
1

Generalized Integrated Interleaved Codes
for High-Density DRAMs

Yok Jye Tang and Xinmiao Zhang
The Ohio State University, Columbus, OH 43210, USA

Abstract—As the density of dynamic random-access memo-
ries (DRAMs) keeps increasing, which results in higher error
rates, the conventional single error correction and double error
detection codes are no longer sufficient. Generalized integrated
interleaved (GII) codes based on Reed-Solomon (RS) codes are
among the best error-correcting codes for high-density DRAMs
due to their hyper-speed decoding and good correction capability.
However, the very short codeword length required by DRAMs
leads to miscorrections that substantially degrade the error-
correcting performance of GII-RS codes if untreated. Previous
miscorrection mitigation schemes for longer GII-BCH codes lead
to additional code rate loss when applied to very short GII-
RS codes and hence affect the cost of DRAMs. This paper
presents new miscorrection mitigation schemes with improved
code rates. A small number of parity bits are allocated in an
optimized manner and decoding trials are carried out to close
the performance gap. Moreover, low-latency hardware implemen-
tation architectures have been developed for the proposed GII-
RS decoder. For the example code considered for DRAMs, the
proposed decoder reduces the worst-case latency by 45% with
small area overhead while keeping the same average latency and
critical path compared to the best possible alternative design.

I. INTRODUCTION

The continuous rise in the density of dynamic random-
access memories (DRAMs) for high-performance systems re-
sults in increased error rates. Low-redundancy error-correcting
codes with hyper-speed decoding and good correction capabil-
ity are needed to replace the traditional single error correction
and double error detection codes. Generalized integrated in-
terleaved (GII) codes [1], [2] that nest short Reed-Solomon
(RS) sub-codewords to form codewords of more powerful RS
codes are the best candidate. Their decoding consists of two
stages. The first stage is the hyper-speed conventional RS
decoding over individual short sub-words. The second-stage
nested decoding is activated when there are extra errors.

The current single symbol correction CHIPKILL scheme
used by the AMD and Sun UltraSPARC for DRAMs employs
four un-nested 1-error-correcting (18,16) RS codewords over
GF (28) [3]. To keep a similar codeword format, each GII
codeword has four 1-error-correcting RS sub-codewords with
16 data symbols. One 3-error-correcting RS codeword can be
produced by nesting those four sub-codewords to correct more
errors with simple decoders. Such a GII code can achieve
orders of magnitude lower decoding failure rate compared to
individual (18,16) RS codes. However, miscorrections on the
1-error-correcting sub-words lead to severe degradation on the
correction performance if untreated.

This material is based upon work supported by the National Science
Foundation under Award No. 2011785.

For longer GII codes based on BCH codes, nested syn-
dromes are checked and extended BCH codes are adopted
to identify and mitigate miscorrections in [4], [5]. However,
for very short GII-RS codes, the extra parities of extended
RS codes lead to additional code rate loss. Code rate decides
the capacity and is a key factor affecting the cost of DRAM
devices. Hence it needs to be increased as much as possible.

In this paper, two low-redundancy miscorrection mitigation
schemes are proposed for GII-RS codes with 1-error-correcting
sub-codewords. Instead of using extended RS codes with
extra parity symbols, our first method uses a few parity bits
produced by XOR operations. The parity bits allocated to sub-
words are optimized to improve the probability of identifying
miscorrections by incorporating the nested syndrome check-
ing. The performance degradation caused by miscorrections is
further reduced by carrying out multiple nested decoding trials
in our second method. Additionally, low-latency hardware
implementation architectures are developed for each decod-
ing step. For the example code considered for DRAMs, the
proposed decoder reduces the worst-case latency by 45% with
small area overhead while having the same average latency and
critical path compared to the best possible alternative design.

This paper is organized as follows. Section II intro-
duces GII-RS codes and previous miscorrection mitigation
schemes. The proposed low-redundancy miscorrection mitiga-
tion schemes are detailed in Section III. Low-latency hardware
implementation architectures are developed for the proposed
GII-RS decoder in Section IV. Section V is conclusions.

II. GII-RS CODES

A [m, v] GII-RS code can be constructed using v + 1 RS
codes, Cv ⊆ Cv−1 ⊆ · · · C1 ⊂ C0, with dimension k and error-
correcting capabilities tv ≥ · · · ≥ t1 > t0 as [1], [2]

C ≜{c(x) = [c0(x), · · · , cm−1(x)] : ci(x) ∈ C0,

c̃l(x) =
m−1∑
i=0

βilci(x) ∈ Cv−l, 0 ≤ l < v},
(1)

where β is a primitive element of GF (2q). In (1), ci(x) (0 ≤
i < m) and c̃l(x) (0 ≤ l < v) are the sub-codewords and
nested codewords, respectively. Let ni denote the length of
ci(x). For systematic GII codeword, ni equals k + 2tv−i for
0 ≤ i < v and k+2t0 for v ≤ i < m. Alternatively, GII codes
can be constructed such that the sub-codewords have the same
length but different numbers of data symbols.

Let yi(x) = ci(x) + ei(x)(0 ≤ i < m) be one of the m
received sub-words, where ei(x) is the error polynomial. GII

2

decoding consists of two stages. First, traditional RS decoding
is carried out on individual sub-words. Their syndromes are
computed as S

(i)
j = yi(β

j+1) = ei(β
j+1)(0 ≤ j < 2t0).

If all 2t0 syndromes are zero, it has no error. Otherwise, the
key-equation solver (KES) is carried out to compute the error-
locator polynomial, Λ(x). If the root number of Λ(x) is the
same as its degree, the decoding is considered successful. Its
inverse roots are the error locations. Then the error magnitudes
can be computed by the Forney’s formula using the error-
locator and evaluator polynomials. In sub-word decoding, up
to t0 errors can be corrected in each yi(x).

The second-stage nested decoding is activated when at least
one of the m sub-words has more than t0 errors. It has up to
v rounds and the η-th (1 ≤ η ≤ v) nested decoding round can
correct up to tη errors in at most bη ≤ v + 1− η sub-words.
Let I = {i0, i1, · · · , ib−1} be the set of the indices of the bη
sub-words with extra errors and IC be the set of the indices
of the other sub-words that have been corrected in previous
decoding rounds. First, the 2(tη − tη−1) higher-order nested
syndromes of the first bη nested words are computed as S̃(l)

j =
ỹl(β

j+1)(0 ≤ l < bη, 2tη−1 ≤ j < 2tη), where ỹl(x) =∑
i∈I β

ilyi(x) +
∑

i∈IC βilci(x). Then the higher-order syn-
dromes for those bη sub-words with extra errors are derived
as [S

(i0)
j , S

(i1)
j , · · · , S(ib−1)

j] = A−1[S̃
(0)
j , S̃

(1)
j , · · · , S̃(b−1)

j]T ,
where ‘T ’ denotes transpose and the entry of matrix A in the z-
th row and u-th column is βiuz . After that, the KES computes
the error-locator polynomial according to the 2tη syndromes
for each sub-word. Then the error magnitudes are computed
when the root number of the error-locator polynomial equals
its degree. If there are still some sub-words that remain to
be corrected, they will be passed to the next nested decoding
round and a similar process is repeated.

To match the codeword format of the AMD’s and Sun
UltraSPARC’s CHIPKILL schemes that use four (18, 16)
RS codewords for DRAMs [3], the GII-RS [4, 1] code with
k = 16 and [t0, t1] = [1, 3] over GF (28) is considered. Such
GII-RS code achieves good trade-off on the error-correcting
capability and decoding complexity. Fig. 1 shows that this code
can theoretically achieve orders of magnitude lower decoding
frame error rate (FER) compared to the four un-nested (18,
16) RS codes used in CHIPKILL [3]. However, in sub-
word decoding, a sub-word may be decoded to another valid
codeword when the number of errors is larger than t0. This
is referred to as miscorrection. As shown in Fig. 1, the actual
FER of this GII-RS code taking into account miscorrections
is much higher. This is because, if the miscorrected sub-words
are not identified, then they are not sent to the nested decoding
to correct extra errors.

Three miscorrection mitigation schemes have been proposed
for t0 = 3 GII-BCH codes in [4]. First, miscorrections can
be detected if any higher-order nested syndrome is non-zero.
To identify which sub-words are miscorrected, the second
method utilizes extended BCH codes. In the third scheme,
a miscorrected sub-word can be found when the degree of its
error-locator polynomial is higher than t0.

0.1 0.2 0.4 0.6 0.8 1
Input Symbol Error Rate (ISER)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

4 x un-nested (18,16) RS-theory, rate:88%

4 x un-nested (18,16) RS-actual, rate:88%

([4,1],[t0,t1]=[1,3]) GII-RS-theory, rate:84%

[4,1] GII-RS-actual, rate:84%

[4,1] GII-RS-actual (w/o eRS) [4], rate:84%

[4,1] GII-eRS-actual (w/ eRS) [4], rate:80%

[4,1] GII-RS-actual (prop. method 1),

 [r0,r1,r2,r3]=[3,3,2,0], rate:83%

[4,1] GII-RS-actual (prop. method 2), rate:84%

[4,1] GII-RS-actual (prop. methods 1&2),

 [r0,r1,r2,r3]=[3,3,2,0], rate:83%

x 10
-2

Fig. 1. FERs of [4, 1] GII-RS decoding with [t0, t1] = [1, 3].

III. MISCORRECTION MITIGATION SCHEMES FOR GII-RS
CODES WITH 1-ERROR-CORRECTING SUB-CODEWORDS

In the case of GII-RS codes, extended RS (eRS) codes
can be employed for miscorrection mitigation by borrowing
the idea from [4]. A sub-word is miscorrected if its symbol-
wise XOR result is non-zero. Combined with the other two
schemes in [4], the actual FER of the [4, 1] GII-RS code
becomes closer to the theoretical FER as shown in Fig. 1.
However, if eRS codes or doubly eRS codes as proposed in
[5] are utilized for detecting miscorrections, there will be 4%
or 8%, respectively, code rate loss. On the other hand, the FER
increases significantly without them. This section presents two
low-redundancy miscorrection mitigation schemes to improve
the performance of short GII-RS codes.

A. Parity bits for miscorrection detection

Instead of using parity symbols, a small number of parity
bits generated by XOR operations can be employed to detect
miscorrections with lower redundancy. Assume that ri(ri < q)
parity bits are used for detecting miscorrections in sub-word
ci(0≤ i< m). Let pi,j(0 ≤ j < ri) denote those parity bits.
Each codeword symbol over GF (2q) has q bits. Assuming nq
is divisible by ri, each parity bit can be computed as

pi,j = ci,j + ci,j+ri + · · ·+ ci,nq−ri+j+1, (2)

where ci,l (0 ≤ l < nq) is the l-th bit of ci. When (nq) ∤
ri, those ci,l for l ≥ nq in (2) are set to zero. The parity
bits are calculated in the same way after the decoding and
miscorrection is declared if any parity bit does not match.

The proposed scheme can detect more miscorrected sub-
words by increasing the number of parity bits. The formula of
the probability that the ri parity bits do not detect miscorrec-
tions in a sub-word is very complicated. However, it is around
1/2ri from simulations. Although using eRS codes can detect
miscorrections with higher probability, they require at least
q extra parity bits for each sub-word and hence significantly
decrease the code rate for short GII-RS codes. On the other
hand, our proposed scheme provides a trade-off between the
error-correcting performance and the code rate of short GII-
RS codes. By setting ri = q, the probability of detecting
miscorrected sub-words in our scheme is similar to that of
previous methods [4], [5] with eRS codes.

The probability of successfully detecting miscorrections in a
sub-word increases with the number of parity bits allocated to

3

that sub-word. Since the nested syndrome checking can tell if
there are miscorrections among the m sub-words and only one
sub-word can be sent to the nested decoding process for the
[4, 1] GII-RS code, the available parity bits are allocated to the
first m−1 sub-words as evenly as possible to improve miscor-
rection detection. If some nested syndromes are nonzero and
miscorrections are not detected for the first m− 1 sub-words,
then the last sub-word is miscorrected with a high probability
and is sent to the nested decoding. The total number of parity
bits should be a multiple of q to simplify the storage. For
the [4, 1] GII-RS code, allocating [r0, r1, r2, r3] = [3, 3, 2, 0]
parity bits can substantially reduce the performance gap as
shown in Fig. 1 with only 1% code rate loss.

B. Nested decoding trials for miscorrection mitigation
If the miscorrected sub-word is considered as correctly

decoded and an actually corrected sub-word is selected for
nested decoding, then the higher-order syndromes for the
KES are incorrect and the nested decoding will most likely
fail. Let a be the index of the miscorrected sub-word. If the
actually corrected sub-word b (a ̸= b) is selected for the nested
decoding, yb(x) is used to calculate the nested word, ỹ0(x),
and accordingly the higher-order nested syndrome. For [4, 1]
GII-RS codes, higher-order syndromes for sub-word b equal
the higher-order nested syndromes as

S
(b)
j = S̃

(0)
j = ỹ0(β

j+1) = ea(β
j+1) + eb(β

j+1), (3)

where ea(x) and eb(x) are the error polynomials in the
miscorrected sub-word a and yb(x), respectively. As shown in
(3), the errors that contribute to the higher-order syndromes of
sub-word b are not only from yb(x). Hence, carrying out the
KES on those higher-order syndromes most likely generates
an invalid error-locator polynomial whose root number is not
equal to its degree and hence decoding failure is declared.
This conclusion has also been verified from simulations.
Therefore, whether the nested decoding fails helps to tell if the
miscorrected sub-word has been chosen for nested decoding.

When the nested syndrome checking says there are miscor-
rections, our second proposed scheme carries out nested de-
coding trials on the sub-words until the decoding is successful.
With high probability, the sub-words whose lowest 2t0 = 2
syndromes are both zero do not have errors. Hence, the
nested decoding trials on those sub-words are skipped in our
design. If none of the nested decoding trials is successful, GII
decoding failure is declared. Fig. 1 shows that the actual FER
of the [4, 1] GII-RS code is significantly reduced by adopting
our second scheme. Different from previous miscorrection
mitigation schemes, our second proposed method does not
require additional redundancy. Moreover, the nested decoding
trials can be implemented with only a few clock cycles of
latency by using pipelinable nested decoder architectures. By
combining our two proposed schemes, the decoding FER
becomes very similar to that of GII codes with eRS codes
that have a much lower code rate as shown in Fig. 1.

IV. LOW-LATENCY DECODER ARCHITECTURES FOR SHORT
GII-RS CODES

Moderns DRAMs require error-correcting codes with very
short decoding latency. While GII decoder architectures have

syn.
comput.

compute error
locations &

magnitudes

more than
one erroneous

sub-words?

No

decoding failure

nested syn.
checking & parity
bits computation

detect
miscorrect.?

No

Yes Yes

high-order
nested syn.

comput.
KES

root
comput.

compute error
magnitudes

No
tried every
sub-word?

decoding
success?

Yes

Yes

No

sub-word decoding

nested decoding

No

Yes

decoding of any
sub-word fails?

Fig. 2. [4, 1] GII-RS decoding with [t0, t1] = [1, 3] that employs the
proposed miscorrection mitigation schemes.

been explored in [6]–[9], applying these designs to the pro-
posed GII-RS decoder results in many clock cycles of decod-
ing latency that does not meet the requirements of DRAMs.
In this section, low-latency architectures are developed for the
[4, 1] GII-RS decoding with [t0, t1] = [1, 3].

A. Decoding process and architectures

Fig. 2 shows the decoding process of the [4, 1] GII-RS code
that utilizes the proposed miscorrection mitigation schemes. In
sub-word decoding, m = 4 single-error-correcting RS decoder
architectures are employed to decode the 4 received sub-words
in parallel. Since t0 = 1, after the syndromes are computed,
the error location and magnitude of each sub-word can be
directly calculated from the syndromes by using two multipli-
ers and two inverters [11]. If the decoding of more than one
sub-word fails, GII decoding failure is declared. The nested
decoding is activated when the decoding of only one sub-word
fails since the [4, 1] GII-RS code can only correct one sub-
word with extra errors in the nested decoding, or when there
is no sub-word decoding failure but miscorrections have been
detected from the higher-order nested syndromes. In the latter
case, nested decoding trials are carried out on those sub-words
whose lowest 2t0 = 2 syndromes are not both zero. The parity
bits allocated to sub-words 0-2 are calculated and compared.
It is possible that a sub-word is correctly decoded in the sub-
word decoding but the received parity bits for miscorrection
checking themselves have errors. If multiple sub-words have
mismatched parity bits, they are sent to the nested decoding
one by one, starting from the sub-word with the lowest index.
If none of the sub-words have mismatched parities, sub-word
3 is sent to the nested decoding and is followed by the others
in the decoding trials. To achieve shorter decoding latency,
the syndrome computation and nested syndrome checking can
be implemented by using fully-parallel syndrome computation
architectures, such as those in [7].

In the nested decoding, higher-order nested syndromes are
first computed by sharing the same architecture used for
the nested syndrome checking. For GII codes with v = 1,
higher-order syndromes of the sub-word equal the higher-order
nested syndromes. In the nested decoding of t1=3, the KES
calculates the error-locator and evaluator polynomials and their
roots are computed in the next step. If the degree of the error-
locator polynomial equals its root number, the decoding is
considered successful and the error magnitudes are computed.

The KES architectures for the nested decoding have been
studied in [6]–[9]. These designs originate from the reformu-

4

lated inversionless Berlekamp-Massey (riBM) algorithm [10]
and require at least 2(t1 − t0) + 1 = 5 clock cycles for
the [4, 1] GII-RS code with [t0, t1] = [1, 3]. In our proposed
miscorrection mitigation schemes, the nested decoding may be
carried out in multiple trials. To reduce the worst-case latency
with low complexity, a fully-pipelinable KES architecture is
desirable. Fortunately, for t1 = 3, the error-locator polynomial
of a sub-word can be derived based on matrix inversion,
which is implementable by an architecture free of feedback
loops [11]. The data path of this architecture can be cut
into 4 pipelining stages with a critical path consisting of one
multiplier and 3 adders. Then the evaluator polynomials for
computing the error magnitudes can be derived by multiplying
the error-locator polynomial with the syndrome polynomial
in the next clock cycle. As a result, using the pipelined
architecture, the latency of the nested KES is 5 clock cycles.
Compared to the KES architecture in [6]–[9], the pipelined
architecture only needs 1 instead of 5 clock cycles for each
additional nested decoding trial.

The roots of the error-locator and evaluator polynomials can
be computed by using the Chien search architecture in [7].
The complexity of the Chien search is linear to the codeword
length. Since the length of the sub-words involved in the
[4, 1] GII-RS code is at most max(n0, n1, n2, n3) = 22, the
fully-parallel Chien search architecture has lower complexity
compared to the architectures in [11], [12] that are based on
direct root computation. More importantly, the fully-parallel
Chien search can be completed in one clock cycle. On the
other hand, the designs in [11], [12] have more than 10 clock
cycles of latency due to the pipelining of the long data path.

B. Joint nested syndrome computation architectures

To further reduce the decoding latency, nested syndrome
computations for miscorrection checking and nested decoding
can be combined. The nested syndromes for miscorrection
checking are computed based on the sub-word decoding
results. On the other hand, the received sub-word for the
uncorrected sub-word is used to calculate the syndromes
for nested decoding. However, instead of computing these
syndromes separately, the intermediate results of computing
the syndromes for miscorrection checking can be utilized to
derive the syndromes for nested decoding at the same clock
cycle with reduced complexity.

Let b be the index of the sub-word sent to the nested
decoding and fb(x) be the error polynomial generated from
the sub-word decoding. Denote the sum of the sub-word de-
coding results by ỹ′0(x), which is used to compute the higher-
order syndromes for miscorrection checking, S̃′

j = ỹ′0(β
j+1)

(2t0 ≤ j < 2t1). Then ỹ0(x) = ỹ′0(x) + fb(x) is utilized to
calculate the higher-order syndromes for the nested decoding.
It can be derived that S̃j = S̃′

j+fb(β
j+1). For the [4, 1] GII-RS

decoding with t0 = 1, fb(x) can only have one error and is in
the format of fb(x) = fb,zx

z(0 ≤ z < ni), where z and fb,z
are the error location and magnitude, respectively, given by
the sub-word decoding. Accordingly, fb(βj+1) = fb,zβ

(j+1)z .
Fig. 3 shows the proposed joint nested syndrome compu-

tation architecture. β3z, β4z, · · · , β6z for different z can be

syndrome comput.

architecture

Fig. 3. Joint nested syndrome computation architectures for [4, 1] GII-RS
decoder with [t0, t1] = [1, 3].

TABLE I
COMPLEXITY AND LATENCY COMPARISONS OF [4, 1] GII-RS DECODERS

WITH [t0, t1] = [1, 3] AND 83% CODE RATE OVER GF (28) USING THE
TWO PROPOSED MISCORRECTION MITIGATION SCHEMES

total complex.critical path worst-case avg. latency
(# XORs) (# gates) latency(# clks) (# clks)

alternat. design [6] 24.98k 10 29 4
alternat. design [9] 26.76k 10 45 4
prop. GII-RS dec. 26.52k 10 16 4

pre-computed and stored in a lookup table. For the [4, 1] GII-
RS code considered, only 4·max(n0, n1, n2, n3) = 4·22 = 88
different constant elements need to be stored. By adopting a
fully-parallel syndrome computation unit, the architecture in
Fig. 3 computes the higher-order syndromes for both miscor-
rection checking and nested decoding in one clock cycle.

C. Complexity and latency analyses

Table I shows the complexity of the proposed [4, 1] GII-RS
decoder architecture with [t0, t1] = [1, 3] over GF (28) that
employs the two proposed miscorrection mitigation schemes.
The complexities are estimated in terms of the number of XOR
gates. It is assumed that a register requires 3 times the area of
an XOR gate and the area of a 2-to-1 multiplexer is similar
to that of an XOR gate. A GF (28) general multiplier can
be implemented with an area similar to 98 XOR gates, while
a constant multiplier carried out as a binary constant matrix
multiplication has an average of 25 XOR gates [7]. The area
of a GF (28) inverter is similar to that of 175 XOR gates [7].

In the sub-word decoding, the critical path in each architec-
ture that computes both the error location and magnitude has
one inverter and one general multiplier. Their data paths are 14
and 6 gates [7], respectively. These computations are pipelined
into two stages such that the critical path of the architectures is
reduced to 10 gates. The complexity of the pipelining registers
is included in Table I. Besides, each of the sub-word syndrome
computation and nested syndrome checking can be done in
one clock cycle using fully-parallel syndrome computation
architectures. As a result, the latency of the sub-word decoding
in our design is 1+2+1=4 clock cycles.

By employing the proposed joint nested syndrome compu-
tation architecture in Fig. 3, the higher-order syndromes for
the nested decoding are computed at the same time as the
nested syndrome checking. Besides, the latency of the KES
implemented by using the pipelined architecture in [11] is 5
clock cycles. After that, the fully-parallel Chien search takes
1 clock cycle to compute the roots of the error-locator and
evaluator polynomials. For the error magnitude computation,
multiplexers are needed to select t1 = 3 out of 22 possible
roots followed by inversions and multiplications, and the
overall architecture is pipelined into 3 stages such that the
critical data path does not exceed 10 gates. As a result, the

5

latency of one nested decoding trial is 5 + 1 + 3 = 9 clock
cycles. Each additional nested decoding trial requires only one
more clock cycle due to the fully pipelined architecture.

In the worst case, the proposed GII-RS decoder needs to
carry out a total of four nested decoding trials. Therefore, the
worst-case latency of the proposed design is 4 + 9 + 3 =
16 clock cycles. Since the error rate of DRAMs is low, the
probability of activating the nested decoding is very small.
Accordingly, the average latency of the proposed design is
around 4 clock cycle, which is mainly decided by the sub-
word decoding. Since the sub-word and nested decoders are
implemented by separate hardware units and they are fully
pipelined, one GII-RS codeword is processed in each clock
cycle as long as the nested decoding trial is carried out once.

Among existing nested KES architectures [6]–[9], the one
in [6] is the most efficient in the case of small t1. Its latency is
2(t1 − t0)+ 1 = 5 clock cycles for the example GII-RS code.
For comparison, an alternative GII decoder design that utilizes
the nested KES architecture in [6] is considered. Without using
the proposed joint nested syndrome computation architecture,
nested syndromes for the miscorrection checking and those
for the nested decoding are computed at two different clock
cycles. Hence, the latency of one nested decoding trial is 1+
5 + 1 + 3 = 10 clock cycles. Besides, the KES architecture
from [6] is based on an iterative algorithm and hence 5 more
clock cycles are needed for each additional decoding trial.
Therefore, the worst-case latency of the alternative decoder is
4 + 10 + 3 × 5 = 29 clock cycles when 4 nested decoding
trials are carried out. Since the proposed design only requires
one additional clock cycle for each nested decoding trial, it
reduces the worst-case latency by 1−(16/29)×100 = 45%.
The area of pipelinable KES architecture [11] adopted in the
proposed design is only slightly larger than that of the nested
KES architecture in [6] for t1 = 3. Besides, the extra units to
implement the joint nested syndrome computation architecture
in Fig. 3 accounts for a small portion of the overall decoder.
As a result, our proposed decoder is only 6% larger than the
alterative design while keeping the same average latency and
critical path. The design in [9] is more efficient than those in
[7], [8]. However, they are not optimized for short codes and
the latencies are even longer as shown in Table I.

V. CONCLUSIONS

GII codes based on RS codes are one of the best candidates
for high-density DRAMs due to their good error-correcting
capability and hyper-speed decoding. However, the very short
codeword length of DRAMs brings new challenges to miscor-
rection mitigation, without which the error-correction perfor-
mance of the GII-RS codes will be significantly degraded. This
paper presents two low-redundancy miscorrection mitigation
schemes for short GII-RS codes that allocate a small number
of parity bits in an optimized manner and carry out decoding
trials. Also low-latency hardware implementation architectures
are developed for the proposed schemes. For the GII-RS code
considered for DRAMs, our proposed decoder architecture
has much shorter worst-case decoding latency with small area
overhead while having the same average latency and critical
path compared to the alternative design.

REFERENCES

[1] X. Tang and R. Koetter, “A novel method for combining algebraic
decoding and iterative processing,” Proc. of IEEE Int. Symp. Info. Theory,
Seattle, WA, USA, 2006, pp. 474-478.

[2] Y. Wu, “Generalized integrated interleaved codes,” IEEE Trans. on Info.
Theory, vol. 63, no. 2, pp. 1102-1119, Feb. 2017.

[3] Yeleswarapu, Ravikiran and Somani, Arun K., “Addressing multiple
bit/symbol errors in DRAM subsystem,” PeerJ Comp. Science, Feb. 2019.

[4] Z. Xie and X. Zhang, “Miscorrection mitigation for generalized integrated
interleaved BCH codes,” IEEE Commun. Letters, vol. 25, no. 7, pp. 2118-
2122, Apr. 2021.

[5] Z. Xie and X. Zhang, “Improved miscorrection detection for generalized
integrated interleaved BCH codes,” Proc. IEEE Int. Conf. Commun., 2022.

[6] W. Li, J. Lin, and Z. Wang, “A 124-Gb/s decoder for generalized
integrated interleaved codes,” IEEE Trans. Circuits and Syst.-I, vol. 66,
no. 8, pp. 3174-3187, Aug. 2019.

[7] X. Zhang and Z. Xie, “Efficient architectures for generalized integrated
interleaved decoder,” IEEE Trans. on Circuits and Syst.-I, vol. 66, no. 10,
pp. 4018-4031, Oct. 2019.

[8] Z. Xie and X. Zhang, “Reduced-complexity key equation solvers for gen-
eralized integrated interleaved BCH decoders,” IEEE Trans. on Circuits
and Syst.-I, vol. 67, no. 12, pp. 5520-5529, Dec. 2020.

[9] Z. Xie and X. Zhang, “Fast nested key equation solvers for generalized
integrated interleaved decoder,” IEEE Trans. on Circuits and Syst-I, vol.
68, no. 1, pp. 483-495, Jan. 2021.

[10] D. V. Sarwate and N. R. Shanbhag, “High-speed architectures for Reed-
Solomon decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 9, no. 5, pp. 641–655, Oct. 2001.

[11] Z. Yan, J. Lin and Z. Wang, “A low-complexity RS decoder for triple-
error-correcting RS codes,” Proc. IEEE Computer Society Annual Symp.
on VLSI, 2019, pp. 489-494.

[12] X. Zhang and Z. Wang, “A low-complexity three-error-correcting BCH
decoder for optical transport network,” IEEE Trans. on Circuits and Syst.-
II, vol. 59, no. 10, pp. 663-667, Oct. 2012.

