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Modified Extended Integrated Interleaved Codes
Yok Jye Tang and Xinmiao Zhang

Abstract—Extended integrated interleaved (EII) codes have
hyper-speed decoding and good correction capability. They
are among the best candidates for the next-generation digital
communications and storage. However, in existing EII schemes,
parities are allocated to correct a long burst of errors and limit
the correction capability of random errors. In this paper, a
modified EII code is proposed to re-allocate parities for cor-
recting burst errors to form column-wise codes across individual
sub-codewords. The overall decoding process incorporating the
column-wise decoding is developed to reduce the decoding failure
rate. Besides, the allocations of the column-wise parities are
optimized. Miscorrections in column-wise decoding are analyzed.
Compared to previous EII schemes with the same redundancy,
our design achieves a good trade-off between the burst and
random error correction capabilities with small overheads on the
EII encoding and decoding processes. For channels that generate
random errors, the proposed EII code can achieve orders of
magnitude lower frame error rates than the previous EII code
and its best alternative code.

Index Terms—BCH codes, column-wise codes, error-correcting
codes, extended integrated interleaved codes, generalized inte-
grated interleaved codes, Reed-Solomon codes.

I. INTRODUCTION

Next-generation digital communication and storage systems
require error-correcting codes with hyper-speed decoding and
good correction capability. Extended integrated interleaved
(EII) codes [1], [2] and its special case, generalized integrated
interleaved (GII) codes [3], [4], that nest Reed-Solomon (RS)
or BCH sub-codewords to generate codewords of stronger
codes are among the best candidates. The decoding of these
codes consists of two stages. The first stage is traditional
RS or BCH decoding on individual sub-words. The second-
stage nested decoding is activated when any of the sub-words
has extra errors. Hardware architectures for implementing GII
encoding and decoding explored in [5]–[10] can be easily
extended to the cases of EII codes to achieve hundred of gi-
gabits throughput. Although EII codes can also be constructed
as in [11], [12], their decoding process involves iterative re-
encoding, which results in very long latency.

Unlike GII codes, EII codes allocate more parities to correct
a long burst of errors in a sub-word. This limits the amount
of redundancy that can be utilized to correct errors from
other sub-words. For many practical applications, such as
flash memory and optical communications, the errors are
mostly random [4], [12]. For channels with random errors, the
probability of a sub-word experiencing a long burst of errors
is lower than that of having many sub-words with relatively
fewer errors. In such channels, it turns out that EII codes with
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the same amount of redundancy have worse error-correcting
performance compared to GII codes.

This paper proposes a modified EII code that re-allocates
parities for correcting a long burst of errors to form column-
wise codes across individual sub-codewords. These column-
wise codes can be utilized to correct errors from sub-words
such that the nested decoding process can continue to correct
more errors. The overall modified EII decoding process in-
corporating column-wise decoding is developed to reduce the
decoding failure rate. The number of column-wise codewords
and their correction capabilities can vary. Different settings are
analyzed to decide the optimal design. Also miscorrections
in column-wise decoding are investigated and a method is
proposed to identify most of the miscorrections by keeping
track of whether a sub-word is corrected or not. Without
increasing the overall redundancy, the proposed EII scheme
achieves a good trade-off between the burst and random error
correction capabilities with small complexity overheads on the
encoding and decoding processes. For channels that generate
random errors, the proposed modified EII code can achieve
orders of magnitude lower decoding frame error rates than
previous EII and GII codes with the same redundancy.

II. EII CODES AND DECODING

A ([m, v], n) EII or GII codeword is divided into m sub-
codewords, c0, c1, · · · , cm−1, each of which is a codeword
of C0 Reed-Solomon (RS) or BCH code with length n.
Linear combinations of the m sub-codewords generate nested
codewords, which belong to stronger codes, Cv ⊂ Cv−1 ⊂
· · · ⊂ C1. Let sj(1 ≤ j ≤ v) denote the number of nested
codewords belonging to Cj and ŝj =

∑v
i=j si. Also define

ŝv+1 = 0. EII codes [1] can be defined as follows

C ≜{c = [c0, · · · , cm−1] : ci ∈ C0,

c̃l=
m−1∑
i=0

βlici∈Cj , 1 ≤ j ≤ v, ŝj+1 ≤ l ≤ ŝj−1},
(1)

where c̃l is the nested codeword and β is a primitive element
of GF (2q). For EII codes, a codeword of Cv is an all-zero
vector [1]. When sv=0, an EII code reduces to a GII code.

A sub-codeword received by the decoder that may contain
errors is called a ‘sub-word’ in this paper. Let the error-
correcting capabilities of Cv, · · · , C1, C0 be tv > · · · > t1 > t0,
respectively. The decoding process of EII codes consists of two
stages: 1) sub-word decoding and 2) nested decoding. The sub-
word decoding is traditional RS or BCH decoding carried out
on individual sub-words to correct up to t0 errors. The second-
stage nested decoding is activated when any of the m sub-
words has more than t0 errors. The nested decoding has up to v
rounds. Let bη≤ ŝη denote the number of erroneous sub-words
in the beginning of round η. In the η-th (1 ≤ η < v) round,
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8x un-nested (255, 191) RS

([8,4], 255) GII-RS [3],[4], t=[15,22,30,57], s=[3,2,2,0]

([8,4], 255) EII-RS [1],[2], t=[15,18,21,26,255], s=[2,1,1,1]

Fig. 1. FERs of un-nested (255, 191) RS codes, the ([8, 4], 255) GII-RS
code with t = [15, 22, 30, 57] and s = [3, 2, 2, 0], and the ([8, 4], 255) EII-
RS code with t= [15, 18, 21, 26, 255] and s= [2, 1, 1, 1] over GF (28) with
random input errors.

the 2(tη−tη−1) higher-order syndromes of the first bη nested
words are computed. Then the higher-order syndromes for
those bη sub-words with extra errors are derived by inverting
the linear combinations in (1) and the tη-error-correcting RS
or BCH decoding is carried out afterward. As a result, up to
tη errors can be corrected in at most ŝη sub-words. If some
sub-words are still uncorrected, they will be sent to the next
nested decoding round and a similar process is repeated.

For EII codes, the last nested decoding round is different
since the codewords of Cv are all-zero vectors. In this case,
the sv linear combinations of the i-th (0 ≤ i < n) symbols
from the m sub-words are zero. Up to sv errors in the i-th
symbols can be corrected by solving these linear combinations.
As a result, up to n errors can be corrected from at most sv
sub-words in this round. EII codes can correct a long burst
of errors. However, for channels with random errors, a sub-
word is less likely to have a long burst of errors. Most of the
time, EII decoding fails because the number of sub-words that
remain uncorrected at the end of round η is larger than ŝη+1.
Unlike the ([m, v], n) EII codes, ([m, v], n) GII codes have
all parities allocated to correct errors among the sub-words.
Hence, for the same amount of overall redundancy, GII codes
can employ more powerful C1,· · ·, Cv−1, and achieve better
performance over random-error channels.

For EII and GII codes with the same codeword length, the
error-correcting performance increases for smaller m, while
the decoder throughput and complexity improve with larger
m. Besides, larger v leads to a lower overall decoding failure
rate but significantly increases the worst-case decoding latency.
To achieve tradeoffs on overall decoding failure rate, decoder
throughput, hardware complexity, and worst-case decoding
latency, example EII and GII codes for Flash memories with
2k-byte codeword length, m = 8, n = 255, and v = 4 are
considered in this paper.

Fig. 1 plots the frame error rate (FER) of a ([8, 4], 255)
EII-RS code over GF (28) with 75% code rate for channel
with random errors. The code rate of the EII/GII-RS codes
can be calculated as 1 − ((m − ŝ1)2t0 + s12t1 + · · · +
sv−12tv−1+svn)/(mn). In our simulations, each symbol has
equal probability of being erroneous. If a symbol is erroneous,
one of the rest 255 symbols in GF (28) is randomly chosen
to be the corresponding received symbol. It was found by
simulations that t = [t0, t1, t2, t3, t4] = [15, 18, 21, 26, 255]
and s = [s1, s2, s3, s4] = [2, 1, 1, 1] lead to the lowest FER

-1:

-1:

Fig. 2. The proposed ([m, v], n) EII code with the column-wise code.

compared to other EII-RS codes with the same m, v, n, and
code rate but different t and s. Fig. 1 also includes the FER
of the ([8, 4], 255) GII-RS code with t = [15, 22, 30, 57] and
s = [s1, s2, s3, s4] = [3, 2, 2, 0]. The decoder of such a GII-
RS code with t0 = 15 can achieve similar throughput as the
EII-RS decoder. It has lower FER than other ([8, 4], 255) GII-
RS decoders with the same code rate and t0 but different
t1, · · · , tv−1, and s. With the same code rate, this GII code
has 3+2+2=7 instead of 2+1+1+1=5 nested codewords as in
the EII code, and it has more powerful C1, C2 and C3. Fig. 1
shows that this GII code has lower FER than the EII code. For
comparison, the FER of eight un-nested (255, 191) RS codes
is plotted in Fig. 1. It has the same code rate as the EII and
GII codes and can correct up to 32 errors. Compared to such
un-nested RS codes, the EII and GII codes have their FERs
decreasing at a faster pace with the input symbol error rate
and can achieve almost twice the decoding throughput since
the 15-error-correcting sub-word decoding is carried out most
of the time for lower symbol error rates.

III. MODIFIED EII CODES

This section presents a modified EII code that achieves
better error-correcting performance over channels with random
errors. Unlike previous EII codes, the parities for the all-zero
codewords are re-allocated in the proposed scheme to form
column-wise codes across individual sub-codewords. This
allows a trade-off between burst and random error correction.
Additionally, these column-wise codes can help to reduce the
number of uncorrected sub-words in nested decoding round
η− 1 to ŝη so that the nested decoding can continue to round
η to correct more errors.

Fig. 2 shows the layout of a ([m, v], n) EII codeword. The m
sub-codewords, c0, c1, · · · , cm−1, are represented by the rect-
angles from top to bottom. A systematic GII encoding process
has been proposed in [4] and it can be directly extended for
EII codes. In Fig. 2, the blank parts of the rectangles denote
data and the shaded parts represent parities. In [4], the parities
in the sub-words are calculated through reversing the linear
combinations used to define the nested codewords as in (1).
Assuming that a codeword of Cj(0 ≤ j ≤ v) has wj parities,
the number of parities in ci equals wv for 0 ≤ i ≤ sv − 1,
wj(1 ≤ j < v) for ŝj+1 ≤ i ≤ ŝj−1, and w0 for ŝ1 ≤ i < m.

In previous EII codes, all the symbols in the first sv sub-
codewords are parities. To achieve a good trade-off between
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Fig. 3. The decoding process of the proposed EII code.

the burst and random error correction capabilities, the pro-
posed scheme utilizes an RS or BCH code instead of all-zero
code as Cv . Assume that a codeword of this Cv has ρ parities.
The rest n−ρ parities from each of the first sv sub-codewords
are used to form column-wise codewords across individual
sub-codewords as shown in Fig. 2. Since each column has an
equal probability of containing errors, the proposed scheme
selects the first 1 ≤ r0 ≤ (n − ρ) columns to form column-
wise codewords as shown in Fig. 2 to simplify the decoder.
When r0 < n − ρ, the parities in the rest r1 = n − ρ − r0
columns are evenly distributed as much as possible as extra
parities to the r0 column-wise codewords. The optimal choices
of r0, r1 and tv will be discussed in the next section.

In EII decoding, the nested decoding can not continue to
round η when bη is larger than ŝη , which is the maximum
number of sub-words that can be corrected by nested decoding
round η. Assuming that nested decoding round 0 is the sub-
word decoding, Fig. 3 summarizes the overall decoding flow
of the proposed EII codes that incorporate column-wise codes.
The decoding of column-wise codes is activated when bη > ŝη .
If some erroneous symbols get corrected by the column-wise
decoding, the second nested decoding trial in round η − 1
may correct more sub-words and make bη ≤ ŝη , such that the
next nested decoding round can continue. For the later nested
decoding rounds, the decoding of those corrected columns can
be skipped to reduce latency.

Since RS codes are maximum distance separable (MDS)
codes, they are used as the column-wise code in our scheme.
The decoding of the column-wise code is just traditional RS
decoding. When r1 ̸= r0, the r0 column-wise codewords have
different number of parities. Assume that the codeword for
the j-th (0 ≤ j < r0) column has τj parities including those
from the r1 columns. These parities are distributed across
different sub-codewords and more than one of them may be
located in the same sub-word. If the number of symbols in
the bη erroneous sub-words contributing to the j-th column-
wise codeword does not exceed τj , they can be corrected by
erasure-only decoding. Otherwise, error-correcting decoding is
carried out to correct up to ⌊τj/2⌋ errors. This may still correct
some errors since not every symbol in an erroneous sub-word
is incorrect.

For the encoding of the proposed EII code, the parities
of the column-wise code are computed first by carrying out
the traditional RS encoding. Then the rest parities can be
generated by the same systematic GII encoding process in [4]
by treating the parities of the column-wise codewords as the
data parts of c0, · · · , csv−1.

IV. OPTIMIZATIONS OF PARITIES FOR COLUMN-WISE CODE

This section uses the ([8, 4], 255) EII-RS code with t =
[t0, t1, t2, t3, t4] = [15, 18, 21, 26, t4], s = [s1, s2, s3, s4] =
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([8,4], 255) EII-RS, tv=26, s=[2,1,1,1], r=[124,79]

([8,4], 255) EII-RS, tv=26, s=[2,1,1,1], r=[79,124]

([8,4], 255) EII-RS, tv=26, s=[2,1,1,1], r=[102,101]

([8,4], 255) EII-RS, tv=30, s=[2,1,1,1], r=[98,97]

([8,4], 255) EII-RS, tv=40, s=[2,1,1,1], r=[88,87]

([8,4], 255) GII-RS [3],[4], t=[15,22,30,57], s=[3,2,2,0]

([8,4], 255) EII-RS [1],[2], t=[15,18,21,26,255], s=[2,1,1,1]

Fig. 4. FERs of the proposed ([8, 4], 255) EII-RS codes with t =
[15, 18, 21, 26, t4], s = [2, 2, 1, 1] and r = [r0, r1] with random input errors.

[2, 1, 1, 1] as an example to explain the optimizations of tv , r0
and r1 values.

In the proposed modified EII code, r0 decides the number
of columns that are protected by the column-wise code, and
r1 is the number of columns that store the extra parities as
shown in Fig. 2. Fig. 4 shows the simulation results of the
proposed ([8, 4], 255) EII code. The FERs of the code with
r = [102, 101], [79, 124], and [124, 79], but the same tv = 26
are plotted in this figure. Simulations with other values of r
have also been carried out. It was found that the FER is the
lowest when r0 ≈ r1.

In our scheme, tv needs to be at least tv−1, since the
nested decoding rounds are calculating increasingly more
higher-order syndromes and hence should not have decreasing
correction capabilities. Besides, a smaller tv allows more
parities to be allocated to protect more columns and/or increase
the correction capabilities of the column-wise code. Therefore,
tv = tv−1 is used in our proposed design. In this case, the
last nested decoding round is skipped to reduce the decoding
latency and decoding failure is declared in the (v − 1)-th
round if bv > 0. Fig. 4 also shows the FERs of the proposed
EII-RS code with three different tv values: 26, 30 and 40.
For each of these values, r0 and r1 are set to be about the
same. It can be observed that the error-correcting performance
of the proposed scheme decreases with larger tv . Overall,
the proposed ([8, 4], 255) EII-RS code with tv = 26 and
r = [102, 101] achieves lower FER and decoding latency
compared to the settings with different tv and/or r.

For comparisons, the error-correcting performance of the
previous EII-RS code in [1], [2] with tv = 255 that sacrifices
the correction capability of random errors to correct a long
burst of errors is included in Fig. 4. It can be observed that
the proposed ([8, 4], 255) EII-RS code with tv = 26 and
r = [102, 101] can reduce the FER by several orders of
magnitude over channels with random errors. Additionally, the
probability that a column-wise word has a large number of
errors is small. Therefore, the proposed scheme with column-
wise codes can effectively correct some errors. As a result,
the nested decoding can continue for the next round to correct
more errors. Fig. 4 shows that the proposed code achieves
significant coding gain over the ([8, 4], 255) GII code [3], [4]
with t = [15, 22, 30, 57] and s = [s1, s2, s3, s4] = [3, 2, 2, 0]
that has the same code rate.
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TABLE I
WORST-CASE LATENCIES OF THE ([8, 4], 255) EII-RS AND GII-RS

DECODERS
nested dec. round 0 1 2 3 4 total

(# of clks)
GII-RS [3], [4], s=[3, 2, 2, 0] 90 485 505 359 - 1439 (1.03)

t = [15, 22, 30, 57]

EII-RS [1], [2], s=[2, 1, 1, 1] 90 355 498 447 1 1391(1.00)
t=[15, 18, 21, 26, 255]

prop. EII-RS, s=[2, 1, 1, 1] 213 443 435 343 - 1434(1.03)
t=[15, 18, 21, 26, 26],r=[102, 101]

V. LATENCY AND COMPLEXITY ANALYSES

This section analyzes and compares the latencies and com-
plexities of the proposed decoder and prior designs by using
an ([8, 4], 255) EII-RS code with t = [15, 18, 21, 26, 26],
s = [2, 1, 1, 1] and r = [102, 101] as an example.

The worst-case latencies of the proposed design in each
nested decoding round are listed in Table I. In the sub-word
decoding, which is referred to as nested decoding round 0,
m = 8 conventional RS decoders are employed to decode all
the received sub-words in parallel. For t0 = 15, the iterative
key equation solver (KES) step of RS decoding needs 2t0 = 30
clock cycles. The parallelisms of other two steps, syndrome
computation and Chien search, are adjusted so that they are
finished in 30 clock cycles each in order to maximize the
hardware utilization efficiency. As shown in Fig. 3, when bη >
ŝη , the proposed scheme carries out the column-wise decoding.
If any columns get corrected, a second trial nested decoding for
round 0 is done. For r=[102, 101], column 0 through 100 can
correct 1 error or 2 erasures, and column 101 can only correct
1 erasure. Either 1-error-correcting or 2-erasure-correcting RS
decoding can be completed in 3 clock cycles. By using 10
copies of each decoder, the overall column-wise decoding can
be done in ⌈102/10⌉×3=33 clock cycles. Besides, the second
trial nested decoding for round 0 takes another 90 clock cycles
by re-using the same sub-word decoder. Hence, in the worst
case, the sub-word decoding of the proposed design takes 90+
33+90=213 clock cycles.

Architectures for nested decoding have been developed in
[7]–[10]. Since the later nested decoding rounds are activated
with low probability, hardware units are reused for round
1 through v. To make up for the longer worst-case sub-
word decoding latency and achieve similar overall worst-case
decoding latency as the previous EII scheme in [1], [2], higher
parallelisms are used for the syndrome computation and Chien
search architectures for the nested decoding in the proposed
design. As mentioned in the previous section, the proposed
EII-RS code has tv = tv−1 and the last nested decoding round
is skipped. The worst-case number of clock cycles needed for
each nested decoding round is listed in Table I. The same
hardware units are used to decode the sub-words one by one
for the nested decoding. Using the reconfigurable Chien search
architecture in [7], the Chien search latency is longer in later
nested decoding round, and hence the number of clock cycles
needed by the nested decoding round does not reduce linearly
with the number of sub-words to correct. Compared to the
previous [8, 4] EII code [1], [2] and the [8, 4] GII-RS code
[3], [4], the proposed design can achieve similar worst-case
latency and much lower FER as shown in Fig. 4.

TABLE II
AVERAGE LATENCIES OF THE ([8, 4], 255) EII-RS AND GII-RS

DECODERS OVER 3×10−2 INPUT SYMBOL ERROR RATE
nested dec. 0 1 2 3 4 total

round (# of clks)
([8, 4], 255) GII-RS [3], [4], t = [15, 22, 30, 57], s = [3, 2, 2, 0]

avg. # of clks 90 90.1 145.0 127.0 -
in nested dec.

activation prob. 1 4×10−23×10−5 <10−6 -
of nested dec.

avg. # of clks aggr. 90 3.6 0 0 - 93.6 (0.99)
with act. prob.

([8, 4], 255) EII-RS [1], [2], t=[15, 18, 21, 26, 255], s = [2, 1, 1, 1]

avg. # of clks 90 84.2 176.2 233.0 1
in nested dec.

activation prob. 1 4×10−22×10−39×10−5<10−6
of nested dec.

avg. # of clks aggr. 90 3.4 0.4 0 0 93.8 (1.00)
with act. prob.

prop. EII-RS, t=[15, 18, 21, 26, 26], s=[2, 1, 1, 1], r=[102, 101]

avg. # of clks in 90 53.6 81.1 99.0 -
first nested dec. trial
activation prob. of 1 4×10−22×10−39×10−5 -

first nested dec. trial
avg. # of clks in 123.0 200.5 234.0 120.0 -
col.-wise dec. &

sec. nested dec. trial
activation prob. of <10−7 <10−7 <10−7 <10−8 -
col.-wise dec. &

sec. nested dec. trial
avg. # of clks aggr. 90 2.1 0.2 0 - 92.3(0.98)

with act. prob.

TABLE III
HARDWARE COMPLEXITIES OF THE DECODERS FOR THE ([8, 4], 255)

EII-RS AND GII-RS CODES OVER GF (28)

sub-word nested col.-wise total crit. path
decoder decoder decoder (# XORs)(# gates)

[8, 4] GII-RS [3], [4] 289088 104392 0 393480 11
s=[3, 2, 2, 0] (1.15)

t = [15, 22, 30, 57]
[8, 4] EII-RS [1], [2] 289088 54372 0 343460 11

s=[2, 1, 1, 1] (1.00)
t=[15, 18, 21, 26, 255]

prop. EII-RS, s=[2,1,1,1] 289088 58775 18640 366503 11
t=[15, 18, 21, 26, 26] (1.06)

r = [102, 101]

Table II shows the average latencies of the proposed EII-RS
decoder when the input symbol error rate is 3×10−2. The av-
erage number of clock cycles needed for each nested decoding
round is dependent on the average number of erroneous sub-
words to correct. Each nested decoding iteration is activated
with certain probability. Besides, the column-wise decoding
and the second nested decoding trial are only carried out when
bη > ŝη . Simulations have been carried out over 108 samples
to find these values as listed in Table II. Then the average
latency of the proposed design is computed by aggregating the
average clock cycle numbers with the corresponding activation
probabilities. The nested decoding has decreasing activation
rates in later rounds. For the proposed design, the column-
wise decoding is activated with a very low probability in each
round. As a result, the average latency of the proposed design
is similar to that of the previous EII and GII decoders.

The hardware complexities of the EII and GII decoders
in terms of the equivalent numbers of XOR gates needed
are summarized in Table III. The sub-word decoder of each
design consists of m = 8 t0-error-correcting RS decoders.
Although our proposed design has higher parallelisms for the
syndrome computation and Chien search architectures in the
nested decoder and requires column-wise decoders, the sub-
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([8,4], 255) EII-RS, tv=26, s=[2,1,1,1], r=[124,79]

([8,4], 255) EII-RS w/ miscor., tv=26, s=[2,1,1,1], r=[124,79]

([8,4], 255) EII-RS, tv=26, s=[2,1,1,1], r=[79,124]

([8,4], 255) EII-RS w/ miscor., tv=26, s=[2,1,1,1], r=[79,124]

([8,4], 255) EII-RS, tv=26, s=[2,1,1,1], r=[102,101]

([8,4], 255) EII-RS w/ miscor., tv=26, s=[2,1,1,1], r=[102,101]

([8,4], 255) EII-RS, tv=30, s=[2,1,1,1], r=[98,97]

([8,4], 255) EII-RS w/ miscor., tv=30, s=[2,1,1,1], r=[98,97]

([8,4], 255) EII-RS, tv=40, s=[2,1,1,1], r=[88,87]

([8,4], 255) EII-RS w/ miscor., tv=40, s=[2,1,1,1], r=[88,87]

Fig. 5. Error-correcting performance of the proposed ([8, 4], 255) EII-RS
codes with miscorrections with random input errors.

word decoder accounts for the majority portion of the overall
decoder. Hence the total complexity of our design is slightly
larger than that of the previous [8, 4] EII decoder [1], [2]. Since
the [8, 4] GII-RS decoder [3], [4] has much higher correction
capabilities in the nested decoding, it requires more gates to
implement. Additionally, all three decoders have the same
critical path and hence can achieve the same clock frequency.

VI. DISCUSSIONS

In the proposed EII scheme, miscorrections may happen in
the column-wise error-correcting decoding since the correction
capability is low. For the example EII code with tv = 26
and r = [102, 101], the first 101 columns have 2 parities and
their error-correcting capabilities are only 1. For a column, if
miscorrection happens and any errors from the decoding re-
sults are located in corrected sub-words, then the miscorrection
is identified and its decoding results are ignored. Even if all
errors from the miscorrection are located in uncorrected sub-
words and hence the miscorrection is unidentifiable, some of
the errors in the uncorrected sub-words may still be corrected
by decoding other columns. Therefore, miscorrections on the
column-wise words do not bring much performance degrada-
tion on the overall EII decoding. Fig. 5 shows the FERs of
the proposed ([8, 4], 255) EII-RS codes with miscorrections
collected by carrying out actual EII decoding. The simulations
take a long time and can not be done for lower input symbol
error rates. On the other hand, the FER of the decoding without
considering miscorrections can be derived by checking if the
numbers of errors in the sub-words exceed the correction
capability. As it can be observed from Fig. 5, the FERs of
the proposed EII codes degraded by miscorrections are small.

For EII codes constructed using C0, C1, · · · , Cv that are BCH
codes, the proposed scheme can still be applied. RS codes
are still used as the column-wise code since they are MDS.
This can be done by dividing the bits in each sub-word into
groups of q bits for RS codes over GF (2q). The order of
the finite field for constructing the column-wise code can be
different from that for forming Cj(0 ≤ j ≤ v) codes. Using
a lower-order finite field to construct the column-wise code
will divide the sub-codewords into more columns and the
correction capability of the column-wise code does not change.
A lower-order finite field reduces the encoding and decoding
complexity but leads to more miscorrections in the column-
wise decoding.

For codes with higher code rates but the same m and n, the
numbers of parities allocated to C0, C1, · · · , Cv−1 and hence
their correction capabilities are reduced. The chance that the
nested decoding can not continue to the next round in previous
EII and GII schemes becomes higher. Due to the column-wise
codes, the proposed EII scheme can achieve more significant
reduction on the FER. Besides, when the input error rate
becomes lower, the number of errors in a column is reduced
and more column-wise words can be corrected. As a result,
the proposed design can achieve further performance gain over
previous EII and GII codes for lower input error rates.

For practical channels, even if there are burst errors, they
are unlikely to be length n. In our design, the column-wise
decoding can correct some errors, after which a burst of tv
errors can be further corrected in one sub-word. Hence, our
design can achieve similar decoding failure rate as the previous
EII schemes for channels with burst errors of practical length.

VII. CONCLUSIONS

This paper proposes a modified EII code that incorporates
the column-wise code across individual sub-codewords. Par-
ities for correcting long bursts of errors in the previous EII
schemes are re-allocated to correct random errors through
the column-wise code. Our design achieves a good trade-off
between the burst and random error correction capabilities.
For channels with random errors, the proposed EII code
can achieve significant improvement on the error-correcting
performance compared to previous EII and GII codes. Future
works will explore other variations of EII codes that can
further improve the correction capability.
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