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Climate prediction; by U.S. agricultural producers, as seasonal weather patterns increasingly deviate from historical
Agriculture; tendencies. Under USDA funding, a transdisciplinary team of researchers, extension experts,
Climate services; educators, and stakeholders is developing a climate decision support Dashboard for Agricultural
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Decision support; ing infrastructure to make subseasonal-to-seasonal forecasts accessible. DAWN uses an integrated
Water resources approach to 1) engage stakeholders to coproduce a decision support and information delivery

system; 2) build a coupled modeling system to represent and transfer holistic systems knowledge
into effective tools; 3) produce reliable forecasts to help stakeholders optimize crop productivity
and environmental quality; and 4) integrate research and extension into experiential, transdis-
ciplinary education. This article presents DAWN's framework for integrating climate—agriculture
research, extension, and education to bridge science and service. We also present key challenges
to the creation and delivery of decision support, specifically in infrastructure development,
coproduction and trust building with stakeholders, product design, effective communication, and
moving tools toward use.
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limate variability, economic uncertainty, and changes to agricultural policy all impact

farmers’ ability to sustainably manage their farms and crop production. In response, the

USDA has supported several large interdisciplinary projects with coordinated research,
extension, and education focused on assessing climate impacts and agricultural sustainability
(Eigenbrode et al. 2014). Technological and agronomic advances toward digital agriculture are
providing farmers with opportunities to improve productivity and efficiency, while reducing
environmental impact (Morton et al. 2011; McFadden et al. 2023). Advances in weather
and climate modeling have produced increasingly accurate and fine-resolution forecasts,
particularly at the subseasonal-to-seasonal (S2S) scales (Mariotti et al. 2020; Zhu et al. 2023).
Predictions at the S2S scale, ranging from 2 weeks to 9 months, have great potential value
to improve agricultural decision-making regarding crop choices, planting dates, water and
nutrient management, and field practices (Shafiee-Jood et al. 2014). Nevertheless, large gaps
persist between climate research and agricultural applications (White et al. 2022). Researchers
are often unaware of the capabilities and adoption of existing agricultural technology,
while advancements in S2S-scale prediction often remain siloed in academic journals or are
distributed in formats not relevant to local decision-making (Merryfield et al. 2020). Even after
forecast information becomes available, it may not be immediately used until after farmers
perceive it as reliable and potentially valuable (Shafiee-Jood et al. 2021).

Giving farmers easy access to high-quality S2S climate forecasts will help to close the
gap between research and farming operations. To be readily usable, such information
must be presented in forms already familiar to and used by farmers, at relevant time scales
and resolutions, and with easily interpretable measures of accuracy and uncertainty
(Janssen et al. 2017). Furthermore, predictive information must fit into existing farmer
workflows without significantly increasing data collection and data transfer requirements.
Discussions with agricultural stakeholders and DAWN’s internal extension team have
revealed that farmers want to be able to evaluate the impact of predicted seasonal climate
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on their operations and to explore hypothetical decision pathways to exploit new oppor-
tunities or mitigate risk.

Developing predictive decision support capabilities requires a coproduction approach that
brings together scientists, software developers, extension experts, and stakeholders (Meadow
et al. 2015; Prokopy et al. 2017). Such an approach prioritizes intersectoral conversations
at an early stage, allowing stakeholders to share their information needs and comfort with
uncertainty and helping scientists to identify potentially overlooked model outputs (Prost
2021). Effective coproduction is challenging, in part because it requires clear communication
among communities with separate knowledge bases and expectations about accuracy and
uncertainty (Norstrom et al. 2020). Researchers must therefore think creatively about model
capabilities and explore model outputs different from those originally envisioned. Addition-
ally, developers should build tools based on a shared vision with users to avoid logistical
hurdles around incommensurate time scales and data requirements. Finally, developing
long-term capacities requires educational infrastructure to share the generated knowledge
and train the next-generation of leaders (Malayil et al. 2021).

In response to these challenges, an interdisciplinary team of researchers, extension special-
ists, and stakeholders are collaborating, under funding from the USDA, to create a predictive
decision support Dashboard for Agricultural Water use and Nutrient management (DAWN;
https://dawn.umd.edu/), to improve food and energy crop production in the Corn Belt (Fig. 1).
DAWN is building infrastructure to translate complex system science into predictive informa-
tion that assists with agricultural decision-making and to make that information available
to users through a web-based dashboard where they can visualize the impact of climate on
agricultural productivity and profitability and explore options to increase water and nutrient
use efficiency.

Coproduction approach

DAWN’s extension team includes faculty from several land grant universities, as well as staff
from UnCommon Farms, a farm business and consulting organization that works with farmers
across the Corn Belt. These project members engage stakeholders in an iterative, three-stage
coproduction process of 1) an initial assessment of needs and capabilities (Clark et al. 2023),
2) coupled model and tool development, and 3) postrelease engagement and evaluation. The
first step in the coproduction process involves deep engagement of model developers with
extension and industry specialists who have extensive background on user needs to determine
which existing agricultural workflows and informational needs align with predictive model
abilities. DAWN model developers, tool designers, and extension specialists work together
in an Agile framework to create user stories: descriptions of the identities, objectives, and
workflows of expected users (Amna and Poels 2022). These follow a semistructured format of
“I'am... [ want... so that...” Through these stories, DAWN extension experts and early-adopter
users draw on their deep knowledge of stakeholder needs, timelines, and level of comfort with
technology to profile potential users and sketch out specific model and interface requirements
for the software development team. Model developers and interface designers work iteratively
with extension personnel to align the desired information needs with the capabilities of the
modeling system and development environment. Importantly, results of each iteration are
documented, as they often generate ideas for new model uses.

The coproduction process and user stories have led to insights into stakeholder needs and
have formed the basis for the development of the dashboard’s infrastructure and products.
In particular, they help address potential mismatches between current modeling capabilities
and existing user needs. DAWN’s modeling platform consists of multiple components, all
with different development cycles, data requirements, flexibility to respond to user needs,
and application readiness, a combination that creates significant coproduction challenges.

AMERICAN METEOROLOGICAL SOCIETY BAMS UnauthenticaEE&RP%Mngooagd%d &435'/24 10:38 PM UTC


https://dawn.umd.edu/

{s> Climate Modeling @ Education .

NOAA Forecasts Summer Internships

Climate-Weather Research Undergraduate Instruction

and Forecasting model m
(CWRF) Graduate Student Training

Superensemble Forecasting .
Dynamical Downscaling Crop Choice

Seed Purchase

@ Extension (D

SEASONAL FORECAST

C z Collaboration with Developers Planting/Harvest
/i o i
Decision Support System for E Training Material Development Window
Agrotechnology Transfer 3 Staksholder En et
(DSSAT) - staple crops a8 akenolder Engageme
o
; e &
BioCro bloenergylcriops 8 =
\ 4 Planning

?
Data Transformation =
4
Irrigation
. ? ¢ - Application

User Stories Filters Machine Learning Surrogate Models ﬁ{'
Fertilizer
Dashboard ‘ ‘ Application

Il Predicted Climate Anomalies

m Frost/Freeze
. . Scenario Field Wi il
¥ Predicted Crop Productivity I Evaluators  Calculators
* Predicted Profitability Climate
Adaptation

l I DELIVERY

Fig. 1. DAWN schematic overview. Arrows depict information flows among DAWN's major research
and extension activities. The education component engages student training across all these system
development activities. The external evaluator assesses intrateam and transdisciplinary partnerships
to support project effectiveness.

For example, the climate prediction and crop growth models are currently production-ready
at the S2S time scale and require only easily accessible user data (such as crop type and
planting date); however, they are relatively inflexible and are largely limited to preset input
and output data. User story conversations for these models therefore often center around the
data transformations necessary to develop user-relevant metrics at appropriate spatiotemporal
scales using the potential existing outputs. Other models, such as irrigation scheduling and
fertilizer application, require more extensive modifications in order to meet S2S user needs;
they may need extensive input data that farmers are unable to easily provide, or generate
outputs at scales less relevant to farm-level decision-making. Here, user stories help determine
necessary model modifications. This allows greater flexibility in responding to identified user
needs, but also is a longer process that carries the risk of working toward functionality that
may prove to be infeasible.

AMERICAN METEOROLOGICAL SOCIETY BAMS UnauthenticaEE&R|U6§Jngooagd%d 0%4325/24 10:38 PM UTC



Once tools have been developed and released, DAWN’s extension specialists meet with
stakeholders, which include farmers, farm managers, and consultants, to gather feedback
on the public’s use and perception of these tools. These meetings typically take the form
of trainings or think-aloud interviews with farmer groups (Krahmer and Ummelen 2004;
McDonald et al. 2012). This allows for continual engagement and evidence-based improve-
ments to existing DAWN tools. Throughout the development, deployment, and adaptive
improvement process, DAWN has also consulted a Stakeholder Working Group composed of
growers and representatives from agricultural research, service, and commodity organiza-
tions who meet periodically to identify development priorities, barriers to use, and incentives
to adopt DAWN by a wide range of practitioners.

Use-inspired predictive modeling platform

Current decision support systems (e.g., Rose et al. 2016; Zhai et al. 2020) tend to assume a
stationary crop response to climate without feedback, but incorporating seasonal forecasts
with interactions into planning is critical as climate anomalies covary with underlying
soil and canopy conditions, increasing system variability and extremes. DAWN translates
S2S coupled climate and crop forecasts into metrics and formats compatible with existing
agricultural planning workflows. The current DAWN system launched uses baseline climate
forecasts from NOAA, transforming them for increased accessibility and relevance to farming
practices. The upcoming system will be supplemented with dynamically downscaled forecasts
from CWREF, a regional climate model that incorporates advanced physics representations at
finer resolution (Liang et al. 2012) and has improved prediction of regional temperature and
precipitation anomalies and extremes in the United States (Yuan and Liang 2011; Liu et al.
2015; Sun and Liang 2020, 2023).

CWREF currently produces national forecasts at 30-km resolution, with plans to nest a
3-km grid over the Corn Belt pending computing resource availability. To improve accuracy
and reliability, DAWN modelers are testing the use of both machine learning to correct
systemic biases due to inevitably incomplete representations of climate physics (Carter
et al. 2021; Golian and Murphy 2022) and superensemble forecasting from all available
global operational S2S forecasts and NOAA-driven CWRF multiphysics downscaling
results (Liang et al. 2012; Roy et al. 2020). This bias-corrected superensemble prediction
better captures regional climate anomalies and will become the primary forecast driving
the dashboard.

DAWN’s modeling platform feeds NOAA operational, CWRF-downscaled, and
superensemble-optimized climate—hydrology forecasts into crop models to predict the
timing of development stages and the magnitude of end-of-season yields for crops in the
Corn Belt. Decision Support System for Agrotechnology Transfer (DSSAT) is widely used to
simulate crops such as corn and soybeans (Hoogenboom et al. 2021), while BioCro focuses
primarily on bioenergy crops like miscanthus (Lochocki et al. 2022). Together, these models
generate crop-specific growth predictions based on current and predicted seasonal climate
conditions and management decisions. While current crop prediction research has been
primarily based on standalone simulations using statistical or dynamical crop models
driven by climate predictions (Peng et al. 2018), DAWN is developing coupled forecasting
capability with crop—climate feedbacks. Incorporating such feedbacks can improve predic-
tion of both crop production and climate variation (He et al. 2022).

The seasonal climate and crop forecasts, incorporating all aforementioned prediction
enhancements, are then transformed into agriculturally relevant metrics or outcomes through
a pipeline of domain-specific algorithms (Fig. 1). These include growing degree days, crop
progress, days suitable for field work, recommendations for optimizing irrigation and fertilizer
application, and estimates of return on investment for various inputs. The transformed data
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supplement the forecasts by allowing users to explore climate implications and evaluation
decisions in the context of specific seasonal forecasts.

A user-centric dashboard

DAWN’s dashboard includes both a comprehensive data viewer and a scenario analysis
toolkit. The data viewer delivers S2S predictions as a coherent, customizable selection of
data metrics and visualizations, which are updated weekly with increasing accuracy to allow
users to monitor the evolution of conditions throughout the growing season and make
adjustments accordingly. The scenario analysis toolkit allows users to explore predicted
outcomes from choices related to crop type, planting dates, and irrigation and fertilizer
applications, allowing easy comparison (Fig. 2). Both components were designed to be:

Easy to use. Digital decision tools have been available in the agricultural sector for over a
decade (Rose et al. 2016; Angel et al. 2017), and many users have existing workflows
using other software, often which already monitor large amounts of data. Additionally,
farmers have busy schedules and often wish to access data while on the field. Consequently,
the dashboard is built to be easy to access on both PC and mobile devices, to require little
overhead setup, and to integrate easily with other programs. To lower data entry burdens,
the tools require as little user information as possible, and are populated with default
values. Algorithms in the scenario analysis toolkit require user input to constrain the range
of predictions that are generated; however, the options are limited to easily specified metrics
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Fig. 2. DAWN dashboard examples. (a) The growing degree days tool allows users to view a 9-month forecast of growing
degree-days and freezing occurrences, with optional comparisons to historical means/ranges and analog years; users can also
view a crop’s maturity outlook by adjusting planting date and relative maturity. (b) The crop progress tool displays a probabilistic
distribution of the time window at which a specified crop is projected to reach each maturity stage, and allows users to compare
among different planting dates and maturities. (c) The field identification tool allows users to manually select and name one
or multiple farm fields or upload a shapefile of fields, which can then be used as the location or area for other predictive tools.
(d) The data viewer allows users to visualize temporal and spatial data in a variety of customizable graphics, including maps,
comparative bar charts, and cumulative line graphs, to support agricultural decision-making.
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like location, crop type, and planting date. To streamline workflows, data and results can be
downloaded or directly accessed by other software via application programming interfaces
(APIs). The dashboard is not intended to replicate existing farm management software such
as Field IQ or Conservis, but instead focus on S2S forecasts that complement tools developed
for tracking and near-term optimization.

Personalized. Rather than a collection of individual agricultural calculators, the dashboard
provides a coherent, synchronized interface through which users can create a curated
environment of relevant forecasts and data streams specific to their fields. Additionally, they
may customize their displays so that data appear in easily understood maps and figures
that automatically update with new forecasts. Account settings, including preferences and
records, persist between logins, so that users can return to previous analyses. Currently, the
dashboard tools are built around corn; since most of the Corn Belt grows corn and soybeans
in rotation, soybean-focused tools are a high priority for future development, along with
perennial grasses.

Context driven. The dashboard not only delivers forecasts, but situates them in contexts
necessary for interpretation, providing comparative historical data and measures of predic-
tion accuracy and uncertainty. Forecasts are presented alongside a range of observational
data from previous years and are linked to analog years predicted to be similar to the cur-
rent year, facilitating comparisons to past experiences. For example, a simple forecast of
the number of days suitable for fieldwork during the planting period will be supplemented
by the probability that it exceeds the decadal average. The dashboard will also include
accuracy and uncertainty measures based on both ensemble statistics and on expected bias
generated from hindcast analyses for farmers to evaluate risks.

Community engagement and education

Wider uptake of the dashboard’s predictive climate/crop information requires outreach
and community engagement to introduce the dashboard to key stakeholders (e.g., farm-
ers, extension agents), provide training in its use and applications, and collect feedback
on possible improvements. As of 2023, DAWN extension specialists have engaged around
1,340 participants across 33 conferences and events, ranging from broad informational
seminars to intensive small group or one-on-one training and feedback sessions. Phase 1
of the dashboard was publicly released at the UnCommon Farms Annual Meeting in 2023,
opening the doors to a wider group of potential users. These events served both to increase
awareness of the dashboard’s existence and capabilities and to engage in conversations
about user needs and interests. Parallel with the dashboard’s development, DAWN is creat-
ing a series of extension materials including fact sheets and video tutorials exploring how
to use and interpret the new resources.

DAWN also strives to involve students in each stage of its development through
experiential education. Leveraging infrastructure from the USDA-funded CONSERVE and
NSF-funded UMD Global STEWARDS projects, DAWN provides interdisciplinary graduate
and undergraduate courses focused on the food—energy—-water nexus, as well as an un-
dergraduate summer internship program (Malayil et al. 2021). The DAWN summer intern-
ship program provides students, many from traditionally underrepresented groups, with
10 weeks of paid research training and career development opportunities in fields relevant
to DAWN focus areas. Of the 33 interns trained so far, 73% are women and 21% are black,
indigenous, and people of color (BIPOC). In addition, graduate students and early-career
scientists are participating in professional development workshops covering topics includ-
ing media communication, grant writing, and entering the job market.
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Early challenges and evolving priorities

Transitioning from research to operations through a coproduction process creates unique
challenges for grant-funded projects, partly because it requires that priorities and structures
be allowed to evolve in response to stakeholder feedback. DAWN’s first year of operations
revealed the importance of nonresearch roles, particularly web development and commu-
nications. Additionally, the process of aligning user needs and expectations with scientific
and computing capabilities led to an increased focus on S2S prediction, as well as a strong
emphasis on user experience design. DAWN’s continual evolution to meet user needs has
motivated structural changes and reprioritization of funding, highlighting the importance of
adaptive management strategies.

Communications. Development of both internal and external communications strategies
quickly became a key priority. DAWN is a large team spanning multiple institutions and
disciplines, and the parallel workflows typical of interdisciplinary academic research do
not necessarily translate easily to interactions with stakeholders. Development delays or
changes in priority affected the work of other project members, particularly extension
experts directly communicating with stakeholders about the timing and features of new re-
leases. In responding to this need the project leadership developed workflows, timelines,
and intergroup collaboration strategies and reprioritized funding to support a communica-
tions specialist. This specialist developed an internal newsletter to keep project members
informed of progress as well as stakeholder-focused resources such as news updates, FAQs,
and dashboard tutorials.

Model applicability. The most scientifically advanced model framework may not always
translate into effective tools that can be used in agricultural decisions. DAWN started
with an initial set of advanced models chosen to capture key components of Earth’s
climate—agro—hydro—economic system. As the project progressed, conversations among
extension experts and stakeholders revealed that some of the component models require
extensive site information and user input that could prove difficult to acquire or do not
operate at the spatiotemporal scales needed for on-farm decision-making. In response, DAWN
has adapted its modeling priorities, such as shifting focus from weather-scale operations
to S2S planning.

Operationalizing tools. Building and maintaining an operational decision support dash-
board requires more computing resources than were included in the original proposal.
Fortunately, DAWN was able to acquire more resources through the generous support of
NSF’s XSEDE and ACCESS programs and DOE’s Oak Ridge Leadership Computing Facility.
Additional financial support, however, will be needed to sustain DAWN’s operations after
USDA funding ends in September 2025. The project leadership had also originally hired
undergraduate student web developers to build the dashboard interface. Although the
students performed well, their academic commitments, limited availability, and eventual
graduation meant that progress was slower and less regular than anticipated. The lead-
ership eventually hired a part-time professional developer and implemented an Agile
software development framework to coordinate the undergraduate team.

Conclusions

Increasing agricultural resilience to climate variability requires unified efforts across agricul-
tural and scientific communities to build decision support systems that allow farmers access
to subseasonal-to-seasonal (S2S) predictive information that can be applied in critical farm
planning choices. Accurate seasonal forecasts can allow farmers to choose and time crop
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planting and management to better synergize with climate conditions, thus reducing risk,
minimizing waste, and taking advantage of potential opportunities. Through collaboration
across research, extension, and stakeholder communities, DAWN is building an S2S-focused
dashboard that transforms climate forecasts into farm-relevant predictions using crop,
hydrology, and economic models. DAWN aims to allow users to quickly understand the
impacts of current forecasts for their specific locations, crops, and fields, by presenting
forecasts in terms of user-selected metrics. Additionally, DAWN’s scenario analysis capabili-
ties allow users to explore the impacts or risks of different choices or climate conditions.
All products are being coproduced by a team of researchers, programmers, and extension
experts, with continuous feedback from stakeholders. DAWN’s approach is evolving based
on both stakeholder feedback and a growing understanding of research and operational
challenges. Alongside the process of dashboard construction, DAWN is working to engage
students in interdisciplinary learning and to promote the sustained development and use
of predictive climate information in agricultural operations.
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