematic GII codeword, ci(x) for i = 0, 1, · · · , v−1 has
kv−i data symbols and each of cv(x), cv+1(x), · · · , cm−1(x)
has k0 data symbols [2]. The rate of such a GII code is R =
(k0 · (m−v)+k1 + · · ·+kv)/(m ·n). Alternatively, GII codes
can be defined by having the same number of data symbols
but different lengths in the sub-codewords.

The decoding procedure of GII codes is summarized
in Fig. 1. A sub-codeword received by the decoder may
contain errors and is referred to as a ‘sub-word’. Let
y0(x), y1(x), · · · , ym−1(x) be the m received sub-words and
the error-correcting capabilities of Cv, · · · , C1, C0 be τv ≥
· · · ≥ τ1 > τ0, respectively. There are two stages in GII
decoding [2]. First, the traditional RS/BCH decoding is carried
out on individual sub-words. Consider narrow sense RS/BCH
codes. Syndromes of individual sub-words are computed as
S

(i)
j = yi(β

j+1)(0 ≤ j < 2τ0, 0 ≤ i < m). If all 2τ0
syndromes of yi(x) are zero, it has no error. Otherwise,
the Berlekamp-Massey (BM) key-equation solver (KES) algo-
rithm [7] is carried out to compute the error-locator polynomial
Λ(x). Then the error locations, which are the inverse roots
of Λ(x), can be found by using the exhaustive Chien search
that evaluates Λ(x) over n non-zero finite field elements of
GF (2q), β0, β1, · · · , βn−1. If the root number of Λ(x) is the
same as its degree, the decoding is considered successful. Such
decoding can correct up to τ0 errors in each yi(x).

The second-stage nested decoding is only necessary when
there are at least one sub-word with more than τ0 er-
rors. It is carried out for up to v rounds. Assume that
yi0(x), yi1(x), · · · , yibδ−1

(x) remain to be corrected in the
beginning of round δ (1 ≤ δ ≤ v, bδ ≤ v − δ +
1). Let I = {i0, i1, · · · , ibδ−1} be the set of the in-
dices of the bδ sub-words with extra errors and IC be
the set of the indices of the other sub-words that have
been corrected in previous decoding rounds. Higher-order
syndromes of the first bδ nested words are computed as
S̃

(l)
j = ỹl(β

j+1) (0 ≤ l < bδ, 2τδ−1 ≤ j ≤ 2τδ −
1), where ỹl(x) =

∑
i∈I β

ilyi(x) +
∑
i∈IC β

ilci(x). Then
higher-order syndromes for the bδ sub-words are derived as
[S

(i0)
j , S

(i1)
j , · · · , S(ibδ−1)

j ] = A−1[S̃
(0)
j , S̃

(1)
j , · · · , S̃(bδ−1)

j ]T ,
where ‘T ’ denotes transpose and A consists of the entries in
the first bδ rows and columns i0, i1, · · · , ibδ−1 of the nesting
matrix H . After that, the KES computes the error-locator
polynomial according to the 2τδ syndromes of each sub-word
followed by the Chien search. Each nested decoding round
can correct up to τδ errors in each of the bδ ≤ v − δ + 1
sub-words and the uncorrectable ones are passed to the next



3

Fig. 2: Error-correcting performances of a long (32760, 29544)
BCH code, eight un-nested (4095, 3693) BCH codes and
a ([8, 3], 4095) GII-BCH code with τ = [τ0, τ1, τ2, τ3] =
[28, 32, 39, 58] over AWGN channel: a) FER; b) BER.

nested decoding round. If bδ > v − δ + 1, decoding failure
is declared. GII decoder architectures have been developed in
[3]–[6]. A systematic encoding algorithm of GII codes can be
found in [2] and GII encoder architectures have been explored
in [20]–[22].

Due to the sub-codeword and nested codeword structure,
GII-BCH codes can achieve hyper-speed decoding with good
correction capability and are among the best candidates for
error correction in next-generation memories. Fig. 2 plots the
decoding frame error rate (FER) and bit error rate (BER) of
a ([8, 3], 4095) GII-BCH code with 90.2% code rate over the
additive white gaussian noise (AWGN) channel. It was found
in [4], [6] that using τ = [τ0, τ1, τ2, τ3] = [28, 32, 39, 58]
achieves a better trade-off between error-correcting perfor-
mance and decoding latency compared to other GII-BCH
codes with the same m, v, n and code rate but different
τ . For comparisons, the FER and BER of a single long
(32760, 29544) BCH code with the same code rate are also
plotted in Fig. 2. This code has τ = 272 and achieves lower
FER and BER. However, it has overwhelming hardware com-
plexity and very long decoding latency that is unacceptable
for practical systems.

Hard-decision decoders first make the decisions on whether
each received bit is ‘1’ or ‘0’ before the decoding is carried

out. Hard-decision BCH decoding using the BM algorithm
[7] can correct up to τ = b(γ − 1)/2c errors, where γ is
the designed minimum distance of the code. More errors are
correctable by soft-decision decoding through incorporating
the probability information from the channel. Among existing
soft-decision BCH decoding algorithms, the Chase algorithm
[8] achieves a better trade-off on error-correcting performance
and hardware complexity. It identifies the η least reliable bits
and carries out trial decoding over 2η test vectors derived
by flipping those unreliable bits. As a result, up to τ + η
errors are correctable. To keep the complexity low, small η
needs to be used. On the other hand, for codes with larger τ ,
flipping a small number of bits leads to small improvement.
Fig. 2 shows the error-correcting performance of eight un-
nested (4095, 3693) BCH codes with τ = 34 and η = 3. Such
un-nested codes have the same code rate as the [8, 3] GII-BCH
code. Compared to the hard-decision GII-BCH decoding, the
FERs and BERs of the soft-decision BCH decoding are still
higher.

Algorithm 1 BCH decoding with one-pass Chase algorithm

Input: α0, · · · , αη−1; received word y(x)
Hard-decision decoding:

1. Compute syndromes Sj = y(βj+1)(0 ≤ j < 2τ)
2. Calculate Λ(x) and B(x) using the BM’s algorithm

If deg(Λ(x)) is equal to the number of roots of Λ(x):
3. Output: Λ(x)

else:
One-pass Chase decoding:

4. σ0 = [0, 0, · · · , 0] (vector with no bit flipped)
5. Λ(0)(x) = Λ(x), B(0)(x) = x2B(x)

6. L
(0)
Λ = LΛ, L(0)

B = LB
for (i = 1; i < 2η; i+ +) :

7. Find σj(j < i) such that σi equals σj with an extra ‘1’ in
the l-th bit
8. Compute a(j)

l = Λ(j)(α−1
l ), b

(j)
l = B(j)(α−1

l )

9. Case 1: a(j)
l = 0 | a(j)

l 6= 0 & b
(j)
l 6= 0 &L

(j)
Λ ≥ L(j)

B
10. Λ(i)(x) = b

(j)
l Λ(j)(x) + a

(j)
l B

(j)(x)
11. B(i)(x) = (x2 − α−2

l )B(j)(x)

12. L
(i)
Λ = L

(j)
Λ , L

(i)
B = L

(j)
B + 2

13. Case 2: b(j)l = 0 | a(j)
l 6= 0&b

(j)
l 6= 0&L

(j)
Λ < L

(j)
B −1

14. Λ(i)(x) = (x2 − α−2
l )Λ(j)(x)

15. B(i)(x) = b
(j)
l x2Λ(j)(x) + α−2

l a
(j)
l B

(j)(x)

16. L
(i)
Λ = L

(j)
Λ + 2, L

(i)
B = L

(j)
B

17. Case 3: a(j)
l 6= 0 & b

(j)
l 6= 0 & L

(j)
B = L

(j)
Λ − 1

18. Λ(i)(x) = b
(j)
l Λ(j)(x) + a

(j)
l B

(j)(x)

19. B(i)(x) = b
(j)
l x2Λ(j)(x) + α−2

l a
(j)
l B

(j)(x)

20. L
(i)
Λ = L

(j)
Λ + 1, L

(i)
B = L

(j)
B + 1

21. Stop if deg(Λ(i)(x)) equals the number of roots of Λ(i)(x)
end for

Output: Λ(i)(x)

In the original Chase algorithm [8], the hard-decision de-
coding is repeatedly carried out on each test vector. To reduce
the decoding latency, error-locator polynomials for each test
vector can be derived by using the one-pass Chase algorithms
[15], [16], and the one in [16] has lower complexity. Let
αi(0 ≤ i < η) be the locations of the bits to flip in the Chase
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Fig. 3: Example order of bit flipping for one-pass Chase
algorithm with η = 3 in [16].

decoding and σj be the binary vector representing whether
the η bits are flipped in the j-th test vector. For BCH codes,
the one-pass Chase algorithm in [16] is listed in Algorithm 1.
In this algorithm, B(x) is a polynomial associated with Λ(x).
The lengths of Λ(x) and B(x) are LΛ and LB, respectively.

In Algorithm 1, Lines 1-3 are the conventional BCH decod-
ing on the hard-decision received word with no bit flipped. If
the computed error-locator polynomial, Λ(x), has a degree
that is equal to its root number, it is considered as the correct
error-locator polynomial and the locations of the errors in
the received word are the inverse roots of Λ(x). Otherwise,
decoding trial is carried out on the other test vectors according
to Lines 4-21. From [16], the Λ(i)(x) and B(i)(x) of a test
vector can be derived from those of another vector that has
one less flipped bit. Fig. 3 shows an example order of bit
flipping in the one-pass Chase scheme with η = 3. In this
figure, the hard-decision received word with no bit flipped is
denoted by vector σ0 = [000]. If a bit is flipped, it is denoted
by a ’1’ in the vector. Depending on the evaluation values a(j)

l

and b(j)l and the polynomial lengths, the error-locator and its
associated polynomials are derived by using the formulas in
one of the three cases. The process stops when the degree of
Λ(i)(x) equals to its root number. Besides, the one-pass Chase
decoding in Algorithm 1 does not allow a bit to be flipped back
in later test vectors, as shown in Fig. 3. At the cost of extra
logic complexity, the design in [17] divides both Λ(i)(x) and
B(i)(x) by x − α−1

l at the end for each test vector such that
a bit can be flipped back in the next test vector and only one
intermediate result needs to be stored at any time.

III. SOFT-DECISION GII DECODER

Only hard-decision GII decoding has been considered pre-
viously. To further improve the error-correcting performance
of GII codes, this section proposes an efficient soft-decision
decoding scheme. Similar to BCH Chase decoding, bit flipping
can be incorporated into GII-BCH decoding. However, the bit
flipping can be integrated in various ways due to the multi-
round nested decoding of different error-correcting capabilities
and limited number of sub-words that can be corrected in each
nested decoding round. Potential methods of incorporating bit
flipping into GII decoding are analyzed and compared in this
section to identify the best scheme.

If a sub-word has been corrected, further flipping its bits
would not correct more errors. Hence, bit flipping should only
be applied to the uncorrected sub-words. This can be done in
two different ways:

GII nested
decoding

(  -th round)

All 
sub-words
decoded?

Chase
decoding

No

decoding
failure

No

No

Yes

YesYes

 -th round) -th round) -th round) -th round) -th round)

Done for 
all sub-words?

No

Yes

If one sub-
word is

corrected

Fig. 4: [m, v] GII Chase decoding scheme.

Fig. 5: Error-correcting performance of the proposed soft-
decision ([8, 3], 4096) GII-BCH Chase decoding with different
η = [η0, η1, η2, η3]: a) FER; b) BER.

1) Only flip the unreliable bits in the erroneous sub-words
when GII decoding is unable to continue to the next
nested decoding round.

2) Try to flip the unreliable bits in the erroneous sub-
words and correct as many sub-words as possible before
moving to the next GII nested decoding round.

These two methods are different in when and for which sub-
words the Chase decoding is activated. Considering the sub-
word decoding as nested decoding round 0, the GII decoding
has v + 1 rounds. Let bi (bi > v − i) be the number of
sub-words that remains uncorrected at the end of the i-th
(0 ≤ i ≤ v) GII decoding round. The first method carries
out the Chase decoding on the sub-words one at a time until
bi is reduced to v − i, after which the decoding moves to
round i + 1. If bi is still larger than v − i after applying
the Chase decoding on every sub-word, decoding failure is
declared. This GII Chase decoding flow is illustrated in Fig.
4. Unlike the first method, the second scheme activates the
Chase decoding whenever there are uncorrected sub-words.
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The Chase decoding is applied to each of them before moving
to the next GII decoding round.

If ηi bits are flipped in a sub-word during nested decoding
round i, up to τi+ηi errors can be corrected. If τi+ηi > τi+1,
the nested decoding round i + 1 will not correct additional
errors and becomes meaningless. Besides, ηi needs to be small
to reduce the complexity. Hence it should be set to a value
smaller than τi+1− τi. The second method corrects additional
sub-words before nested decoding round i + 1 compared to
the first approach. However, all those sub-words have up to
τi + ηi ≤ τi+1 errors. If they are sent to nested decoding
round i+1 as in the first method, they will also get corrected.
On the other hand, the number of sub-words sent to the next
nested decoding round by the second method is not larger than
that sent by the first scheme. Also the numbers of errors in
those sub-words are not increased. As a result, if the errors
are correctable by the first decoding scheme, they can be
also corrected by the second method. In conclusion, the first
and second methods have exactly the same error-correcting
performance.

The second method has longer decoding latency compared
to the first one because it carries out the Chase decoding
on more sub-words. In the Chase decoding with η bits to
flip, although the error-locator polynomials for all the 2η test
vectors can be derived in one run by using the one-pass
algorithm, the exhaustive Chien search needs to be carried
out on each of the polynomials to tell whether the errors are
corrected. In the worst case, the long-latency Chien search
needs to be carried out 2η times and no intermediate result
can be shared among them. On the other hand, only one
Chien search is needed for each sub-word at the end of each
GII nested decoding round. Considering that the first method
achieves the same error-correcting performance as the second
approach and has shorter decoding latency, it is chosen in our
design.

The error-correcting performance of our proposed soft-
decision GII Chase decoding scheme is affected by the values
of ηi. Since τ0 < τ1 ≤ · · · ≤ τv , ηi for later rounds have
less effect on the FERs and BERs. They can be set to smaller
values to reduce the decoding complexity without affecting the
overall error-correcting performance much. The FERs of the
proposed soft-decision decoding scheme for the ([8, 3], 4095)
GII-BCH code with different η = [η0, η1, η2, η3] values are
plotted in Fig. 5(a). It can be observed that our proposed
scheme leads to much lower FERs compared to hard-decision
GII decoding even with small ηi. Besides, setting the ηi’s for
later rounds to even smaller values, such as ‘0’, leads to little
performance loss. Similar observations can be made on the
BER plot in Fig. 5(b).

IV. PRE-BIT-FLIPPING POLYNOMIAL SELECTION FOR
ONE-PASS CHASE DECODING

In the one-pass Chase decoding of [16], the exhaustive
Chien search is carried out on the error-locator polynomial
of each test vector until the one whose degree equals the root
number is found. The Chien search requires a large number of
clock cycles in the hardware implementation, and has much

longer latency than the one-pass Chase KES. To address
this issue, different schemes have been proposed to avoid
using the Chien search for error-locator polynomial selection
[18], [19], and the Chien search only needs to be applied to
the selected polynomial to find the error locations. However,
the design in [18] has high complexity and it needs long
time to tell whether the error-locator polynomial is correct,
especially for codes with higher error-correcting capabilities.
Although the polynomial selection in [19] has low complexity
and short latency, it is for RS/BCH codes with evaluation
map encoding and interpolation-based decoding. The least
significant message bit is pre-set to ‘1’ so that the bivariate
polynomial output from the interpolation process has a zero
evaluation value over the pre-set point. This method is not
applicable to the Chase process in GII decoding since the
nested decoding process can not be carried out using the
interpolation-based scheme.

Inspired by the design in [19], this paper proposes a new
polynomial selection scheme for one-pass Chase decoding by
setting a bit in the encoding process and pre-flipping the
bit during the decoding. Without loss of generality, assume
that the bit at position α0 is set in the encoding. For GII
Chase decoding, the bit at position α0 can be flipped in two
different ways. The first method flips the pre-set bit at the
very beginning of the GII decoding before any Chase process
is activated. If a test vector is correctable, its corresponding
error-locator polynomial should have α−1

0 as a root. By setting
α0 = 1, i.e. selecting the first bit of a sub-codeword as the
pre-set bit, the evaluation value over α−1

0 is just the sum of the
error-locator polynomial coefficients. If this evaluation value
is zero, the error-locator polynomial is considered correct and
the Chien search is carried out to find all the roots. Although
this method is simple, one additional error is introduced to
every sub-word and the hard-decision GII decoding in the i-th
round can only correct up to τi − 1 errors in each sub-word.
As a result, the probabilities of activating the Chase process
and nested decoding become higher and the decoding latency
becomes longer.

The second approach is to flip the pre-set bit only when
the Chase process is activated. This reduces the probabilities
of activating the Chase and nested decoding compared to the
first method. However, since the bit flipping is done in the
beginning of the Chase decoding, the error-locator polynomial
derived by using the one-pass Chase scheme in Algorithm
1 can not be selected as in the first method by calculating
the evaluation value over α−1

0 . This is because, as proved
in [16], if a test vector has a flipped bit at position αi,
the corresponding error-locator polynomial derived by using
Algorithm 1 has a factor of (x − α−1

i ). Hence, if the bit at
α0 is flipped in the beginning of the Chase process, the error-
locator polynomial of every test vector has the (x − α−1

0 )
factor, regardless of whether it is correct or not. Let Λ∗(x)
denotes the error-locator polynomial of a correctable test vec-
tor computed by using Algorithm 1. It was shown in [17] that
Λ′(x) = Λ∗(x)/

∏
i(x−α

−1
i ), where αi include all the flipped

bit positions, is an error-locator polynomial that consists of the
inverses of all the error locations in the correctable test vector
as distinct roots. Therefore, if α0 is intentionally flipped to be



6

flip the preset bit

Level 0

Level 1

Level 2

Level 3

Level 4

Fig. 6: Example order of bit flipping for the one-pass Chase
that employs the proposed pre-bit-flipping polynomial selec-
tion scheme with η = 3.

wrong and the total number of errors in a test vector does not
exceed τ for a τ -error-correcting BCH code, Λ′(x) will have
x − α−1

0 as a factor. Since Λ∗(x) = Λ′(x) ×
∏
i(x − α

−1
i ),

Λ∗(x) will have a factor of (x−α−1
0 )2. As a result, the error-

locator polynomial of a correctable test vector with the pre-
set bit flipped derived by using Algorithm 1 can be selected
based on whether it has (x − α−1

0 )2 as a factor. Since this
pre-determined factor has a degree of two, the correct error-
locator polynomial has a root number that is equal to its degree
minus one. The remainder computation of the division by
(x − α−1

0 )2 = x2 − 1 can be done by simple additions. Let
r(x) = r1x + r0 be the remainder of dividing a polynomial
f(x) = f0 + f1x + f2x

2 + f3x
3 + · · · by x2 − 1. It can be

derived that r0 = f0 + f2 + · · · and r1 = f1 + f3 + · · · .
Since the second approach has shorter latency, it is em-

ployed in our design. This pre-bit-flipping polynomial selec-
tion scheme is summarized as follows.

1) Pre-set the first bit of each sub-codeword in the encod-
ing.

2) When the Chase process is activated in the GII Chase
decoding, flip the pre-set bit in the sub-word and derive
the corresponding error-locator polynomial by using the
one-pass Chase KES Algorithm in Algorithm 1.

3) Flip the η least reliable bits in addition to the pre-set
bit to generate test vectors. If the remainder of dividing
an error-locator polynomial by (x − α−1

0 )2 = x2 − 1
is zero, find all the roots of this polynomial by using
Chien search. If the root number is equal to the degree
of the polynomial minus one, stop and declare decoding
success. Otherwise, continue for the next test vector.

Let e denotes the number of errors in a sub-word before
flipping any bit. In our design, the pre-set bit is flipped to be
erroneous in the Chase process and the number of errors in
each of the test vectors with the pre-set bit flipped is increased
by one. For a τ -error-correcting code, the test vector with
additional η bits flipped is correctable when e + 1 ≤ τ + η.
Hence our design can correct up to τ + η − 1 errors besides
the flipped pre-set bit in the Chase process. Take η = 3 as an
example. The proposed scheme tests the vectors in the order
shown by the tree structure in Fig. 6.

The remainder of dividing an incorrect error-locator poly-
nomial by x2 − 1 may be zero accidentally. This happens
with a probability of around 2−q for codes over finite field
GF (2q) since the error-locator polynomial of each test vector
with the pre-set bit flipped is already divisible by x − 1. For
codes over high-order fields, this probability is very small.
Besides, if the root number turns out not equal the degree of

the error-locator polynomial minus one from the Chien search,
the wrong error-locator polynomial is still identified and the
decoding trial on the other test vectors continues. Hence, even
if the proposed scheme may select the wrong error-locator
polynomial accidentally, it does not lead to any degradation on
the error-correcting performance. Since the long-latency Chien
search is only carried out on the selected polynomial, our
scheme has much shorter latency than previous designs that
carry out the Chien search on every error-locator polynomial.
Miscorrections may also happen in GII Chase decoding. Low-
complexity miscorrection mitigation schemes of GII decoding
have been developed in [23], [24] and they can be easily
extended to GII Chase decoding. However, for codes with
larger τ0, a sub-word is less likely to be miscorrected and
the error-correcting performance degradation resulted from
miscorrections can be ignored.

To achieve the same error-correcting performance as the
original Chase decoding, larger η is needed when our proposed
polynomial selection scheme is utilized. Having more bits to
flip leads to longer latency in the KES step. However, each
additional test vector only introduces a few more clock cycles
to the KES process using a parallel hardware implementation
architecture for the one-pass algorithm. On the other hand, a
highly parallel hardware architecture for the Chien search has
overwhelming complexity and routing congestion issues. The
Chien search with reasonable hardware complexity typically
takes many clock cycles to finish. Since our proposed scheme
only activates the Chien search when the error-locator polyno-
mial has the x2− 1 factor, it has much shorter overall latency
even if η needs to be increased.

The pre-set bit is flipped to be erroneous in our proposed de-
sign. To achieve the same error-correcting performance as the
conventional Chase decoding with η-bit flipping, our design
needs to flip more than η+ 1 bits besides the pre-set bit since
the pre-set bit is definitely flipped to be wrong and the other
η+1 bits to flip in the test vectors may not be erroneous. From
Fig. 5, our proposed scheme with η = [5, 4, 0, 0] can achieve
similar error-correcting performance as the conventional Chase
process with η = [3, 2, 0, 0]. The performance of the proposed
scheme further improves with larger η, as shown by the curves
for η = [8, 7, 6, 0] in Fig. 5. However, the worst-case decoding
latency increases substantially with η.

V. REMAINDER PRE-COMPUTATION FOR PRE-BIT-FLIPPING
POLYNOMIAL SELECTION

In conventional one-pass Chase decoding, the error-locator
polynomial for one test vector is derived each time. Although
the proposed pre-bit-flipping polynomial selection substan-
tially reduces the latency of the overall one-pass Chase de-
coding by avoiding the Chien search most of the time, it
needs a larger η. Deriving the error-locator polynomial for
more test vectors leads to longer latency in the KES step.
To further reduce the Chase decoding latency, this section
proposes to pre-compute the remainders of dividing the error-
locator polynomials by x2 − 1 first, without computing the
polynomials themselves. A low-complexity method is de-
veloped to compute multiple remainder polynomials at the
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Algorithm 2 Proposed pre-bit flipping one-pass Chase algo-
rithm with remainder pre-computation

Input: α0, · · · , αη−1, and Λ(0)(x) and B(0)(x) from hard-decision
decoding
1. σ1 = [1, 0, · · · , 0] (vector with only the pre-set bit flipped)
2. Derive Λ(1)(x) and B(1)(x) from Λ(0)(x) and B(0)(x) by using
the one-pass Chase KES Algorithm in Algorithm 1.
3. r(1)

Λ (x) = Λ(1)(x)mod x2 − 1,
r

(1)
B (x) = B(1)(x)mod x2 − 1

for (i = 2; i ≤ 2η; i+ +):
4. Find σj(j < i) such that σi equals σj with an extra ‘1’ in the
l-th bit
5. Compute a(j)

l = Λ(j)(α−1
l ), b

(j)
l = B(j)(α−1

l )

6. Case 1: a(j)
l = 0 |(a(j)

l 6= 0 & b
(j)
l 6= 0 &L

(j)
Λ ≥ L(j)

B )
7. r

(i)
Λ (x) = b

(j)
l r

(j)
Λ (x) + a

(j)
l r

(j)
B (x)

8. r
(i)
B (x) = (1− α−2

l )r
(j)
B (x)

9. L
(i)
Λ = L

(j)
Λ , L

(i)
B = L

(j)
B + 2

10. Case 2: b(j)l = 0 |(a(j)
l 6= 0&b

(j)
l 6= 0&L

(j)
Λ < L

(j)
B −1)

11. r
(i)
Λ (x) = (1− α−2

l )r
(j)
Λ (x)

12. r
(i)
B (x) = b

(j)
l r

(j)
Λ (x) + α−2

l a
(j)
l r

(j)
B (x)

13. L
(i)
Λ = L

(j)
Λ + 2, L

(i)
B = L

(j)
B

14. Case 3: a(j)
l 6= 0 & b

(j)
l 6= 0 & L

(j)
B = L

(j)
Λ − 1

15. r
(i)
Λ (x) = b

(j)
l r

(j)
Λ (x) + a

(j)
l r

(j)
B (x)

16. r
(i)
B (x) = b

(j)
l r

(j)
Λ (x) + α−2

l a
(j)
l r

(j)
B (x)

17. L
(i)
Λ = L

(j)
Λ + 1, L

(i)
B = L

(j)
B + 1

If r(i)
Λ (x) is zero:

18. Derive Λ(i)(x) by using the one-pass Chase KES Algorithm
in Algorithm 1
19. Stop if the number of roots of Λ(i)(x) equals deg(Λ(i)(x))− 1

end for
Output: Λ(i)(x)

same time. Then the KES is only carried out to derive the
error-locator polynomial with the zero remainder, followed
by the Chien search. Since the error-locator polynomial of
a correctable test vector with the pre-set bit flipped always
has x2 − 1 as a factor, the test vector corrected by the pre-
bit flipping scheme proposed in the previous section is also
correctable through pre-computing the remainders. Hence, the
two proposed designs have exactly the same error-correcting
performance.

As mentioned in the previous section, the remainder of
dividing a polynomial by x2 − 1 equals the XOR results of
the even and odd coefficients of the polynomial. Therefore,
the remainder of a linear combination of two polynomials
equals the linear combination of the remainders of the two
polynomials. After the remainder of vector σ1, which is the
test vector with only the pre-set bit flipped, is calculated by
XOR operations, the remainders of the other test vectors can
be derived by using similar updating as in Lines 9-20 of
Algorithm 1.

The proposed pre-bit flipping one-pass Chase algorithm
with remainder pre-computation is summarized in Algorithm
2. In this algorithm, r(i)

Λ (x) and r(i)
B (x) denote the remainder

polynomials of dividing Λ(i)(x) and B(i)(x), respectively,
by x2 − 1. Since (x2 − α−2

l )B(j)(x) = ((x2 − 1) + (1 −
α−2
l ))B(j)(x), the remainder of dividing (x2 − α−2

l )B(j)(x)
by x2− 1 equals the remainder of dividing (1−α−2

l )B(j)(x).

Hence, Lines 11 and 14 in Algorithm 1 become Lines 8 and
11 in Algorithm 2 for remainder computation. Similar analysis
can be extended to derive the formulas in Lines 12 and 16 of
Algorithm 2. If r(i)

Λ (x) is zero, the corresponding error-locator
polynomial Λ(i)(x) is derived by using the one-pass Chase
KES Algorithm in Algorithm 1. The process of the remainder
pre-computation stops when the number of roots of Λ(i)(x) is
equal to its degree minus one. Since each of the remainders of
dividing x2− 1 only has two coefficients, its computation has
much lower complexity compared to those of long Λ(i)(x) and
B(i)(x). Accordingly, the remainders of multiple test vectors
can be computed in parallel to reduce the latency of the KES
step in the Chase decoding without bringing large silicon area
overhead.

As shown in Algorithm 2, both the evaluation values, a(j)
l

and b(j)l , and the lengths of the polynomials, L(j)
Λ and L(j)

B , are
required to decide which of the three cases to use to calculate
the remainder polynomials for each test vector. The lengths of
Λ(0)(x) and B(0)(x) for the hard-decision vector are available
at the end of the KES. L(1)

Λ and L(1)
B can be derived according

to Algorithm 1. For the other test vectors, without deriving
their error-locator polynomials, Λ(i)(x) and associated poly-
nomials, B(i)(x), the lengths of these polynomials can still
be calculated by using the formulas in Lines 9, 13, and 17
of Algorithm 2. On the other hand, the evaluation values are
more difficult to compute without deriving the polynomials
themselves.

Assume that σj has one extra bit flipped at position αr
compared to σp (j > p) in Algorithm 1. Then for l 6= r, a(j)

l

and b
(j)
l can be derived as linear combinations of b(p)r , b(p)l ,

a
(p)
r , and a(p)

l according to Lines 10, 11, 14, 15, 18 and 19 of
Algorithm 1. These four evaluation values can be computed in
turn by linear combinations of the evaluation values of the test
vectors covered in previous iterations of Algorithm 1. Tracing
back these computations in the tree of test vectors, such as
that shown in Fig. 6, as long as the evaluation values of those
parent test vectors including every flipped bit are available, the
evaluation values of the later test vectors can all be computed
by linear combinations. This means that actual polynomial
evaluation only needs to be carried out the η+1 vectors in the
first and second levels of the test vector tree, which include
σ1, σ2, σ3, and σ4 in the example shown in Fig. 6.

Each of Λ(i)(x) and B(i)(x) for 1 ≤ i ≤ η + 1 needs to
be evaluated over each α−1

l for 1 ≤ l ≤ η. Since polynomial
evaluation has high complexity, the evaluation values of one
pair of polynomials over one point are derived each time.
However, each linear combination is implementable by a few
multipliers. Hence those evaluation values of Λ(i)(x) and
B(i)(x) (η + 1 < i ≤ 2η) without data dependence can be
computed in parallel with low complexity. If P pairs of eval-
uation values are calculated in each clock cycle, all evaluation
values of ση+2, · · · , σ2η can be derived in d(2η − η − 1)/P e
clock cycles. The corresponding remainder polynomials are
computed according to Algorithm 2 right in one additional
clock cycle after the evaluation values are available.

The proposed Chase decoding with remainder pre-
computation for pre-bit-flipping polynomial selection is sum-
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(hard-decision decoding)

(flip pre-set bit)

Eva. values and

rem. comp. for

Eva. values and
rem. comp. for 

P test vectors

zero

rem.?
One-pass Chase

KES Algorithm
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search

root no. = Yes successful

decoding

No
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rem.?
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Fig. 7: Proposed Chase decoding process with remainder pre-
computation for pre-bit-flipping polynomial selection.

marized in Fig. 7. Given Λ(0)(x) and B(0)(x) from the hard-
decision decoding, Λ(1)(x) and B(1)(x) for vector σ1 that flips
the pre-set bit are derived by using Algorithm 1. Then the
remainder polynomials r(1)

Λ (x) and r
(1)
B (x) are computed by

adding the even and odd coefficients of Λ(1)(x) and B(1)(x),
respectively. Simultaneously, the evaluation values of Λ(1)(x)
and B(1)(x) over α−1

1 through α−1
η+1 are computed one pair

at a time. After they are calculated, the corresponding pair of
remainder polynomials for vectors σ2, · · · , ση+1 are derived
according to Algorithm 2. When all the evaluation values over
α−1

2 through α−1
η+1 are available, the evaluation values for

the rest remainder computations are derived through linear
combinations and the corresponding remainder polynomials
are derived afterward. Whenever the rΛ(x) of a test vector is
found to be zero, the computations for the rest test vectors
pause and the one-pass Chase KES Algorithm in Algorithm
1 is utilized to derive the error-locator polynomial for the
selected test vector. Then the Chien search follows to find all
the roots. If the root number is equal to the degree of the error-
locator polynomial minus one, the decoding is considered
successful. Otherwise, the remainder polynomials for the set
of test vectors are calculated and this process is repeated until
a correct test vector is found or decoding failure is declared.

The remainder pre-computation proposed in this section
brings additional significant latency reduction to the over-
all Chase decoding process compared to our first proposed
scheme. This is because that instead of deriving the long error-
locator polynomial for one test vector at a time, our second
design computes the error-locator polynomial only when its
corresponding remainder polynomial of division by x2 − 1 is
zero. Since each remainder only has two coefficients, multiple
remainders can be computed in parallel with low complexity.

VI. ERROR-RATE FORMULAS OF SOFT-DECISION GII
CHASE DECODING

At higher Eb/No, the error-correcting performance of the
soft-decision GII Chase decoding and that of the proposed
GII Chase decoding with pre-bit flipping can not be easily
determined by simulations. This section develops formulas to
estimate their FERs and BERs.

The FER and BER of hard-decision GII decoding can be
estimated by the formulas proposed in [2], [25]. The formulas
in [25] are more accurate compared to those in [2]. Let
pb denote the decoder input bit error rate. The probability
of having w errors among the n bits of a sub-word is

φw =
(
n
w

)
pwb (1 − pb)

n−w. Then θi,j =
∑j
w=i φw is the

probability of a sub-word having between i and j errors and
the average number of erroneous bits can be calculated by
ϕi,j =

∑j
w=i φw · w. Consider the sub-word decoding as

nested decoding round 0. The FER of hard-decision GII-BCH
decoding can be estimated by adding up the failure rates of GII
decoding in each nested decoding round as Pf =

∑v
i=0 Pfi ,

where the probability of GII-BCH decoding failure in nested
decoding round 0 is [25]

Pf0 =
m∑

b=v+1

(
m

b

)
(θτ0+1,n)b(θ0,τ0)m−b

and that for nested decoding round i (1 ≤ i ≤ v) can be
computed by

Pfi =

(
m

v − i+ 1

)
(θτi+1,n)v−i+1(θ0,τi−1

)m−(v−i+1).

Accordingly, the BER of GII-BCH codes is estimated in [25]
as

Pb =

∑v
i=0 Pfi · Ni
m · n

,

where

N0 =

(∑m
b=v+1

(
m
b

)
(θτ0+1,n)b(θ0,τ0)m−b · b

Pf0

)
· ϕτ0+1,n

θτ0+1,n

(2)
is the average number of erroneous bits of an uncorrectable
GII codeword in nested decoding round 0 and

Ni =
(v − i+ 1) · ϕτi+1,n

θτi+1,n
(3)

are those for nested decoding round i = 1, 2, · · · , v.
GII decoding fails when at least v + 1 sub-words are not

correctable in nested decoding round 0. At most v − i + 1
sub-words are sent to nested decoding round i (i > 0) and
decoding failure is also declared if none of them is corrected
in round i. Unlike hard-decision GII decoding, soft-decision
GII Chase decoding can correct up to τi + ηi errors in each
sub-word by flipping the ηi least reliable bits. When the
decoding fails in the i-th nested decoding round, each of the
uncorrectable sub-words has either more than τi+ηi errors or
between τi + 1 and τi + ηi errors but those errors are not
correctable by the Chase process due to wrong bits being
chosen to flip. Hence the probability that the Chase decoding
on a sub-word in nested round i fails can be calculated by

Φτi+1,n =
n∑

w=τi+ηi+1

φw +

τi+ηi∑
w=τi+1

φw ·Gτi,ηiw .

In the above equation, Gτi,ηiw (τi + 1 ≤ w ≤ τi + ηi) is the
probability that the sub-word has w errors and flipping the
ηi chosen bits does not generate any test vector that has up
to τi erroneous bits. It can be determined from simulations
over a limited number of samples. A tight bound involving
complicated formulas for estimating such a probability can be
also found in [26]. Then the probability that the soft-decision
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GII Chase decoding fails in nested decoding round i can be
estimated by

P ′fi =


∑m
b=v+1

(
m
b

)
(Φτ0+1,n)b(1−Φτ0+1,n)m−b, for i=0

(
m

v−i+1

)
(Φτi+1,n)v−i+1

·(1−Φτi−1+1,n)m−(v−i+1), for i=1, · · · , v.
(4)

As a result, the FER of GII-BCH Chase decoding can be
computed by summing up the failure rates of each nested
decoding round as P ′f =

∑v
i=0 P

′
fi

.
For soft-decision GII Chase decoding, the average number

of erroneous bits of an uncorrectable sub-word in nested
decoding round i can be computed by

Ψτi+1,n =
n∑

w=τi+ηi+1

φw · w +

τi+ηi∑
w=τi+1

φw ·Gτi,ηiw · w.

By following a method similar to that for deriving (2) and (3),
the average number of erroneous bits of an uncorrectable GII
codeword in nested decoding round i is

N ′i =



(
(
∑m
b=v+1

(
m
b

)
(Φτ0+1,n)b(1−Φτ0+1,n)m−b · b)/P ′f0

)
·Ψτ0+1,n/Φτ0+1,n , for i=0

(v − i+ 1) ·Ψτi+1,n/Φτi+1,n , for i=1, · · · , v.
Therefore, the BER of GII-BCH Chase decoding can be
estimated by

P ′b =

∑v
i=0 P

′
fi
· N ′i

m · n
. (5)

For AWGN channel with the binary phase shift keying
(BPSK) modulation scheme, the input bit error rate can be
computed by pb = Q(

√
2REb/No) [29], where R is the code

rate and Q(x) = 1/2π
∫∞
x

e−z
2/2dz. The FERs and BERs of

the example GII-BCH Chase decoding estimated by using the
proposed formulas in (4) and (5) are shown in in Fig. 5. They
match the simulation results very well.

As mentioned in Section IV, the proposed GII Chase de-
coding flips the pre-set bit to an erroneous bit in the Chase
process. To correct a sub-word with τi + j (1 ≤ j ≤ ηi)
errors, the proposed design needs to flip j + 1 erroneous bits
and only up to τi + ηi − 1 errors besides the flipped pre-set
bit can be corrected. When the proposed GII Chase decoding
fails in nested decoding round i, each of the uncorrectable
sub-words has either more than τi + ηi − 1 errors or between
τi+1 and τi+ηi−1 errors but those errors are not correctable
by the Chase process. The probability that the Chase decoding
fails to correct a sub-word in round i now becomes

Φ′τi+1,n =
n∑

w=τi+ηi

φw +

τi+ηi−1∑
w=τi+1

φw ·Gτi,ηiw+1 . (6)

The FER of the proposed GII-BCH Chase decoding with pre-
bit flipping can be estimated by replacing the Φτi+1,n in (4)
by Φ′τi+1,n. Besides, a formula similar to (5) can be used
to estimate the BER. The estimated FERs and BERs of the
proposed GII-BCH Chase decoding with pre-bit-flipping are
shown in Fig. 5, and they also match the simulation results
well.

(a)

0

D

0
0

(b)

D

Fig. 8: GII-BCH nested KES architecture from [6]: a) overall
architecture; b) details of one PE0.

VII. FAST AND LOW-COMPLEXITY GII-BCH CHASE
DECODER ARCHITECTURE

In this section, a fast and low-complexity GII-BCH Chase
decoder hardware implementation architecture is proposed.
Our proposed decoding process consists of Chase decoding
and GII nested decoding. Similar syndrome computation and
Chien search architectures can be used for both of them, while
their KES algorithms are different. However, the polynomials
in the KES of the nested decoding process are also com-
puted by linear combinations [3]–[6]. Therefore, the nested
KES architectures can be shared to derive the error-locator
polynomials for the one-pass Chase decoding. For hardware
implementation, the combinational logic path that has the
longest computation time is referred to as the critical path
and it decides the maximum achievable clock frequency. The
critical paths of the nested KES architectures in [3]–[6] consist
of one multiplier. Nevertheless, directly implementing the one-
pass Chase KES in Algorithm 1 leads to two multipliers in
the critical path. To reduce the critical path to one multiplier,
this section proposes reformulations to Algorithm 1 such that
the two multiplications can be split and finished in two clock
cycles. Additionally, our reformulation enables the sharing of
intermediate results, which leads to lower hardware complex-
ity. Similar reformulations are also applied to the remainder
pre-computation to reduce its critical path and complexity.

Among the available KES architectures for GII nested
decoding [3]–[6], the fast nested KES architecture design in
[6] is the most efficient. One KES architecture is shared for
all the nested decoding rounds. The nested decoding round
i (i > 1) has τi − τi−1 iterations in the KES. In the j-th
iteration, the error-locator polynomial is derived as [6]

Λ(j+1)(x) =ρ
(j)
S Λ(j)(x) + ξ

(j)
S x2B(j)(x), (7)

where ρ
(i)
S and ξ

(i)
S are scalars computed before the j-th

iteration. B(x) is updated in one of two ways as

B(j+1)(x) =ρ
(j)
S Λ(j)(x) or ξ(j)

S x2B(j)(x), (8)

depending on whether the discrepancy coefficient is zero and
the relative lengths of Λ(x) and B(x). The overall block
diagram of the nested KES architecture is shown in Fig. 8(a).
ρS and ξS are derived in the pre-computation (PU) unit. For
GII-BCH code with τv as the error-correcting capability of the
last nested decoding round, d(τv+1)/2e groups of processing
elements (PEs) are employed. Each group consists of one PE1
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and two PE0s for updating one coefficient of the involved poly-
nomials. PE1 computes the discrepancy polynomials. Λ(x)
and B(x) are updated in PE0s. The detail of one PE0 is
illustrated in Fig. 8(b). An adder over finite field GF (2q) is
implemented by bit-wise XOR. A multiplier is much more
complicated and has much longer data path [27]. The fast
KES architecture of GII-BCH decoder in [6] has one multiplier
and four adders/multiplexers in the critical path. Parts of the
critical path are located in the PU and PE1 and the rest in PE0
is highlighted by the thicker wires in Fig. 8(b).

From (7) and (8), it can be observed that the Λ(x) and
B(x) in the nested KES are updated as linear combinations
in a similar way as the polynomials in Algorithm 1. Hence
the KES architecture for the nested decoding can be shared
to implement the one-pass Chase KES. However, directly
implementing the formulas in Algorithm 1 would lead to two
multipliers in the critical path since B(j)(x) in Lines 15 and
19 need to be multiplied with two scalars: α−2

l and a(j)
l .

To reduce the critical path of the one-pass Chase KES, the
computations of B(i)(x) in Lines 15 and 19 of Algorithm
1 can be decomposed and completed in two clock cycles.
In the first clock cycle, Λ(j)(x) and B(j)(x) are multiplied
with b(j)l and a(j)

l , respectively. These intermediate results are
stored in the registers in Fig. 8(b). Then in the second clock
cycle, a(j)

l B(j)(x) is multiplied with α−2
l and the result is

added with b
(j)
l x2Λ(j)(x). Scaling a polynomial by x2 does

not require any multiplier. Instead, it is done by directly
routing the coefficients to higher PE0s to taking care of the
higher coefficients. As a result, each polynomial updating is
completed in two clock cycles with one multiplier in the
critical path.

In Case 3 of Algorithm 1, the Λ(i)(x) in Line 18 can
be calculated by directly adding up the b

(j)
l Λ(j)(x) and

a
(j)
l B(j)(x) derived during the B(i)(x) computation. For Case

2, multiplying Λ(j)(x) by α−2
l in the first clock cycle of

the iteration would require another multiplier in each PE0.
On the other hand, waiting until the second clock cycle to
compute this polynomial demands extra registers to store the
coefficients of Λ(j)(x). To avoid these overheads, Λ(j)(x) is
scaled by b

(j)
l in our design. In this case, the intermediate

result b(j)l Λ(j)(x) can be reused to get b(j)l Λ(i)(x) without
extra registers or multipliers. The decoding output would not
be affected by scaling Λ(i)(x) since the evaluation values of
this polynomial and any linear combination in the following
iterations are scaled by the same factor. Accordingly, the roots
of the final error-locator polynomial, which are the inverse
error locations, remain the same. Case 1 of Algorithm 1 can
be handled in a way similar to Case 3 by scaling B(j)(x) with
a

(j)
l .
Our proposed reformulations for Algorithm 1 are summa-

rized as follows.
• Reformulate Line 11 as
B(i)(x) = (x2 − α−2

l ) · a(j)
l · B(j)(x)

• Reformulate Line 14 as
Λ(i)(x) = (x2 − α−2

l ) · b(j)l · Λ(j)(x)

To implement the reformulated one-pass Chase KES algo-
rithm, the PE0 for updating the z-th coefficient of the error-

0

0
D

0
0

D

Fig. 9: Modified PE0 for joint nested KES and one-pass Chase
KES.

(b)(a)

0

D

D
0

D
D

0

D

D
0

D
D

D

Fig. 10: Remainder pre-computation architectures for pre-bit
flipping polynomial selection: a) architecture for evaluation
value computation by linear combination, b) remainder com-
putation architecture.

locator and its associated polynomials is modified as in Fig. 9.
In the first clock cycle of each iteration, Λ(j)(x) and B(j)(x)

are multiplied with b(j)l and a(j)
l , respectively, and the results

are stored in the registers. Depending on which of the three
cases of Algorithm 1 will be executed, these intermediate
results are routed to different units in the second clock cycle
to compute the coefficients of Λ(i)(x) and B(i)(x). The extra
units in Fig. 9 compared to the architecture in Fig. 8(b) are
highlighted by gray color. An adder or 2-to-1 multiplexer over
GF (2q) only takes q XOR gates to implement. On the other
hand, a multiplier requires a much larger number of logic
gates. For example, a GF (212) multiplier takes 201 gates to
implement [4]. Therefore, sharing the hardware units between
the nested KES and one-pass Chase KES leads to significant
saving. Besides, the critical path is not increased. This is
because that the additional hardware units in the modified PE0
does not alter the part of critical path, as highlighted by the
thicker wires in Fig. 9. Also none of the other data paths has
more than one multiplier and four adders/multiplexers.

In the proposed Chase decoding with pre-bit-flipping poly-
nomial selection, the number of bits to flip is ηi + 1 in-
cluding the pre-set bit and the error-locator polynomial has
at most τi + ηi + 1 factors. From the previous sections,
if the polynomial is correct, one of its factors is x2 − 1.
Therefore, the degree of the error-locator polynomial is at
most maxi=0,1,··· ,v{τi + ηi + 2}. This value increased by one
is the number of PE0 in Fig. 8(a) that needs to be modified
to accommodate the Chase KES.

As mentioned in the previous section, the evaluation val-
ues for vectors σ1 through ση+1 are computed by actually
evaluating the polynomials. The complexity of the polynomial
evaluation can be reduced by applying the Horner’s rule and
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the implementation architecture is available in [3]. For the
other test vectors, the evaluation values are computed by linear
combinations. Assume that σj has one extra bit flipped at
position αr compared to σp (j > p) in Algorithm 1. For
l 6= r, the evaluation values, a(j)

l and b(j)l , can be derived as
linear combinations of b(p)r , b(p)l , a(p)

r , and a(p)
l . The formulas

for calculating a(j)
l and b(j)l can be derived in similar format

as those in Lines 9-20 of Algorithm 1 by tracing back to the
j-th iteration, which Λ(j)(x) and B(j)(x) are computed by the
linear combinations of Λ(p)(x) and B(p)(x), and substituting
each x by α−1

l . The corresponding implementation architec-
ture is shown in Fig. 10(a). Unlike the polynomial updating, x2

now become α−2
l . The multiplication with this value requires

one additional multiplier and it is located at the top-left corner
in Fig. 10(a). For each test vector, one pair of the evaluation
values is computed by using the architecture in Fig. 10(a).
Since it has low complexity, multiple copies can be utilized
to compute the evaluation values for multiple test vectors in
parallel.

To keep only one multiplier in the critical path, the proposed
remainder pre-computation in Algorithm 2 is reformulated in
a similar way as Algorithm 1 and each iteration is carried
out in two clock cycles. To enable the sharing of intermediate
results, r(j)

Λ (x) and r(j)
B (x) are scaled by b(j)l and a(j)

l , respec-
tively. The architecture in Fig. 10(b) computes one coefficient
of r(i)

Λ (x) and r
(i)
B (x) in two clock cycles and two copies

are needed to compute both coefficients. In the first clock
cycle, r(j)

Λ (x) and r
(j)
B (x) are multiplied with b

(j)
l and a

(j)
l ,

respectively. Also ’0’s are passed through the multiplexers to
be the other inputs of the two adders, so that the two products
are stored back into the registers. In the second clock cycle,
depending on which of the three cases of the reformulated
Algorithm 2 needs to be carried out, the intermediate results
stored in the registers are routed to different units to complete
the rest computations. Since the architecture in Fig. 10(b) also
has low complexity, multiple copies can be utilized to compute
the remainder polynomials for multiple test vectors in parallel.

VIII. GII-BCH CHASE DECODING LATENCY AND
HARDWARE COMPLEXITY ANALYSIS

This section analyzes the latencies and hardware complex-
ities of our proposed soft-decision GII-BCH Chase decoders
using a ([8, 3], 4095) code over GF (212) with [τ0, τ1, τ2, τ3] =
[28, 32, 39, 58] and [η0, η1, η2, η3] = [5, 4, 0, 0] as an example.
This codeword length and code rate are considered for Flash
memory applications. Our design is also compared to hard-
decision GII-BCH decoder and alternative possible GII-BCH
Chase decoding using the Chien-search-based polynomial se-
lection.

A. Worst-case decoding latency analysis

As shown in Fig. 5, our proposed decoder achieves much
better error-correcting performance compared to previous
hard-decision GII-BCH decoders. The proposed decoding is
carried out according to the flow chart in Fig. 4. In our design,
the Chase process in nested decoding round i is activated when

TABLE I: Worst-case latency of ([8,3], 4095) GII-BCH Chase
decoding with τ = [28, 32, 39, 58] and η = [η0, η1, 0, 0] over
GF (212) in different nested decoding rounds

Nested dec. 0 1 0 1 0 1
round

GII-BCH Chase Prop. GII-BCH Prop. GII-BCH
[16] w/ Chien Chase w/ Chase w/
-search-based pre-bit-flip. pre-bit-flip.
poly. select. poly. select. poly. select.&

([η0,η1]= [3,2]) ([η0,η1]=[5, 4]) rem. pre-comput.
([η0,η1]=[5, 4])

Worst-case # 8 3 8 3 8 3
of sub-words
carried out

by Chase dec.
Worst-case # - - 5 1 5 1
of sub-words
corrected by
Chase dec.

Worst-case # 8 4 32 16 32 16
of vec. to test

/sub-word
Worst-case 84 205 84 205 84 205
nested dec.

latency
(# clks)

Worst-case 3160 513 1056 203 554 124
Chase dec.

latency
(# clks)

Worst-case 3244 718 1140 408 638 329
nested &

Chase dec.
latency(# clks)
(normalized) (1) (1) (0.35) (0.57) (0.20) (0.46)
Worst-case
nested dec.
latency for nested decoding round 2: 274;

round 2 & 3 nested decoding round 3: 184
(# clks)

the number of uncorrected sub-words is larger than v−i and it
continues until this number is reduced to v−i. Therefore, in the
worst case, the Chase decoding in round 0 needs to be carried
out over all the m sub-words until it corrects m−v sub-words.
For nested decoding round i (i > 0), the Chase decoding
needs to be done for v − i + 1 sub-words and corrects one
sub-word at most. For each sub-word that the Chase decoding
is carried out in nested round i, 2ηi vectors are tested in the
worst case. These numbers are listed in Table I for the [8, 3]
example GII-BCH code. For this code, since η2 = η3 = 0,
only the numbers for nested decoding round 0 and 1 are listed
in separate columns in this table.

In the sub-word decoding, which is referred to as nested
decoding round 0, m = 8 BCH decoders are employed to
decode all the received sub-words in parallel. BCH decoder
hardware implementation architectures can be found in many
literature, such as [28]. The KES of traditional BCH decoding
takes τ0 = 28 clock cycles. To improve the hardware utiliza-
tion efficiency, the syndrome computation and Chien search
steps should be completed in a similar number of clock cycles
and this goal can be achieved by adjusting their parallelisms.
As a result, the latency of the sub-word decoding is 3τ0 = 84
clock cycles.

Architectures for the nested decoding have been developed
in [3]–[6]. Since the later nested decoding rounds are activated
with low probability, hardware units are shared among all
the rounds. The KES in the i-th (i > 0) nested decoding
round takes τi − τi−1 + 1 clock cycles for each sub-word by
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using the fast nested KES architecture in [6]. Besides, the
syndrome computation and Chien search architectures can use
smaller parallelisms to reduce the complexity. Let t(i)s and t(i)c
be the numbers of clock cycles needed for carrying out the
syndrome computation for a sub-word and Chien search on
an error locator polynomial, respectively, in nested decoding
round i. The reconfigurable architecture in [3] designed to
finish the Chien search on a polynomial with x coefficients in
y clock cycles can also complete the search on a polynomial
with up to ax (a ∈ Z+) coefficients in ay clock cycles. To
reduce the hardware complexity, assume that this architecture
is configured to finish the Chien search on an error locator
polynomial from nested decoding round 1 for the example
GII-BCH code in t(1)

c = 56 clock cycles. Then it can complete
the Chien search for an error locator polynomial in round
2 and 3 nested decoding in t

(2)
c = t

(3)
c = 56 × 2 = 112

clock cycles. The resource-shareable encoder in [22] helps to
reduce the length of the polynomials involved and accordingly
the complexity of the syndrome computation in the nested
decoding. Even with half of the parallelism used for the Chien
search, this architecture can finish the syndrome computation
for a sub-word of the example code in nested decoding round
1, 2, and 3 in t

(1)
s = 10, t(2)

s = 20, and t
(3)
s = 50 clock

cycles, respectively. After the nested syndromes are calculated,
2 clock cycles are needed to convert them to higher-order
syndromes for each sub-word [3].

In hard-decision GII-BCH decoding, the Chien search is car-
ried out once after the KES for each sub-word in each nested
decoding round. Since the Chien search takes much longer
time than the KES, it can start to work on the error-locator
polynomial of the next sub-word once it finishes the current
one. Hence, the worst-case latencies of nested decoding round
i > 0 can be calculated as τi−τi−1 +3+(v−i+1)(t

(i)
s +t

(i)
c ).

Plugging in the values of τi, t
(i)
s , and t(i)c , it can be calculated

that the numbers of clock cycles needed for nested decoding
round i = 1, 2, 3 in hard-decision GII-BCH decoding in the
worst case are 32 − 28 + 3 + (3 − 1 + 1)(10 + 56) =
205, 39 − 32 + 3 + (3 − 2 + 1)(20 + 112) = 274, and
58− 39 + 3 + (3− 3 + 1)(50 + 112) = 184, respectively.

For GII-BCH Chase decoding, the same numbers of clock
cycles are needed for the nested decoding parts as in the hard-
decision GII-BCH decoding and they are listed in Table I for
the case that t(1)

s = 10, t(2)
s = 20, t(3)

s = 50, t(1)
c = 56

and t
(2)
c = t

(3)
c = 112. Next, analyses are carried out on the

latencies needed by the Chase parts using different schemes.
Our first proposed polynomial selection scheme uses a pre-

flipped bit to identify the correct error-locator polynomial.
To achieve similar FER as the GII-BCH Chase decoding
with [η0, η1] = [3, 2] that uses Chien search for polynomial
selection, [η0, η1] = [5, 4] is adopted in our design due to the
pre-flipped bit. Each pair of the evaluation values for updating
the error-locator polynomial of a test vector can be computed
in one clock cycle using two parallel polynomial evaluation
architectures. Then the proposed joint KES architecture takes
two clock cycles to derive the error locator polynomial for each
test vector. The remainder computation is done in one clock
cycle by simple additions and can be pipelined with the error-

locator polynomial derivation for the next test vector. From
simulations over 107 samples, the error-locator polynomial
selected by our proposed scheme is always correct. Hence, for
latency analysis, the Chien search is only carried out once for
each sub-word that is correctable in the Chase decoding. Use
t′

(i)
c to represent the number of clock cycles for such Chien

search in nested decoding round i. By reusing the reconfig-
urable architecture for the nested decoding, t′(0)

c = t′
(1)
c = 56

clock cycles.

As listed in Table I, in the worst case, the Chase decoding
is carried out on m = 8 and v − i+ 1 = 3− 1 + 1 = 3 sub-
words in nested decoding round 0 and 1, respectively. Also
since the proposed schemes terminate the Chase process when
the nested decoding is able to continue for the next round,
at most m − v = 5 and 1 sub-word are corrected in these
two rounds. The Chien search is only carried out for those
correctable sub-words in our scheme. As a result, the worst-
case latencies of the Chase decoding using the first proposed
design in nested decoding round 0 and 1 are m× (3× 2η0 +

1) + (m − v) × t′(0)
c = 8 × (3 × 25 + 1) + 5 × 56 = 1056

and (v − i+ 1)× (3× 2ηi + 1) + t′
(i)
c = 3× (3× 24 + 1) +

56 = 203 clock cycles, respectively. Adding the clock cycle
numbers for the Chase and nested decoding parts, the overall
worst-case latencies of the GII-BCH Chase nested decoding
round 0 and 1 using our first proposed polynomial selection
scheme are 1056 + 84 = 1140 and 203 + 205 = 408 clock
cycles, respectively. Since η2 = η3 = 0, the latencies for
nested decoding round 2 and 3 using our first design are the
same as those for hard-decision GII-BCH decoding as listed
in the last row of Table I.

Our second design pre-computes the remainders for the
proposed pre-bit-flipping polynomial selection, and the overall
decoding flow is summarized in Fig. 7. After the evaluation
values are calculated in the first clock cycle, the joint KES
architecture takes two more clock cycles to compute Λ(1)(x)
and B(1)(x) for vector σ1. Then the remainder polynomials,
r

(1)
Λ (x) and r(1)

B (x), are derived in one clock cycle by adding
the coefficients of Λ(1)(x) and B(1)(x). Starting from the
same clock cycle, one pair of the evaluation values for vectors
σ2 through ση+1 is calculated in each clock cycle. Once the
evaluation values for a vector is available, the corresponding
remainder polynomials are derived by linear combinations in
2 clock cycles using two sets of the proposed architecture
in Fig. 10(b). The process from the derivation of Λ(1)(x) and
B(1)(x) to the remainder calculation for σ2 through ση+1 takes
1+2+1+2η clock cycles for each sub-word. Once the evalu-
ation values for σ2 through ση+1 are available, the evaluation
values for the rest 2η − η− 1 vectors can be derived by linear
combinations. To reduce the hardware complexity, P = 5 pairs
of evaluation values that do not have any data dependency are
computed at a time by using P sets of the architecture in
Fig. 10(a). Then the corresponding remainder polynomials are
derived by using 2P sets of the architecture in Fig. 10(b).
Since pipelining is applied between the architectures in Fig.
10(a) and 10(b), the remainder pre-computation for vectors
ση+2 through σ2η takes 2×d(2η−η−1)/P e+2 clock cycles
to complete for each sub-word.
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When a zero remainder is found, the error-locator poly-
nomial for the corresponding test vector is derived by using
the proposed joint KES architecture. Since a vector has up
to η bits flipped besides the pre-flipped bit compared to the
hard-decision vector, this step takes up to 2η clock cycles. The
roots of the error-locator polynomial is computed in t′(i)c = 56
(i = 0, 1) clock cycles by sharing the reconfigurable Chien
search architecture for the nested decoding. Since only one
error-locator polynomial is actually computed for each sub-
word that is correctable in the Chase decoding, the worst-case
latencies of the Chase process in nested decoding round 0 and
1 using our second proposed approach are m× (3+1+2η0 +

2×d(2η0−η0−1)/P e+2)+(m−v)×(2η0 +t′
(0)
c ) = 8×(3+

1+2×5+2×d(25−5−1)/5e+2)+5×(2×5+56) = 554 and
(v−i+1)×(3+1+2ηi+2×d(2ηi−ηi−1)/P e+2)+2ηi+t

′(i)
c =

3×(3+1+2×4+2×d(24−4−1)/5e+2)+2×4+56 = 124
clock cycles, respectively. The worst-case latencies of the GII-
BCH Chase nested decoding round 0 and 1 of our second
design can be derived by adding up the latencies for the nested
decoding parts as 84 + 554 = 638 and 205 + 124 = 329 clock
cycles, respectively. For round 2 and 3, the latencies are the
same as those for hard-decision GII-BCH decoding as listed
in the last row of Table I since η2 = η3 = 0.

For comparisons, GII-BCH Chase decoding that adopts the
one-pass Chase scheme in Algorithm 1 [16] and uses the
Chien search to find the roots of every error-locator polynomial
until the correct one is found is considered. Similar to the
first design, it takes one clock cycle to compute one pair
of the evaluation values and two clock cycles to derive the
corresponding error-locator polynomial for each test vector.
After the error-locator polynomial is computed, the Chien
search is carried out and it takes t

′(i)
c = 56 (i = 0, 1)

clock cycles to compute the roots. The derivation of the
error-locator polynomial for the next test vector is carried
out simultaneously as the Chien search for the current test
vector. In the worst-case, the Chien search is carried out for
each of the 2η − 1 test vectors. Therefore, the latencies of
the Chase decoding in nested decoding round 0 and 1 are
m×(3+(2η0−1)×t′(0)

c ) = 8×(3+(23−1)×56) = 3160 and
(v−i+1)×(3+(2ηi−1)×t′(i)c ) = 3×(3+(22−1)×56) = 513
clock cycles, respectively. As a result, the worst-case latencies
of the GII-BCH Chase nested decoding round 0 and 1 using
the Chien-search-based polynomial selection are 3160 + 84 =
3244 and 513 + 205 = 718 clock cycles, respectively.

The worst-case latencies of the GII-BCH Chase decoding
using different polynomial selection schemes are summarized
in Table I. Compared to the GII-BCH Chase decoding with
Chien-search-based polynomial selection, our first design re-
duces the worst-case latencies of nested decoding round 0 and
1 in terms of the number of clock cycles by (1−1140/3244)×
100 = 65% and (1 − 408/718) × 100 = 43%, respectively,
despite that larger ηi is used. By pre-computing the remainders
for the proposed polynomial selection scheme, our second
design further reduces the latencies by 15% and 11% for
nested decoding round 0 and 1, respectively. For general cases,
the formulas for calculating the worst-case latencies of the
proposed designs are summarized in Table II.

TABLE II: Worst-case nested decoding and Chase decoding la-
tencies for soft-decision ([m, v], n) GII-BCH Chase decoders
with τ = [τ0, τ1, · · · , τv] and η = [η0, η1, · · · , ηv]

nested dec. round 0 nested dec. round i (1 ≤ i ≤ v)
soft-decision GII-BCH Chase dec. [16] w/

Chien-search-based poly. select.
nested dec. 3τ0 τi − τi−1 + 3

latency +(v−i+1) · (t(i)s +t
(i)
c )

chase dec.m · (3 + (2η0 − 1) · t′(0)
c )(v − i+ 1) · (3+(2ηi−1)·t′(i)c )

latency
proposed soft-decision GII-BCH Chase dec. w/

pre-bit-flipping poly. select.
nested dec. 3τ0 τi − τi−1 + 3

latency +(v−i+1)·(t(i)s +t
(i)
c )

chase dec. m · (3 · 2η0 + 1) (v − i+ 1) · (3 · 2ηi + 1)+t′(i)c
latency +(m− v) · t′(0)

c

proposed soft-decision GII-BCH Chase dec. w/
pre-bit-flipping poly. select. & remainder pre-comput.

nested dec. 3τ0 τi − τi−1 + 3

latency +(v − i+ 1) · (t(i)s + t
(i)
c )

chase dec. m · (6 + 2η0)+ (v − i+ 1) · (6 + 2ηi)+
latency m·2·d(2η0 − η0 − 1)/P e (v−i+1)·2 · d(2ηi−ηi−1)/P e

+(m− v) · (2η0 + t′(0)
c ) +2ηi + t′(i)c

t
(i)
s : number of clock cycles for syndrome computation in nested decoding

round i.
t
(i)
c : number of clock cycles for the Chien search in nested decoding round
i.
t′(i)c : number of clock cycles for the Chien search in Chase decoding in nested
decoding round i.
P : parallelism of linear combination for remainder pre-computation of the
second proposed soft-decision GII Chase decoder.

TABLE III: Average latencies of the Chase process in different
nested rounds of ([8,3], 4095) GII-BCH Chase decoding with
τ = [28, 32, 39, 58] and η = [η0, η1, 0, 0] over GF (212) at
5.7dB Eb/No

Nested 0 1 0 1 0 1
dec. round

One-pass Chase Prop. one-pass Prop. one-pass
[16]w/ chien-search Chase w/ pre-bit Chase w/ pre-bit
-based poly. select. -flip. poly. select. -flip. poly. select.
([η0, η1] = [3, 2]) ([η0, η1] = [5, 4]) & rem. pre-comp.

([η0, η1] = [5, 4])
Average # 1.80 1.75 1.79 1.74 1.79 1.74
sub-words
carried out
by Chase

dec.
Average # 0.98* 0.86* 0.99 0.86 0.99 0.86
sub-words
correct. by
Chase dec.
Average # 5.73 3.19 22.17 12.43 22.17 12.43
vec. to test
/ sub-word
Average # 482.18 219.87 176.28 114.78 107.25 89.21
clk cycles
in Chase

dec.(norm.) (1.00) (1.00) (0.37) (0.52) (0.22) (0.41)
Chase dec. 4.7×10−5 3.6×10−6 4.7×10−5 3.6×10−6 4.7×10−5 3.6×10−6

act. prob.
Average # 2.2×10−2 7.9×10−4 8.3×10−3 4.1×10−4 5.1×10−3 3.2×10−4

clk cycles
in Chase
dec. aggr.
w/act.prob.

* The average number of sub-words corrected by the Chase decoding in the
Chien-search-based scheme does not affect the average number of clock cycles
in the Chase decoding since the Chien search is carried out for each test vector
regardless of whether it is correctable.

B. Average decoding latency analysis
The average latencies of the Chase process using different

designs are summarized in Table III. Based on simulations
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over 107 samples at Eb/No = 5.7dB, data are collected for
the probability of activating the Chase decoding, the average
number of sub-words over which the Chase decoding is carried
out, the average number of sub-words corrected by the Chase
decoding, and the average number of vectors need to be
tested for each sub-word in the Chase decoding. The average
numbers of clock cycles needed by the Chase decoding in our
proposed design can be calculated by replacing the worst-case
numbers in the formulas of Table II with the average numbers
in Table III. For example, the average numbers of clock cycles
needed by the Chase decoding in our first proposed design can
be calculated as 1.79× (3×22.17+1)+0.99× t′(0)

c = 176.28

and 1.74 × (3 × 12.43 + 1) + 0.86 × t′
(0)
c = 114.78 for

nested decoding round 0 and 1, respectively. Accordingly,
our first proposed design reduces the average Chase decoding
latencies by 1-176.28/482.18=63% and 1-114.78/219.87=48%
for nested decoding round 0 and 1, respectively, compared
to the Chien-search-based design. The average latencies are
further reduced by 15% and 11% for nested decoding round
0 and 1, respectively, using the second proposed design.

The contribution of the Chase decoding to the average
number of clock cycles in the overall GII-BCH decoding
process can be calculated by aggregating the average numbers
of clock cycles needed by the Chase processes with their
activation probabilities as 4.7× 10−5 × 176.28 = 8.3× 10−3

and 3.6 × 10−6 × 114.78 = 4.1 × 10−4 for nested decoding
round 0 and 1, respectively. For higher Eb/N0, the Chase
decoding is activated with even lower probability. Hence the
average latency of the overall GII-BCH Chase decoding of
our designs is dominated by that of the sub-word decoding,
which is around 84 clock cycles. This is also very similar
to those of the Chien-search-based GII Chase decoding and
hard-decision GII decoding. The critical path of a circuit
determines the maximum achievable clock frequency. The
proposed design has 13 gates in the critical path as listed
in Table IV. From [22], a design with 11 gates can easily
achieve 1Ghz clock frequency using TSMC 65nm process.
Hence, it can be estimated that the proposed design can
achieve 11/13 = 850Mhz clock frequency and accordingly
(4095× 8)× 850Mhz/84 = 330Gbit/s throughput.

C. Hardware complexity analysis

The hardware complexities of the proposed ([8, 3], 4095)
GII-BCH Chase decoders over GF (212) are analyzed in archi-
tectural level and summarized in Table IV. The complexities
are estimated in terms of the number of XOR gates needed to
implement the design. A 2-to-1 multiplexer requires the same
area as an XOR gate. The silicon areas of a 2-input AND gate
and a register are estimated as 1/2 and 3 times, respectively,
the area of an XOR gate. A GF (212) general multiplier can
be implemented by the same area as 201 XOR gates [4].
The hard and soft-decision GII-BCH Chase decoders have the
same sub-word decoder. A sub-word decoder consists of m
τ0-error-correcting BCH decoders. As mentioned before, the
parallelisms of the syndrome computation and Chien search
architectures are adjusted so that they can be completed in

TABLE IV: Hardware complexities of ([8, 3], 4095) GII-BCH
Chase decoders with τ = [28, 32, 39, 58] and η = [η0, η1, 0, 0]
over GF (212)

Sub-word Nested decoder Eva. value Remainder Total Critical
decoder w/ joint Chase KEScomputationcomputation path

(# XORs) (# XORs) (# XORs) (# XORs) (# XORs)(# gates)
Hard-decision GII-BCH decoder [3], [6]

3920k 281k - - 4201k 13
(1)

GII-BCH Chase decoding [16] with Chien-search-based
polynomial selection ([η0, η1] = [3, 2])

3920k 296k 15.9k - 4231.9k 13
(1.01)

Proposed GII-BCH Chase decoder w/ pre-bit-flipping
polynomial selection ([η0, η1] = [5, 4])

3920k 312k 17.5k 0.5k 4250k 13
(1.01)

Proposed GII-BCH Chase decoder w/ pre-bit-flipping polynomial
selection & remainder pre-computation ([η0, η1] = [5, 4])

3920k 312k 21.9k 7k 4260.9k 13
(1.01)

τ0 = 28 clock cycles in order to improve hardware efficiency.
Such high parallelism makes the sub-word decoder large.

The complexities of the nested decoders are listed in the
second column of Table IV. For GII-BCH Chase decoders,
the complexities of the joint KES architectures are included
in this column. Their nested decoders are larger than that
of the hard-decision GII-BCH decoder. Besides, the Chien
search architecture is designed to support longer polynomials
as needed to incorporate the Chase decoding. Therefore, the
nested decoders in our two proposed designs are larger than
that of the Chien-search-based decoder since they use larger
η. Longer error-locator polynomials also require more gates to
compute the evaluation values. Besides, our second proposed
design employs multiple sets of the architectures in Fig. 10
to compute the evaluation values and remainder polynomials.
Hence, it requires larger area compared to our first design
as shown in Table IV. Nevertheless, the overall area of the
GII-BCH Chase decoder is dominated by that of the sub-
word decoder. As a result, the two proposed designs only
have 1% area overhead compared to the hard-decision decoder,
while achieving significant coding gain as illustrated in Fig.
5. The area overheads of our two proposed designs over the
Chien-search-based GII-BCH Chase decoder are even more
negligible. Besides, in both GII-BCH and GII-BCH Chase
decoders, the critical path lies in the nested KES architecture
and it consists of one multiplier and four adders/multiplexers.
Since a GF (212) general multiplier has 9 gates in the data
path [4], the critical paths of our proposed GII-BCH Chase
decoders have 9+4 = 13 gates, which is the same as those of
the hard-decision GII-BCH decoder and Chien-search-based
GII-BCH Chase decoder.

D. Discussions

For longer codes, the Chien search takes more clock cycles.
In this case, the two proposed designs would achieve more
significant latency reduction. Besides, the second proposed
design can achieve even further latency reduction with smaller
overhead compared to the first one by using a larger paral-
lelism for remainder pre-computation. Larger η leads to better
error-correcting performance. Another advantage of our pro-
posed designs is that the overall worst-case decoding latency
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increases in a much slower pace with η compared to the Chien-
search-based design.

For soft-decision GII-RS decoding, the proposed scheme
can be also employed to integrate the Chase process into the
GII decoding. Each symbol of a RS codeword over GF (2q) is
a q-bit finite field element. To avoid applying the Chien search
on each test vector, the proposed pre-bit-flipping polynomial
selection can flip any bit in the first symbol of the RS
codeword and the error-locator polynomial of a correctable
test vector can still be detected by computing its remainder of
the division by x2 − 1. Also multiple remainders can be pre-
computed to further reduce the decoding latency. To construct
a joint nested and Chase KES architecture for RS codes,
similar reformulations can be applied to the one-pass Chase
algorithm for RS codes in [16] to reduce the data path to one
multiplier and share intermediate results.

An alternative scheme to avoid the expensive Chien search
on invalid error-locator polynomials is to only carry the Chien
search when deg(Λ(x)) < τ + l, where l is the number of
bits flipped in the Chase process. This alternative method
also sacrifices one-bit error-correcting capability and needs to
compute the evaluation values of Λ(x) and B(x) in order to
derive deg(Λ(x)). Therefore, the proposed scheme and this
alternative method have the same error-correcting performance
as well as similar hardware complexity and decoding latency.

IX. CONCLUSIONS

For the first time, this paper considers soft-decision GII de-
coding. Different methods of incorporating the Chase process
into the GII decoding are analyzed and compared to identify
the best GII-BCH Chase scheme. Besides, a new polynomial
selection scheme that pre-flips a pre-set bit is proposed to
reduce the latency of the Chase process. The latency of
the proposed polynomial selection is further reduced by pre-
computing the remainder polynomials. Formulas for analyzing
the error-correcting performance of the proposed designs are
given. Furthermore, low-overhead hardware architectures are
developed to efficiently implement the proposed GII Chase
decoders. The proposed decoders can achieve significant cod-
ing gain over hard-decision decoders with negligible hardware
overhead. Our designs also substantially reduce the worst-case
decoding latency compared to the best alternative GII Chase
decoder. Future research will address further optimizing the
hardware implementation architectures of GII Chase decoders.
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