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Abstract

Reconstruction of high-resolution extreme dynamic
range images from a small number of low dynamic range
(LDR) images is crucial for many computer vision ap-
plications. Current high dynamic range (HDR) cameras
based on CMOS image sensor technology rely on multi-
exposure bracketing which suffers from motion artifacts
and signal-to-noise (SNR) dip artifacts in extreme dynamic
range scenes. Recently, single-photon cameras (SPCs) have
been shown to achieve orders of magnitude higher dynamic
range for passive imaging than conventional CMOS sen-
sors. SPCs are becoming increasingly available commer-
cially, even in some consumer devices. Unfortunately, cur-
rent SPCs suffer from low spatial resolution. To overcome
the limitations of CMOS and SPC sensors, we propose a
learning-based CMOS-SPC fusion method to recover high-
resolution extreme dynamic range images. We compare the
performance of our method against various traditional and
state-of-the-art baselines using both synthetic and experi-
mental data. Our method outperforms these baselines, both
in terms of visual quality and quantitative metrics.

1. Introduction
Emerging computer vision applications require imaging

systems capable of capturing brightness levels with extreme
dynamic range (DR), where the brightest point in the image
can be more than 6 orders of magnitude brighter than the
dimmest point [52]. Fig. 1 shows an example of such ex-
treme dynamic range scenario. Unfortunately, conventional
image sensors, based on charged-coupled device (CCD) or
complementary semiconductor metal oxide (CMOS) tech-
nology, have a limited DR. Various computational and hard-
ware approaches have been developed over several decades
to deal with this limitation [53, 4, 42], and continues to be
an active area of research [51].

Exposure bracketing, where a sequence of images with
different exposure times are fused into a single high dy-
namic range (HDR) image [11, 40], is one of the most
widely used approaches. However, in dynamic applications
this technique can lead to ghosting [60] and light flicker

Figure 1. Need for extreme dynamic range (DR): (a) Many real
world scenes span a wide range of brightness levels. CMOS cam-
eras provide a high spatial resolution but limited dynamic range.
A single-photon camera (SPC) has extreme dynamic range but not
enough spatial resolution. (b) A histogram showing true scene
pixel values from (a) that span photon flux levels over 10 orders of
magnitude from 102 to 1012 photons/s. Fusing CMOS and SPC
images can potentially provide extreme dynamic range while si-
multaneously providing high spatial resolution.

[61, 28, 13] artifacts. To mitigate these artifacts, commer-
cial HDR sensors are limited to fusing only a few (2–4)
exposures acquired through sequential capture [61] or with
dual-pixel architectures [28, 2]. Recovering an extreme dy-
namic range image from only a few exposure stops results in
spatially non-uniform signal-to-noise-ratio (SNR) dip arti-
facts [65, 44, 61] throughout the image. Large SNR dips are
a challenge because fine image features can end up buried
in the noise, which may be hard to denoise. Overall, spa-
tially non-uniform SNR drops are a fundamental limitation
of exposure bracketing in extreme DR scenarios when only
a small number of exposures are available.

More recently, single-photon cameras (SPCs) based on
single-photon avalanche diode (SPAD) detector technology
have gained popularity for various image sensing applica-
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tions [8, 7, 45, 35, 67, 23, 38]. Their extreme sensitivity

to light down to individual photons and high timing res-

olution have been exploited to achieve extreme dynamic

range from a single capture [30, 29]. These demonstrations,

however, have been limited to either single-pixel detectors

or very low-resolution SPAD arrays. Recently, the first

megapixel SPAD arrays have been demonstrated [45]. Un-

fortunately, the per-pixel bit-depth of these sensors is only

1-bit, which means that thousands of binary frames need to

be read off the sensor to reconstruct a single image. This

design has prohibitively high power consumption, long ac-

quisition times, and current algorithms are based on offline

processing [39, 56]. Fortunately, multi-bit-depth SPAD ar-

rays are becoming available, albeit, at lower spatial resolu-

tions [14, 48]. Therefore, for the time being, users of SPAD

arrays must resort to mechanical scanning techniques [30]

or computational super-resolution methods [9] to increase

the spatial resolution of captured images.

In this work we propose a learning-based sensor fu-

sion approach that uses high-resolution, low dynamic range

(LDR) information captured by a conventional CMOS cam-

era and low-resolution but extremely high dynamic range

image captured by a SPC to reconstruct a high spatial res-

olution and extreme dynamic range image (Fig. 1(a)). Our

work is motivated by the observation that such multi-camera

modules consisting of CMOS image sensors co-located

with an SPC are already commercially available [66]. We

show that our method of fusing a single SPC image and a

single CMOS camera image can outperform dual-exposure

bracketing fusion methods that rely on two images, espe-

cially in situations where the dynamic range is too large to

be covered by two CMOS exposures (Fig. 1(b)).

2. Related Work
Multi-image HDR Imaging: Conventional HDR imaging

methods capture multiple LDR images of the scene with

different exposures and merge them into a single HDR im-

age [11, 25, 32]. Although these methods work well for

static scenes, they suffer from “ghosting” artifacts caused

by motion [60]. This can be alleviated using spatially vary-

ing exposure image sensors [46, 28, 2], but introduces ad-

ditional hardware complexity if more than two exposures

are needed to cover the dynamic range. We show that by

using just two image sensors (a CMOS and an SPC) we

can capture extremely DR content, beyond the capability of

conventional methods including CMOS-CMOS fusion. Al-

though our method is restricted to static scenes with extreme

DR, it is complementary to recent burst photography HDR

methods [26] that can compensate for motion.

Single-image HDR Imaging: State-of-the-art methods for

single-image HDR use deep learning techniques to recover

saturated regions from a single CMOS image [15, 55, 43,

37]. These methods perform quite well when the image

contains only a few overexposed regions. However, in the

case of extreme dynamic range scenes where large regions

of the scene are overexposed, these methods can introduce

significant hallucination artifacts, which are not appropriate

in safety-critical applications. Here we show that providing

an additional source of information in the form of a low res-

olution but high dynamic range SPC image, enables recon-

structing extremely bright and saturated regions that con-

ventional single-image HDR methods struggle to recover.

Other Emerging Sensors: Recently, event-based vision

sensors have been used in conjunction with a CMOS image

sensor [24, 63] for HDR imaging. Unlike an event-camera

that only captures changes in brightness, our method uses an

SPC that directly captures scene intensity with extreme DR.

Quanta image sensors (QIS) [16] are also sensitive down to

individual photons and can provide much higher dynamic

range than conventional CMOS cameras [20]. Nonetheless,

due to the lack of precise timing information, the dynamic

range achievable by the QIS is still lower than what could be

achieved with a SPAD-based SPC [29]. Additionally, there

is already an industry trend towards adopting SPAD-based

SPC’s in commercial devices [66], mainly because of their

additional application to LiDAR imaging [34].

3. Image Formation Model
The photon irradiance received at an image sensor pixel

is proportional to the true brightness (radiance) of the scene

point [58]. Assuming a fixed pixel size the photon irra-

diance is converted to total incident photon flux (photons

per second) which can be used as a proxy for scene bright-

ness. We therefore use the photon flux and brightness inter-

changeably in this paper. Consider a fixed scene point with

a brightness of Φ photons/second. The response curve of

the image sensor pixel determines the relationship between

the incident photon flux and the pixel output. This response

curve is an intrinsic property of the pixel and is different for

a conventional CMOS camera pixel and an SPC pixel.

3.1. CMOS Response Function

A conventional CMOS camera pixel has a linear re-

sponse curve where the photoelectric charge accumulated

in the pixel is directly proportional to the incident photon

flux Φ. Camera manufacturers often apply a proprietary

non-linear compression curve called the camera response

function (CRF) to the raw pixel measurement. We assume

that the camera gives access1 to the raw (linear) pixel values

directly, where the pixel output, NCMOS
T , is a linear function

of Φ. The average number of photoelectrons accumulated

in a CMOS pixel over an exposure time, T , is given by:

E[NCMOS
T ] = qCMOSΦT (1)

1If raw linear pixel values are not available, existing CRF estimation

methods can be used to linearize them [22, 3].
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a n d t h e v ari a n c e d u e t o P oiss o n n ois e is gi v e n b y:

V ar [N C M O S
T ] = q 2

C M O S Φ 2 T 2 ( 2)

w h er e 0 < q C M O S < 1 is t h e pi x el s e nsiti vit y. T h a n ks t o
r e c e nt a d v a n c es i n C M O S t e c h n ol o g y, el e ctr o ni c r e a d n ois e
s o ur c es ar e a p pr o a c hi n g or a c hi e vi n g s u b- el e ctr o n l e v els i n
n or m al ill u mi n ati o n c o n diti o ns [ 1 0], m a ki n g t h e m n e gli gi-
bl e i n t h e hi g h- fl u x r e gi m e st u di e d i n t his p a p er a n d ar e
t h er ef or e i g n or e d. We us e a G a ussi a n a p pr o xi m ati o n a n d
ass u m e t h at e a c h C M O S pi x el g e n er at es a n o ut p ut N C M O S

T

t h at f oll o ws a n or m al distri b uti o n wit h m e a n a n d v ari a n c e
gi v e n b y E qs. ( 1) a n d ( 2), a n d r o u n d e d t o t h e n e ar est i nt e-
g er. A d diti o n all y, w e i m p os e a f ull w ell c a p a cit y li mit s u c h
t h at N C M O S

T is cl a m p e d at a m a xi m u m of N F W C . We esti-
m at e t h e i n ci d e nt p er- pi x el p h ot o n fl u x usi n g:

Φ C M O S =
N C M O S

T

q C M O S T
( 3)

pr o vi d e d t h e pi x el is n ot s at ur at e d, i. e., N C M O S
T < N F W C .

3. 2. S P C R es p o ns e F u n cti o n

We ass u m e t h at e a c h pi x el i n o ur S P C is a p assi v e
fr e e-r u n ni n g S P A D — aft er e a c h p h ot o n d et e cti o n e v e nt, t h e
S P A D e nt ers a d e a d-ti m e d uri n g w hi c h it d o es n ot c a pt ur e
a n y p h ot o ns. Ass u mi n g t h at t h e p h ot o ns i n ci d e nt o n e a c h
pi x el f oll o w P oiss o n st atisti cs, t h e n u m b er of d et e ct e d p h o-
t o ns (N S P C

T ) o v er a fi x e d e x p os ur e ti m e (T ) f oll o ws a r e-
n e w al pr o c ess [ 2 1] wit h m e a n a n d v ari a n c e gi v e n b y [ 3 0]:

E [N S P C
T ] =

q S P A D Φ T

1 + q S P A D Φ τ d
( 4)

V ar [N S P C
T ] =

q S P A D Φ T

( 1 + q S P A D Φ τ d ) 3
( 5)

w h er e 0 < q S P A D < 1 is t h e pi x el s e nsiti vit y, a n d τ d is
t h e d e a d-ti m e. We us e a G a ussi a n a p pr o xi m ati o n a n d as-
s u m e t h at e a c h pi x el g e n er at es n or m all y distri b ut e d p h ot o n
c o u nts wit h t h e s a m e m e a n a n d v ari a n c e as E qs. ( 4) a n d ( 5),
a n d r o u n d e d t o t h e cl os est i nt e g er [ 3 0]. Fr o m t h e m e as ur e d
p h ot o n c o u nts, N S P C

T , w e esti m at e t h e p er- pi x el bri g ht n ess
b y i n v erti n g E q. ( 4):

Φ S P C =
N S P C

T / q S P A D

T − τ d N
S P C
T

. ( 6)

N ot e t h at d u e t o its d e a d-ti m e, t h e S P A D pi x el’s esti m at e d
bri g ht n ess i n E q. ( 6) is a n o n-li n e ar f u n cti o n of t h e m e a-
s ur e d p h ot o n c o u nts. We a p pl y t his li n e ari z ati o n st e p t o
e a c h pi x el’s p h ot o n c o u nts i n o ur S P C si m ul ati o ns.

Fi g ur e 2. S N R di p p r o bl e m of d u al- e x p os u r e b r a c k eti n g: T o
c o v er a n e xtr e m e D R wit h bri g ht n ess l e v els s p a n ni n g m a n y or-
d ers of m a g nit u d e, d u al- e x p os ur e br a c k eti n g r e q uir es t w o wi d el y
s p a c e d e x p os ur e ti m es. T his l ar g e e x p os ur e diff er e n c e c a us es a
dr o p i n t h e p er- pi x el S N R as s e e n i n t his t h e or eti c al S N R pl ot.
C M O S + S P C f usi o n d o es n ot e x p eri e n c e t his S N R di p. T h e f u-
si o n ass u m es a 1 0 m s e x p os ur e f or e a c h s e ns or, w h er e as t h e d u al-
e x p os ur e br a c k eti n g us es 1 0 m s a n d 1 µ s e x p os ur e ti m es f or t h e
c o n fi g ur ati o n s h o w n i n t his fi g ur e.

4. S P C- G ui d e d E xt r e m e H D R I m a gi n g

T h e d y n a mi c r a n g e of S P C’s is s uf fi ci e nt f or m a n y a p-
pli c ati o ns. Si mil arl y, t h e s p ati al r es ol uti o n of C M O S s e n-
s ors is als o s uf fi ci e nt. T h er ef or e, a pr a cti c al s ol uti o n t o t h e
li mit e d r es ol uti o n of S P C’s a n d li mit e d d y n a mi c r a n g e of
C M O S s e ns ors is t h e f usi o n of t h es e t w o s e ns ors. O n e
a d v a nt a g e of t his d esi g n is t h at it pr e v e nts S N R di p arti-
f a cts, b e c a us e at e xtr e m e bri g ht n ess l e v els S P C’s c a n s us-
t ai n hi g h S N R b y usi n g s uf fi ci e ntl y l o n g ( b ut pr a cti c al) e x-
p os ur e ti m es. T his r es ults i n a p h ot o n fl u x vs. S N R c ur v e 2

wit h a mi ni m al di p, as s h o w n i n Fi g ur e 2. M or e o v er, e x-
isti n g c o m m er ci al d e vi c es s u c h as t h e r e c e nt i P h o n e 1 2 Pr o,
alr e a d y i n c or p or at e a hi g h-r es ol uti o n C M O S a n d S o n y’s 3 0-
kil o- pi x el S P C [ 6 6, 1], s u g g esti n g t h at t his is a pr a cti c al
d esi g n. I n t his s e cti o n w e pr es e nt o ur pr o p os e d m o d el t o
e x p a n d t h e d y n a mi c r a n g e of a C M O S i m a g e wit h a n S P C
i m a g e t o r e c o nstr u ct a n e xtr e m e H D R i m a g e.

4. 1. S P C- G ui d e d H D R N et w o r k

Si mil ar t o pr e vi o us l e ar ni n g- b as e d H D R m o d els w e
a d o pt a U- n et ar c hit e ct ur e [ 5 4]. Diff er e nt fr o m tr a diti o n al
U- n ets, o ur d esi g n us es t w o e n c o d ers t h at e xtr a ct f e at ur es
fr o m t h e C M O S a n d S P C i m a g es, as s h o w n i n Fi g ur e 3. T h e
n et w or k ar c hit e ct ur e s h o w n h er e ass u m es t h e S P C i m a g e is

2 S N R : = 2 0 l o g1 0 Φ / E [ (Φ − Φ ) 2 ] . Cl os e d f or m e x pr essi o ns

f or t his pl ot ar e t a k e n fr o m [ 3 0].
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Fi g ur e 3. S P C- G ui d e d H D R n et w o r k a r c hit e ct u r e: A bl o c k di a gr a m of t h e d u al- e n c o d er U- n et i m pl e m e nt e d i n t his p a p er is s h o w n
h er e. T h e e n c o d ers ( bl u e a n d or a n g e bl o c ks) s e q u e nti all y filt er a n d d o w ns a m pl e t h e i n p ut C M O S a n d S P C i m a g es b y 2 × ( e. g., H 2 = H 1

2
,

H 3 = H 1
4

) t o e xtr a ct m ulti-s c al e f e at ur es. T h e s e ns or f usi o n d e c o d er f urt h er filt ers a n d u p-s a m pl es t h e f e at ur e m a ps. T h e l ast l a y er a p pli es
a bl e n di n g o p er ati o n of t h e i n p ut C M O S i m a g e a n d t h e l e ar n e d u p-s a m pli n g of t h e S P C i m a g e.

4 × s m all er i n r es ol uti o n t h a n t h e C M O S i m a g e. P erf or-
m a n c e li mits wit h ot h er r es ol uti o n f a ct ors will b e e x pl or e d
i n f ut ur e w or k. O ur m o d el o p er at es o n t h e li n e ari z e d bri g ht-
n ess i m a g es, r e q uiri n g a pr e- pr o c essi n g st e p t h at a p pli es
E qs. ( 3) a n d ( 6) t o t h e C M O S a n d S P C pi x el o ut p uts.

S e ns o r F usi o n D e c o d e r: T h e g o al of t h e d e c o d er is t o r e-
c o nstr u ct t h e H D R i m a g e gi v e n t h e m ulti-s c al e f e at ur es e x-
tr a ct e d fr o m b ot h i m a g e s o ur c es. T h e l o n g-s ki p c o n n e cti o ns
fr o m t h e C M O S e n c o d er h el p pr es er v e t h e hi g h-r es ol uti o n
s p ati al i nf or m ati o n a v ail a bl e i n t h e n o n-s at ur at e d r e gi o ns.
T h e l o n g-s ki p c o n n e cti o ns fr o m t h e S P C e n c o d er pr o vi d e
l o w-r es ol uti o n s p ati al i nf or m ati o n of t h e f ull i m a g e, a n d i n
p arti c ul ar, of t h e s at ur at e d r e gi o ns fr o m t h e C M O S i m a g e,
w hi c h g ui d es t h e d e c o d er t o u ps a m pl e t h e C M O S s at ur at e d
r e gi o ns wit h e xt e n d e d d y n a mi c r a n g e. M or e o v er, t h e d e e p
C M O S- S P C f e at ur es pr o vi d e t h e d e c o d er c o nt e xt u al i nf or-
m ati o n w hi c h h el ps h all u ci n at e t h e hi g h er-r es ol uti o n d et ails
of t h e s at ur at e d r e gi o ns t h at m a y n ot b e a v ail a bl e i n t h e S P C
i m a g e. I n S e cti o n 6. 2, w e s h o w t h at d es pit e o ur si m pl e n et-
w or k d esi g n, o ur m o d el p erf or ms c o m p ar a bl y t o ot h er m or e
c o m pl e x ar c hit e ct ur es t h at us e att e nti o n g at es [ 4 9, 2 4].

4. 2. L oss F u n cti o ns

T h e pr o p os e d S P C- g ui d e d H D R n et w or k wit h p ar a m e-
t ers θ , r e c o nstr u cts a li n e ar p h ot o n fl u x H D R i m a g e:

Φ F us e d = F θ (Φ C M O S , Φ S P C ). ( 7)

As dis c uss e d i n pr e vi o us d at a- dri v e n H D R r e c o nstr u cti o n
w or ks [ 2 4, 3 2, 1 5], c o m p uti n g a l oss dir e ctl y o n t h e li n e ar
H D R v al u es r es ults i n t h e l oss f u n cti o n b ei n g d o mi n at e d
b y t h e l ar g er pi x el v al u es. T h er ef or e, w e a d o pt a si mil ar

str at e g y w h er e w e c o m p ut e t h e l oss f u n cti o ns o n t h e t o n e-
m a p p e d d o m ai n. We us e µ - c o m pr essi o n, pr o p os e d i n [ 3 2],
as t h e diff er e nti a bl e t o n e- m a p pi n g o p er at or:

Φ F us e d
µ =

l o g ( 1 + µ Φ F us e d )

l o g ( 1 + µ )
. ( 8)

F or all t h e m o d els pr es e nt e d i n t his p a p er w e s et µ = 2 0 0 0 .

T h e l oss f u n cti o n us e d t o tr ai n o ur pr o p os e d S P C- g ui d e d
H D R n et w or k is c o m p os e d of a pi x el- wis e l oss a n d a p er-
c e pt u al l oss [ 3 1]. T h e pi x el- wis e l oss is t h e ℓ 1 dist a n c e b e-
t w e e n t h e t o n e- m a p p e d o ut p ut a n d t o n e- m a p p e d t ar g et i m-
a g es:

L ℓ 1 = Φ µ − Φ F us e d
µ

1
( 9)

w h er e Φ is t h e tr u e p h ot o n fl u x i m a g e. T h e p er c e pt u al l oss
is c o m p ut e d usi n g a pr e-tr ai n e d V G G- 1 9 [ 5 7] i n P y T or c h
[ 5 9, 5 0] as f oll o ws:

L v g g =
N

i = 1

ω i g i ( Φ µ ) − g i (Φ
F us e d
µ )

1
( 1 0)

w h er e g i (·) is t h e it h l a y er o ut p ut of t h e V G G m o d el, a n d
ω i is a c o nst a nt w ei g hi n g f a ct or t h at assi g ns l ar g er w ei g hts
t o d e e p er l a y ers. P utti n g E qs. ( 9) a n d ( 1 0) t o g et h er w e g et
o ur l oss f u n cti o n:

L = L ℓ 1 + α L v g g ( 1 1)

w h er e α = 0 .1 .

1 5 7 8



5. Datasets and Implementation

In this section, we introduce our simulator for CMOS
and SPC images, and the HDR datasets used for training
and testing our model. We also describe the real data used
for evaluation. Lastly, we discuss the implementation de-
tails of the proposed model.

5.1. Simulator and Datasets

Since SPCs are an emerging technology, there are no
readily available real-world datasets. To overcome this
challenge we implemented a simulation pipeline that lever-
ages existing HDR image datasets to generate a large-scale
paired CMOS+SPC image dataset. Moreover, current SPC
sensors are monochrome, so for the remainder of this paper
we restrict our analysis to monochrome images.

Simulator: The simulators take as input ground truth pho-
ton flux images, Φ.

• CMOS Simulation: The CMOS image is simulated
from Φ using the Gaussian approximation described in
Section 3.1 with the pixel sensitivity and exposure param-
eters set to qCMOS = 0.75 and T = 0.01s. Pixel outputs
are clipped at NFWC = 33400. Thus, the final simulated
CMOS images contain linear digitized pixel intensities
(i.e., N̂CMOS

T ), with approximately 15 bits per pixel.

• SPC Simulation: We begin by spatially downsam-
pling the ground-truth Φ by 4× using OpenCV’s
cv2.INTER AREA interpolation [5]. The SPC image is
simulated from Φ using the Gaussian approximation (Sec.
3.2) with qSPAD = 0.25, T = 0.01s, τd = 150ns. The sim-
ulated SPC image contains the photon counts measured
by each pixel (N̂SPC

T ).

Synthetic Dataset: We gathered a total of 667 high-
resolution HDR images from Poly Haven [27] (469, 4096×
2048), Laval et al. [19] (93, 2048 × 1024), and Funt et
al. [17, 18] (105, 2142 × 1422). For each dataset, we an-
alyzed the distribution of its irradiance values to determine
an appropriate scaling factor that would make the distribu-
tion span a wide range of realistic photon flux values [64]
(please see Sec. S. 4 for details). For the models that require
monochrome inputs, we dropped the R/B color channels.

Real Images: We use the CMOS-SPC image pairs acquired
in [30]. Unfortunately, the images are not aligned, the phys-
ical distance between the sensors is significant, and each
sensor is subject to its own optical parameters (e.g., focal
length and aberrations). To alleviate these limitations, we
manually select small overlapping crops from each image
and register them by estimating an affine transformation
using MATLAB’s imregtform function. The approxi-
mately aligned crops shown in the first and second rows of
Figure 8 are 84 × 73 and 71 × 71, respectively. Finally,

we bilinearly re-sample the CMOS and SPC crops such that
their dimensions are 256× 256 and 64× 64.

5.2. Training and Implementation

Data Pre-processing: To guarantee that the CMOS and
SPC images have similar distributions in non-saturated re-
gions, we estimate photon flux from the pixel intensities us-
ing Eqs. (3) and (6). We normalize the CMOS (Φ̂CMOS),
SPC (Φ̂SPC), and the ground truth (Φ) images by dividing
by the CMOS photon flux saturation limit (i.e., NFWC/T ), and
multiplying by 255.
Augmentation & Patch Selection: During each training
step, we randomly select patches from the CMOS and SPC
images of size 512×256 and 128×64, respectively. To pro-
mote a balanced dataset that contains sufficient examples of
saturated CMOS image regions, when selecting the random
patch, we sample 10 patches and select the patch where at
least 10% of the pixels are saturated. If none of them satisfy
this criteria, we simply return one of them. We found that
this patch selection strategy prevents the network from only
learning to output a copy of the CMOS image. Finally, we
apply a random horizontal and vertical flip to the patch.
Network Architecture: Figure 3 shows the detailed dual-
encoder U-net architecture. To avoid checkerboard artifacts,
we use the resize-convolution upsampling operator [47] in
the sensor fusion decoder.
Training Details: We split our synthetic dataset into train-
ing, validation, and testing subsets. The training and val-
idation sets are composed of the simulated images from
[27, 19] using an 80/20 split. The test set is Funt et al. HDR
dataset [17]. The weights of the CMOS encoder are initial-
ized to pre-trained VGG-16 weights and the SPC encoder
and sensor fusion decoder use PyTorch’s default initializa-
tion. We train all models using the ADAM optimizer [33]
with its default parameters and a batch size of 16. We train
the model for 2000 epochs using a multi-step learning rate
schedule where the learning rate starts at 10−3, and every
500 epochs it is reduced by a factor of 0.8.

6. Experiments and Results
6.1. Baselines

To illustrate the need of both SPC and CMOS images for
extreme HDR, we compare against the following baselines:

• DHDR [55]: State-of-the-art single-image HDR imaging
model trained on a larger dataset.

• ExpandNet [43]: A single-image HDR CNN model.

• ESRGAN [62]: A single-image super-resolution model
based on generative adversarial networks.

• Laplacian Blending [6]: Algorithmic blending of an ES-
RGAN super-resolved SPC image and a CMOS image.
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Figure 4. Importance of low-res. HDR information: As the area
of over-exposed regions increases, single-image HDR networks
like DHDR [55], can no longer recover details in these regions
due to the lack of contextual information. DHDR produces im-
ages with missing texture (e.g., hair in red crop) or incorrect tex-
ture (e.g., beard in green crop). In contrast, our method uses low-
resolution HDR information to reproduce plausible texture details
that closely resemble the physical appearance of the subjects, even
in extreme dynamic range.

• Dual-Exposure Bracketing [12]: Fusion of two CMOS
images with a short and a long exposure (0.001ms and
10ms), using a last-sample-before-saturation approach.

DHDR and ExpandNet take 8-bit input images, there-
fore, we scale the estimated CMOS photon flux images
(Φ̂CMOS) to [0,1], apply gamma-compression (γ = 0.5),
and re-scale to an 8-bit image. Since DHDR and Expand-
Net are trained with RGB data, they rely on inter-channel
information, therefore, we do not drop the R/B channels for
these models. ESRGAN takes as input tone-mapped im-
ages scaled between [0, 1], so we first apply µ-compression
to the estimated SPC photon flux images (Φ̂SPC) and then
scale to [0, 1]. Finally, for the output images of DHDR, Ex-
pandNet, and ESRGAN, we invert the aforementioned pre-
processing steps to produce the corresponding linear photon
flux images. This last step is necessary to ensure that all vi-
sual comparisons use the same visualization pipeline which
operates on linear photon flux images.

6.2. Synthetic Dataset Evaluation

For visual comparisons between our model and the base-
lines (i.e., Figures 4, 5, and 6), we tone-map all images to
16-bit PNGs using OpenCV’s TonemapDrago function
with gamma and saturation parameters set to 1.0 [5]. We ap-
ply the same exposure and contrast adjustments to the crops
shown to highlight the details.

Figure 5. Importance of high-res. LDR information: Recent
single-image super-resolution methods like ESRGAN [36] can be
used to super-resolve the low-res HDR SPC image. Although
this helps recover certain fine details like the book boundaries, it
also introduces non-existent high-frequency textures (green crop).
Moreover, it fails to recover structured details, such as text. Our
method not only avoids these artifacts by using the information
from the high-res CMOS image, but also super-resolve regions
where the CMOS input is saturated.

Limitations of Single-image HDR: Figure 4 compares our
proposed method with a state-of-the-art single-image HDR
network, DHDR [55]. In the red crop, DHDR fails to re-
cover both the contour and texture of the forehead and hair.
As seen in the green crop, not only is the cotton-like tex-
ture on the collar missing, but the hallucinated texture of
the beard also falsely mimics the pattern found on the edge
of the collar. These hallucinated image segments are not
acceptable in safety-critical applications. Figure 4 suggests
that single-image HDR methods are unable to recover ex-
treme DR images because of insufficient contextual infor-
mation in the saturated regions that these models can use
for in-painting, resulting in image patches that either lack
texture or contain textures that deviate from the ground
truth. In contrast, our proposed method uses the true low-
resolution HDR information from the SPC sensor to guide
the dynamic range extension, producing visually pleasing
images consistent with the ground truth.

Limitations of Single-image Super-resolution: Figure 5
compares our method with ESRGAN [62], a recent single-
image super-resolution model. At first glance, ESRGAN
produces sharp, high-contrast images, but it does so at the
cost of introducing non-existent high-frequency patterns
and textures. For instance, ESRGAN introduces artificial
film grain-like texture on the metal plate (green crops).
More importantly, ESRGAN fails to recover structured fine
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Figure 6. Importance of spatially uniform SNR: Merging two
CMOS images at drastically different exposure times can increase
dynamic range. However, in extreme dynamic range settings,
dual-exposure bracketing produces image segments with discon-
tinuous SNR levels (e.g., green crop). Denoising these regions can
be challenging due to the spatial non-uniformity of the SNR dips,
and in very low SNR cases, image features like the wall texture
(red crop) appear extremely noisy. Our method produces clean
images while maintaining image details across a wide range of
brightness values.

details, such as text (red crops), which are essential features
for downstream computer vision tasks. Our model uses the
unsaturated high-resolution CMOS data to retain image de-
tails, such as the flower patterns at the bottom right of the
green crop. Even in regions where the CMOS image is com-
pletely over-exposed, our network super-resolves the SPC
image free of any hallucinated high-frequency artifacts, and
effectively recovering structured details like text.

Limitations of Dual-Exposure Bracketing: Figure 6 com-
pares our proposed method with dual-exposure bracket-
ing [12]. For dual-exposure bracketing, an SNR dip visu-
ally translates to non-uniform regions in the merged image
where the noise level suddenly increases, effectively reduc-
ing image quality. For instance, in the red crop, the smooth
bright and dark spots on the wall are occluded by the noise,
making these features hard to denoise. Moreover, the green
crop shows an example where such SNR discontinuities
can be spatially complex and fragmented, introducing ad-
ditional denoising challenges. In the chosen configuration
where the SPC and CMOS exposures are both 10ms, the
SNR levels of the two sensors approximately match across
the image, despite increases in brightness that may saturate
the CMOS image. By maintaining high and uniform SNR,
our method produces clean images with important details
across brightness levels, suggesting that CMOS-SPC is a

superior hybrid setup than CMOS-CMOS in extreme DR
settings. Additional results can be found in Section S. 1.

Figure 7. Numerical quality metrics: This table shows HDR-
VDP3 quality scores [41] and MSE with respect to ground truth
HDR images (computed on µ-compressed images with µ = 500)
for all methods. Our method outperforms state-of-the-art single-
image HDR and super-resolution methods and provides the high-
est quality score and lowest MSE for the test set.

Quantitative Evaluations: Figure 7 shows HDR-VDP3
and mean-squared error (MSE) scores for each image in the
test set (Funt et al. HDR dataset [17]). Images with very
few saturated regions achieve high HDR-VDP3 scores in
all methods that have CMOS as an input. Although, Ex-
pandNet and DHDR improve the CMOS images with ex-
tremely low HDR-VDP3 scores, models with SPC inputs
have fewer outliers and produce tightly distributed scores.
The poor performance of dual-exposure bracketing in both
metrics suggest that these metrics penalize low SNR heavier
than saturation. Surprisingly, DHDR achieves comparable
median HDR-VDP3 and MSE scores to Laplacian blending,
despite only using a single-image. Nonetheless, Laplacian
blending better prevents outliers with very poor image qual-
ity. Overall, our model consistently outperforms the evalu-
ated baselines by a large margin.

Ablation Study: To evaluate the importance of each com-
ponent of our network and inputs we compare the perfor-
mance of the following ablation models: (M1) uses a single
CMOS input image to generate an HDR output and relies
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Figure 8. Real-world evaluation: We test our model on approx-
imately aligned CMOS and SPC image crops (columns 1 and 2)
from [30]. To circumvent the initial low-resolution of the CMOS
image, we upsample it to make it compatible with our network
(details in Section 5.1), which prevents our model from using true
high-resolution CMOS information. Despite the non-idealities of
the experimental data and approximate alignment, our model re-
covers structures like the thin lamp wire (1st row) and text (2nd
row), that the baselines fail to recover. Although, using 6 expo-
sures helps resolve SNR dips in the exposure bracketed image, it
still contains over-exposed regions (1st row).

on the back-bone U-Net shown in Fig. 3. (M2) concatenates
SPAD features to the decoder network. (M3) introduces at-
tention gates in the decoder network in addition to the SPAD
input of (M2). The median HDR-VDP3 quality scores for
the three models computed on the validation set are 9.68,
9.99 and 9.98 and median µ-compressed MSE values are
5.25× 10−4, 2.95× 10−5 and 4.14× 10−5. Therefore we
choose model (M2) as our final proposed model. Additional
metrics and qualitative visual comparisons supporting this
choice are shown in Section S. 3.

6.3. Experimental Evaluation

As described in Section 5.1, we use data from [30] to
demonstrate the effectiveness of the proposed method on
real-world data. Figure 8 shows two pre-processed image
crops with extreme DR (CMOS and SPC columns) that are
used as inputs to our network. The SPC images have a 5ms
exposure. The CMOS inputs (first column) have a expo-
sure times of 0.1ms (first row) and 0.5ms (second row).
Different from our synthetic data evaluation, the exposure
times between CMOS and SPC are chosen not to match be-
cause using higher exposures for CMOS would have led to
fully saturated images. Similar to our synthetic data eval-
uation, DHDR fails to recover fine structures in the satu-
rated CMOS regions (e.g., fire dept. letters). Moreover, ex-
posure bracketing, despite using 6 exposures ranging from
0.005ms to 5ms, is still unable to recover the thin wires
of the lamp (first row). Due to imperfect alignment of the
CMOS and SPC crops, our model blurs these fine struc-
tures in both images (lamp details and text). Nonetheless,
these features are still visible and are not completely sup-
pressed by the CMOS saturation limit. Note that the CMOS
and SPC image crops are derived from similar spatial res-
olutions, therefore, the CMOS crop does not contain any

additional spatial information that our model can exploit.

7. Discussion and Limitations
We present a model for extreme HDR imaging that fuses

a high-resolution LDR CMOS image with a low-resolution
HDR SPC image. These two imaging technologies address
the fundamental limitations (low dynamic range and low
spatial resolution) of each other, making their fusion a nat-
ural design choice. Our evaluation demonstrates that in ex-
treme DR scenarios, CMOS and SPC sensors cannot over-
come their limitations on their own, even with state-of-the-
art models such as DHDR [55] and ESRGAN [62]. More-
over, we show that extending the CMOS dynamic range
with a second low-exposure CMOS image is a sub-optimal
design choice in an extreme HDR setting, due to the signif-
icant SNR dip artifacts. Overall, our proposed SPC-guided
HDR model is a promising imaging modality for emerging
computer vision applications that require HDR content.

CMOS-SPC Prototype: As discussed in Section 6.3,
the imperfect alignment between SPC and CMOS images
can cause our model to blur fine details. Moreover, the
low-resolution of the CMOS crop prevents our model from
leveraging the high-resolution information that was avail-
able during training. Nonetheless, our experimental results
suggest a reasonable degree of generalization by our model
on real-world data, despite being trained solely on synthetic
data. The next step is to build a hardware prototype that
mitigates image mis-alignments between the CMOS and
SPC images, and uses appropriate optics for HDR scenar-
ios. This will enable extensive real-world evaluation of our
model, and inform future designs.

Extreme HDR in Color: Here we restricted our analysis to
extending the dynamic range of monochrome images. Al-
though current SPCs are monochrome, future sensors will
likely incorporate color filter arrays. Moreover, as discussed
in the supplement, there is important inter-channel informa-
tion that can be used to further extend the dynamic range of
an image. In the future, our method can also leverage mul-
tiple color channels to further improve dynamic range.

Extreme HDR Video: Our proposed model only requires
two images that can be acquired simultaneously, which is
a practical design for dynamic applications that require ex-
treme DR. Extending our model for extreme DR video re-
construction is a promising avenue for future work.
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