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Abstract—Reed-Solomon (RS) and BCH codes are among the
most broadly used error-correcting codes in digital communica-
tion and storage systems. The Chien search step accounts for a
significant part of the overall decoder complexity of these codes.
The Chien search can be expressed as a Vandermonde matrix
multiplication. This paper develops a novel Vandermonde matrix
decomposition that significantly reduces the number of multipli-
cations needed for the Chien search. Further reformulation on the
matrix decomposition is also proposed to enable efficient parallel
processing in hardware implementation. Accordingly, a low-
complexity parallel Chien search architecture is designed. For an
example 9-error-correcting RS or BCH code over G F(2'°), the
proposed design with 40, 60, and 80-parallel processing achieves
11%, 14%, and 17%, respectively, area reduction compared to the
best prior design with the same throughput and similar latency.

Index Terms—BCH decoder, Chien search, error-correcting
codes, Reed-Solomon decoder, Vandermonde matrix decompo-
sition.

I. INTRODUCTION

Reed-Solomon (RS) and BCH codes are widely used in
digital communication and storage systems, such as optical
transport networks [1], digital video broadcasting [2], and
flash memory [3]. The Chien search that finds the roots of
the error-locator polynomial by exhaustively searching over
all finite field elements is one of the crucial steps in RS/BCH
decoding. Highly-parallel Chien search is needed to achieve
high decoding throughput required by many applications,
and it accounts for a significant part of the overall decoder
complexity.

Chien search architectures can be found in many literatures,
such as [4]-[11]. In the conventional parallel Chien search
architecture [4], each polynomial coefficient is associated
with a column of constant multipliers that share a common
input. Substructure sharing can be applied to the multipliers
in the same column [5], [6] to reduce the gate count. The
design in [7] put off the modular reductions for finite field
multiplications to simplify the multiplications. However, its
gate count is larger than that of applying substructure sharing
to the multipliers across different columns and rows as in [8].
Besides, the power consumption of the Chien search can be
reduced through factorizing out the roots of the polynomials
[9], [10]. When evaluating a finite field element, the design
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in [11] employs a two-step process and the second step is
activated only if the element seems to be a possible root from
the first step. However, the low-power designs in [9]-[11] do
not reduce the gate count of the Chien search architecture.

The Chien search can be expressed as a Vandermonde
matrix multiplication. It is reformulated to enable intermediate
result sharing in [12], [13]. However, these designs are limited
to Vandermonde matrices with up to 7 columns. Besides, they
are targeting at software implementations and do not lead
to regular parallel architectures. Reed-Muller transformation
is utilized in [14] to decompose a Vandermonde matrix to
two matrices that have fewer non-zero entries. However, this
decomposition requires the entries in the Vandermonde matrix
to be in binary order. Although the order does not matter for
fully-parallel Chien search, practical applications can not adopt
fully-parallel Chien search due to its overwhelming complexity
and routing congestion issue. For a non-fully parallel design
that carries out the Chien search over a group of elements at a
time, the search needs to be done in the order of consecutive
power of the primitive finite field element, so its outputs can
be added up to the decoder inputs in the same order to correct
errors without complex re-routing network.

This paper proposes novel methods to decompose the
Vandermonde matrix for non-fully parallel Chien search in
RS/BCH decoding. The Vandermonde matrix whose elements
are in the order of consecutive power of the primitive finite
field element is decomposed into matrices with a substantially
smaller number of non-zero entries by utilizing the standard
basis representation of finite field elements. In order to achieve
efficient parallel design, the proposed decomposition is incor-
porated into a reformulated parallel processing equation. As
a result, a low-complexity parallel Chien search architecture
with significantly reduced number of constant multipliers is
developed. For an example 9-error-correcting RS or BCH
code over GF(2!0), the proposed design with 40, 60, and 80-
parallel processing achieves 11%, 14%, and 17%, respectively,
area reduction compared to the best previous design in [8] with
the same throughput and similar latency.

This paper is organized as follows. Section II introduces
the previous parallel Chien search architecture. The proposed
Vandermonde matrix decomposition is detailed in Section
III. The reformulation for parallel processing is proposed
in Section IV. Section V provides complexity analyses and
comparisons. Conclusions are in Section VL.



II. CHIEN SEARCH IN RS AND BCH DECODING

Consider a t-error-correcting RS or BCH code of length n
constructed over finite field GF(2%)(¢ € Z*). The decoder
first computes 2t syndromes. Using these syndromes, the key-
equation solver (KES) computes the error-locator polynomial.
If there are ' < t errors, the reciprocal of the error-locator
polynomial denoted by A(z) is in the format of

Az) = (z +a™)(z + ') (x4 o), (D

where 0 < 41,19, -+ ,i¢ < n are the indices of the erroneous
symbols. The roots of A(z) are computed by the Chien
search, which is to evaluate A(z) over n finite field elements,
L,a, - ,a"" 1, where « is a primitive element of GF(2%).
The evaluation results are used to decide whether the received
symbols that go through a first-in-first-out buffer need to be
corrected. Hence the evaluation has to be carried out on finite
field elements in the order of increasing power of «, i.e.
1,a,a2,03,---.

To achieve high throughput, a highly-parallel Chien
search architecture is needed. For ¢-error-correcting decoding,
deg(A(x)) < t and A(x) can be re-written as A;x! +
Ay 1271+ ...+ Ag. Fig. 1 shows a P-parallel Chien search
architecture. In clock cycle 0, the coefficients of A(x) are sent
through the multiplexers. Each row in the dotted box consists
of ¢ multipliers and computes

Aad) = Ao + Ay 4o A,

where 0 < 3 < P. Then the evaluation values,
A(1),---,A(af~1), are generated in clock cycle 0.

In later clock cycles, the multiplexers on the bottom of Fig.
1 pass through the outputs of the multipliers in the feedback
loops. The [-th feedback loop from the right side iteratively
computes A;a'*” in clock cycle i(1 < i < [n/P]). As a
result, the j-th output of the architecture in Fig. 1 in clock
cycle i is

Aot 4 A, 1t DIPQE=DT o Ay

= A?UHiP) LA, o DUTIP) o Ay

= A(a? TP,
This architecture needs [n/P] clock cycles to finish the Chien
search. It consists of ¢P constant multipliers, ¢t P adders, ¢+ 1
multiplexers, and ¢ + 1 registers.

Each constant multiplication over GF'(27) can be described
as a g X ¢ constant binary matrix multiplication. Substructure
sharing can be applied among all the constant multipliers in
Fig. 1 to reduce the gate count as in [5], [6], [8]. Among these
designs, the design in [8] that finds the shareable gates of the
constant binary matrix multipliers across different rows and
columns achieves the lowest complexity.

III. VANDERMONDE MATRIX DECOMPOSITION FOR
LOW-COMPLEXITY CHIEN SEARCH

In RS/BCH decoders, the highly-parallel Chien search ac-
counts for a significant portion of the overall decoder com-
plexity. The Chien search can be described as a Vandermonde

t + 1 columns

Ay

Fig. 1. Conventional P-parallel Chien search architecture for t-error-
correcting RS/BCH decoding.

matrix multiplication. This section proposes a novel scheme to
decompose the Vandermonde matrix into two matrices with a
substantially smaller number of non-zero entries. Accordingly,
the number of multiplications in the Chien search can be
significantly reduced.

Let A=[Ag Ay, -+, A¢J and r=[A(1), A(e), - - - ,A(a”fl)].
The Chien search can be described as
r=A-V, 2
where V' is a Vandermonde matrix in the format of
1 1 ... 1
1 o - a1t
V=1{. . . . 3)
Dot ot

Inspired by [14], this paper proposes to decompose V' into two
matrices as
V=F-B, 4)

where the dimension of E is (¢t + 1) X n and that of B is
n X n. Unlike the decomposition method in [14] that only
applies to Vandermonde matrices whose entries in the second
row are finite field elements in binary order, our proposed
method decomposes Vandermonde matrices whose entries are
in consecutive power of « as in (3). This is needed for
developing our proposed low-complexity parallel Chien search
architecture for RS/BCH decoding in Section IV.

A standard basis of GF(27) is {1, -+ ,a? '}. Bach o/
in the second row of V' can be represented in standard basis as
al = aé])+agj)a+~ . -+al(1]_)1aq’1, where aéj),agj), o ,agj_)l
are binary bits. For each row with indices i = 2!(I > 0), a¥
in columns ¢ < 7 < n of V can be written as

ol — (aéj) _ngj)a 4 +aéj21aq—1)i

G
= aé]) . 1 + agj) . ai + e + a((]J—)l . a(q_l)i
Notice that 1, a7, - - -, {9~ D% in (5) are the first ¢ elements in

row ¢ of V. Therefore, the first ¢ entries of F in row ¢ = 2!
are set to those of V. The coefficients in (5) are the same for



every row 4 in the format of 2. Hence the first ¢ entries in
j-th column of B are set to [a(()]), a(lj), . ((13)1] where T'
denotes transpose. Then the entries in row ¢ = 2! and columns
g < j <nof E are set to zero. Accordingly, the product of
row i = 2! of F and column j of B equals a* in V.

To derive a7 in row i’ # 2! of V/, the first ¢ entries in row
i’ of F are set to 1, ai/, o' (@1 gince the q X q entries
in the upper-left corner of B is an identity matrix. In this
case, the entry in row ¢’ and column ¢ < j < n of E can be
calculated as

+ a(j) a(q_l)i/)

eij=all— (agj) + agj)o// +-tagly

to make the product of row i’ of E and column j of B equal
to a'd. Accordingly, the entries in the diagonal of B are set
to ‘1’ and those in rows ¢ < ¢ < n are set to ‘0’.

Let E; ; and B; ; denote the entries of £ and B, respec-
tively, in row 0 < ¢ < ¢ and column 0 < j < n. In summary,
the entries of E are

o for0<i<t,0<j<gq

B = 0 fori=21(1>0),¢g<j<n ©)
fori#2 g<j<n

€i,j

B is an n x n upper-triangular binary matrix and its entries
are

1 Jfori=j
Bij=4d? for0<i<qq<j<n. (O
0 , elsewhere

Take n = 7 and ¢ = 3 as an example. Consider finite field
GF(2%) constructed using primitive polynomial p(x) = 23 +
x + 1. Use the standard basis {1, @, a?}, where « is the root
of p(z). According to (6) and (7), E and B can be formed as
follows

1 1 1 1 1 0 1
jo 1 a o> 0 0 0 0
1 a2 a* 0 0 0 0
1 & af o 1 af «
1 0 0 1 0 1 1]
01 0 1 1 1 0
0 01 01 11
B=]10 0 01 0 0 O
000 01 0O
0 00 0 0 1 o0
00 0 0 0 0 1

Since B is a binary matrix, the total number of constant
finite field multiplications needed in our proposed design
depends on the number of entries in E that are not ‘0’ or
‘1’. For the example above, E' has 9 entries that are not ‘0’
or ‘1’. Accordingly, the proposed design reduces the number
of multiplications in the Chien search from ¢(n — 1) =18 as
needed in the direct Vandermonde matrix multiplication to 9.

From (6), the number of ‘1’ in the first ¢ columns of F
is t + ¢. In columns g < j < n, the entries in the first row

XE() ] XB() —Ae),

f 1)P ‘ r(()) I f(l) oo
t AL l

Fig. 2. Proposed P-parallel Chien search architecture based on Vandermonde
matrix decomposition.

are either ‘0" or ‘1’. Besides, there are [loga(t)| rows in E
whose indices are powers of 2. For these rows, the entries in
columns ¢ < j < n are ‘0’. Therefore, the total number of
finite field multiplications needed in our design is at most

[log2(t)](n — q))

=tn— (t+ [log2(t)](n — q)).

This number is even smaller if some e; ; happen to be ‘1°. As
a result, the complexity of multiplying F and B is much lower
compared to that of directly multiplying the Vandermonde
matrix, which needs ¢(n — 1) finite field multiplications.

t+1n—0t+qg+(n—q)+
(3

IV. VANDERMONDE MATRIX REFORMULATION FOR
PARALLEL CHIEN SEARCH

For longer RS/BCH codes, multiplying the entire £’ matrix
all at once to achieve fully-parallel Chien search is impractical
due to very high hardware complexity and routing congestion.
On the other hand, dividing the F matrix into blocks of
columns and multiplying one block of columns in each clock
cycle would require general finite field multipliers since the
e;,; entries are different. A general multiplier over GF'(29) has
much higher complexity than a constant multiplier [15], [16].
In this section, the decomposition proposed in the previous
section is incorporated into a reformulated version of (2) for
parallel processing. As a result, the products for every block of
columns can be derived by multiplying the same matrices that
need significantly fewer constant multipliers with an iterative
update.

Assuming n is divisible by P, the Vandermonde matrix in
(3) can be divided into n/P sub-matrices as follows

Vo is a Vandermonde matrix in the format of (3) with P
columns. Hence the decomposition proposed in the previous
section can still be applied. It was shown in [8] that V; for
1> 0 in (9) can be re-written as

1 0 .- 0
0 of ... 0
Vi=1|. . . W

V=1[Vo, V1,

(10)



TABLE I
COMPLEXITIES AND SYNTHESIS RESULTS USING TSMC 65NM PROCESS UNDER T’ = 1n.s TIMING CONSTRAINT FOR P-PARALLEL CHIEN SEARCH
ARCHITECTURES WITH n = 1023 AND ¢ = 9 OVER GF(210)

# of constant # of # of # of || total # of equivalent XORs total area (um?) latency critical path
multipliers | adders] multiplexers| register with sub-struc. sharing (normalized) (# of clock cylces) | (# of gates)
P =40
Chien search 360 360 10 10 8216 23693.64 26 7
architecture in [8] (1.00)
Proposed Chien 240 318 10 50 7100 21076.61 27 7
search architecture (0.89)
P =60
Chien search 540 540 10 10 12874 35317.68 18 7
architecture in [8] (1.00)
Proposed Chien 340 492 10 70 10411 30206.08 19 7
search architecture] (0.86)
P =80
Chien search 720 720 10 10 17391 45008.30 13 7
architecture in [8] (1.00)
Proposed Chien 440 690 10 90 13726 37318.06 14 7
search architecture] (0.83)
Divide the vector r in (2) into n/P groups andr(}) is derived by [Ag, Ayal -+, AyatP]- Ey- By with the
as r =[O @ .. /P where r() = last P —n%P = 1 output ignored.

[A(aiP),A(aiP"'l), . 7A(a(i+T)P—1)]. Then E(i) =A-V,.
By using (10), 7(Y)(i > 0) can be reformulated as

r =[Ag, Ara'?, - A ] V. an

Vb can be decomposed into two sub-matrices as Vo = Ej - By
by using the method proposed in the previous section. Then
(11) becomes

@ =[Ag, A1aiP - Aat] - Ey - By (12)

As a result, each (¥ can be computed by multiplying the
same E and By matrices. If n is not divisible by P, the extra
P — n%P outputs from the last group are ignored.

Consider the same example used in the previous section
with n = 7 and t = 3. For P = 4, r is divided into two
groups as r = [r(?), r(1)]. Using the proposed decomposition,
Vo = Eo - By, where

1 1 1 1
1 a a2 0
Eo = 1 a2 o* 0
1 o of ot
1 0 0 1
01 0 1
Bo=1p 0 1 0
0 0 0 1

Then
z(O) == [AO7A17' : '7At] : EO . BO;

Fig. 2 shows the proposed P-parallel Chien search ar-
chitecture based on Vandermonde matrix decomposition. It
calculates () for i = 0,1,--- ,n/P — 1 in clock cycles
0,1,---,n/P —1, respectively. The entries in the row vector,
[Ag, A1t - A;a*P], are generated by the feedback loops
located at the bottom in Fig. 2 in clock cycle ¢. This vector is
multiplied by the Ej and then B matrices. Since the entries
of Ey are constant, its multiplication can be implemented by
constant finite field multipliers. The multiplication by By is
implemented by finite field adders since By is a binary matrix.

A constant multiplication over GF'(2¢) can be implemented
as a ¢ X q constant binary matrix multiplication. Similar to the
best prior design in [8], sub-structure sharing can be applied
to the constant multipliers corresponding to the entries in Fj
and By in two dimensions to further reduce the gate count in
our design.

V. COMPLEXITY ANALYSIS

In this section, the complexity of the proposed P-parallel
Chien search architecture based on Vandermonde matrix de-
composition is analyzed and compared.

In the proposed design shown in Fig. 2, the maximum
number of constant multipliers required for multiplying Ej is
tP — (t + [loga(t)](P — ¢)) from (8). Taking into account
the constant multipliers in the bottom feedback loops, the
proposed P-parallel Chien search architecture has t+tP— (t+
[log2(t)](P—q)) = tP—[log2(t)](P—q) constant multipliers.
A constant multiplier over GF'(29) can be implemented as a



q % q binary matrix multiplication. Sub-structure sharing can
be applied to the multipliers across different rows and columns
as in [8] to further reduce the gate count. Besides, the number
of required finite field adders is decided by the number of non-
zero entries in Ey and By. As shown in Fig. 2, the proposed
design also has ¢ + 1 multiplexers and ¢ + 1 registers.

Table I lists the numbers of multipliers, adders, multiplexers,
and registers needed by the proposed parallel Chien search
architectures with P = 40, 60, and 80 for a 9-error-correcting
RS/BCH code with n = 1023 over GF(2'?). From simula-
tions, it was found that the g(¢+1) x ¢ P constant binary matrix
for the multiplication of Ey has no more than ¢(t+1)/2 ‘1’s
in each column. Hence, it has [log2(g(t +1)/2)] = 6 XOR
gates in the data path. Besides, only the first ¢ rows of By may
have multiple non-zero entries and each of the other rows has
at most a single non-zero entry. Therefore, the data path of
the By matrix multiplication has at most [logy(q + 1)] = 4
XOR gates. Pipelining is applied between the multiplications
of Fy and By to reduce the critical path. Considering the
multiplexers located at the bottom in Fig. 2, the critical path
of the proposed P-parallel Chien search architecture for a
t-error-correcting RS/BCH code over GF'(279) has at most
[log2(q(t + 1)/2)] + 1 = 7 gates. The pipelining leads to
one extra clock cycle on the latency and the Chien search is
completed in [n/P]+1 clock cycles. The pipelining registers
are also included in Table I. Each adder over GF'(27) is
implemented by ¢ XOR gates. A g¢-bit 2-to-1 multiplexer
and a g-bit register have around the same area as ¢ and 3q
XOR gates, respectively. Substructure sharing is applied to
the Ey and By matrices and the total numbers of XOR gates
required by our design can be estimated as listed in Table I.
To further verify our design, it is synthesized using TSMC
65nm process under 7' = 1ns timing constraint and the areas
are also reported in Table L.

For comparisons, the best previous parallel Chien search
architecture [8] is considered. It applies sub-structure sharing
to the constant binary matrix multiplications across different
rows and columns in the architecture of Fig. 1. This design has
lower complexity than those only apply substructure sharing
among the multiplications of the same column [5], [6]. The
complexity and synthesis results of the design in [8] are listed
in Table I. Compared to this design, our proposed design has a
much smaller number of constant multipliers, since the entries
of Ey in row 25(1 > 0) and columns ¢ < j < P are all zero.
The number of ‘1’s in column ¢ < j < P of By is dependent
on the standard basis representation of o’. For small j, it
typically has a small number of non-zero bits. As a result,
the number of adders in our design is also reduced as shown
in Table I. From the synthesis results, our design can reduce
the area requirement by 11%, 14%, and 17% compared to the
architecture in [8] for P = 40,60, and 80, respectively, with
the same critical path and only one more clock cycle in the
latency.

For a larger P, the area reduction achieved by the proposed
design is more significant as shown in Table I, since all entries
in column ¢ < j < P of the rows with indices 2! in Ej
are zero. There is a bigger percentage of rows whose indices
are in the format of 2! when ¢ is smaller. Hence, the area

saving achievable by our proposed design would also be more
significant for codes with smaller .

VI. CONCLUSIONS

This paper develops a novel scheme that decomposes a
Vandermonde matrix into two matrices with a smaller number
of non-zero entries such that the number of finite field multi-
plications in the Chien search can be substantially reduced.
Also a further reformulation on the matrix decomposition
is proposed to enable efficient parallel Chien search, and
a low-complexity implementation architecture is designed.
Compared to the best previous architecture, the proposed
design achieves substantial reduction in the silicon area and the
achievable saving increases for higher parallelism. Future work
will investigate different Vandermonde matrix decompositions
that can further reduce the complexity of highly-parallel Chien
search.
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