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Abstract

For several vision and robotics applications, 3D geome-
try of man-made environments such as indoor scenes can be
represented with a small number of dominant planes. How-
ever, conventional 3D vision techniques typically first ac-
quire dense 3D point clouds before estimating the compact
piece-wise planar representations (e.g., by plane-fitting).
This approach is costly, both in terms of acquisition and
computational requirements, and potentially unreliable due
to noisy point clouds. We propose Blocks-World Cameras,
a class of imaging systems which directly recover dominant
planes of piece-wise planar scenes (Blocks-World), with-
out requiring point clouds. The Blocks-World Cameras are
based on a structured-light system projecting a single pat-
tern with a sparse set of cross-shaped features. We develop
a novel geometric algorithm for recovering scene planes
without explicit correspondence matching, thereby avoiding
computationally intensive search or optimization routines.
The proposed approach has low device and computational
complexity, and requires capturing only one or two images.
We demonstrate highly efficient and precise planar-scene
sensing with simulations and real experiments, across vari-
ous imaging conditions, including defocus blur, large light-
ing variations, ambient illumination, and scene clutter.

1. The 3D Revolution
We are in the midst of a 3D revolution. Robots en-

abled by 3D cameras are beginning to drive cars, explore
space, and manage our factories. While some of these ap-
plications require high-resolution 3D scans of the surround-
ings, several tasks do not explicitly need dense 3D point
clouds. Imagine a robot navigating an indoor space, or an
augmented reality (AR) system finding surfaces in a living
room for placing virtual objects. For such applications, par-
ticularly in devices with limited computational budgets, it is
often desirable to create compact, memory- and compute-
efficient 3D scene representations. For example, in piece-
wise planar indoor scenes, a popular approach is to first cap-
ture 3D point clouds with a depth or an RGBD camera, and
then estimate a piece-wise planar representation (Fig. 1).

Historically, point clouds have been the canonical repre-
sentation for 3D scenes in the computer vision and robotics

communities. This is not surprising because almost all
depth imaging modalities capture 3D point clouds as the
raw data. Indeed, there are several applications which do re-
quire dense 3D representations (e.g., CAD modeling, facial
motion retargeting), for which points clouds are a good fit.
However, point clouds also have limitations: First, dense
point clouds are memory, compute and bandwidth inten-
sive. Second, acquisition of point clouds by depth cameras
is prone to errors in non-ideal imaging conditions including
defocus, multi-path [23, 46, 43] and multi-camera interfer-
ence [10, 63, 39], and ambient illumination [24, 3]. Finally,
extracting piece-wise planar representation by fitting planes
to a point cloud requires global reasoning, which may result
in inaccurate plane segmentation, especially if the underly-
ing point-clouds are noisy to begin with (Fig. 1).

This raises a natural question: Why capture high-
resolution and noisy 3D point clouds at large acquisition
costs, only to compress it later into planar representations
at large computational cost? If we are going to perform
downstream reasoning in terms of planes, can we design
imaging modalities that directly capture compact and accu-
rate plane-centric geometric representations of the world?

We propose Blocks-World Cameras, a class of imaging
systems which directly recover dominant plane parameters
for Blocks-World [57] (piece-wise planar) scenes without
creating 3D point clouds, enabling fast, low-cost and ac-
curate reconstructions (Fig. 1). The Blocks-World Cam-
eras are based on a structured-light system consisting of
a projector which projects a single pattern on the scene,
and a camera to capture the images. The pattern consists
of a sparse set of cross-shaped features (each with two line-
segments) which get mapped to cross-shaped features in the
camera image via homographies induced by scene planes. If
correspondences between image and pattern features can be
established, the plane parameters can be estimated simply
by measuring the deformation (change of angles of the two
segments) between these features [28].

For scenes with high geometric complexity (e.g., a large
number of distinct dominant planes), the projected pattern
must have a sufficiently high feature density, requiring mul-
tiple features on each epipolar line, leading to ambiguities.
Resolving these ambiguities would require correspondence
matching via computationally intensive global reasoning,
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Figure 1. Blocks-World Cameras. (top) Several applications require compact 3D representations of piece-wise planar scenes. (bottom)
Even for such blocks-World scenes, conventional approaches first recover dense 3D point clouds, followed by estimating planar scenes via
plane-fitting. This process has large acquisition and computational costs, and is often error-prone. We propose Blocks-World Cameras for
recovering dominant planes directly without creating 3D point clouds, enabling fast, low-cost and accurate Blocks-World reconstructions.

thus defeating the purpose of Blocks-World Cameras. Is it
possible to perform reconstruction while maintaining both
high feature density and low computational complexity?

Scene representation with plane parameter space: We
develop a novel geometric method which enables plane es-
timation even with unknown correspondences. For a given
image feature, the set of all the candidate pattern feature
correspondences vote for a set of plane hypotheses (in the
3D plane parameter space), called the plane parameter lo-
cus. Our key observation is that if the pattern features are
spaced non-uniformly on the epipolar line, then the plane
parameter loci for multiple image features lying on the same
world plane will intersect at a unique location in the param-
eter space. The intersection point corresponds to the param-
eters of the world plane, and can be determined by simple
peak finding, without determining correspondences.

Implications: Based on this observation, we design a
pattern, and a fast algorithm that simultaneously recovers
depths and normals of Blocks-World scenes. We demon-
strate, via simulations and experiments, capture of clean
and clutter-free 3D models, for a wide range of challenging
scenarios, including texture-rich and texture-poor scenes,
strong defocus, and large lighting variations. The compu-
tational complexity of the proposed approach is low, and
remains largely the same regardless of the geometric com-
plexity of the scene, enabling real-time performance on
high-resolution images. The method requires capturing
only 1 or 2 images, and can be implemented with simple

and low-cost single-pattern projectors with a static mask.
Furthermore, the sparsity of the projected pattern makes it
robust to interreflections, a challenging problem which is
difficult to solve with dense patterns.

Scope: Blocks-World Cameras are specifically tailored to
piece-wise planar scenes, in applications requiring compact
3D representations consisting of a small set of planes. It
is not meant to be a general-purpose technique that can re-
place conventional approaches. Indeed, for scenarios re-
quiring dense geometry information for complex scenes,
existing 3D imaging approaches will achieve better perfor-
mance. However, the proposed technique can facilitate fast
and robust dominant plane extraction, with applications in
robotic navigation [66, 56], indoor scene modeling and AR.

2. Related Work
Piece-wise planar scene constraint: There is a long tra-
dition of piece-wise planar 3D scene reconstructions, start-
ing from the Blocks-World [57] and Origami-World [37]
works nearly five decades ago. Since then, piece-wise pla-
narity has been widely used as a prior for accurate 3D mod-
eling [55, 49, 15, 31, 18, 7, 69], and scene understand-
ing [29, 54, 76, 20]. In Multi-View Stereo, the planar scene
constraint has been used to overcome lack of texture, repeti-
tive structures, and occlusions [18, 64, 44, 7, 69]. Planes are
popular scene primitives in SLAM [59, 66, 12, 74, 38, 36] as
well, having been used for efficient and accurate 3D regis-
tration between frames [56, 66]. The planar scene constraint



(a) Imaging system (b) A pair of pattern and image features

𝐷

𝑥

𝑥

𝑦

𝑧

𝑏

𝐜𝑝

𝐜𝑐
𝑦𝐧

𝜃
𝜑

Π

Plane

𝐮𝑝𝐯𝑝

𝐩𝑝

𝐮𝑐𝐯𝑐

𝐩𝑐

Pattern feature PImage feature I

P
I

𝑓

Figure 2. Imaging principle. (a) The Blocks-World Cameras are
based on a structured-light system consisting of a projector to
project a single pattern on the scenes and a camera to capture the
images. (b) The pattern consists of a sparse set of cross-shaped
features, which get mapped to cross-shaped features in the image
via homographies induced by scene planes.

has been used for detecting junctions of indoor scenes or
wireframes of urban scenes to recover scene layouts from
a single RGB image [54, 76]. The Manhattan world con-
straint [13] which assumes the scenes to be made of axis-
aligned planes has been exploited to reconstruct indoor en-
vironments such as floor-plans and room layouts [11, 40].

Plane-fitting to point clouds: A piece-wise planar scene
representation can be created from the dense, and often
noisy, 3D point clouds captured by conventional depth cam-
eras, by fitting planes. For example, Hough transform [32]
is a method for detecting parameterized objects such as lines
and circles in images, and is easily extended to 3D planes [8,
33]. The RANdom SAmple Consensus (RANSAC) [16]
has also been widely used for plane detection due to its
robustness to outliers [19, 7, 67]. Other approaches for
plane-fitting include region growing [52, 30, 48], as well
as energy-based multi-model fitting [35, 55, 69]. These
approaches can be computationally intensive especially for
cluttered scenes, often requiring complex global reasoning.
In contrast, Blocks-World Cameras infer the parameters of
the piecewise planar scenes directly using lightweight com-
putational algorithms, without capturing 3D point clouds.

Scene planarity in learning-based approaches: Recently,
scene planarity has been used in learning-based approaches
for recovering scene geometry from a single RGB im-
age [42, 73, 41, 71]. While these learning-based approaches
have started producing promising results, their generaliza-
tion abilities are not well understood. Our work leverages
geometric multi-view cues from a structured-light setup,
and can be used in a complementary manner to improve the
generalization abilities of learning-based approaches.

3. Mathematical Preliminaries
Two-view geometry of structured-light: The Blocks-
World Camera is based on a structured-light system, which
typically consists of a projector and a camera [45], as shown
in Fig. 2 (a). We assume a pinhole projection model for both

the camera and the projector, and define the camera and pro-
jector coordinate systems (CCS and PCS) centered at cc and
cp, the optical centers of the camera and the projector, re-
spectively. cc and cp are separated by the projector-camera
baseline b along the x axis. The world coordinate system
(WCS) is assumed to be the same as the CCS centered at
cc, i.e., cc = [0, 0, 0]

T and cp = [b, 0, 0]
T in the WCS.

Without loss of generality, both the camera and the projec-
tor are assumed to have the same focal length f . We further
assume a rectified system such that the epipolar lines are
along the rows of the camera image and projector pattern.
These assumptions (same focal length, rectified setup) are
made only for ease of exposition, and are relaxed in prac-
tice by calibrating the projector-camera setup and rectifying
the captured images to this canonical configuration [45].

Plane parameterization: A 3D plane can be characterized
by three parameters: Π = {D, θ, ϕ}, where D ∈ [0,∞)
is the shortest distance from cc to Π, θ ∈ [0, π] is the po-
lar angle between the plane normal and the −z axis, and
ϕ ∈ [0, 2π) is the azimuthal angle from the x axis to the
plane normal (clockwise), as shown in Fig. 2 (a). The plane
normal is given by: n = [sin θ cosϕ, sin θ sinϕ,− cos θ]

T .

4. Single-Shot Blocks-World Camera
Structured-light (SL) systems can be broadly classi-

fied in two ways. Multi-shot methods such as line strip-
ing [62, 4, 14], binary Gray coding [34, 61] or sinusoid
phase-shifting [65] require projecting multiple patterns on
the scenes. These techniques can achieve high depth-
precision, but are not suitable for dynamic scenes. In con-
trast, single-shot methods [75, 72, 58, 60] require projecting
only a single pattern, enabling them to handle scene/camera
motion. Furthermore, these methods can be implemented
with low-cost single-pattern projectors using a static mask
or a diffractive optical element, instead of a full projector
that can dynamically change the projected patterns.

In this section, we present single-shot Blocks-World
Cameras that can estimate both depths and surface normals
of piece-wise planar scenes with a single projected pattern.
These cameras have low complexity, both computationally
(low-cost algorithms) and for hardware (single-shot).

4.1. What Pattern should be Projected?
The performance of a single-shot SL system is deter-

mined by the projected pattern. There are several single-
shot SL patterns such as 1D color De Bruijn codes [75, 72],
multiple sets of 1D stripes for all-round 3D scanning [17],
sparse 2D grid of lines [60, 53], 2D color encoded grids [9,
58], grid patterns with spacings that follow a De Bruijn se-
quence [68], 2D pseudo-random binary code [70], and 2D
random dots (e.g., MS Kinect V1). While these patterns
have been designed for explicitly recovering scene depths,
our goal is different: directly estimate the plane parameters
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Figure 3. Plane estimation from a known feature correspon-
dence. (a) Line segments up and uc from image and pattern fea-
tures create a pair of planes which meet at a 3D line lu. Similarly,
vp and vc create lv . (b) lu and lv define a 3D plane which can be
estimated from known image and pattern feature correspondence.

without recovering dense depth maps. Next, we describe the
design of a new pattern optimized for achieving this goal.

Pattern design principles: There are two key considera-
tions when designing the pattern. First, for piece-wise pla-
nar scenes, a pair of corresponding patches in the projected
pattern and the captured images are related via a homog-
raphy (assuming the patches lie on a single plane). The
homography contains sufficient information to uniquely re-
cover the parameters of the 3D scene plane [27], and it pre-
serves straight lines and their intersections. Second, a pat-
tern with a sparse set of features (a small fraction of the pro-
jector pixels are on) enables robust and fast correspondence
matching, potentially reduced source power with diffractive
optical elements and robustness to multi-path interference,
a critical issue in SL imaging with dense patterns [22, 21].
On the other hand, sparse single-shot patterns have a trade-
off in that for general scenes, they can achieve only sparse
3D reconstructions. However, for piece-wise planar scenes
with a relatively small set of dominant planes, scene geom-
etry can be recovered even with sparse patterns.

Based on these two considerations, we design a pattern
consisting of a sparse set of identical features distributed
spatially. Each feature is cross-shaped, consisting of two
intersecting line-segments. For optimal performance, the
segments make angles of 45° and 135° with the epipolar
line (Fig. 2 (b)). See supplementary report for a detailed
discussion. For sufficiently small line segments, the image
features in the camera image also have cross shapes (Fig. 2
(b)). These cross-shaped features facilitate robust localiza-
tion and efficient plane parameter estimation with computa-
tionally light-weight algorithms, as discussed next.

4.2. Plane from a Known Correspondence
Consider a pattern feature P = {up,vp,pp}, where vp

and up are two line vectors and pp is the intersection of vp
and up as shown in Fig. 2 (b). Let the corresponding image
feature I be described by I = {uc,vc,pc}, where vc and uc
are line vectors corresponding to vp and up, and pc is the
intersection of vc and uc. We assume that P lies within a
single scene plane, and is completely visible to the camera.

The elements in P and I are described in their own co-
ordinate systems (PCS and CCS, respectively), i.e., for the
pattern feature P = {up,vp,pp},

up = [upx, uy, 0]
T
,vp = [vpx, vy, 0]

T
,pp = [ppx, py, f ]

T
.

(1)
For the corresponding image feature I = {uc,vc,pc},

uc = [ucx, uy, 0]
T
,vc = [vcx, vy, 0]

T
,pc = [pcx, py, f ]

T
.

(2)
Then, if the correspondence is known, i.e., if pairs of cor-
responding P and I can be identified, the plane parameters
can be recovered analytically by basic geometry, as illus-
trated in Fig. 3. Specifically, each cross-shaped feature cor-
respondence provides two line correspondences {uc, up}
and {vc, vp}, which can be triangulated to estimate two
3D line vectors lu and lv, respectively. The plane Π can be
estimated from the estimates of lu and lv. In particular, the
surface normal n of Π is given as:

n =
((pp × vp)× (pc × vc))× ((pp × up)× (pc × uc))

‖ ((pp × vp)× (pc × vc))× ((pp × up)× (pc × uc)) ‖
.

(3)
The shortest distance D from cc to Π is:

D =
bnTpp
ppx − pcx

− nT cp. (4)

Given n and D, depth of pc can be computed. See the sup-
plementary report for details and measurable plane space.

Avoiding degenerate solutions: If line correspondences
{uc, up} or {vc, vp} are collinear with epipolar lines, it
gives a degenerate solution. To avoid this, the line segments
of the features should not be aligned with the epipolar lines.

5. Plane from Unknown Correspondences
As described above, if the feature correspondences are

known, the plane parameters can be estimated using Eqs. 3
and 4. One way to achieve this is to place a single fea-
ture on each epipolar line of the pattern. In this case, for
each image feature, the correspondence can be computed
trivially. However, this limits the maximum number of pat-
tern features by the number of rows of the pattern. In order
to maximize the likelihood of each scene plane being illu-
minated by a feature, we need to have a sufficiently large
density of pattern features, which requires placing multiple
pattern features on each epipolar line. While this approach
increases the feature density, the pattern now consists of
multiple identical features on each epipolar line, leading
to ambiguities. Without additional information or complex
global reasoning, it is challenging to find the correct feature
correspondences. This presents a tradeoff: Is it possible to
perform reconstruction while maintaining both high feature
density and low computational complexity?



5.1. Geometric Approach to Correspondence-Free
Plane Estimation

In order to address this tradeoff, we develop a novel,
light-weight computational approach for estimating plane
parameters without explicitly computing correspondences
between image and pattern features. Let the set of pat-
tern features on one epipolar line of the projected pattern
be {P1, . . . ,PN}. A subset of these features are mapped
to the camera image, resulting in the set of image features
{I1, . . . , IM} (M ≤ N) (upper row of Figs. 4 (a) and (b)).

Consider one image feature, say I1. All the N pattern
features are candidate matching features. Each candidate
pattern feature results in a plane hypothesis Π = {D, θ, ϕ}
by triangulating with the image feature I1. Accordingly,
the set of all candidate pattern features {P1, . . . ,PN} cre-
ate a set of plane hypotheses Λ1 = {Π11, . . . ,Π1N}, where
Π1n (n ∈ {1, . . . , N}) is the plane parameters computed
from I1 and Pn. Each plane hypothesis can be represented
as a point in the 3D plane parameter space (we call this the
Π-space), as shown in the upper row of Fig. 4 (c). There-
fore, the set of plane hypotheses Λ1 = {Π11, . . . ,Π1N}
create a plane parameter locus in the Π-space. Simi-
larly, we can create another plane parameter locus Λ2 =
{Π21, . . . ,Π2N} by pairing I2 and {P1, . . . ,PN}.

Observation 1. The key observation is if I1 and I2 corre-
spond to scene points on the same scene plane, then two loci
Λ1 and Λ2 must intersect. If they intersect at a unique loca-
tion Π̂ in the Π-space, then Π̂ is the true plane parameters.

Voting in the plane parameter space: This is a simple,
yet powerful observation, which motivates a computation-
ally light-weight voting-based approach for plane estima-
tion that does not require correspondence estimation. For
each detected image feature, we compute its plane parame-
ter locus as described above. The locus is the set of candi-
date planes that the feature votes for. We then collect votes
from all the detected image features; the Π-space with loci
from all the image features can be considered a likelihood
distribution on scene planes. Fig. 5 (b) shows an example of
Π-space. Finally, we estimate plane parameters of the dom-
inant scene planes by identifying dominant local peaks in
the Π-space. For a given local peak, all the image features
that voted for the peak belong to the corresponding plane.
For those image features, depth and surface normal values
can be computed by plane-ray intersection (Fig. 5 (d)).

This approach is reminiscent of conventional Hough
transform-based plane estimation, with two key differences:
First, in conventional Hough transform, the planes are esti-
mated from 3D points (each 3D point votes for candidate
planes that pass through it), requiring first a 3D point cloud
to be computed. In contrast, in our approach, 2D image fea-
tures directly vote for candidate planes, thus avoiding the
potentially expensive point cloud generation. Second, in
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Figure 4. Plane parameter space with uniformly and non-
uniformly spaced pattern features. (a), (b)N features are placed
at (upper row) uniform and (lower row) non-uniform spacing on an
epipolar line of the pattern. M of these are imaged as image fea-
tures. (c) A plane parameter locus is created in the Π-space by
pairing an image feature I1 and all the pattern features on the cor-
responding epipolar line. The locus is on a plane parallel to the
(D− θ) plane. (d, upper row) Loci corresponding to two different
image features lying on the same scene plane have a large overlap
with uniform pattern feature distribution, making it impossible to
determine the true scene plane containing the features. (d, bottom
row) However, for a pattern with non-uniform feature distribution,
it is possible to uniquely determine the true scene plane.

the conventional approach, each 3D point votes for a dense
set of potential planes. Coupled with a large number of 3D
points, this can result in large computational and memory
costs [47]. On the other hand, in the proposed approach,
we use a sparse set of features, and each feature votes for a
small, discrete set of candidate planes (e.g., we used < 10
in our experiments). This results in considerably, up to 2
orders of magnitude lower computational costs, especially
in scenes with a small number of dominant planes.

5.2. Do Parameter Loci have Unique Intersections?
The voting-based algorithm described above relies on an

important assumption: plane parameter loci for different
image features corresponding to the same world plane in-
tersect in a unique location. If, for example, the loci for
all the features on a camera epipolar line overlap at sev-
eral locations, we will not be able to identify unique plane
parameters. This raises the following important questions:
Does this assumption hold for general scenes? What is the
effect, if any, of the pattern design (e.g., the spatial layout
of the features)? In order to address these, we describe two
key geometric properties of the plane parameter locus.

Property 1. The parameter locus Λm = {Πm1, . . . ,ΠmN}
created by pairing an image feature Im and a set of pattern
features {P1, . . . ,PN} on the same epipolar line always lies
on a plane parallel to the ϕ = 0 plane in the Π-space.

Property 2. Let Λm = {Πm1, . . . ,ΠmN} be the param-
eter locus created in the same way as Property 1. Let
Pµ (µ ∈ {1, . . . , N}) be the true corresponding pattern fea-
ture of Im. Let dµn be the distance between pattern fea-



tures Pµ and Pn on the epipolar line. Then, the loca-
tions of the elements of Λm are a function only of the set
Dµ = {dµn |n ∈ {1, . . . , N}} of relative distances be-
tween the true and candidate pattern features.

See supplementary report for proofs. The first property
implies that it is possible to recover the azimuth angle of
the plane normal from a single parameter locus, without
computing correspondences. An example is illustrated in
the upper row of Figs. 4 (a-c). Since ϕ is constant across the
locus, for the rest of the paper, we visualize parameter loci
in 2D D− θ space, as shown in the upper row of Fig. 4 (d).
Note that full 3D Π-space is necessary when differentiating
between planes with the same D and θ, but different ϕ.

The second, perhaps more important, property implies
that if the pattern features are uniformly spaced on the
epipolar line, the resulting loci will overlap significantly.
This is because of the following: for a uniformly spaced pat-
tern, the set of relative distances (as defined in Property 2)
for two distinct pattern features will share several common
values. Since the elements of the parameter loci (of the cor-
responding image features) are determined solely by the set
of relative distances, the loci will also share common loca-
tions. An example is shown in the upper row of Fig. 4 (d).
This is not a degenerate case; for uniformly spaced patterns,
regardless of the scene, the loci will always have large over-
laps, making it impossible to find unique intersections. How
can we ensure that different loci have unique intersections?

Patterns with non-uniform feature distribution: The
key idea is to design patterns with features that are non-
uniformly spaced across epipolar lines. The lower row of
Fig. 4 (a) and (b) show an example, where N pattern fea-
tures {P1, . . . ,PN} are non-uniformly distributed on an
epipolar line, and M of them are imaged as image features
{I1, . . . IM}. If this condition is met, the parameter loci do
not overlap, except at the true plane parameters, as shown
in the lower row of Fig. 4 (d). This enables estimation of
the plane parameters even with unknown correspondences.

In our experiments, we placed 7 pattern features non-
uniformly on each epipolar line. To ensure robustness
against errors in epipolar line estimation, we place features
on every kth epipolar line on the pattern. See the supple-
mentary report for details and the resulting patterns.

5.3. Image Feature Localization and Measurement
We localize cross-shaped image features by applying

Harris corner detector [26] to the captured image, after thin-
ning morphological operation. Although a single image is
sufficient, for scenes with strong texture and lighting vari-
ations, we capture two camera frames in rapid succession,
with and without the projected pattern, and take their dif-
ference. For each candidate feature location, the two line
segments of the image feature (uc and vc in Fig. 2) are

extracted. For robustness against projector/camera defo-
cus blur, we extract two edges (positive and negative gradi-
ents) from each (possibly blurred) line segment, and com-
pute their average. The line fitting computational routine
is fast since it has a closed-form solution. Image feature
I = {uc,vc,pc} is then estimated from the two line seg-
ments, and their intersection point pc.

5.4. Toward Higher Memory Efficiency
Blocks-World Cameras are memory-efficient since they

do not require capturing and processing dense 3D point
clouds. However, the plane parameter Π-space can occupy
considerably amount of memory if very small bin sizes are
used. We develop a memory-efficient version of Blocks-
World Camera algorithm which does not explicitly create a
plane parameter voting array. The key observation is that
since the Blocks-World Cameras provide a pool of plane
candidates with different confidence (e.g., larger number of
plane candidates for dominant planes), it is possible to es-
timate scene planes by finding inliers via a RANSAC-like
procedure, instead of voting in the Π-space. See the supple-
mentary report for details of the algorithm and the results.

6. Experiments and Results
6.1. Validation by Simulations

We simulate the Blocks-World Camera imaging process
with a ray tracing tool [1], using 3D models from an indoor
dataset [2]. This allows us to compare the Blocks-World
Camera reconstructions with the ground truth, as well as
alternate approaches such as plane-fitting to point clouds.

Ground truth comparison: Fig. 5 (a) shows a pattern-
projected scene with five dominant planes labeled as Π1 to
Π5. Plane parameters for these planes are estimated from
the Π-space (Fig. 5 (b)). The image features that voted for
each dominant plane are identified and segmented to form
the plane boundary by their convex hull (Fig. 5 (c)). The
proposed approach accurately recovers 3D scene geometry
in terms of both depths and surface normals (Fig. 5 (d)).

Comparison with plane-fitting: For evaluating conven-
tional plane-fitting approaches, we simulate a structured-
light system that captures a 3D point-cloud of the scene
using sinusoid phase-shifting [65]. Fig. 6 (a) shows an ex-
ample scene with six dominant planes. Fig. 6 (b) and the
bottom center of Fig. 1 show the captured depth map and a
point cloud. We use 3D Hough transform [8] and RANSAC,
two approaches which have been widely used to extract
planes from point clouds. We use the randomized version of
the 3D Hough transform (RHT) [8] due to its computational
efficiency. Figs. 6 (c), (d), and (e) show plane segmentation
results by RHT, RANSAC, and Blocks-World Cameras, re-
spectively. To ensure fair comparisons, for plane-fitting ap-
proaches, we down-sample the point cloud such that the
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Figure 5. Ground truth comparison. (a) A 3D scene with a pro-
jected pattern. (b) 2D Π-space with votes. Dominant planes illus-
trated at detected peak locations. (c) Plane boundaries formed by
identifying image features that voted for the peaks. (d) Recovered
plane depths and normals. (e) Ground truth depths and normals.

number of 3D points is the same as the number of image
features captured by the Blocks-World Cameras.

For RHT (Fig. 6 (c)), it is challenging to extract small,
distant or noisy planes because the votes for these planes
are not reliably accumulated by random selection of points.
Although RANSAC achieves better plane extraction, both
RHT and RANSAC result in erroneous plane segmentation
results (e.g., orange and blue points on the walls in Fig. 6
(c) and (d), respectively). This is a common issue with
point cloud-based approaches since each 3D point does not
have local plane information. In comparison, Blocks-World
Cameras achieve accurate plane segmentation since each
cross-shaped image feature contains partial information on
the plane it belongs to, and does not need global reasoning.
See the supplementary report for implementation details for
RHT, RANSAC, and the Blocks-World Cameras.

Fig. 7 shows quantitative comparison between the
Blocks-World Cameras and the conventional plane-fitting
approaches in terms of (a) the accuracy of the extracted
plane parameters, and (b) run-time of MATLAB imple-
mentations. We used a well-optimized implementation of
MSAC (M-estimator sample and consensus) for RANSAC
plane-fitting. In run-time comparison, we did not in-
clude time to create the point clouds for conventional ap-
proaches. RHT estimates the plane parameters accurately,
but it fails to find all dominant planes and is slow in run-
time. RANSAC is fast and finds all dominant planes ro-
bustly, but less accurate in plane parameter estimation. The
Blocks-World Cameras can extract the plane parameters
well in terms of both accuracy and run-time even with-
out creating the point cloud. See the supplementary report
for additional discussions on the trade-off between the run-

time and plane estimation accuracy while varying the sam-
pling rate of the 3D point clouds. Comparisons with other
structured-light schemes as well as alternate 3D modalities
are also discussed in the supplementary report.

6.2. Blocks-World Cameras in-the-Wild
We prototype a Blocks-World Camera using a

structured-light system consisting of an Epson 3LCD
projector, and a digital SLR camera (Canon EOS 700D).
The projector-camera baseline is 353 mm. The system is
rectified such that epipolar lines are aligned along the rows
of the pattern and the captured image. Using this setup,
we validate the performance of Blocks-World Camera with
various challenging scenes in the real world.

Scene with large defocus blur: The ability to handle de-
focus blur is critical for the Blocks-World Cameras when
imaging scenes with large depth variations. Our image
feature detection algorithm averages the detected line seg-
ments for both positive and negative edges as mentioned in
Section 5.3, thereby achieving robustness to defocus blur.
Fig. 8 (a) shows a scene consisting of planar objects at dif-
ferent distances from the camera. The camera and the pro-
jector are focused on the corner between two walls to cre-
ate a large blur on the rightmost wall just to demonstrate
the performance over a wide range of blurs (Fig. 8 (b)).
The Blocks-World Cameras can reliably estimate the planes
even with blurred features, up to a certain blur size (Fig. 8
(c, d)). For scenes with huge depth variation, the blur size
can be reduced by lowering the aperture, using extended
depth-of-field approaches, and diffractive optical elements.

Performance under ambient light: Fig. 9 demonstrates
the performance of the Blocks-World Cameras under dif-
ferent ambient lighting conditions. Since our approach is
based on shape features instead of intensity features, it is
robust to photometric variations (photometric calibration is
not required) leading to stable plane estimation under dif-
ferent lighting. When ambient light completely overwhelms
the projected pattern, the features may not be detected. This
issue can be mitigated by narrow-band illumination, spatio-
temporal illumination and image coding [25, 51, 50].

Scene with specular interreflections and strong textures:
Fig. 10 (a) shows a scene with a metallic elevator door under
strong, directional ambient light (upper), and a picture with
complicated textures (lower). The Blocks-World Cameras
use geometric features which encode the scene geometry
through deformation of the feature shape, and are thus ro-
bust to challenging illumination conditions resulting in ac-
curate geometry estimation (Fig. 10 (b, c)).

Non-planar scenes: Although Blocks-World Cameras are
designed for piece-wise planar scenes, their performance
degrades gracefully for non-planar scenes. Fig. 11 (a)
shows a cylindrical object, and the piece-wise planar ap-
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Figure 6. Comparison with plane-fitting. (a) A 3D scene. (b) Depth map captured by a simulated structured-light system. (c, d, e) Plane
segmentation results by randomized 3D Hough transform, RANSAC, and Blocks-World Cameras. The Blocks-World Cameras achieve
more accurate plane segmentation than conventional approaches since each cross-shaped image feature contains local plane information.
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Figure 7. Quantitative performance comparison. (a) Plane pa-
rameters error comparison. (b) Run-time comparison. Blocks-
World Cameras can extract the plane parameters well in terms of
both accuracy and run-time even without creating the point cloud.
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Figure 8. Robustness to defocus blur. (a, b) A scene with vary-
ing amounts of defocus blur. (c, d) Measured plane depths and
normals. Our approach is robust to defocus blur.
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Figure 9. Robustness to ambient light. (a) A scene under differ-
ent indoor lighting conditions. (b, c) Recovered plane depths and
normals. Our shape features are robust to photometric variations.

proximation extracted by the proposed approaches. Al-
though only perfectly or nearly planar scene geometry is ex-
tracted with relatively smaller bin sizes of Π-space (Fig. 11
(b)), non-planar portions of the scene is approximated with
several planes with relatively larger bin sizes (Fig. 11 (c)).
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Figure 10. Robustness to specular reflections and strong tex-
tures. (a) Scenes under challenging illumination conditions with
specular reflections and strong textures. (b, c) Reconstructed plane
depths and surface normals by Blocks-World Camera.

(a) Cylinder scene (b) Plane estimation with small & large bin sizes

Figure 11. Approximating non-planar scene with piece-wise
planar scene. (a) Cylinder scene. (b) Plane estimation with rela-
tively small and large bin sizes of Π-space, respectively.

7. Limitations and Future Work
Holes in reconstructions: Due to a sparse set of features in
the pattern, the reconstructions have holes in regions where
features are absent. An important next step is to develop
sensor-fusion systems based on the proposed approach, by
leveraging learning-based methods [42, 41] (that produce
potentially inaccurate, but dense reconstructions) to gener-
ate dense, high-accuracy, hole-free reconstructions.

Non-planar geometric primitives: The proposed ap-
proach is designed for reconstructing planar surfaces. A
promising line of future work is to design patterns and re-
construction algorithms for non-planar geometric primitives
such as spheres, generalized cylinders [6] and geons [5].
Such a generalized Blocks-World Camera will find applica-
tions in a considerably broader set of scenarios.
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Nüchter. The 3d hough transform for plane detection in point
clouds: A review and a new accumulator design. 3D Re-
search, 2(2):3, 2011. 3, 6

[9] K.L. Boyer and AC. Kak. Color-encoded structured light for
rapid active ranging. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 9(1):14–28, 1987. 3

[10] D Alex Butler, Shahram Izadi, Otmar Hilliges, David
Molyneaux, Steve Hodges, and David Kim. Shake’n’sense:
reducing interference for overlapping structured light depth
cameras. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pages 1933–1936, 2012.
1

[11] Ricardo Cabral and Yasutaka Furukawa. Piecewise planar
and compact floorplan reconstruction from images. In 2014
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 628–635. IEEE, 2014. 3

[12] Alejo Concha and Javier Civera. Dpptam: Dense piecewise
planar tracking and mapping from a monocular sequence.
In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5686–5693. IEEE, 2015.
2

[13] James M Coughlan and Alan L Yuille. Manhattan world:
Compass direction from a single image by bayesian infer-
ence. In Proceedings of the Seventh IEEE International
Conference on Computer Vision, volume 2, pages 941–947.
IEEE, 1999. 3

[14] B. Curless and M. Levoy. Better optical triangulation
through spacetime analysis. In Proceedings of IEEE Inter-
national Conference on Computer Vision, 1995. 3

[15] Maksym Dzitsiuk, Jürgen Sturm, Robert Maier, Lingni Ma,
and Daniel Cremers. De-noising, stabilizing and complet-
ing 3d reconstructions on-the-go using plane priors. In 2017
IEEE International Conference on Robotics and Automation
(ICRA), pages 3976–3983. IEEE, 2017. 2

[16] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981. 3

[17] R. Furukawa, R. Sagawa, H. Kawasaki, K. Sakashita, Y.
Yagi, and N. Asada. One-shot entire shape acquisition
method using multiple projectors and cameras. In Pacific-
Rim Symposium on Image and Video Technology (PSIVT),
pages 107–114, 2010. 3

[18] Yasutaka Furukawa, Brian Curless, Steven M Seitz, and
Richard Szeliski. Manhattan-world stereo. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1422–1429. IEEE, 2009. 2

[19] David Gallup, Jan-Michael Frahm, and Marc Pollefeys.
Piecewise planar and non-planar stereo for urban scene re-
construction. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 1418–
1425. IEEE, 2010. 3

[20] Abhinav Gupta, Alexei A Efros, and Martial Hebert. Blocks
world revisited: Image understanding using qualitative ge-
ometry and mechanics. In European Conference on Com-
puter Vision, pages 482–496. Springer, 2010. 2

[21] Mohit Gupta, Amit Agrawal, Ashok Veeraraghavan, and
Srinivasa G. Narasimhan. A practical approach to 3d scan-
ning in the presence of interreflections, subsurface scatter-
ing and defocus. International Journal of Computer Vision,
102(1-3):33–55, 2013. 4

[22] Mohit Gupta and Shree K. Nayar. Micro phase shifting. In
Proc. IEEE CVPR, 2012. 4

[23] Mohit Gupta, Shree K. Nayar, Matthias Hullin, and Jaime
Martin. Phasor Imaging: A Generalization of Correla-
tion Based Time-of-Flight Imaging. ACM Transactions on
Graphics, 2015. 1

[24] Mohit Gupta, Qi Yin, and Shree K Nayar. Structured light in
sunlight. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 545–552, 2013. 1

[25] Mohit Gupta, Qi Yin, and Shree K. Nayar. Structured Light
in Sunlight. In IEEE International Conference on Com-
puter Vision (ICCV), pages 545–552, Sydney, Australia, Dec.
2013. IEEE. 7

[26] Christopher G Harris, Mike Stephens, et al. A combined cor-
ner and edge detector. In Alvey vision conference, volume 15,
pages 10–5244. Citeseer, 1988. 6

[27] R. Hartley and R. Gupta. Computing matched-epipolar pro-
jections. In IEEE CVPR, pages 549–555, 1993. 4

[28] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004. 1

[29] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo
pop-up. ACM Trans. Graph., 24(3):577–584, 2015. 2

[30] Dirk Holz and Sven Behnke. Fast range image segmentation
and smoothing using approximate surface reconstruction and
region growing. In Intelligent autonomous systems 12, pages
61–73. Springer, 2013. 3

[31] Thomas Holzmann, Michael Maurer, Friedrich Fraundorfer,
and Horst Bischof. Semantically aware urban 3d reconstruc-
tion with plane-based regularization. In Proceedings of the

http://www.povray.org
http://www.ignorancia.org/index.php/technical/lightsys/
http://www.ignorancia.org/index.php/technical/lightsys/


European Conference on Computer Vision (ECCV), pages
468–483, 2018. 2

[32] Paul VC Hough. Method and means for recognizing complex
patterns, Dec. 18 1962. US Patent 3,069,654. 3

[33] Rostislav Hulik, Michal Spanel, Pavel Smrz, and Zdenek
Materna. Continuous plane detection in point-cloud data
based on 3d hough transform. Journal of visual communi-
cation and image representation, 25(1):86–97, 2014. 3

[34] S. Inokuchi, K. Sato, and F. Matsuda. Range imaging sys-
tem for 3-d object recognition. In International Conference
Pattern Recognition, pages 806–808, 1984. 3

[35] Hossam Isack and Yuri Boykov. Energy-based geometric
multi-model fitting. International journal of computer vi-
sion, 97(2):123–147, 2012. 3

[36] M. Kaess. Simultaneous localization and mapping with in-
finite planes. In Proceedings of IEEE International Confer-
ence on Robotics and Automation (ICRA), page 4605–4611.
IEEE, 2015. 2

[37] Takeo Kanade. A theory of origami world. Artificial Intelli-
gence, 13:279–311, June 1980. 2

[38] Pyojin Kim, Brian Coltin, and H Jin Kim. Linear rgb-d slam
for planar environments. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 333–348,
2018. 2

[39] Jongho Lee and Mohit Gupta. Stochastic exposure coding
for handling multi-tof-camera interference. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 7880–7888, 2019. 1

[40] Cheng Lin, Changjian Li, and Wenping Wang. Floorplan-
jigsaw: Jointly estimating scene layout and aligning partial
scans. In Proceedings of the IEEE International Conference
on Computer Vision, pages 5674–5683, 2019. 3

[41] Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and
Jan Kautz. Planercnn: 3d plane detection and reconstruction
from a single image. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4450–
4459, 2019. 3, 8

[42] Chen Liu, Jimei Yang, Duygu Ceylan, Ersin Yumer, and Ya-
sutaka Furukawa. Planenet: Piece-wise planar reconstruc-
tion from a single rgb image. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2579–2588, 2018. 3, 8

[43] Julio Marco, Quercus Hernandez, Adolfo Munoz, Yue Dong,
Adrian Jarabo, Min H Kim, Xin Tong, and Diego Gutierrez.
Deeptof: off-the-shelf real-time correction of multipath in-
terference in time-of-flight imaging. ACM Transactions on
Graphics (ToG), 36(6):1–12, 2017. 1

[44] Branislav Micusik and Jana Kosecka. Piecewise planar city
3d modeling from street view panoramic sequences. In 2009
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2906–2912. IEEE, 2009. 2

[45] Daniel Moreno and Gabriel Taubin. Simple, accurate, and
robust projector-camera calibration. In 2012 Second Inter-
national Conference on 3D Imaging, Modeling, Processing,
Visualization & Transmission, pages 464–471. IEEE, 2012.
3

[46] Nikhil Naik, Achuta Kadambi, Christoph Rhemann,
Shahram Izadi, Ramesh Raskar, and Sing Bing Kang. A
light transport model for mitigating multipath interference
in time-of-flight sensors. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
73–81, 2015. 1

[47] Anh Nguyen and Bac Le. 3d point cloud segmentation: A
survey. In 2013 6th IEEE conference on robotics, automation
and mechatronics (RAM), pages 225–230. IEEE, 2013. 5

[48] Sven Oesau, Florent Lafarge, and Pierre Alliez. Planar shape
detection and regularization in tandem. In Computer Graph-
ics Forum, volume 35, pages 203–215. Wiley Online Library,
2016. 3

[49] Ali Osman Ulusoy, Michael J Black, and Andreas Geiger.
Patches, planes and probabilities: A non-local prior for vol-
umetric 3d reconstruction. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3280–3289, 2016. 2

[50] Matthew O’Toole, Supreeth Achar, Srinivasa G.
Narasimhan, and Kiriakos N. Kutulakos. Homoge-
neous codes for energy-efficient illumination and imaging.
ACM Transactions on Graphics (TOG), 34(4):1–13, July
2015. 7

[51] Matthew O’Toole, John Mather, and Kiriakos N Kutulakos.
3D Shape and Indirect Appearance by Structured Light
Transport. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 3246–3253, 2014. 7

[52] Charalambos Poullis. A framework for automatic modeling
from point cloud data. IEEE transactions on pattern analysis
and machine intelligence, 35(11):2563–2575, 2013. 3

[53] M. Proesmans, L. J. Van Gool, and A J. Oosterlinck. Active
acquisition of 3d shape for moving objects. In Proceedings
of the International Conference on Image Processing, vol-
ume 3, pages 647–650 vol.3, 1996. 3

[54] Srikumar Ramalingam, Jaishanker K Pillai, Arpit Jain, and
Yuichi Taguchi. Manhattan junction catalogue for spatial
reasoning of indoor scenes. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3065–3072, 2013. 2, 3

[55] Carolina Raposo, Michel Antunes, and Joao P Barreto.
Piecewise-planar stereoscan: structure and motion from
plane primitives. In European Conference on Computer Vi-
sion, pages 48–63. Springer, 2014. 2, 3

[56] Carolina Raposo, Miguel Lourenço, Michel Antunes, and
João Pedro Barreto. Plane-based odometry using an rgb-d
camera. In BMVC, 2013. 2

[57] Lawrence G Roberts. Machine perception of three-
dimensional solids. PhD thesis, Massachusetts Institute of
Technology, 1963. 1, 2

[58] R. Sagawa, Yuichi Ota, Y. Yagi, R. Furukawa, N. Asada, and
H. Kawasaki. Dense 3d reconstruction method using a single
pattern for fast moving object. In Proc. IEEE ICCV, pages
1779–1786, 2009. 3

[59] Renato F Salas-Moreno, Ben Glocken, Paul HJ Kelly, and
Andrew J Davison. Dense planar slam. In 2014 IEEE in-
ternational symposium on mixed and augmented reality (IS-
MAR), pages 157–164. IEEE, 2014. 2



[60] J. Salvi, J. Batlle, and E. Mouaddib. A robust-coded pat-
tern projection for dynamic 3d scene measurement. Pattern
Recognition Letters, 19(11):1055 – 1065, 1998. 3

[61] K. Sato and S. Inokuchi. 3d surface measurement by
space encoding range imaging. Journal of Robotic Systems,
2(1):27–39, 1985. 3

[62] Yoshiaki Shirai and Motoi Suwa. Recognition of polyhe-
drons with a range finder. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, pages 80–
87, 1971. 3

[63] Shikhar Shrestha, Felix Heide, Wolfgang Heidrich, and Gor-
don Wetzstein. Computational imaging with multi-camera
time-of-flight systems. ACM Transactions on Graphics
(ToG), 35(4):1–11, 2016. 1

[64] Sudipta Sinha, Drew Steedly, and Rick Szeliski. Piecewise
planar stereo for image-based rendering. 2009. 2

[65] V Srinivasan, Hsin-Chu Liu, and Maurice Halioua. Auto-
mated phase-measuring profilometry: a phase mapping ap-
proach. Applied optics, 24(2):185–188, 1985. 3, 6

[66] Yuichi Taguchi, Yong-Dian Jian, Srikumar Ramalingam, and
Chen Feng. Point-plane slam for hand-held 3d sensors. In
2013 IEEE International Conference on Robotics and Au-
tomation, pages 5182–5189. IEEE, 2013. 2

[67] Alexander JB Trevor, John G Rogers, and Henrik I Chris-
tensen. Planar surface slam with 3d and 2d sensors. In 2012
IEEE International Conference on Robotics and Automation,
pages 3041–3048. IEEE, 2012. 3

[68] A. O. Ulusoy, F. Calakli, and Gabriel Taubin. One-shot scan-
ning using de bruijn spaced grids. In IEEE ICCV Workshops,
pages 1786–1792, 2009. 3

[69] Cedric Verleysen and Christophe De Vleeschouwer.
Piecewise-planar 3d approximation from wide-baseline
stereo. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3327–3336, 2016. 2,
3

[70] P. Vuylsteke and A Oosterlinck. Range image acquisi-
tion with a single binary-encoded light pattern. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
12(2):148–164, 1990. 3

[71] Peng Wang, Xiaohui Shen, Bryan Russell, Scott Cohen,
Brian Price, and Alan L Yuille. Surge: Surface regular-
ized geometry estimation from a single image. In Advances
in Neural Information Processing Systems, pages 172–180,
2016. 3

[72] Shuntaro Yamazaki, Akira Nukada, and Masaaki Mochi-
maru. Hamming color code for dense and robust one-shot
3d scanning. In Proceedings of the British Machine Vision
Conference, pages 96.1–96.9, 2011. 3

[73] Fengting Yang and Zihan Zhou. Recovering 3d planes from
a single image via convolutional neural networks. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 85–100, 2018. 3

[74] Shichao Yang, Yu Song, Michael Kaess, and Sebastian
Scherer. Pop-up slam: Semantic monocular plane slam for
low-texture environments. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
1222–1229. IEEE, 2016. 2

[75] Li Zhang, Brian Curless, and Steven M. Seitz. Rapid shape
acquisition using color structured light and multi-pass dy-
namic programming. In IEEE International Symposium on
3D Data Processing, Visualization, and Transmission, pages
24–36, 2002. 3

[76] Yichao Zhou, Haozhi Qi, Yuexiang Zhai, Qi Sun, Zhili Chen,
Li-Yi Wei, and Yi Ma. Learning to reconstruct 3d manhattan
wireframes from a single image. In Proceedings of the IEEE
International Conference on Computer Vision, pages 7698–
7707, 2019. 2, 3



Supplementary Technical Report for the Article: Blocks-World Cameras

Jongho Lee Mohit Gupta
University of Wisconsin-Madison
{jongho, mohitg}@cs.wisc.edu

1. Overview
This document provides derivations, explanations, and more results supporting the content of the paper submission titled,

“Blocks-World Cameras”.

2. Geometric Relationship between Pattern Feature and Image Feature
In this section, we algebraically derive geometric relationship between a pattern feature and a corresponding image feature,

for given scene plane parameters. Based on this relationship, we can estimate plane parameters given a pair of image feature
and pattern feature. Toward that end, we first review mathematical preliminaries in Section 3 of the main manuscript for
completeness.
Two-view geometry of structured-light: The Blocks-World Camera consists of a projector and a camera, as shown in Fig. 1
(a). We define the camera and projector coordinate systems (CCS and PCS) centered at cc and cp, the optical centers of the
camera and the projector, respectively. cc and cp are separated by the projector-camera baseline b along the x axis. The world
coordinate system (WCS) is assumed to be the same as the CCS centered at cc, i.e., cc = [0, 0, 0]

T and cp = [b, 0, 0]
T in

the WCS. Without loss of generality, both the camera and the projector are assumed to have the same focal length f , i.e., the
image planes of both are located at a distance f from their optical centers along the z-axis. For simplicity, we further assume
a rectified system such that the epipolar lines are along the rows of the camera image and the projector pattern.
Plane parameterization: A 3D scene plane is characterized by Π = {D, θ, ϕ}, where D ∈ [0,∞) is the perpendicular
(shortest) distance from the origin (cc) to Π, θ ∈ [0, π] is the polar angle between the plane normal and the −z axis, and
ϕ ∈ [0, 2π) is the azimuthal angle between the plane normal and the x axis (measured clockwise), as shown in Fig. 1 (a).
The pattern consists of a sparse set of cross-shaped features, which get mapped to cross-shaped features in the camera image
via homographies induced by scene planes, as shown in Fig. 1 (b).
Pattern feature and image feature: Consider a pattern feature P described by P = {up,vp,pp}, where vp and up are
two line vectors and pp is the intersection point of vp and up as shown in Fig. 1 (b). Let the corresponding image feature
I be described by I = {uc,vc,pc}, where vc and uc are line vectors corresponding to vp and up, respectively, and pc is
the intersection point of vc and uc. The elements in P and I are described in their own coordinate systems (PCS and CCS,
respectively), i.e., for the pattern feature P = {up,vp,pp},

up = [upx, uy, 0]
T
,vp = [vpx, vy, 0]

T
,pp = [ppx, py, f ]

T
. (1)

Similarly, for the corresponding image feature I = {uc,vc,pc},

uc = [ucx, uy, 0]
T
,vc = [vcx, vy, 0]

T
,pc = [pcx, py, f ]

T
. (2)

Depth estimation: To derive the relationship between the pattern feature and the image feature in terms of the plane pa-
rameters, we first derive the scene depth at the intersection point pc of the image feature in terms of the plane parameters.
Let the ray passing cp and pp intersect Π at p = [x, y, z]

T , and p is imaged at pc as shown in Fig 1 (c). Let the equation
of the line passing cc and pc be tpc = t [pcx, py, f ] (−∞ < t <∞) as shown in Fig 1 (c). Depth z of pc can be obtained
by intersecting this line with the plane Π = {D, θ, ϕ} and taking the third element of tpc. By substituting tpc to the plane
equation, we get nT (tpc) +D = 0 and t = − D

nTpc
. Thus,

z = tf = −f D

nTpc
. (3)



(b) A pair of pattern and image features
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Figure 1. Feature correspondences in the Blocks-World Cameras. (a) The Blocks-World Cameras are based on a structured light system
consisting of a projector which projects a single pattern on the scenes and a camera to capture the images. (b) The pattern consists of a
sparse set of cross-shaped features, which get mapped to cross-shaped features in the camera image via homographies induced by scene
planes. The plane parameters can be estimated by measuring the deformation between these features. (c) To derive the relationship between
the pattern feature and the image feature, point correspondence can be established from a triangle defined by cp, p, and cc. (d) Similarly,
line vector correspondence can be defined from two pairs of point correspondences.

The depth z of pc can be also represented in terms of the corresponding pattern intersection point pp. By intersecting the
line passing cp and pp with the plane Π (Fig 1 (c)):

z = −f nT cp +D

nTpp
. (4)

In the following, we describe the image feature I = {uc,vc,pc} in terms of the pattern feature P = {up,vp,pp} given the
plane parameters Π = {D, θ, ϕ}.
Point correspondence: From a triangle defined by cp, p, and pp (Fig 1 (c)), the imaged point pc corresponding to pp is:

pc =

1 0 b
z

0 1 0
0 0 1

pp, (5)

where z is the depth of pc. By substituting Eq. 3 or Eq. 4 to Eq. 5, we get the point correspondence in terms of the plane
parameters:

pc =

 D
D+bnx

− bny

D+bnx
− bnz

D+bnx

0 1 0
0 0 1

pp, (6)

where n = [nx, ny, nz]
T .

Line vector correspondence: Let pp1 and pp2 be two points defining up as shown in Fig 1 (d). Using Eq. 5, we can define
two imaged points pc1 and pc2 corresponding to pp1 and pp2, respectively as shown in Fig 1 (d):

pc1 =

1 0 b
z1

0 1 0
0 0 1

pp1 and pc2 =

1 0 b
z2

0 1 0
0 0 1

pp2, (7)

where z1 and z2 are the depths of pc1 and pc2, respectively. By defining uc = pc2 − pc1 and up = pp2 − pp1,

uc = up +

fb
(

1
z2
− 1

z1

)
0
0

 . (8)

From Eq. 3, we get:
1

z2
− 1

z1
= −nTuc

fD
. (9)
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Figure 2. Plane estimation from a known feature correspondence. (a) Line segments up and uc from image and pattern features create
a pair of planes which meet at a 3D line vector lu. (b) Another pair of image and pattern feature segments create a pair of planes meeting
at another 3D line. (c) The two 3D lines define a 3D plane. (d) Pattern features aligned with epipolar lines create a degenerate case, which
is avoided by designing pattern features such that line segments do not lie along epipolar lines.

By substituting Eq. 9 to Eq. 8, we get:

uc =

 D
D+bnx

− bny

D+bnx
0

0 1 0
0 0 0

up. (10)

Similarly,

vc =

 D
D+bnx

− bny

D+bnx
0

0 1 0
0 0 0

vp. (11)

From these relationships, we can derive the equations for the plane parameters given the pattern feature and the corre-
sponding image feature as explained in the next Section.

3. Plane Parameter Estimation from a Known Correspondence
In this section, we derive the expression for scene plane parameters when the correspondence between pattern feature and

the corresponding image feature is known. Consider the plane including the projector center cp and the line vector up of the
pattern feature as shown in Fig 2 (a). Similarly, consider another plane including the camera center cc and the line vector uc
of the corresponding image feature. These two planes meet at a 3D line vector lu as shown in Fig 2 (a) if up and uc are not
on the same epipolar line as shown in Fig 2 (d). lu can be computed by the cross product of the surface normals of these two
planes. The surface normals of the plane including cp and up and the plane including cc and uc are:

nup =
pp × up
‖pp × up‖

and nuc =
pc × uc
‖pc × uc‖

, (12)

respectively, where × is a cross product of the vectors and ‖ · ‖ is a norm of the vector. Thus, lu can be obtained by:

lu = nup × nuc =
(pp × up)× (pc × uc)

‖ (pp × up)× (pc × uc) ‖
. (13)

Similarly, another pair of two planes created by vp and vc meet at a 3D line vector lv as shown in Fig 2 (b), and lv can be
obtained by:

lv =
(pp × vp)× (pc × vc)

‖ (pp × vp)× (pc × vc) ‖
. (14)

The surface normal of the plane can be obtained by the cross product of lv and lu as shown in Fig 2 (c):

n = lv × lu =
((pp × vp)× (pc × vc))× ((pp × up)× (pc × uc))

‖ ((pp × vp)× (pc × vc))× ((pp × up)× (pc × uc)) ‖︸ ︷︷ ︸
Eq. 3 of the main manuscript

. (15)



The polar angle θ and the azimuthal angle ϕ of the plane normal can be obtained from n = [sin θ cosϕ, sin θ sinϕ,− cos θ]
T .

From Eq. 4 and Eq. 5, the shortest distance D from the origin (cc) to Π is:

D =
bnTpp
ppx − pcx

− nT cp︸ ︷︷ ︸
Eq. 4 of the main manuscript

. (16)

4. Plane Parameter Locus
In this section, we derive the algebraic equations describing the plane parameter locus explained in Section 5 of the main

manuscript. Let I = {uc,vc,pc} be the image feature corresponding to a pattern feature P = {up,vp,pp}. By pairing
I and P, we can obtain the true plane parameter set Π = [D, θ, ϕ]

T . For a given I, consider a set of pattern features
P′ =

{
up,vp,p

′
p

}
on the same epipolar line, where p′p =

[
p′px, py, f

]T
= [ppx + ω, py, f ]

T
(ω ∈ R). By pairing I and P′,

we can derive the equations of the plane parameter locus from Eq. 15 and Eq. 16 .
Let n′ be the surface normal of the plane created by pairing I and P′. Using Eq. 15,

n′ =
((
p′p × vp

)
× (pc × vc)

)
×
((
p′p × up

)
× (pc × uc)

)
. (17)

We drop the normalization factor without loss of generality. By applying p′p = [ppx + ω, py, f ]
T , Eq. 1, and Eq. 2 to Eq. 17,

we get:

n′ =

 f (−ucxvy + upxvy + uyvcx − uyvpx)
f (−upxvcx + ucxvpx)

pcxuyvpx − pyucxvpx − p′pxuyvcx − pcxupxvy + pyupxvcx + p′pxucxvy

 . (18)

Please note that we dropped the common factors in x-,y-, and z-components of n′ without loss of generality. By applying
Eq. 6, Eq. 10, and Eq. 11 to Eq. 18 and arranging terms, we get:

n′ =

n′xn′y
n′z

 =
1

a

 nx
ny

nz + ωD
bf

 , (19)

where a =

√
n2x + n2y +

(
nz + ωD

bf

)2
is the normalization factor.

Let D′ be the perpendicular distance from the camera origin to the plane created by pairing I and P′. Using Eq. 16,

D′ =
bn′

T
p′p

p′px − pcx
− n′

T
cp =

bn′
T
pc

p′px − pcx
=

Dbn′
T
pc

bnTpc + ωD
=
D

a
. (20)

Thus, the plane parameter set Π′ of the plane created by pairing I and P′ is:

Π′ =

D′θ′
ϕ′

 =


D′

tan−1
(√

n′
x
2+n′

y
2

−n′
z

)
tan−1

(
n′
y

n′
x

)
 =


D
a

tan−1
( √

n2
x+n

2
y

−(nz+
ωD
bf )

)
ϕ

 . (21)

Property 1. The parameter locus Λm = {Πm1, . . . ,ΠmN} created by pairing an image feature Im and a set of pattern
features {P1, . . . ,PN} on the same epipolar line always lies on a plane parallel to the ϕ = 0 plane in the Π-space.

Proof: From Eq. 21, the azimuth angle ϕ′ of Π′ is always a constant ϕ.

Property 2. Let Λm = {Πm1, . . . ,ΠmN} be the parameter locus created in the same way as Property 1. Let Pµ (µ ∈ {1, . . . , N})
be the true corresponding pattern feature of Im. Let dµn be the distance between pattern features Pµ and Pn on the epipolar
line. Then, the locations of the elements of Λm are a function only of the set Dµ = {dµn |n ∈ {1, . . . , N}} of relative
distances between the true and candidate pattern features.

Proof: From Eq. 21, the locations of the elements of Λm are a function only of ω = p′px − ppx (not a function of pp or pc),
which is the relative distance between the true and candidate pattern features.
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Figure 3. Measurable plane space. The measurable plane normal space increases with D, and if D ≥ b (baseline between the camera
center and the projector center, 0.4 m assumed here), planes with any surface normals can be measured theoretically.
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Figure 4. Image feature angle variation over D (perpendicular distance to plane) and b (baseline). Image feature angle variation
decreases with D or increases with b. Therefore, it becomes difficult to measure precise plane parameters for in practice if D is very large
or b is very small.

5. Measurable Plane Space
One of the important practical questions regarding the performance of Blocks-World Cameras is “what is the plane pa-

rameter space measurable with the Blocks-World Cameras?” The measurable plane space is determined by (a) fundamental
limitations of the two-viewing imaging systems, and (b) measurement accuracy of image features.

Scene planes passing between the projector’s and camera’s optical centers or any segments on these planes are not mea-
surable. This is because for such planes, the projected pattern cannot be observed by the camera. These non-measurable
planes can be described as:

nx = 0, D = 0 (planes including x-axis) (22)

and
nx 6= 0, 0 ≤ −D

nx
≤ b (planes with the x-intercept between 0 and b). (23)

The measurable plane space is the complement of the set of the planes described by Eq. 22 and Eq. 23. Fig. 3 shows
examples of the measurable plane space when the baseline b = 0.4 m. The measurable plane normals (represented by θ and
ϕ) at differentD values are shown in blue with the polar plot, where the radial direction and the clockwise direction represent
θ and ϕ directions, respectively. The measurable plane normal space increases with D. If D ≥ b, planes with any surface
normals can be measured theoretically.

In practice, however, it is challenging to estimate plane parameters precisely when D is very large or b is very small. Let
the pattern feature angle (i.e., the angle between one of the line segments of the pattern feature and the epipolar line) be φp,
and the corresponding image feature angle (e.g., the angle between the corresponding image feature’s line segment and the
epipolar line) be φc. For a given φp, φc is a function of the plane parameters. As shown in Fig. 4, when the plane normal
changes, the corresponding image feature angle variation ∆φc gets smaller as D increases (b is fixed as 0.4 m) or b decreases
(D is fixed as 2 m). If ∆φc is too small, it is difficult to distinguish between different plane parameters.
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Figure 5. Image feature angles according to plane normal direction over different pattern feature angles. Image feature angle φc

does not change when φp = 0°, thus plane parameters cannot be estimated from feature deformation. On the other hand, φc changes
sensitively according to the plane normal direction when φp = 90°, leading to more accurate plane parameter estimation. D = b = 0.4 m
was assumed.
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Figure 6. Bound of image feature angle when plane normal changes over pattern feature angle. We use two pattern feature angles
φp1 = 45° and φp2 = 135° since they give the maximum image feature angle variation without the overlap.

6. Pattern Design
In this section, we discuss various parameters for pattern design and their conditions for optimal performance of the

Blocks-World Cameras.
Angles of pattern feature (why are 45° and 135° of pattern feature angles used?): The pattern feature angle (e.g., angle
between the line segment of the pattern feature and the epipolar line) is an important parameter for pattern design since it
influences the accuracy of plane parameter estimation. For a given pattern feature angle φp, the corresponding image feature
angle φc (e.g., angle between the line segment of the corresponding image feature and the epipolar line) varies as the plane
parameters Π change. The range of image feature angles ∆φc (over all possible plane parameters) is determined by the
pattern feature angle φp. For precise plane parameter estimation, ∆φc should be sufficiently large. Fig. 5 shows φc as a
function of the scene plane normal direction (D is fixed as D = b = 0.4 m) for different φps. If φp = 0°, φc is always 0°
regardless of the plane normal direction (this corresponds to the degerate case in Fig. 2 (d)), which makes it impossible to
estimate the plane parameters. On the other hand, if φp = 90°, φc changes from 0° to 180°, which makes it much easier to
estimate the plane parameters accurately. Then, what is the optimal φp for precise plane parameter estimation?

Fig. 6 shows the maximum and minimum φc values over φp when the plane normal changes. We achieve the maximum
∆φc of 180° when φp = 90°, and the minimum ∆φc of 0° when φp = 0° or φp = 180°. Therefore, φp = 90° should
be selected for precise plane estimation. However, we need two φp values for plane estimation, and the range of two φcs
corresponding to two φps should not overlap for distinction between two image line segments when a single pattern is used.
For this purpose, we chose φp1 = 45° and φp2 = 135° since ∆φc1 and ∆φc2 are maximized while achieving no overlap in
the corresponding φc values as shown in Fig. 6.
Other pattern parameters: In addition to the pattern feature angle, there are more parameters for pattern design: radius of
the line segment r, number of pattern features on a single epipolar line n, distance between adjacent epipolar lines with pattern
features k, decrement or increment of distance between adjacent pattern features on each epipolar line h. These parameters
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Figure 7. Example patterns for simulations and experiments.

(a) Pattern with regular feature placement 

(c) Pattern with random feature placement 

(b) Π–space with (a)

(d) Π–space with (c)

True peak
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Figure 8. Pattern feature displacement for different epipolar lines and corresponding Π-spaces. (a, b) Same pattern feature displace-
ment for different epipolar lines and the resulting Π-space, respectively. (c, d) Random pattern feature displacement for different epipolar
lines and the resulting Π-space, respectively. If the pattern feature displacement for different epipolar lines is different, false local peaks in
Π-space are spread over the locus, leading to more robust true peak estimation.

can be chosen appropriately according to the scene or imaging conditions. Fig. 7 shows example patterns for our simulations
and experiments. We use r = 15, n = 7, k = 7, h = 5 (in pixels) for simulations and r = 18, n = 7, k = 10, h = 9 (in
pixels) for experiments. The total number of pattern features are 1050 and 735 for simulations and experiments, respectively.
Larger size and sparser distribution of pattern features for the experiments are to be robust to various imperfections in the
system. The resolution of the pattern is 1920× 1080.
Pattern feature displacement for different epipolar lines: If pattern features are non-uniformly distributed (more specifi-
cally, all distances between pattern features (multi-hops as well as single-hop between pattern features) are different) on each
epipolar line, true plane parameters can be estimated. Then what about the pattern feature displacement for different epipolar
lines? Is the pattern feature displacement for different epipolar lines the same or different? As long as the non-uniform
feature distribution on each epipolar line is satisfied, we can estimate the true plane parameters. However, if the pattern
feature distribution for different epipolar lines is all different, we can find the local peaks for the true plane parameters more
robustly. Fig. 8 shows Π-spaces for the scene of Fig. 5 in the main manuscript when the pattern feature displacement for



(a) Blocks-World Cameras with voting in Π- space (b) Blocks-World Cameras with RANSAC-like procedure
(no voting in Π- space)

Figure 9. Blocks-World Cameras in two ways. (a) Blocks-World Cameras with voing in Π-space. (b) Blocks-World Cameras with a
RANSAC-like procedure, which are more memory-efficient because they do not require voting in Π-space.

different epipolar lines is the same (upper row) and random (lower row). True peaks representing the true plane parameters
are not affected by the pattern feature displacement. However, false peaks are spread over the locus when the pattern feature
displacement for different epipolar lines is random, which enables more robust true peak finding as shown in Fig. 8.

7. More Memory-Efficient Blocks-World Cameras
In this section, we discuss more memory-efficient Blocks-World Cameras which do not require a plane parameter Π-space

for voting. Because the Blocks-World Cameras provide a pool of plane candidates with different confidence (e.g., larger
number of plane candidates for real dominant scene planes), parameters for dominant planes can be estimated by finding
inliers via a RANSAC-like procedure, instead of voting in the Π-space. The algorithm is as follows.

Algorithm 1: More Memory-Efficient Blocks-World Cameras
Input: ntol: error tolerance for plane normal, Dtol: error tolerance for D, T : number of iterations,
Im (m ∈ {1, . . .M}) : M number of image features,
Pn (n ∈ {1, . . . N}): N number of pattern features on the same epipolar line,
Πmn: all plane candidates created by pairing Im and Pn
Output: Πq (q ∈ {1, . . . , Q}): Q number of dominant scene planes
for q=1 to Q do

for t=1 to T do
Randomly choose Π from {Πmn};
Inliers← Πmn within ntol and Dtol;

end
Πq ← model with the largest number of inliers (can be averaged inliers for more accurate model);
Remove current inliers from {Πmn};
Find Im which participated in creating current inliers;
Remove plane candidates created by these Im from {Πmn};

end

Fig 9 (a) and (b) show the Blocks-World Camera results with voting in the Π-space and with a RANSAC-like procedure,
respectively. All dominant planes are extracted well with the RANSAC-based Blocks-World Cameras as well. ntol = 4°,
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Figure 10. Comparison with plane-fitting. (a) Scene. (b) Depth maps simulated by structured-light systems (sinusoid phase-shifting,
binary Gray coding) and continuous wave time-of-flight (C-ToF) imaging. (c, d, e) Plane segmentation results by randomized 3D Hough
transform (RHT), RANSAC, and Blocks-World Cameras.

Dtol = 0.1, and T = 100 are used to get the results.

8. Comparisons with Conventional Plane-Fitting Approaches
We compare plane estimation performance of the Blocks-World Cameras to the conventional approaches fitting the planes

to 3D point clouds. For conventional approaches, we use 3D Hough transform and RANSAC, which are two popular plane-
fitting methods. We use the randomized version of the 3D Hough transform (RHT) due to its computational efficiency. To
create 3D point clouds for conventional approaches, we simulate structured-light (SL) systems and continuous-wave time-of-
flight (C-ToF) imaging systems. We use sinusoid phase-shifting [3] and binary Gray coding [1, 2] to test two different sets
of patterns for the SL systems. To simulate the C-ToF systems, multiple variables are required. Assuming sinusoid coding
for amplitude modulation, the average numbers of signal photons (at the minimum depth) and ambient photons are assumed
to be 1 × 106 and 5 × 105, respectively. 10 MHz of modulation frequency and 10 ms of integration time are used. Fig. 10
(b) shows the depth maps created by phase-shifting, Gray coding, and C-ToF, respectively. In case of the SL systems, Gray
coding where 24 patterns are used shows a higher quality depth map than phase-shifting where 12 patterns are used. Although
the performance of C-ToF depends on various parameter values, in general, C-ToF enables faster depth acquisition, longer
depth range, but lower depth resolution compared to the SL systems. After creating 3D point clouds from the depth maps,
we down-sample the point clouds such that the number of 3D points is the same as the number of image features captured by
the Blocks-World Cameras to ensure fair comparison especially in terms of run-time.

Several parameter values are required for the MATLAB implementations of the conventional plane-fitting approaches. For
RANSAC, we set the maximum number of iterations as 103 and the maximum distance from an inlier 3D point to the plane
as 0.1 m. For RHT, the bin sizes for θ and φ ranges are the same as 3° and the bin size forD range is 0.04 m. These relatively
large bin sizes are to handle noise existing in the 3D point clouds. The number of iterations is 106 for RHT. All these values are
determined empirically to generate the most reasonable results. Fig. 10 (c), (d), and (e) show the plane segmentation results by
RHT, RANSAC, and Blocks-World Cameras, respectively. For RHT (Fig. 10 (c)), it is challenging to extract small, distant
or noisy planes because the votes for these planes are not reliably accumulated by random selection of points. Although
RANSAC (Fig. 10 (d)) achieves better plane extraction, both RHT and RANSAC result in erroneous plane segmentation
results (e.g., erroneous points on the imaginary planes created when the round table is expanded). This is a common issue
with point cloud-based approaches since each 3D point does not have local plane information. In comparison, Blocks-World
Cameras achieve accurate plane segmentation since each cross-shaped image feature contains partial information on the plane
it belongs to, and does not need global reasoning.

Plane estimation results by the conventional approaches and the Blocks-World Cameras are compared to the ground truth



Plane Π1 Π2 Π3 Π4 Π5 Π6

RHT 66, 270, 1.08 66, 270, 1.68 48, 153, 2.97 NA NA NA
RANSAC 64, 273, 1.15 59, 270, 1.84 46, 154, 3.00 48, 22, 2.31 37, 144, 2.41 55, 18, 3.00

Blocks-World Cameras 65, 270, 1.10 64, 269, 1.70 46, 155, 3.00 53, 20, 2.06 46, 152, 2.02 52, 18, 3.04
Ground truth 65, 270, 1.10 65, 270, 1.70 46, 153, 3.00 54, 20, 2.00 46, 153, 2.00 54, 20, 3.00

Table 1. Plane estimation results when the point cloud is created by a structured-light system with phase-shifting for conventional ap-
proaches.

Plane Π1 Π2 Π3 Π4 Π5 Π6

RHT 66, 270, 1.08 66, 270, 1.68 51, 153, 2.96 NA 45, 153, 2.00 54, 21, 3.00
RANSAC 65, 271, 1.10 65, 270, 1.69 46, 153, 2.99 54, 19, 2.02 44, 151, 2.12 54, 20, 2.99

Blocks-World Cameras 65, 270, 1.10 64, 269, 1.70 46, 155, 3.00 53, 20, 2.06 46, 152, 2.02 52, 18, 3.04
Ground truth 65, 270, 1.10 65, 270, 1.70 46, 153, 3.00 54, 20, 2.00 46, 153, 2.00 54, 20, 3.00

Table 2. Plane estimation results when the point cloud is created by a structured-light system with Gray coding for conventional approaches.

Plane Π1 Π2 Π3 Π4 Π5 Π6

RHT 63, 270, 1.12 NA 48, 159, 3.00 NA NA NA
RANSAC 67, 278, 1.13 63, 271, 1.76 47, 147, 3.00 NA 45, 154, 2.03 53, 21, 3.05

Blocks-World Cameras 65, 270, 1.10 64, 269, 1.70 46, 155, 3.00 53, 20, 2.06 46, 152, 2.02 52, 18, 3.04
Ground truth 65, 270, 1.10 65, 270, 1.70 46, 153, 3.00 54, 20, 2.00 46, 153, 2.00 54, 20, 3.00

Table 3. Plane estimation results when the point cloud is created by a continuous-wave time-of-flight imaging for conventional approaches.

Plane Π1 Π2 Π3 Π4 Π5 Π6

RHT 66, 270, 1.08 66, 270, 1.68 45, 159, 3.00 NA NA NA
RANSAC 63, 270, 1.14 62, 269, 1.75 46, 151, 2.99 56, 19, 1.93 43, 152, 2.13 56, 21, 2.97

Blocks-World Cameras 65, 270, 1.10 64, 269, 1.70 46, 155, 3.00 53, 20, 2.06 46, 152, 2.02 52, 18, 3.04
Ground truth 65, 270, 1.10 65, 270, 1.70 46, 153, 3.00 54, 20, 2.00 46, 153, 2.00 54, 20, 3.00

Table 4. Plane estimation results when the point cloud is down-sampled by 0.5 sampling rate for conventional approaches.

in Table 1, 2, and 3. Phase-shifting, Gray coding, and C-ToF are used to create the 3D point clouds for conventional
approaches in Table 1, 2, and 3, respectively. Each cell in the table represents [θ(◦), φ(◦), D(m)]. The planes which cannot
be segmented by the conventional approaches are represented by NA. The estimation errors and the run-time are shown in
Fig. 11 (a) and (b), respectively. For the SL systems, conventional approaches show better performance in plane parameters
error with Gray coding than phase-shifting since Gray coding uses more patterns leading to more accurate correspondence
matching. The Blocks-World Cameras shows comparable performance to Gray coding even with a single pattern. For the
C-ToF systems, the conventional approaches fail to find all dominant planes while the Blocks-World Cameras can. The
conventional approaches are slower than the Blocks-World Cameras in run-time regardless of the imaging modalities.

We also discuss the trade-off between run-time and plane estimation accuracy while varying the sampling rate of the
3D point clouds. Fig. 12 (a) and (b) show the plane segmentation results by RHT and RANSAC, respectively after down-
sampling the point clouds with different rates. The sampling rate of 0.02 is to ensure that the number of 3D points is the same
as the number of image features of the Blocks-World Cameras. The sampling rate of 1.0 means no down-sampling of the 3D
point clouds. The plane segmentation error by the conventional approaches is not reduced by increasing the sampling rates.
Tables 4 and 5 summarize the ground truth plane parameters and the plane estimation results by the Blocks-World Cameras
and the conventional approaches with different sampling rates. The plane estimation errors and the run-time comparisons
with different sampling rates are shown in Fig. 13 (a) and (b), respectively. When the sampling rate increases, RANSAC
becomes more accurate in plane parameter estimation, but it becomes slower in run-time. The Blocks-World Cameras show
better performance than conventional approaches in both plane parameters error and run-time regardless of the sampling rate.



(a) Plane parameters error comparison (b) Run-time comparison
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Figure 11. Quantitative performance comparison with different imaging modalities. Quantitative performance of the conventional
approaches with different imaging modalities and the Blocks-World Cameras are compared in terms of (a) plane parameters error and (b)
run-time (point cloud acquisition time is not included for conventional approaches). Structured-light systems (upper and middle rows)
and continuous wave time-of-flight imaging system (lower row) are simulated. For the structured-light systems, sinusoid phase-shifting
with 12 patterns (upper row) and binary Gray coding with 24 patterns are used. The Blocks-World Cameras with a single pattern show the
performance comparable to the Gray coding with 24 patterns in plane parameters error while achieving very low computational complexity.

Plane Π1 Π2 Π3 Π4 Π5 Π6

RHT 66, 270, 1.08 66, 270, 1.68 51, 153, 2.92 NA NA NA
RANSAC 65, 274, 1.12 66, 270, 1.69 43, 149, 3.03 55, 19, 1.99 48, 150, 1.96 54, 17, 3.01

Blocks-World Cameras 65, 270, 1.10 64, 269, 1.70 46, 155, 3.00 53, 20, 2.06 46, 152, 2.02 52, 18, 3.04
Ground truth 65, 270, 1.10 65, 270, 1.70 46, 153, 3.00 54, 20, 2.00 46, 153, 2.00 54, 20, 3.00

Table 5. Plane estimation results when the point cloud is down-sampled by 1.0 sampling rate for conventional approaches.

9. Mechanics of Plane Estimation in Plane Parameter Space
Bin sizes of plane parameter space: The optimal bin sizes of the plane parameter space (Π-space) depends on various
factors such as scene conditions and imaging conditions. Roughly speaking, relatively larger bin sizes are used for low SNR
conditions (e.g., noisy imaging conditions) and for non-planar scenes (e.g., Fig. 11 of the main manuscript). We use 1° for θ
and ϕ ranges and 0.02 m for D range. To approximate the non-planar scene with piece-wise planar scene in the third result
of Fig. 11 of the main manuscript, we use 7° for θ range, 10° for ϕ range and 0.05 m for D range.
Finding local peaks for true plane parameters: Multiple loci created by multiple image features on the same scene plane
build several local peaks in Π-space. Only one peak represents true scene plane parameters, and others are false peaks created
by possible candidate voting. Since a true local peak for a small scene plane can be lower than false local peaks for a huge
scene plane, true local peaks should be selected carefully. We describe how to find the local peaks for true plane parameters
with the Π-space of the scene in Fig. 5 of the main manuscript. 1) Find the maximum peak (e.g., peak pointed by Π3 in the
first sub-figure of Fig. 14) in the Π-space. This peak represents the true plane parameters for the plane Π3. 2) Identify all
image features which voted for this peak and remove all votes by these image features from the Π-space. Then all false peaks



(c) Blocks-World Cameras(b) RANSAC(a) Randomized 3D Hough

Sampling rate 0.02

Sampling rate 0.5

Sampling rate 1.0

Figure 12. Plane segmentation comparisons with different sampling rates of 3D point clouds. After 3D point clouds are down-sampled
with different sampling rates, planes are segmented by (a) randomized 3D Hough transform and (b) RANSAC. The segmentation results
are compared to the result by (c) Blocks-World Cameras. The randomized 3D Hough transform fails to find all dominant planes even with
the increased sampling rates. The plane segmentation error by conventional approaches is not reduced by increasing the sampling rate.

by these image features will disappear as shown in the second sub-figure of Fig. 14. Repeat 1) and 2) to find all true local
peaks (true plane parameters) (Fig. 14).
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(b) Run-time comparison
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(a) Plane parameters error comparison

Figure 13. Quantitative performance comparison with different sampling rates of 3D point clouds. Quantitative performance of the
conventional approaches with different sampling rates of 3D point clouds and the Blocks-World Cameras are compared in terms of (a)
plane parameters error and (b) run-time (point cloud acquisition time is not included for conventional approaches). When the sampling
rate increases, RANSAC becomes more accurate in plane parameter estimation, but it becomes slower in run-time. Blocks-World Cameras
show better performance than conventional approaches in both plane parameters error and run-time regardless of the sampling rate.
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Figure 14. Finding true plane parameters in Π-space. Find the maximum peak and identify the image features voted for the maximum
peak. Remove all votes by these image features from the Π-space. Repeat this to find all true plane parameters.
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