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Determination of collision mechanisms at low energies

using four-vector correlations

P. G. Jambrina,∗a J. F. E. Croft,b N. Balakrishnan,c Hua Guo d and F. J. Aoiz e

In molecular dynamics, a fundamental question is how the outcome of a collision depends on the

relative orientation of the collision partners before their interaction begins (the stereodynamics of

the process). The preference for a particular orientation of the reactant complex is intimately related

to the idea of a collision mechanism and the possibility of control, as revealed in recent experiments.

Indeed, this preference holds not only for chemical reactions involving complex polyatomic molecules,

but also for the simplest inelastic atom-diatom collisions at cold collision energies. In this work, we

report how the outcome of rotationally inelastic collisions between two D2 molecules can be controlled

by changing the alignment of their internuclear axes under the same or di�erent polarization vectors.

Our results demonstrate that a higher degree of control can be achieved when two internuclear axes

are aligned, especially when both molecules are relaxed in the collision. The possibility of control

extends to very low energies, even to the ultracold regime, when no control could be achieved just

by the alignment of the internuclear axis of one of the colliding partners.

1 Introduction

The outcome of a bimolecular collision is determined by the
chemical nature of the colliding partners, their internal states,
the relative translational (collision) energy, as well as their rela-
tive orientation as they approach each other (the stereodynam-
ics of the process). This statement holds for complex chemical
reactions, where the dependence of the reactivity with the stere-
odynamics of the reaction is intimately related with the idea of
a reaction mechanism and can be traced back to the anisotropy
(direction) of the chemical bonds that are broken or formed,1–6

and also applies to simpler reactions between an atom and a di-
atomic molecule.7–11 On top of this, stereodynamics determines
the properties of the products formed during chemical reactions,
such as for example the propensity for given Λ-doublet states ex-
perimentally found in the O(3P) + D2 reaction.12–15

For inelastic collisions no bonds are formed or broken, and
the products of the collision differ from the reactants just in the
rotational and/or vibrational energy levels, so it is not that ob-
vious how (or if) the outcome of the collision will be modi-
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fied by the stereodynamics of the collision. However, experi-
ments have consistently found that the outcome of inelastic colli-
sions is also strongly dependent on the relative orientation of the
molecules before the collision (see for example Refs. 16–30 ). Re-
cent advances combining Stark-induced adiabatic Raman passage
(SARP) with a co-expansion beam have made it possible to study
the stereodynamics of inelastic collisions at cold energies (below
1 K).25–30 At these energies, scattering is dominated by quantum
resonances, and calculations have proved that by selecting a suit-
able relative orientation of the reactants it is possible to modify
(control) to a significant extent the integral (ICS) and differential
cross sections (DCS).31–42

The stereodynamics of a process can be quantified in terms of
correlations between the vector properties of the collision sys-
tem.43–51 The simplest, the differential cross section, quantifies
the correlation the initial (kkk) and final (kkk′′′) relative velocities of
the collision partners. Three vector correlations involving the di-
rection of the rotational angular momentum of one of the collid-
ing partners ( jjjA) as well as kkk and final kkk′′′ provides information
about how the collision outcome will depend on the direction jjjA
with respect to kkk. Analysis of this vector correlation is necessary
to account for most of the experiments cited above, and to de-
scribe the collision mechanism for reactive or inelastic collisions
between an atom and a diatomic molecule. Recent breakthrough
experiments20,30 have been able to measure 4-vector correlations
involving kkk, kkk′′′, jjjA, and either the direction of the angular mo-
mentum after the collision ( jjj′A)20 or the direction of the angu-
lar momentum of the other partner ( jjjB)30. The latter measure-
ments were successfully simulated from first principles, combin-
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ing quantum scattering calculations on an accurate potential en-
ergy surface and a formalism that describes up to four vector cor-
relations.41

In this work, we go beyond the reproduction of the experi-
mental angular distributions and study how the collision mech-
anism for the inelastic collisions between two diatomic molecules
can be determined through the analysis of the kkk − jjjA − jjjB − kkk′′′

4-vector correlation, even for situations in which the polarisa-
tion of the two incoming molecules is different. Cross molecular
beam experiments in which the two collision partners are inde-
pendently polarised, for instance using SARP schemes for the two
beams, are conceivable. Of course, performing such experiments
at cold energies entails additional difficulties. However, the suc-
cesses achieved over the last decade with merged beams52–55 or
Stark56–58 and Zeeman59 decelerators suggest that such exper-
iments may be feasible in the near future. The system that we
will study is the D2(v, j=2) + D2(v, j=2) at cold energies, as this
was the system studied in Ref. 30. In particular, we will focus
on quantum effects such as resonances, their influence on the re-
action mechanism, and how they are modified by the alignment
and orientation of the collision complex. We will analyze three
different scenarios:

a) D2(v=0, j=2)+D2(v=2, j=2) → D2(v=0, j=2)+D2(v=2, j=0)

b) D2(v=0, j=2)+D2(v=2, j=2) → D2(v=0, j=0)+D2(v=2, j=0)

c) D2(v=2, j=2)+D2(v=2, j=2) → D2(v=2, j=2)+D2(v=2, j=0)

In cases a) and c) only one of the D2 molecules is relaxed from
j=2 to j=0, with the difference that in case a) we have two “dis-
tinguishable” molecules, while in case c) we have two identical
D2(v=2) molecules. Case b) corresponds to a situation in which
both molecules are relaxed during the collision. Cases (a) and
(b) involve the rotational excitation of one of the partners (pure
rotational pumping), whilst case (c) involves the vibrational exci-
tation of the two partners as in a recent work using SARP30.

The paper is organized as follows. The equations needed to
calculate the 4-vector correlations and the details of the scattering
calculations are shown in Section 2. Results for the three different
cases are discussed in Section 3, while the main conclusions are
summarized in Section 4.

2 Methods

2.1 Scattering Calculations
Full dimension QM scattering calculations were performed using
the time-independent close-coupling formalism and a modified
version of the TwoBC code60 on the recent PES of Zuo et al.61

In these calculations, the two D2 molecules were treated as in-
distinguishable molecule, following the convention of Huo and
Green62. In the calculations, the close coupling equations were
propagated using a log-derivative method from 3 to 103 a0 with a
step size of 0.05 a0. Calculations were carried out for each parity
and exchange permutation symmetry, up to a maximum value of
the total angular momentum Jmax=16.42

The asymptotic scattering amplitude was obtained in the or-
bital angular momentum representation. However, for our pur-

poses here it is more convenient to convert the scattering ampli-
tudes into the helicity or body-fixed representation. The transfor-
mation of the T-matrix (T = I - S) from the SF to the helicity
representation is given by63

T J,±
jAB ,mA ,mB ,mAB→ j′

AB
,m′

A
,m′

B
,m′

AB
= ∑

ℓ,ℓ′
iℓ−ℓ [(2ℓ+1)(2ℓ′+1)]1/2

2J+1
×

⟨ℓ′0 j′m′
AB
|J m′

AB
⟩⟨ℓ0 jmAB |J mAB⟩⟨ jA mA jB mB | jAB mAB⟩× (1)

⟨ j′
A

m′
A

j′
B
m′

B
| j′

AB
m′

AB
⟩×T J,±

j′
AB

ℓ′, jAB ℓ
,

where ⟨....|..⟩ denotes a Clebsch-Gordan coefficient, J is the total
angular momentum quantum number, ℓ (ℓ′) is the initial (final)
orbital angular momentum, and jA , jB , j′

A
, and j′

B
are the ini-

tial and final rotational angular momentum quantum numbers
of A and B molecules. The quantum numbers mA/B and m′

A/B

are the projections of jA/B and j′
A/B

onto the initial relative ve-
locity vector and jjj

AB
= jjj

A
+ jjj

B
and jjj′

AB
= jjj′

A
+ jjj′

B
. The indices

that denote the asymptotic channel (initial and final rovibra-
tional states) have been omitted for clarity. In Eq. (1) the ±
index denotes the exchange permutation symmetry index of the
molecules, and the last two Clebsch-Gordan coefficients guaran-
tee that mAB = mA +mB and m′

AB
= m′

A
+m′

B
, so in what follows

mAB and m′
AB

will be omitted for the sake of simplicity. From the
SSS matrix in the helicity representation, the scattering amplitude
can be calculated as:

F±
m′

A
m′

B
mA mB

(θ) =

√
(1+δvA vB

δ jA jB )(1+δv′
A

v′
B

δ j′
A

j′
B
)

2ik
×

∑
J

∑
jAB , j

′
AB

(2J+1)dJ
m′

AB
,mAB

(θ)SJ,±
j′ABm′

Am′
B

jAB mA mB
,

(2)

where k = (2µEcoll/h̄)1/2 is the initial relative wave vector, µ

the reduced mass, and Ecoll the collision energy, and dJ
m′

AB
,mAB

(θ)

is an element of the Wigner reduced rotation matrix. The√
(1+δvA vB

δ jA jB )(1+δv′
A

v′
B

δ j′
A

j′
B
) factor only applies for inelastic

scattering between indistinguishable molecules.64,65

The exchange-permutation symmetrized differential cross sec-
tion (DCS) is given in terms of the corresponding scattering am-
plitudes:

dσ±

dΩ
(θ) =

1
(2 jA +1)(2 jB +1)

× (3)

∑
m′

A
m′

B
mA mB

F±
m′

A
m′

B
mA mB

(θ)
[
F±

m′
Am′

B mA mB
(θ)

]∗
,

and the statistically weighted DCS is obtained as:

dσ

dΩ
(θ) = w+ dσ+

dΩ
(θ)+w− dσ−

dΩ
(θ) (4)

where the w± coefficients are the statistical weights of nuclear
spin states associated with the two exchanges symmetries. For
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collisions between two o-D2 ( j=even) molecules:66

w+ =
21
36

, w− =
15
36

. (5)

2.2 4-vector correlations

Miranda and Clary46,50 and Balint-Kurti and Vasyutinskii51 pro-
vided formalisms to calculate 4-vector correlations. The method-
ology presented here is an extension of the 3-vector correlations
methodology used by Aoiz, Miranda and coworkers.47–49,67 It is
based on the distinction between “intrinsic” and “extrinsic” po-
larization moments. The extrinsic polarization moments describe
and quantify the actual preparation of the incoming molecules in
a hypothetical (or real) experiment, they depend on the proper-
ties of the experiment rather than on the collision dynamics. In
the scattering frame, the extrinsic polarization parameters, a(k)q ,
are given by

a(k)q =Ckq(β ,α)A(k)
0 (6)

where A(k)
0 are the extrinsic polarization parameters (PPs) in the

laboratory frame, and Ckq are the modified spherical harmon-
ics (Ckq(θ ,φ) = [4π/(2k+1)]1/2 Ykq(θ ,φ), where Ykq(θ ,φ) are the
spherical harmonics ). β and α are the polar and azimuthal an-
gles that define the direction of the polarization vector in the
scattering frame, and they rotate the extrinsic polarization pa-
rameters in the laboratory frame (A(k)

0 ) to the scattering frame

(a(k)q ). The use of Ckq implies that the experimental preparation
in the laboratory frame has cylindrical symmetry along the labo-
ratory axis.49 If we assume a hypothetical experiment in which
one reactant is prepared in a pure | jA mA = 0⟩ state, where mA de-
notes the magnetic quantum number with respect to a laboratory-
fixed axis (the polarization vector of the Stokes and pump laser
in the SARP experiment), A(k)

0 = ⟨ jA 0,k 0| jA 0⟩. The preparation
of a | j = 2,m = 0⟩ state can be achieved, for example, by opti-
cal state preparation using the Stark-induced adiabatic Raman
passage (SARP) method. Unless the preparation (polarization)
of the two reactants is equivalent, different extrinsic polariza-
tion parameters are required for each of them. In the particular
case in which one of them is unpolarized (unprepared) the only
non-vanishing extrinsic polarization parameter for that reactant
is A(0)

0 = 1.

The intrinsic polarization parameters (PDDCSs from Polariza-
tion Dependent Differential Cross Sections), in turn, do not de-
pend on the experimental set-up but on the collision dynamics.
They are intimately connected to the idea of collision mecha-
nisms, with the difference that polarization parameters can be
quantified. For the kkk– jjjA– jjjB–kkk′′′ four-vector correlation corre-
sponding to the polarization of the two rotational angular mo-
menta before the collision, the PDDCSs can be calculated in the

uncoupled representation as:41

U
(kA ,kB ),±
qA ,qB

(θ) =
1

(2 jA +1)(2 jB +1)
× (7)

∑
m′

A,m
′
BmA ,mB

F±
m′

Am′
B mA mB

(θ)
[
F±

m′
Am′

B (mA+qA )(mB+qB )
(θ)

]
×

⟨ jA mA ,kA qA | jA(mA +qA)⟩⟨ jB mB ,kB qB | jB(mB +qB)⟩ .

where U
(kA ,kB ),±
qA ,qB

is the PDDCS with rank kA ×kB and components
(qA,qB). The possible values of kA, kB, qA, and qB are limited by
the Clebsch-Gordan coefficients of Eq. (7). Hence,

0 ≤ kA ≤ 2 jA 0 ≤ kB ≤ 2 jB (8)

−kA ≤ qA ≤ kA −kB ≤ qB ≤ kB. (9)

It should be noted that U0,0,±
0,0 (θ) is nothing but the isotropic (no

preparation) DCS, and that if either kA or kB are zero, we recover
the expression for the three vector correlations PDDCSs corre-
sponding to the polarization of jjjB and jjjA, respectively. The ±
index refers to the exchange-permutation index, and an equa-
tion similar to (4) holds for the calculation of the unsymmetrized

U
(kA ,kB )
qA ,qB

. Similarly, in the case of dealing with distinguishable par-

ticles, the U
(kA ,kB )
qA ,qB

can be calculated straight from Eq. (7).

Once the 4-vector correlations have been calculated, the ob-
servable DCS can be evaluated as:

dσ
±(θ |β1,β2,α1,α2) =

2 jA

∑
kA=0

∑
qA

2 jB

∑
kB=0

∑
qB

(2kA +1)(2kB +1)

×
[
U

(kA ,kB ),±
qA ,qB

(θ)
]∗

a
(kA )
qA

a
(kB )
qB

, (10)

where β1 (β2) and α1 (α2) are the polar and azimuthal angles
that define the direction of the polarization vector of A (B) in
an experiment where both molecules could be polarized indepen-
dently. The dependence of the observable DCS on these angles

is included implicitly in a
(kA )
qA

and a
(kB )
qB

, which can be calculated
following Eq. (6).

Similar to the PDDCSs corresponding to the three vector cor-

relations, the U
(kA ,kB ),±
qA ,qB

defined in Eq. (7) are complex numbers.

If kA + kB is even, the U
(kA ,kB ),±
qA ,qB

only have a real part, while if
kA +kB is odd, they are purely imaginary. Moreover, in the partic-

ular case of qA = 0 and qB = 0 the only non-vanishing U
(kA ,kB )

0,0 are
those for which kA + kB is even.

To quantify the effect of reactants polarization on the integral
cross section, it is necessary to calculate the polarization mo-

ments, u
(kA ,kB ),±
qA ,qB

, which are defined as:

u
(kA ,kB ),±
qA ,qB

=
∫ +1

−1
U

(kA ,kB ),±
qA ,qB

(θ)d(cosθ). (11)

Equation (11) is general but requires the calculation of

U
(kA ,kB ),±
qA ,qB

(θ). For the particular case of qA = 0 and qB = 0 the

u
(kA ,kB ),±
qA ,qB

can also be calculated straight from the modulus of the
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Scattering matrix elements, as:

u
(kA ,kB ),±
0,0 =

π

k2 (1+δvA vB
δ jA jB )(1+δv′

A
v′

B
δ j′

A
j′
B
)

1
(2 jA +1)(2 jB +1)

×

∑
jAB mA ,mB

∑
j′
AB

m′
A
,m′

B

∑
J
(2J+1)

∣∣∣SJ,±
j′ABm′

Am′
B jABmA mB

∣∣∣2×
⟨ jA mA ,kA 0| jA mA⟩⟨ jB mB ,kB 0| jB mB⟩ (12)

where the (1+δvA vB
δ jA jB )(1+δv′

A
v′

B
δ j′

A
j′
B
) applies only to inelastic

scattering between indistinguishable molecules. Note that u(0,0),±0,0
is the isotropic ICS.

The observable ICS, i.e. the ICS for an experiment in which the
two molecules are polarized, can be calculated from the integra-
tion of the observable DCS (Eq. (10)) over the azimuthal, and the
scattering angle. The resulting expression is:

σ
±(β1,β2) =

2 jA

∑
kA=0

2 jB

∑
kB=0

(2kA +1)(2kB +1)×

[
u
(kA ,kB ),±
0,0

]∗
a
(kA )

0 a
(kB )

0 , (13)

where the dependence over α1 and α2 as well as the moments
with qA ̸= 0 or qB ̸= 0 have vanished due to the integration over
the azimuthal angle and the properties of the modified spherical
harmonics.

As just described, the intrinsic PDDCSs and PPs express how
the DCS and ICS change with reactant polarization in absolute
terms, as they are proportional to the isotropic DCS and ICS, re-
spectively. Sometimes it is important to express them relative to
the isotropic DCS or ICS so they can convey how important is the
effect of the polarization for those observables. The normalized

PPs, denoted as s
(kA ,kB ),±
qA ,qB

can be calculated as:

s
(kA ,kB ),±
qA ,qB

=
u
(kA ,kB ),±
qA ,qB

u(0,0)0,0

(14)

3 Results

3.1 D2(v=0, j=2) + D2(v=2, j=2) → D2(v=0, j=2) +
D2(v=2, j=0)

We begin with a discussion of D2(v=0, j=2) + D2(v=2, j=2) →
D2(v=0, j=2) + D2(v=2, j=0) collisions. The two molecules are
treated as indistinguishable in the scattering calculations, but in
the range of Ecoll considered here we find that SJ,+

j′ABm′
Am′

B jABmA mB
∼

SJ,−
j′ABm′

Am′
B jABmA mB

, which indicates that the two collision partners

are effectively distinguishable62 (the probability of going from
v=2 to v=0 and simultaneously from v=0 to v=2 is negligible).
According to this, we can describe this process as the rotational
quenching from D2(v=2, j=2) to D2(v=2, j=0) induced by a colli-
sion with a D2(v=0, j=2) molecule that does not change its initial
state.

Panel (a) of Fig. 1 shows the isotropic (no polarization) exci-
tation function, i.e. the cross section as a function of Ecoll in the

Fig. 1 Panel (a) shows the isotropic cross section (solid black line) as

a function of Ecoll for D2(v=0, j=2) + D2(v=2, j=2) → D2(v=0, j=2)

+ D2(v=2, j=0) collisions along with the maximum (red dashed line)

and minimum (blue dashed line) values of the cross sections that can

be achieved by a given alignment of the internuclear axes of the two

diatoms. The labels 1-4 indicate the Ecoll at which the dependence on

σβ1β2 to be shown in Fig. 3. Panel (b) shows the relevant polarization

parameters, sk1k2
q1q2 , as functions of Ecoll. Panel (c) shows the ICS σβ1β2 as

functions of Ecoll for four di�erent preparations. The region above the

maximum value of the cross section that could be achieved is shaded in

grey.

1 mK–100 K range. Along with the isotropic excitation function,
we show the maximum and minimum values that could be ob-
tained by changing independently the alignment of each of the
two partners at each energy. These were calculated by scanning
all of the possible values of β1 and β2 in Eq. (13). It should be
emphasised that the values of β1 and β2 that maximise/minimise
the cross sections vary with the Ecoll, especially around the reso-
nances.

The isotropic excitation function at very low Ecoll is found to
decrease with increasing energy, a behaviour that is predicted by
the Wigner threshold laws (σ ∝ E−1/2

coll ).68 A specific preparation
of the internuclear axes of the two D2 molecules makes it possible
to enhance/decrease the cross sections at these low energies. As
we will see below, this is unexpected as integral cross sections
cannot be modified by the alignment of just one of the reactants in
the limit of zero Ecoll.67 At higher Ecoll the most salient feature of
the excitation function is the presence of sharp peaks around 2.0,
2.9 and 8.9 K, the first two associated to a ℓ=4 shape resonance,
and the latter to a ℓ=5 resonance. It is around these resonances
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where the cross sections could be controlled to a considerable
extent.

Fig. 2 Isotropic cross section (solid black line) as a function of Ecoll for

D2(v=0, j=2) + D2(v=2, j=2) → D2(v=0, j=2) + D2(v=2, j=0) colli-

sions. The region above the maximum value of the cross sections that

can be achieved by a given alignment of the internuclear axes of the

two diatoms is shaded in grey, while the maximum cross sections that

could be obtained by alignment of either D2(v=0, j=2) or D2(v=2, j=2)

are shown as a red and blue dashed lines, respectively. Top panel shows

the region around the resonance. The bottom-left panel shows the low

energy region, while the bottom-right panel displays the 4K-10K energy

range in logarithmic scale.

Some of the PPs that are responsible for the stereodynamical
control are shown in panel (b) of Fig. 1 as a function of Ecoll. Only
the PPs with even kA, and kB are shown since the corresponding

extrinsic a
(k

A/B
)

0 are different from zero only for even values for the
simulated experiment (alignment). In the present notation, 111 cor-
responds to the D2(v=0, j=2), whose internal state is not modi-
fied during the collision, and 222 corresponds to the D2(v=2, j=2)
which is rotationally relaxed. The respective PPs are denoted as
s(k1,k2)

0,0 . It should be stressed that if one of the two ranks k of the
moment is zero, this moment will be the same as that obtained
for the corresponding 3-vector correlation. The physical meaning
of the PPs represented here is:

• Positive (negative) values of s(2,0)0,0 indicate that quenching
of D2(v=2, j=2) is promoted when the internuclear axis of
D2(v=0, j=2) is aligned perpendicular (parallel) to kkk, and
hence increase the cross section for β1 ∼ 90◦ (β1 ∼ 0◦).

• Positive (negative) values of s(4,0)0,0 indicate that quenching
of D2(v=2, j=2) is promoted when the internuclear axis of
D2(v=0, j=2) is aligned perpendicular or parallel (tilted) to
kkk, and hence increase the cross section for β1 ∼ 90◦ or ∼ 0◦

(β1 ∼ 45◦).

• Positive (negative) values of s(0,2)0,0 indicate that quenching
of D2(v=2, j=2) is promoted when its internuclear axis is

aligned perpendicular (parallel) to kkk, and hence increase the
cross section for β2 ∼ 90◦ (β2 ∼ 0◦).

• Positive values of s(2,2)0,0 indicate that quenching of
D2(v=2, j=2) is promoted especially when the internuclear
axis of both D2 molecules is aligned parallel to kkk and to a
lesser extent when both are aligned perpendicular to kkk, and
hence increase the cross section especially for β1 ∼ 0◦ and
β2 ∼ 0◦. Negative values of s(2,2)0,0 indicate that the quenching
is promoted when one internuclear axis is aligned parallel to
the initial relative velocity kkk whilst the other is perpendicu-
lar to kkk (i. e. either for β1 ∼ 0◦ and β2 ∼ 90◦ or for β1 ∼ 90◦

and β2 ∼ 0◦).

According to Fig. 1 (b), at low Ecoll the only relevant PP is
s(2,2)0,0 which indicates that cross sections will be enhanced when
the two internuclear axes are perpendicular to each other. With
increasing Ecoll, s(2,0)0,0 and s(0,2)0,0 are also relevant, the former be-
ing positive and the latter negative, which favors the preference
for collisions where the two internuclear axes are perpendicular
to each other. Around the energies of the resonances the values
of the PPs start oscillating and take larger absolute values, indi-
cating the different collision mechanism at the resonance. Inter-
estingly, for Ecoll above 20 K, the only relevant PP is s(2,0)0,0 , which
indicates that D2(v=2, j=2) quenching only depends on the align-
ment of D2(v=0, j=2) internuclear axis, favoring a parallel align-
ment with kkk.

Panel (c) of Fig. 1 shows the excitation functions for differ-
ent combinations of β1 and β2 around the energy of the ℓ=4 res-
onance, with the shaded region representing the cross sections
above their maximum value that could be achieved by any prepa-
ration. In the vicinity of the resonance, collisions in which both
internuclear axes are perpendicular to kkk minimise the cross sec-
tion, while collisions for which D2(v=0, j=2) is aligned parallel
to kkk and where D2(v=2, j=2) is aligned either parallel or tilted
to kkk significantly enhances the cross section.

To appreciate the different extent of control that can be
achieved by aligning both D2 molecules compared to that ob-
tained when only one of the molecules is aligned, in Fig. 2 we
show the isotropic excitation function along with the maximum
value that can be obtained by aligning just one of the molecules,
and the maximum value obtained when both molecules are
aligned. Our results show that for Ecoll >2.0 K higher cross
sections can be obtained by aligning D2(v=0, j=2) rather than
D2(v=2, j=2) . Only around the ℓ=5 resonance (Ecoll ∼ 9K)
there is a clear gain in the degree of control achieved by aligning
both molecules, and from 20 K, the alignment of D2(v=2, j=2)
has almost no effect on the ICS.

The behaviour at very low energies deserves a separate anal-
ysis. As demonstrated in Ref. 67, it is not possible to modify
the ICS at energies, where only ℓ=0 contributes, by the polariza-
tion of just one of the molecules (i.e. three-vector correlations).
Mathematically, it means the only u(k)0 that is different from zero

is u(0)0 . It does not mean that ℓ=0 scattering is insensitive to an
anisotropic preparation of the reactants, and indeed in the zero
energy limit the DCS depends on the alignment,39,67 but simply
these differences cancel out upon integration over the scattering
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Fig. 3 Contour maps showing the ICS σβ1β2 for D2(v=0, j=2) + D2(v=2, j=2) → D2(v=0, j=2) + D2(v=2, j=0) collisions as a function of β1 and β2
for each of the four Ecoll indicated in Fig. 1. β1 is the angle that de�nes the direction of the internuclear axis of the D2 (v=0, j=2), whose internal

state does not change in the collision, whereas β2 refers to the D2 (v=2, j=2) molecule that experiences the quenching of its rotational level.

angle. For the simpler case of an atom + diatom scattering, if
ℓ=0, J = j and Eq. (12) reduces to

u(k)0 =
π

k2 ∑
m,m′

∣∣∣SJ= j
m′,m

∣∣∣2 ⟨ jm,k0| jm⟩. (15)

Irrespective of j and k, it is true that ∑m⟨ jm,k0| jm⟩ = 0, so u(k)0

can only be zero if ∑m′

∣∣∣SJ= j
m′,m

∣∣∣2 is independent of m. This be-

haviour could be generalized to diatom + diatom scattering and,
in fact, it is systematically observed that there is no integral con-
trol for Ecoll → 0 when only one of the diatomic molecules is polar-
ized.31,37 In the case of the alignment of two molecules the situa-
tion is different. On the one hand, in Eq. (12) we have two differ-
ent Clebsch-Gordan coefficients, and since ∑m |⟨ jm,k0| jm⟩|2 ̸= 0,

even if all the elements of the S matrix had the same values, the
u(kA,kB)

0,0 would be different from zero, which opens the possibility
of control over the ICS. On the other hand, at least at 1 mK, we
still observe differences in the values of the S matrix even though
all three vector correlations are zero for Ecoll <10 mK. In fact, the
value (and even the sign) of the s(2,2)0,0 at Ecoll = 1 mK is different
for the three systems studied.

To exemplify the extend of control attainable through the align-
ment of the two diatoms, we will examine four different Ecoll val-
ues and demonstrate how changing β1 and β2 affects the cross
section. These results are represented in Fig. 3 as contour maps
where β1 is the angle that defines the direction of D2(v=0, j=2),
and β2 corresponds to the direction of D2(v=2, j=2) . Color scale
is shown in the side panels with red and yellow denoting val-
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Fig. 4 Representation of the extrinsic stereodynamical portraits (distributions that graphically represents the dependence of the reaction dynamics

on directions in space) showing the asymptotic spatial distributions of internuclear axes of the two partners which maximise the cross sections in

D2(v=0, j=2) + D2(v=2, j=2) → D2(v=0, j=2) + D2(v=2, j=0) collisions at the Ecoll values indicated in Fig. 1. The portraits for D2(v=0, j=2) are

shown in blue while those for D2(v=2, j=2) collision partner are shown in red.

ues above that of the isotropic cross section, while blue indicates
(β1,β2) regions for which the cross section is smaller. The value
of the isotropic cross section is highlighted with dashed curves.
To gain further insights into the collision mechanism, we combine
this information with sketches of the probability density functions
corresponding to the angles that maximise the cross section.

At Ecoll=10 mK, within the cold regime, the contour map is
symmetric with respect to the diagonal, which indicates that
alignment of either partner yield equivalent results for the same
alignment angle. The minimum value of the cross section corre-
sponds to (β1=0◦, β2=0◦), while the maximum value is attained
for (β1=0◦, β2=90◦) or (β1=90◦, β2=0◦), as expected for a colli-
sion dominated by the negative s(2,2)0,0 moment. The cross section
for (β1=90◦, β2=90◦) is similar to the isotropic cross section. The
sketch for the alignment that maximizes the cross section is rep-
resented in Fig. 4. Please note that we do not have information
about the impact parameter, b, and in this sketch we have as-
sumed a small b, as ℓ=0 dominates at this Ecoll (b is represented
in the figure as the horizontal separation between the blue and
red portraits). It should be borne in mind that the direction of
D2(v=0, j=2) internuclear axis has a significant influence in the
cross section, even though this molecule does not change its rovi-
brational state in the collision.

The plot for Ecoll= 2.06 K corresponds to the energy at which
the first resonance peak is observed (see Fig. 1). The contour map
is no longer symmetric, and the maximum value is obtained for
(β1=45◦, β2=0◦), whose sketch is represented in Fig. 4, where
we have assumed a large impact parameter compatible with ℓ=4

(b=10.9 Å), the partial wave associated to the resonance. There
are two minima corresponding to (β1=90◦, β2=0, 90◦). It is also
worth noting that, in this case, the cross section could only be
decreased to a small extent. Similar behaviour is observed at the
two higher Ecoll considered.

The PPs were found to vary around the Ecoll of the resonance,
and at Ecoll=2.88 K, where the sharpest resonance peak was ob-
served, the relative orientation that maximises the cross section is
(β1= 0◦, β2=0◦), and in this case the contour map is again sym-
metric along the diagonal. The sketch of this relative polarisation
is also displayed in Fig. 4, showing a preference for head-on col-
lisions. The smallest values of the cross sections are obtained for
(β1= 90◦, β2=90◦). Finally, Ecoll= 8.78 K corresponds to the ℓ=5
resonance, and at this energy the orientation that maximises the
cross sections is again β1= 0◦, β2=0◦, while β1= 70◦, β2=70-90◦

yields the smallest cross sections.

3.2 D2(v=0, j=2)+ D2(v=2, j=2) → D2(v=0, j=0) +
D2(v=2, j=0)

Now we examine the effect of the alignment of the two di-
atomic molecules in a process where both molecules are relaxed
to their rotational ground state, D2(v=0, j=2) + D2(v=2, j=2)
→ D2(v=0, j=0) + D2(v=2, j=0). The excitation functions pre-
sented in panel (a) of Fig. 5 are qualitatively similar to those
obtained when only one partner is quenched to j=0 (Fig. 1).
They feature two resonances, one associated with ℓ=4 at 2.83 K,
and another corresponding to ℓ=5 at 8.78 K. Quantitatively, the
cross sections are significantly smaller, as expected for a double
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Fig. 5 (a) Isotropic cross section (solid black curve) as a function of

Ecoll for D2(v=0, j=2) + D2(v=2, j=2) → D2(v=0, j=0) + D2(v=2, j=0)

collisions. The maximum and minimum values of the cross sections that

could be achieved by a given alignment of the two internuclear axes of

the diatoms are shown as red and blue dashed curves, respectively. (b)

The relevant sk1k2
q1q2 as a function of Ecoll. (c) σβ1β2 calculated as a function

of Ecoll for the four given preparations. The region above the maximum

value of the cross section that could be achieved is shaded in grey.

Fig. 6 Same as Fig. 2 but for D2(v=0, j=2) + D2(v=2, j=2) →
D2(v=0, j=0) + D2(v=2, j=0) collisions.

quenching process.
The level of control attainable through the alignment of the

two diatomic molecules exceeds significantly that of the single
quenching process, resulting in an increase of up to a factor of
three in the cross section around the resonances (a factor of 4 at
3.07 K), and an increase by a factor of two at the highest energies.
At the lowest energies the increase is only of 50% .

Panel (b) of Fig. 5 shows the PPs responsible for the stereo-
dynamical control. Strikingly, we observe that s(k1,k2)

0,0 ∼ s(k2,k1)
0,0 ,

and there are only very subtle differences between s(2,0)0,0 ∼ s(0,2)0,0
around 2 K and from 40 K. This suggests that in this process,
the collision mechanism does not differentiate between the align-
ment of either partner, which evinces the spectator role of the
vibrational quantum number at these Ecoll. At very low Ecoll, the
value of s(2,2)0,0 is positive and significantly different from zero. This
contrasts with the results obtained for the single relaxation pro-
cess, where s(2,2)0,0 was negative at low energies. Hence, at low Ecoll

the collision prefers preparations in which both internuclear axes
are aligned parallel to kkk, i.e.,corresponding to a (β1= 0◦, β2=0◦)
conformation. The s(2,2)0,0 remains nearly constant with Ecoll. This

together with the s(2,0)0,0 ∼ s(0,2)0,0 values, causes the arrangement
(β1= 0◦, β2=0◦) to maximize the cross section for the whole Ecoll

range.
Panel (c) of Fig. 5 shows that the alignment of both partners

leads to a substantial increase of the cross sections in the vicin-
ity of the ℓ=4 resonance. In this case, there is only one reso-
nance peak, and the cross section is significantly enhanced by a
(β1= 0◦, β2=0◦) alignment. (β1= 0◦, β2=45◦) and (β1= 45◦,
β2=0◦) lead to a small increase in the cross section. The (β1=
90◦, β2=90◦) alignment makes the cross section smaller than the
isotropic one, implying that side-on collisions are less effective in
double quenching processes.

Fig. 6 illustrates that the simultaneous alignment of both inter-
nuclear axes leads to cross sections that significantly exceed (on
a relative basis compared to isotropic collisions) that obtained by
the alignment of just one of the molecules in the whole Ecoll range
considered here. In fact, by polarizing only one of the diatomic
molecules, significant control is only achieved at the resonances,
and even then, optimal alignment never results in more than an
increase of 70% with respect to the isotropic cross section.

3.3 D2(v=2, j=2)+ D2(v=2, j=2) → D2(v=2, j=2)+
D2(v=2, j=0)

The third case that we will examine is that in which two
identical molecules collide, a D2(v=2, j=2) + D2(v=2, j=2) →
D2(v=2, j=2) + D2(v=2, j=0) collision, which corresponds to
that studied experimentally by Zhou et al.30, and analyzed in
Ref. 41 under the experimental conditions (same alignment for
the two partners).

In contrast to the previous cases, in this system the two
molecules are truly indistinguishable, and accordingly we find
that SJ,+

j′ABm′
Am′

B jABmA mB
differs significantly from SJ,−

j′ABm′
Am′

B jABmA mB
,

which makes impossible to discriminate the molecule that is re-
laxed to j=0. Bearing that in mind, it makes no sense to attribute
β1 and β2 to the alignment of one or the other partner, and al-
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Fig. 7 (a) Isotropic cross section (solid black curve) as a function of

Ecoll for D2(v=2, j=2) + D2(v=2, j=2) → D2(v=2, j=0) + D2(v=2, j=2)

collisions. The maximum and minimum values of the cross sections that

could be achieved by a given alignment of the two internuclear axes of the

diatoms are shown as red and blue dashed curves, respectively. (b) The

relevant polarization parameters, s(k1k2)
q1q2 , are shown as a function of Ecoll.

(c) σβ1β2 calculated as a function of Ecoll for three given preparations.

The region above the maximum value of the cross section that could be

achieved is shaded in grey. The labels 1-4 indicate the Ecoll at which the

dependence on σβ1β2 is displayed in Fig. 9.

Fig. 8 Isotropic cross section (solid black curve) as a function of Ecoll
for D2(v=2, j=2) + D2(v=2, j=2) → D2(v=2, j=2) + D2(v=2, j=0) col-

lisions. The region above the maximum value of the cross sections that

could be achieved by a given alignment of one of the two D2 molecules

is shown as a dashed red curve. Top panel shows the region around the

resonance in a linear scale while the bottom panels show the low energy,

and 3K-10K region in a logarithm Ecoll scale.

though we will keep this notation, β1 and β2 are equivalent for
this process.

The isotropic excitation function for this process, displayed in
panel (a) of Fig. 7, exhibits features similar to those of the pre-
vious processes, but differs in the splitting of the ℓ=4 resonance
into six peaks, with the first three peaks also showing a significant
contribution from ℓ=2. The level of control that could be attain-
able via alignment of the two molecules is somewhat smaller to
that obtained for the single quenching process of D2(v=0, j=2) +
D2(v=2, j=2), and is very modest compared to that obtained for
the double quenching process. Only in the vicinity of the reso-
nances the level of control is significant and, as shown in Fig. 8,
only for some of the peaks do their magnitudes differ signifi-
cantly from those obtained by the alignment of just one of the
molecules, especially for the Ecoll=2.19 K peak.

The PPs displayed in panel (b) of Fig. 7 are qualitatively simi-
lar to those obtained for the single quenching of D2(v=0, j=2) +
D2(v=2, j=2), although their absolute values are slightly smaller,
resulting in a lower degree of control. We attribute this to the in-
distinguishability of the two partners because the absolute value
of s(k1k2),+

q1q2 is different from that of the s(k1k2),−
q1q2 , the former prevail-

ing at the lowest Ecoll due to the higher cross section associated
with the + exchange parity symmetry.

To assess the extent of control attainable in the vicinity of the
ℓ=4 resonance, panel (c) of Fig. 7 shows the cross sections cal-
culated at four different preparations (β1=0◦, β2=0◦), (β1=90◦,
β2=90◦), and (β1=0◦, β2=45◦)≡(β1=45◦, β2=0◦). The combi-
nation of two partial waves (ℓ=2, and ℓ=4, the latter being dom-
inant) alongside two exchange symmetry parities enriches the
stereodynamics at the resonance. For example, (β1=0◦, β2=0◦)
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Fig. 9 Contour maps showing the σβ1β2 for D2(v=2, j=2) + D2(v=2, j=2) → D2(v=2, j=2) + D2(v=2, j=0) collisions as a function of β1 and β2 for

each of the four Ecoll highlighted in Fig. 3. Since both D2 molecules are indistinguishable β1 and β2 represent the angles that de�ne the direction of

the internuclear axis of any of the two diatoms.

alignment leads to the highest cross sections at the two dominant
peaks at 1.99 K and 2.19 K, while it leads to the vanishing of
the resonances peaks at 1.03 and 1.55 K. Interestingly, the 1.03 K
peak also vanishes for the apparently opposite (β1=90◦, β2=90◦)
alignment. However, (β1=0◦, β2=45◦) alignment is capable of
enhancing this resonance and almost maximises the cross sections
at 1.99 K.

Fig. 9 shows how changing β1 and β2 affects the cross section
at some of the resonances peaks. For the Ecoll=1.03 K peak, the
contour map is very symmetrical. Interestingly, this symmetry is
missing if we restrict the results for either ℓ=2 or ℓ = 4, the for-
mer showing a maximum for (β1=0◦, β2=90◦). In fact, the cross
sections for the different preparations are not only determined
by ℓ=2,4 or their incoherent sum, but also for their interference.
At Ecoll=1.55 K, the preparation (β1=0◦, β2=0◦) minimises the
cross section, which also shrinks for (β1=60◦, β2=90◦) align-
ment. The cross section is maximised for (β1=90◦, β2=0◦). Also

at this energy, the cross section for a specific alignment is given by
the interference between the ℓ = 2 and the ℓ=4 contribution. At
the two main resonance peaks, Ecoll=1.99 K, and 2.19 K, it is the
(β1=0◦, β2=0◦) alignment that boosts the cross section, whereas
the (β1=90◦, β2=90◦) alignment suppresses it.

4 Conclusions

In this work we have investigated how the integral cross section of
inelastic diatom–diatom collisions can be controlled by simultane-
ously changing the direction of the rotational angular momentum
(and hence of the internuclear axis) of both diatoms. This re-
quires the evaluation of the correlations between the following 4
vectors: the initial (kkk) and final (kkk′′′) relative velocities of the col-
lision partners, and the directions of the angular momentum of
the two molecules, jjjA and jjjB. The underlying quantum theory is
presented in full-dimensions. As a case study, we have performed
time-independent quantum scattering calculations for the rota-
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tional quenching of D2(v, j=2) + D2(v, j=2) collisions for three
different scenarios: (a) v=0 + v=2, where the D2(v=2, j=2)
molecule is quenched to (v=2, j=0); (b) v=0 + v=2, where both
molecules are quenched to j=0; ( c) v=2 + v=2, where one of
the two indistinguishable molecules is quenched to j=0.

For all cases, the cross section can be controlled over the
entire range of collision energies considered, varying from the
cold regime (1 mK) to 100 K. The degree of control that can be
achieved is higher in the vicinity of the resonances, and espe-
cially for the quenching of both collision partners, where a suit-
able preparation can significantly enhance the cross section (up
to a factor of four), or decrease the cross section, sometimes lead-
ing to the disappearance of the resonance. At very low energies,
the alignment of only one rotational angular momentum could
not lead to control of the integral cross section, whereas simulta-
neous alignment of both rotational angular momenta can provide
some control, due to the behaviour of the s(2,2)0,0 moments which
do not vanish in the ultracold energy regime.

At higher energies, our results show that the cross sections are
typically maximised/minimised when the two internuclear axes
have the same alignment. For the processes studied here, the
cross section is maximised when the two molecules are aligned
along the initial velocity, and is minimised when both are aligned
almost perpendicular to the relative initial velocity. However, this
behaviour changes in the vicinity of resonances and also for en-
ergies below 1 K, where we have also observed cases where the
cross sections are maximised when the two internuclear axes are
aligned perpendicular to each other. These results can be gener-
alised to other systems and, indeed, we expect that for chemical
reactions or inelastic collisions between more complex molecules
a greater degree of control could be achieved by the simultaneous
alignment of two internuclear axes. We anticipate that the meth-
ods and results presented here will inform future experiments on
4-vector correlations at cold or hyperthermal energies.
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