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ABSTRACT: Climate change presents huge challenges to the already-complex decisions faced 
by U.S. agricultural producers, as seasonal weather patterns increasingly deviate from historical 
tendencies. Under USDA funding, a transdisciplinary team of researchers, extension experts, 
educators, and stakeholders is developing a climate decision support Dashboard for Agricultural 
Water use and Nutrient management (DAWN) to provide Corn Belt farmers with better predictive 
information. DAWN’s goal is to provide credible, usable information to support decisions by creat-
ing infrastructure to make subseasonal-to-seasonal forecasts accessible. DAWN uses an integrated 
approach to 1) engage stakeholders to coproduce a decision support and information delivery 
system; 2) build a coupled modeling system to represent and transfer holistic systems knowledge 
into effective tools; 3) produce reliable forecasts to help stakeholders optimize crop productivity 
and environmental quality; and 4) integrate research and extension into experiential, transdis-
ciplinary education. This article presents DAWN’s framework for integrating climate–agriculture 
research, extension, and education to bridge science and service. We also present key challenges 
to the creation and delivery of decision support, specifically in infrastructure development,  
coproduction and trust building with stakeholders, product design, effective communication, and 
moving tools toward use.
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C limate variability, economic uncertainty, and changes to agricultural policy all impact 
farmers’ ability to sustainably manage their farms and crop production. In response, the 
USDA has supported several large interdisciplinary projects with coordinated research, 

extension, and education focused on assessing climate impacts and agricultural sustainability 
(Eigenbrode et al. 2014). Technological and agronomic advances toward digital agriculture are 
providing farmers with opportunities to improve productivity and efficiency, while reducing 
environmental impact (Morton et al. 2011; McFadden et al. 2023). Advances in weather 
and climate modeling have produced increasingly accurate and fine-resolution forecasts, 
particularly at the subseasonal-to-seasonal (S2S) scales (Mariotti et al. 2020; Zhu et al. 2023). 
Predictions at the S2S scale, ranging from 2 weeks to 9 months, have great potential value 
to improve agricultural decision-making regarding crop choices, planting dates, water and 
nutrient management, and field practices (Shafiee-Jood et al. 2014). Nevertheless, large gaps 
persist between climate research and agricultural applications (White et al. 2022). Researchers 
are often unaware of the capabilities and adoption of existing agricultural technology, 
while advancements in S2S-scale prediction often remain siloed in academic journals or are 
distributed in formats not relevant to local decision-making (Merryfield et al. 2020). Even after 
forecast information becomes available, it may not be immediately used until after farmers 
perceive it as reliable and potentially valuable (Shafiee-Jood et al. 2021).

Giving farmers easy access to high-quality S2S climate forecasts will help to close the 
gap between research and farming operations. To be readily usable, such information 
must be presented in forms already familiar to and used by farmers, at relevant time scales 
and resolutions, and with easily interpretable measures of accuracy and uncertainty 
(Janssen et al. 2017). Furthermore, predictive information must fit into existing farmer 
workflows without significantly increasing data collection and data transfer requirements.  
Discussions with agricultural stakeholders and DAWN’s internal extension team have 
revealed that farmers want to be able to evaluate the impact of predicted seasonal climate 
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on their operations and to explore hypothetical decision pathways to exploit new oppor-
tunities or mitigate risk.

Developing predictive decision support capabilities requires a coproduction approach that 
brings together scientists, software developers, extension experts, and stakeholders (Meadow 
et al. 2015; Prokopy et al. 2017). Such an approach prioritizes intersectoral conversations 
at an early stage, allowing stakeholders to share their information needs and comfort with 
uncertainty and helping scientists to identify potentially overlooked model outputs (Prost 
2021). Effective coproduction is challenging, in part because it requires clear communication 
among communities with separate knowledge bases and expectations about accuracy and 
uncertainty (Norström et al. 2020). Researchers must therefore think creatively about model 
capabilities and explore model outputs different from those originally envisioned. Addition-
ally, developers should build tools based on a shared vision with users to avoid logistical 
hurdles around incommensurate time scales and data requirements. Finally, developing 
long-term capacities requires educational infrastructure to share the generated knowledge 
and train the next-generation of leaders (Malayil et al. 2021).

In response to these challenges, an interdisciplinary team of researchers, extension special-
ists, and stakeholders are collaborating, under funding from the USDA, to create a predictive 
decision support Dashboard for Agricultural Water use and Nutrient management (DAWN; 
https://dawn.umd.edu/), to improve food and energy crop production in the Corn Belt (Fig. 1). 
DAWN is building infrastructure to translate complex system science into predictive informa-
tion that assists with agricultural decision-making and to make that information available 
to users through a web-based dashboard where they can visualize the impact of climate on 
agricultural productivity and profitability and explore options to increase water and nutrient 
use efficiency.

Coproduction approach
DAWN’s extension team includes faculty from several land grant universities, as well as staff 
from UnCommon Farms, a farm business and consulting organization that works with farmers 
across the Corn Belt. These project members engage stakeholders in an iterative, three-stage 
coproduction process of 1) an initial assessment of needs and capabilities (Clark et al. 2023), 
2) coupled model and tool development, and 3) postrelease engagement and evaluation. The 
first step in the coproduction process involves deep engagement of model developers with 
extension and industry specialists who have extensive background on user needs to determine 
which existing agricultural workflows and informational needs align with predictive model 
abilities. DAWN model developers, tool designers, and extension specialists work together 
in an Agile framework to create user stories: descriptions of the identities, objectives, and 
workflows of expected users (Amna and Poels 2022). These follow a semistructured format of 
“I am… I want… so that…” Through these stories, DAWN extension experts and early-adopter 
users draw on their deep knowledge of stakeholder needs, timelines, and level of comfort with 
technology to profile potential users and sketch out specific model and interface requirements 
for the software development team. Model developers and interface designers work iteratively 
with extension personnel to align the desired information needs with the capabilities of the 
modeling system and development environment. Importantly, results of each iteration are 
documented, as they often generate ideas for new model uses.

The coproduction process and user stories have led to insights into stakeholder needs and 
have formed the basis for the development of the dashboard’s infrastructure and products. 
In particular, they help address potential mismatches between current modeling capabilities 
and existing user needs. DAWN’s modeling platform consists of multiple components, all 
with different development cycles, data requirements, flexibility to respond to user needs, 
and application readiness, a combination that creates significant coproduction challenges.  
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For example, the climate prediction and crop growth models are currently production-ready 
at the S2S time scale and require only easily accessible user data (such as crop type and 
planting date); however, they are relatively inflexible and are largely limited to preset input 
and output data. User story conversations for these models therefore often center around the 
data transformations necessary to develop user-relevant metrics at appropriate spatiotemporal 
scales using the potential existing outputs. Other models, such as irrigation scheduling and 
fertilizer application, require more extensive modifications in order to meet S2S user needs; 
they may need extensive input data that farmers are unable to easily provide, or generate 
outputs at scales less relevant to farm-level decision-making. Here, user stories help determine 
necessary model modifications. This allows greater flexibility in responding to identified user 
needs, but also is a longer process that carries the risk of working toward functionality that 
may prove to be infeasible.

Fig. 1.  DAWN schematic overview. Arrows depict information flows among DAWN’s major research 
and extension activities. The education component engages student training across all these system 
development activities. The external evaluator assesses intrateam and transdisciplinary partnerships 
to support project effectiveness.
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Once tools have been developed and released, DAWN’s extension specialists meet with 
stakeholders, which include farmers, farm managers, and consultants, to gather feedback 
on the public’s use and perception of these tools. These meetings typically take the form 
of trainings or think-aloud interviews with farmer groups (Krahmer and Ummelen 2004;  
McDonald et al. 2012). This allows for continual engagement and evidence-based improve-
ments to existing DAWN tools. Throughout the development, deployment, and adaptive 
improvement process, DAWN has also consulted a Stakeholder Working Group composed of 
growers and representatives from agricultural research, service, and commodity organiza-
tions who meet periodically to identify development priorities, barriers to use, and incentives 
to adopt DAWN by a wide range of practitioners.

Use-inspired predictive modeling platform
Current decision support systems (e.g., Rose et al. 2016; Zhai et al. 2020) tend to assume a 
stationary crop response to climate without feedback, but incorporating seasonal forecasts 
with interactions into planning is critical as climate anomalies covary with underlying 
soil and canopy conditions, increasing system variability and extremes. DAWN translates 
S2S coupled climate and crop forecasts into metrics and formats compatible with existing  
agricultural planning workflows. The current DAWN system launched uses baseline climate 
forecasts from NOAA, transforming them for increased accessibility and relevance to farming 
practices. The upcoming system will be supplemented with dynamically downscaled forecasts 
from CWRF, a regional climate model that incorporates advanced physics representations at 
finer resolution (Liang et al. 2012) and has improved prediction of regional temperature and 
precipitation anomalies and extremes in the United States (Yuan and Liang 2011; Liu et al. 
2015; Sun and Liang 2020, 2023).

CWRF currently produces national forecasts at 30-km resolution, with plans to nest a 
3-km grid over the Corn Belt pending computing resource availability. To improve accuracy 
and reliability, DAWN modelers are testing the use of both machine learning to correct 
systemic biases due to inevitably incomplete representations of climate physics (Carter 
et al. 2021; Golian and Murphy 2022) and superensemble forecasting from all available 
global operational S2S forecasts and NOAA-driven CWRF multiphysics downscaling  
results (Liang et al. 2012; Roy et al. 2020). This bias-corrected superensemble prediction 
better captures regional climate anomalies and will become the primary forecast driving 
the dashboard.

DAWN’s modeling platform feeds NOAA operational, CWRF-downscaled, and 
superensemble-optimized climate–hydrology forecasts into crop models to predict the 
timing of development stages and the magnitude of end-of-season yields for crops in the 
Corn Belt. Decision Support System for Agrotechnology Transfer (DSSAT) is widely used to 
simulate crops such as corn and soybeans (Hoogenboom et al. 2021), while BioCro focuses 
primarily on bioenergy crops like miscanthus (Lochocki et al. 2022). Together, these models 
generate crop-specific growth predictions based on current and predicted seasonal climate 
conditions and management decisions. While current crop prediction research has been 
primarily based on standalone simulations using statistical or dynamical crop models 
driven by climate predictions (Peng et al. 2018), DAWN is developing coupled forecasting 
capability with crop–climate feedbacks. Incorporating such feedbacks can improve predic-
tion of both crop production and climate variation (He et al. 2022).

The seasonal climate and crop forecasts, incorporating all aforementioned prediction 
enhancements, are then transformed into agriculturally relevant metrics or outcomes through 
a pipeline of domain-specific algorithms (Fig. 1). These include growing degree days, crop 
progress, days suitable for field work, recommendations for optimizing irrigation and fertilizer 
application, and estimates of return on investment for various inputs. The transformed data 
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supplement the forecasts by allowing users to explore climate implications and evaluation 
decisions in the context of specific seasonal forecasts.

A user-centric dashboard
DAWN’s dashboard includes both a comprehensive data viewer and a scenario analysis 
toolkit. The data viewer delivers S2S predictions as a coherent, customizable selection of 
data metrics and visualizations, which are updated weekly with increasing accuracy to allow 
users to monitor the evolution of conditions throughout the growing season and make 
adjustments accordingly. The scenario analysis toolkit allows users to explore predicted 
outcomes from choices related to crop type, planting dates, and irrigation and fertilizer 
applications, allowing easy comparison (Fig. 2). Both components were designed to be:

Easy to use. Digital decision tools have been available in the agricultural sector for over a 
decade (Rose et al. 2016; Angel et al. 2017), and many users have existing workflows 
using other software, often which already monitor large amounts of data. Additionally, 
farmers have busy schedules and often wish to access data while on the field. Consequently, 
the dashboard is built to be easy to access on both PC and mobile devices, to require little 
overhead setup, and to integrate easily with other programs. To lower data entry burdens, 
the tools require as little user information as possible, and are populated with default 
values. Algorithms in the scenario analysis toolkit require user input to constrain the range 
of predictions that are generated; however, the options are limited to easily specified metrics 

Fig. 2.  DAWN dashboard examples. (a) The growing degree days tool allows users to view a 9-month forecast of growing 
degree-days and freezing occurrences, with optional comparisons to historical means/ranges and analog years; users can also 
view a crop’s maturity outlook by adjusting planting date and relative maturity. (b) The crop progress tool displays a probabilistic 
distribution of the time window at which a specified crop is projected to reach each maturity stage, and allows users to compare 
among different planting dates and maturities. (c) The field identification tool allows users to manually select and name one 
or multiple farm fields or upload a shapefile of fields, which can then be used as the location or area for other predictive tools.  
(d) The data viewer allows users to visualize temporal and spatial data in a variety of customizable graphics, including maps, 
comparative bar charts, and cumulative line graphs, to support agricultural decision-making.
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like location, crop type, and planting date. To streamline workflows, data and results can be 
downloaded or directly accessed by other software via application programming interfaces 
(APIs). The dashboard is not intended to replicate existing farm management software such 
as Field IQ or Conservis, but instead focus on S2S forecasts that complement tools developed 
for tracking and near-term optimization.

Personalized. Rather than a collection of individual agricultural calculators, the dashboard 
provides a coherent, synchronized interface through which users can create a curated 
environment of relevant forecasts and data streams specific to their fields. Additionally, they 
may customize their displays so that data appear in easily understood maps and figures 
that automatically update with new forecasts. Account settings, including preferences and 
records, persist between logins, so that users can return to previous analyses. Currently, the 
dashboard tools are built around corn; since most of the Corn Belt grows corn and soybeans 
in rotation, soybean-focused tools are a high priority for future development, along with 
perennial grasses.

Context driven.  The dashboard not only delivers forecasts, but situates them in contexts 
necessary for interpretation, providing comparative historical data and measures of predic-
tion accuracy and uncertainty. Forecasts are presented alongside a range of observational 
data from previous years and are linked to analog years predicted to be similar to the cur-
rent year, facilitating comparisons to past experiences. For example, a simple forecast of 
the number of days suitable for fieldwork during the planting period will be supplemented 
by the probability that it exceeds the decadal average. The dashboard will also include 
accuracy and uncertainty measures based on both ensemble statistics and on expected bias 
generated from hindcast analyses for farmers to evaluate risks.

Community engagement and education
Wider uptake of the dashboard’s predictive climate/crop information requires outreach 
and community engagement to introduce the dashboard to key stakeholders (e.g., farm-
ers, extension agents), provide training in its use and applications, and collect feedback 
on possible improvements. As of 2023, DAWN extension specialists have engaged around 
1,340 participants across 33 conferences and events, ranging from broad informational 
seminars to intensive small group or one-on-one training and feedback sessions. Phase 1 
of the dashboard was publicly released at the UnCommon Farms Annual Meeting in 2023, 
opening the doors to a wider group of potential users. These events served both to increase 
awareness of the dashboard’s existence and capabilities and to engage in conversations 
about user needs and interests. Parallel with the dashboard’s development, DAWN is creat-
ing a series of extension materials including fact sheets and video tutorials exploring how 
to use and interpret the new resources.

DAWN also strives to involve students in each stage of its development through  
experiential education. Leveraging infrastructure from the USDA-funded CONSERVE and 
NSF-funded UMD Global STEWARDS projects, DAWN provides interdisciplinary graduate  
and undergraduate courses focused on the food–energy–water nexus, as well as an un-
dergraduate summer internship program (Malayil et al. 2021). The DAWN summer intern-
ship program provides students, many from traditionally underrepresented groups, with 
10 weeks of paid research training and career development opportunities in fields relevant 
to DAWN focus areas. Of the 33 interns trained so far, 73% are women and 21% are black, 
indigenous, and people of color (BIPOC). In addition, graduate students and early-career 
scientists are participating in professional development workshops covering topics includ-
ing media communication, grant writing, and entering the job market.
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Early challenges and evolving priorities
Transitioning from research to operations through a coproduction process creates unique 
challenges for grant-funded projects, partly because it requires that priorities and structures 
be allowed to evolve in response to stakeholder feedback. DAWN’s first year of operations 
revealed the importance of nonresearch roles, particularly web development and commu-
nications. Additionally, the process of aligning user needs and expectations with scientific 
and computing capabilities led to an increased focus on S2S prediction, as well as a strong 
emphasis on user experience design. DAWN’s continual evolution to meet user needs has 
motivated structural changes and reprioritization of funding, highlighting the importance of 
adaptive management strategies.

Communications. Development of both internal and external communications strategies  
quickly became a key priority. DAWN is a large team spanning multiple institutions and  
disciplines, and the parallel workflows typical of interdisciplinary academic research do 
not necessarily translate easily to interactions with stakeholders. Development delays or 
changes in priority affected the work of other project members, particularly extension 
experts directly communicating with stakeholders about the timing and features of new re-
leases. In responding to this need the project leadership developed workflows, timelines, 
and intergroup collaboration strategies and reprioritized funding to support a communica-
tions specialist. This specialist developed an internal newsletter to keep project members 
informed of progress as well as stakeholder-focused resources such as news updates, FAQs, 
and dashboard tutorials.

Model applicability. The most scientifically advanced model framework may not always 
translate into effective tools that can be used in agricultural decisions. DAWN started 
with an initial set of advanced models chosen to capture key components of Earth’s 
climate–agro–hydro–economic system. As the project progressed, conversations among 
extension experts and stakeholders revealed that some of the component models require 
extensive site information and user input that could prove difficult to acquire or do not 
operate at the spatiotemporal scales needed for on-farm decision-making. In response, DAWN 
has adapted its modeling priorities, such as shifting focus from weather-scale operations 
to S2S planning.

Operationalizing tools. Building and maintaining an operational decision support dash-
board requires more computing resources than were included in the original proposal.  
Fortunately, DAWN was able to acquire more resources through the generous support of 
NSF’s XSEDE and ACCESS programs and DOE’s Oak Ridge Leadership Computing Facility.  
Additional financial support, however, will be needed to sustain DAWN’s operations after 
USDA funding ends in September 2025. The project leadership had also originally hired 
undergraduate student web developers to build the dashboard interface. Although the 
students performed well, their academic commitments, limited availability, and eventual 
graduation meant that progress was slower and less regular than anticipated. The lead-
ership eventually hired a part-time professional developer and implemented an Agile 
software development framework to coordinate the undergraduate team.

Conclusions
Increasing agricultural resilience to climate variability requires unified efforts across agricul-
tural and scientific communities to build decision support systems that allow farmers access 
to subseasonal-to-seasonal (S2S) predictive information that can be applied in critical farm 
planning choices. Accurate seasonal forecasts can allow farmers to choose and time crop 
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planting and management to better synergize with climate conditions, thus reducing risk, 
minimizing waste, and taking advantage of potential opportunities. Through collaboration 
across research, extension, and stakeholder communities, DAWN is building an S2S-focused 
dashboard that transforms climate forecasts into farm-relevant predictions using crop, 
hydrology, and economic models. DAWN aims to allow users to quickly understand the 
impacts of current forecasts for their specific locations, crops, and fields, by presenting 
forecasts in terms of user-selected metrics. Additionally, DAWN’s scenario analysis capabili-
ties allow users to explore the impacts or risks of different choices or climate conditions. 
All products are being coproduced by a team of researchers, programmers, and extension 
experts, with continuous feedback from stakeholders. DAWN’s approach is evolving based 
on both stakeholder feedback and a growing understanding of research and operational 
challenges. Alongside the process of dashboard construction, DAWN is working to engage 
students in interdisciplinary learning and to promote the sustained development and use 
of predictive climate information in agricultural operations.
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